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We obtain the asymptotic formulae |B & V |=( |B|�p)+O(- |B| log2 p) for the
number of solutions of the congruence x1x2#x3x4 (mod p) in a box B of
arbitrary size and position, and N(B)=(12�?2) B2 log B+CB2+O(B19�13 log7�13 B),
with C given explicitly, for the number of solutions of the diophantine equation
x1x2=x3x4 with 1�xi�B. We also obtain the upper bound for fourth order
character sum moments, 1�( p&1) �/{/o

|�a+B
x=a+1 /(x)| 4<<B2 log2 p. � 1996

Academic Press, Inc.

1. INTRODUCTION

The distribution of solutions of the congruence

x1 x2#x3x4 (mod p), (1)

where p is a prime, arises naturally in the study of certain character sums.
For any integers ai , Bi , with 1�Bi<p, 1�i�4 let B be the box of points

B=[x # Z4 : ai�xi<ai+Bi], (2)

of cardinality |B|=B1B2 B3 B4 , and V/Z4 denote the set of integer solu-
tions of (1). We may also view B and V as subsets of F4

p . Solutions of (1)
with some xi#0 (mod p) may be readily dealt with and so we assume
henceforth that B does not meet any of the coordinate planes
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xi#0 (mod p). For such boxes the number of solutions of (1) in B may be
easily expressed in terms of a character sum:

|B & V |=
|B|

p&1
+

1
p&1

:
/{/o

:
x # B

/(x1 x2x&1
3 x&1

4 ) (3)

where / runs through the set of multiplicative characters on Fp and /o

denotes the principal character. In particular, taking all the ai=a+1 and
all of the Bi=B we have

|B & V |=
|B|

p&1
+

1
p&1

:
/{/o

} :
a+B

x=a+1

/(x)}
4

. (4)

Our main theorems are

Theorem 1. Suppose that B is a box of the type (2) not meeting any
coordinate plane. Then

|B & V |=
|B|
p

+O(- |B| log2 p). (5)

In particular, if |B|>>p2 log4 p then B contains a solution of (1).

One would hope to be able to replace log2 p with log p on the right-hand
side of (5), which in lieu of Theorem 3 below would be best possible. The
second statement in Theorem 1 is nearly best possible in the sense that
there are boxes of cardinality rp2 containing no solution of (1); for
example 1�x1 , x2�- p�2, - p�2<x3 , x4<- p. One may ask this time
whether the factor log4 p can be removed altogether.

In the special cases, B1=B2 , B3=B4 and B1=B3 , B2=B4 , we can save
the factor of log p in (5) at the expense of an asymptotic formula. Specifi-
cally, we shall prove

|B & V |r
|B|
p

+O(- |B| log p). (6)

Further cases where the savings of log p can be had are given at the end
of Section 3. Friedlander and Iwaniec [3, Lemma] had established the
upper bound in (6) for the box 1�x1 , x3�B1 , a�x2 , x4�a+B2 , with
B1<B2 and 2B1 B2<p.

Immediate consequences of (4), (5) and (6) are parts (i) and (ii) of

Theorem 2. For any integers a, B with B>0 we have

(i)
1

p&1
:

/{/o
} :

a+B

x=a+1

/(x)}
4

<<B2 log2 p. (7)
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(ii) If B<<- p log p, then

1
p&1

:
/{/o

} :
a+B

x=a+1

/(x) }
4

<<B2 log p, (8)

(iii) If B�- p and a=0 then

1
p&1

:
/{/o

} :
B

x=1

/(x) }
4

=
12
?2 B2 log B+\C&

B2

p + B2+O(B19�13 log7�13 B),

(9)

where C=&.511317447 } } } is the constant in Theorem 3.

