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It is shown that it is possible to consistently and gauge invariantly formulate models where the coupling 
constant is a non-trivial