Part (iii) is an immediate corollary of Theorem 3 as explained below.
Also, it follows from Theorem 3 that the upper bound in (8) is best
possible for a=0 and B<<- p log p. The upper bound in (7) sharpens the
result of Friedlander and Iwaniec [2, Lemma 3]. They had log6 p instead
of log2 p on the righthand side. Their result has the advantage that it holds
for a general modulus, but it only applies when a=0 and the proof
requires a substantial amount of analytic machinery pertaining to L-func-
tions. Our proof of (7) is elementary. The upper bounds in (7) and (8)
may also be compared with the result of Montgomery and Vaughan
[6, Theorem 1],

1
p&1

:
/{/o

max
B } :

B

x=1

/(x) }
4

<<p2,

and the result of Burgess [1, Lemma 1],

:
/{/o

:
p

x=1
} :

B

m=1

/(x+m) }
4

�6p2B2.

The inequality of Montgomery and Vaughan yields a sharper inequality in
(7) for values of B close to p, while the result of Burgess indicates that on
averaging with respect to a, one saves the factor of log2 p in (7).

We turn now to the diophantine equation x1x2=x3x4 , and establish a
precise asymptotic formula for the number of solutions in a cube concerned
at the origin.

Theorem 3. The number N(B) of integer solutions of the equation
x1 x2=x3x4 with 1�xi�B, 1�i�4, is given by

N(B)=
12
?2 B2 log B+CB2+O(B19�13 log7�13 B), (10)
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where C=2�?2(12#o&(36�?2) `$(2)&3)&2=&.511317447 } } } , #o is Euler's
constant and `$(2)=��

n=1 (log n�n2).

Let A(B)=(12�?2) B2 log B+CB2 denote the approximation to N(B)
provided by Theorem 3. The following table illustrates the accuracy of the
formula. (The values given are approximations.)

B N(B) A(B) |N(B)&A(B)|�N(B)

102 52160 50878 .024
103 7.899_106 7.887_106 .0016
104 1.0690_109 1.0687_109 .00029
105 1.348687_1011 1.348672_1011 .000011
106 1.628652_1013 1.628633_1013 .000011

If B�- p then the equation x1x2=x3x4 and the congruence (1) are identi-
cal and so (10) is also a formula for |B & V |. This observation, together
with (4), yields part (iii) of Theorem 2.

Another easy consequence of (6) is

Corollary 2. If B is a box of the type (2) not meeting any coordinate
plane then the number N(B) of integer solutions of the equation x1 x2=x3x4

with coordinates in B is bounded by

N(B)<<- |B| log( |B| ). (11)

Theorem 3 and Corollary 2 are proven in Sections 4 and 5 respectively.
The proof of Theorem 1 makes use of three different ways of counting

the solutions of (1). The first method is the most elementary. Here we fix
two of the coordinates, say x1 and x3 , and count the number of solutions
of the linear diophantine equations x1x2&x3 x4=jp for the appropriate
range of values of j . Upon summing over x1 and x3 we obtain the upper
bound in Lemma 2,

|B & V |<<
|B|
p

+- |B| log p, (12)

for a box of the type

B=[x # Z4 : 1�xi�Bi , 1�i�4],

with B1=B3 and B2=B4 . This approach has two limitations. It can only
be used to obtain an upper bound on the number of solutions. Also, the
method runs into complications for boxes of arbitrary sizes and even more
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so for boxes not cornered at the origin. This lemma will serve as a catalyst
for the second method.

The second way of counting the solutions of (1) is to work over Fp ,
and let : denote the characteristic function of the box B in (2), viewed as
a subset of F4

p , with finite Fourier expansion

:(x)=:
y

a(y) ep(x } y).

Here, ep(V)=e(2?i�p)* and x } y=x1 y1+x2 y2+x3 y3+x4 y4 , and �y

denotes the complete sum over y # F4
p . Then

|B & V |= :

x i{0
x1x 2=x 3x 4

:(x)=
1

p&1
:

x i{0
x

:(x) :
/

/(x1x2 x&1
3 x&1

4 ),

=
1

p&1
:

x i{0
x

:(x)+
1

p&1
:

/{/ o

:

x i{0
x

:(x) /(x1x2 x&1
3 x&1

4 ) (13)

=
1

p&1
:

x i{0
x

:(x)

+
1

p&1
:
y

a(y) :
/{/o

:

x i{0
x

/(x1 x2x&1
3 x&1

4 ) ep(x } y). (14)

Now if any yi=0 then the sum over / and x is zero. If all of the yi are non-
zero then the sum over x is just

6 2
i=1 :

x i{0

/(xi ) ep(xi yi ) 6 4
i=3 :

x i{0

/(x&1
i ) ep(xi yi ).

Letting G(/) denote the Gaussian sum G(/)=�x i{0 /(xi ) ep(xi ), this is
just

=/( y&1
1 y&1

2 y3 y4) G(/)2 G(/&1)2=p2/( y&1
1 y&1

2 y3 y4),

since G(/&1)=/(&1) G(/) and |G(/)| 2=p for /{/o . Summing over / we
obtain the fundamental identity,

Fundamental Identity.

:

xi{0
x1 x 2=x 3x 4

:(x)=
1

p&1
:

x i{0
x

:(x)+p2 :

y i{0
y1 y2=y3 y 4

a(y)&
p2

p&1
:

yi{0

a(y). (15)
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Now, in order to control the error term in (15) one is brought back to
the problem of determining a good upper bound on the number of solu-
tions of (1) in a box centered at the origin. Rather than applying (15)
directly to the characteristic function of B we shall apply it to a weighted
function : having rapidly decaying Fourier coefficients. This will allow us
to control the error term in (15) and to generalize the upper bound in (12).
For an arbitrary box we shall obtain, Lemma 3,

|B & V |<<
|B|
p

+( p+B1 B2 log p)1�2 ( p+B3 B4 log p)1�2. (16)

The factor of p appearing twice on the right hand side of (16) is
unavoidable if one makes a simple application of the Fundamental Iden-
tity. Nevertheless, the bound in (16) is strong enough for a successful
application of our third method which is taken up in Section 3.

2. LEMMAS

Lemma 1. Let x1 , x3 , a2 , a4 , B2 , B4 be positive integers with x1 , x3 non-
zero (mod p) and d the greatest common divisor of x1 and x3 . Then

*[(x2 , x4) # Z2 : x1 x2#x3x4 (mod p), a2�x2<a2+B2 , a4�x4<a4+B4]

�\B2 x1

dp
+

B4 x3

dp
+1+ min \B2d

x3

+1,
B4d
x1

+1+ .

Proof. We must solve the linear diophantine equation

x1 x2&x3x4=jp (17)

with j # Z. Now, since

x1a2&x3(a4+B4)<x1 x2&x3x4<x1(a2+B2)&x3 a4 ,

it follows that jp runs through an interval of length B2x1+B4x3 . Any solu-
tion of (17) must have d | j, and so there are at most

\B2 x1

dp
+

B4 x3

dp
+1+

choices for j. For any fixed j the solution set of (17) is given by

x2=x20+*x3 �d, x4=x40+*x1 �d,
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with * # Z. Since x2 and x4 run through intervals of lengths B2 and B4

respectively, there are at most

min \B2 d
x3

+1,
B4d
x1

+1+ ,

choices for *, and the lemma follows.

Lemma 2. Suppose that B is a box of the type

B=[x # Z4 : 1�x1�H, a2�x2<a2+K, 1�x3�K, a4�x4<a4+H],

where a2 , a4 , H, K are integers with 0<H, K<p. Then

|B & V |<<
|B|
p

+- |B| log p. (18)

Proof. For any fixed x1 , x3 let N(x1 , x3) denote the number of solutions
(x2 , x4) of the congruence x1x2#x3x4 (mod p) in the desired interval. Then
by Lemma 1 we have

|B & V |= :
d�H

:
H

x1=1

:
K

x 3=1
(x1 , x 3)=d

N(x1 , x3)

� :
d�H _ :

H

x 1=1
(x 1 , x 3)=d

:
K

x 3=1
Kx 1�Hx 3

\Hx3

dp
+1+\Kd

x3

+1+
+ :

H

x 1=1
(x 1 , x 3)=d

:
K

x3=1
Kx1�Hx3

\Kx1

dp
+1+\Hd

x1

+1+&
=

H2K2

p
+HK+ :

d�H

:

Kx1�Hx3
x 1 , x3

\Hx3

dp
+

Kd
x3 +

+ :
d�H

:

Kx1�Hx3
x1 , x 3

\Kx1

dp
+

Hd
x 1 + .

Letting x1=du1 and x3=du3 the above is

�
H2K2

p
+HK+ :

d�H

:
u 3�K�d \

H2u2
3

pK
+H++ :

d�H

:
u1�H�d \

K 2u2
1

Hp
+K+

<<
H2 K2

p
+HK log p.
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Lemma 3. Suppose that B is any box of the type (2) not meeting any
coordinate plane. Then

|B & V |<<
|B|
p

+( p+B1 B2 log p)1�2 ( p+B3 B4 log p)1�2. (19)

Moreover, the inequality in (19) holds if the products B1B2 and B3 B4 are
replaced with any other pairing of the Bi .

Proof. Suppose first that B1=B3 and B2=B4 . Our strategy is to
choose a weighted function : so that the error term

E(:) :=p2 :

y i{0
y 1 y 2=y3 y4

a(y)&
p2

p&1
:

yi{0

a(y)

in the fundamental identity (15), admits a good upper bound. We may
assume that B is a box of the type

B=[x # Z4: |xi&ci |<Bi�2, 1�i�4],

for some integers ci . Let V be the set of solutions of (1), B0=
[x # Z4 : |xi |<Bi�2] and

:=
1

|B| 4 /B0
V /B0

V /B0
V /B0

V /B ,

a normalized five-fold convolution of the characteristic functions of B0 and
B. Then

:

xi{0
x 1 x2=x 3x 4

:(x)>>|B & V | , (20)

:
x i{0

:(x)<<|B|, (21)

and the Fourier coefficients a(y) of : satisfy

|a(y)|<<p&4 |B|&4 6 4
i=1 min \B5

i ,
p5

| yi |
5+ , ( | yi |<p�2).

Thus, letting the yi run through the intervals 0<| yi |�p�Bi and 2ki p�Bi<
| yi |�2k i+1p�Bi for ki=0, 1, 2..., we have

:

yi{0
y1 y 2=y 3 y 4

|a(y)|<<p&4 |B| &4 :
k1=0

:
k2=0

:
k3=0

:
k4=0

:

0< | y i |�2 ki p�Bi

y 1 y2=y 3 y 4

|B| 5 6 4
i=1 2&5k i.
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For any choice of ki let K=max(k1 , k2 , k3 , k4), and enlarge the range of
summation of the yi to the box (with coordinate planes omitted),

0<| y1 |, | y3 |�2Kp�B1 , 0<| y2 |, | y4 |�2Kp�B2.

Here we have used our assumption that B1=B3 and B2=B4 . On applying
Lemma 2, we obtain

:

y i{0
y1 y2=y3 y4

|a(y)|<<p&4 |B| :
k 1

} } } :
k 4

6 4
i=1 2&5k i \24Kp3

|B|
+

22Kp2 log p
B1B2 +

<<
1
p

+p&2 |B| 1�2 log p,

and in a similar manner one obtains � yi{0 |a(y)|<<1. Thus

E(:)<<p+|B| 1�2 log p. (22)

Suppose now that B1 , B2 , B3 and B4 are arbitrary. Write

:(x)=:1(x1) :2(x2) :3(x3) :4(x4).

By (13) the error term E(:) may be expressed

|E(:)|=|E(:1(x1) :2(x2) :3(x3) :4(x4))|

=
1

p&1 } :
/{/o

:

x i{0
x

:(x) /(x1x2x&1
3 x&1

4 ) }

=
1

p&1 } :
/{/o

\6 2
i=1 :

x i{0

:i (xi ) /(xi )+\6 4
i=3 :

xi{0

:i (xi ) /(x&1
i )+}

�
1

p&1 \ :
/{/o

}6 2
i=1 :

x i{0

:i (xi ) /(xi ) }
2

+
1�2

_\ :
/{/o

}6 4
i=3 :

x i{0

:i (xi ) /(x&1
i ) }

2

+
1�2

=E(:1(x1) :2(x2) :1(x3) :2(x4))1�2 E(:3(x1) :4(x2) :3(x3) :4(x4))1�2

<<( p+B1B2 log p)1�2 ( p+B3 B4 log p)1�2,
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by the first case, (22). Applying Cauchy's inequality in the preceding
argument to a different pairing of the Bi allows us to replace the products
B1B2 and B3B4 in the statement of Lemma 3 with any other pairing of
the Bi .

3. PROOF OF THEOREM 1

The third method for counting the solutions of (1) in B is to again view
the congruence as an equation over Fp and write,

:

a i�x i<a i+Bi
x 1x 2=x 3x4

1= :
ai�x i<a i+Bi , 1�i�3

:(x1x2 x&1
3 ),

where : is the characteristic function of the interval a4�x4<a4+B4 .
Letting :(x)=� y a( y ) ep(xy ) be the finite Fourier expansion of : we
obtain,

|B & V |=
|B|
p

+ :
y{0

a( y ) :
ai�x i<ai+B i , 1�i�3

ep(x1x2 x&1
3 y ). (23)

To bound the error term in (23) we sum over x2 to obtain

|Error|� :
y{0

|a( y )| :
ai�x i<ai+B i , i=1, 3

} sin(?x1x&1
3 yB2 �p)

sin(?x1x&1
3 y�p) }

= :
y{0

|a( y )| :
l{0 }

sin(?lB2�p)
sin(?l�p) } :

x1 y=x 3 l
a i�x i<ai+B i , i=1, 3

1

<<p&1 :
y{0

min \B4 ,
p

| y |+ :
l{0

min \B2 ,
p
|l |+ :

x 1 y=x3 l
a i�xi<ai+Bi , i=1, 3

1.

Letting y run through the intervals 0<| y |�p�B4 and 2 ip�B4<| y |�
2i+1p�B4 for i=0, 1, 2..., stopping as soon as 2i>B4�4, and doing the same
thing for l we obtain

|Error|<<p&1B2B4 :
i=0

:
j=0

2&i&j |Bij & V | (24)

where for any i and j ,

Bij=[(x1 , y, x3 , l ) # Z4: ak�xk<ak+Bk , k=1, 3,

0<| y |�2ip�B4 , 0<|l |�2 jp�B2].

407THE CONGRUENCE x1x2#x3x4 (mod p)
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If we assume that B1�B2 and B3�B4 then for any i, j, we have by
Lemma 3 that

|Bij & V |<<
2 i+j B1B3 p

B2B4

+( p+2 jpB1 log p�B2)1�2 ( p+2ipB3 log p�B4)1�2

<<
2i+jB1B3 p

B2B4

+2(i+j)�2p log p �B1B3

B2B4

.

Inserting this into (24) and realizing that i and j each run through an
interval of length <log p yields

|Error|<<B1 B3 log2 p+- B1 B2B3B4 log p<<B1 B3 log2 p. (25)

If B1�B4 and B3�B2 then for any i, j we have B12i p�B4�p and
B32 jp�B2�p and so we can again apply Lemma 3 and obtain (25). Thus
for any box B with B1 the largest dimension and B3�min(B2 , B4) it
follows from (23) that

|B & V |=
|B|
p

+O(B1B3 log2 p).

In particular, we have established Theorem 1 for Cubes, that is, for
boxes with all of the Bi equal. This is enough to establish Theorem 2(i).
One can then obtain Theorem 1 for a general box by a simple application
of Cauchy's inequality. Indeed, from (3) we have

} |B & V |&
B

p&1 }<<
1

p&1 \6 4
i=1 :

/{/o
} :

ai�x i<ai+B i

/(xi ) }
4

+
1�4

<<6 4
i=1 B1�2

i log2 p.

We turn now to the proof of the approximation formula

|B & V |r
|B|
p

+O(- |B| log p), (26)

in a number of special cases.

Proposition. Suppose that B is a box not meeting any coordinate plane
with B1 the largest dimension and B3�min(B2 , B4). Then

|B & V |r
|B|
p

+O(B1B3 log p). (27)
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Proof. We proceed as in the proof of Theorem 1 above, only this time
we replace : with the appropriate weighted functions having Fourier coef-
ficients a( y ) satisfying

|a( y )|<<p&1 min \B2
4 ,

p2

| y | 2+ .

In this case, the inequality in (24) becomes

|Error|<<p&1B2B4 :
i=0

:
j=0

2&2i&j |Bij & V |, (28)

and so we save a factor of log p in the sum over i.

The proposition establishes (26) in the special cases B1=B2 , B3=B4

and B1=B3 , B2=B4 . Another special case where (26) can be proved is
when the Bi can be paired so that both products are >>p�log p. The upper
bound

|B & V |<<
|B|
p

+O(- |B| log p),

is just a consequence of Lemma 3. The lower bound can be obtained in an
analogous manner by choosing a slightly different weighted function :.

Finally, if the Bi can be paired in such a manner that both products are
<<p log p then we can again establish (26). In this case (26) is just equiv-
alent to

|B & V |<<- |B| log p. (29)

To obtain (29) suppose, without loss of generality, that B1B4<<p log p
and B2B3<<p log p. By an application of Cauchy's inequality we have,

|B & V |= :

a i�x i<a i+B i
x 1x 2=x 3x 4

1= :
p&1

;=1
\ :

x 1 �x4=;
x 1 , x4

1+\ :

x 3 �x2=;
x 2 , x3

1+
�_:

; \ :

x 1 �x4=;
x 1 , x 4

1+
2

&
1�2

_:
; \ :

x 3 �x 2=;
x 2 , x 3

1+
2

&
1�2

=_ :

a4�x4 , u4<a 4+B 4

x 1u4=u1 x 4
a1�x 1 , u1<a1+B 1

1&
1�2

_ :

a3�x 3 , u 3<a3+B3

x 2u 3=u2x 3
a 2�x2 , u 2<a 2+B2

1&
1�2

<<(- B1 B4 log p)(- B2B3 log p),

the last inequality following from the above proposition.
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4. PROOF OF THEOREM 3

We have

N(B) := :

1�x i�B
x1x 2=x3 x4

1= :

1�a, b�B
(a, b)=1

\ :
(x 1 �x 3)=(a�b)

1+
2

.

The contribution coming from a=b=1 is just B2, and so by symmetry the
above is

=B2+2 :

1�a<b�B
(a, b)=1 \ :

(x 1 �x3)=(a�b)

1+
2

=B2+2 :

1�a<b�B
(a, b)=1 _B

b&
2

=B2+2 :
B

b=2

,(b) _B
b&

2

. (30)

Thus, it is sufficient to show that

:
n�x

,(x) _x
n&

2

=
6
?2 x2 log x+C$x2+O(x19�13 log7�13 x) (31)

for the appropriate constant C$.

Lemma 4. Let #o=.57721... denote Euler's constant and [x]=x&[x].
Then

(i) #1 := :
�

n=1

+(n)
n2 log n=

`$(2)
`2(2)

=
36
?4 `$(2), (32)

(ii) #2 :=|
�

1

[ y]2

y3 dy=
3
2

&#o&
?2

12
. (33)

Proof. Part (i) follows from `&1(s)=��
n=1 (+(n)�ns). For part (ii) we

write

#2= :
�

n=1
|

n+1

n

( y&n)2

y3 dy= :
�

n=1
|

n+1

n

1
y

&
2n
y2+

n2

y3 dy

= :
�

n=1

log(n+1)&log(n)&
1

n+1
&

1
2(n+1)2 ,

and use �x
n=1 (1�n)=log x+#o+O(1�x).
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Lemma 5. We have

(i) :
n�x

,(n)
n2 =

6
?2 log x+\ 6

?2 #o&#1++O \log x
x + , (34)

(ii) :
n�x {

x
n==(1&#o) x+O(x(7�22)+=), (35)

and

(iii) :
n�x

n {x
n=

2

=#2x2+O(x19�13 log7�13 x). (36)

Proof. Part (i) is readily obtained upon inserting ,(n)=
n �d | n (+(d )�d ) into the sum on the left-hand side of (34). For part (ii) let
d(n) denote the divisor function. Then

:
n�x

d(n)=x log x+(2#o&1)x+2(x),

where by the work of Iwaniec and Mozzochi (1988), 2(x)<<x(7�22)+=. On
the other hand,

:
n�x

d(n)= :
a�x _

x
a&=x :

a�x

1
a

& :
a�x {

x
a= ,

and so we obtain (35). To prove part (iii) we write

:
n�x

n {x
n=

2

= :
n�x

n {x
n=

2

+#2x2&|
x

1
u {x

u=
2

du+O(1)

=#2x2+|
1

0
:

n�x \n {x
n=

2

&(n+u) { x
n+u=

2

+ du+O(x).

Inserting the bound of Kolesnik (1982),

:
n�x \n {x

n=
2

&(n+u) { x
n+u=

2

+<<x1+(6�13) log7�13 x

for 0�u�1, yields (36).

It is now a simple matter to obtain (31). By parts (ii) and (iii) of
Lemma 5 it is easily seen that

:
n�x

,(n)
n {x

n==
6
?2 (1&#o)x+O(x(7�22)+=), (37)

411THE CONGRUENCE x1x2#x3x4 (mod p)



File: 641J 200415 . By:CV . Date:22:08:96 . Time:09:18 LOP8M. V8.0. Page 01:01
Codes: 2415 Signs: 933 . Length: 45 pic 0 pts, 190 mm

and

:
n�x

,(n) {x
n=

2

=
6
?2 #2x2+O(x1+(6�13) log7�13 x). (38)

By (34), (37) and (38) we have

:
n�x

,(n) _x
n&

2

=x2 :
n�x

,(n)
n2 &2x :

n�x

,(n)
n {x

n=+ :
n�x

,(n) {x
n=

2

=
6
?2 x2 log x+\18

?2 #o&#1+
6
?2 #2&

12
?2+ x2

+O(x19�13 log7�13 x).

The theorem now follows from (30) and the formulae in Lemma 4.

5. PROOF OF COROLLARY 2

Suppose first that B is a box with B1=B3 and B2=B4 , so that by (6)

|B & V |<<
|B|
p

+O(B1B2 log p),

for any prime p. Choose p so that B1B2<p<2B1B2 . Then,

N(B)�|B & V |<<B1B2 log(B1B2).

Now let B be a box with sides of arbitrary lengths. Then

N(B)= :
�

*=1
\ :

a i�x i<ai+B i
x 1x 2=*

1+\ :

ai�xi<a i+B i
x 3x 4=*

1+
�_ :

�

*=1 \ :

ai�x i<ai+B i
x 1x 2=*

1+
2

&
1�2

_ :
�

*=1 \ :

a i�x i<a i+B i
x3 x4=*

1+
2

&
1�2

<<- B1 B2 log(B1B2) - B3B4 log(B3B4).

Remark. Our method of proving Theorem 1 can be applied to a more
general set of points V satisfying

ax1x2+bx3x4#f (x1 , x3) (mod p),

where a, b are any nonzero integers (mod p), and f (x1 , x3) is any integer
valued function defined over Z2 . One obtains the same result as in
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Theorem 1. It is desirable to be able to prove Theorem 1 for the set of
points V satisfying

L1(x) L2(x)#L3(x) L4(x) (mod p),

where the Li are linear forms Li (x)=�4
i=1 aijxi and the matrix [aij ] is

nonsingular (mod p).
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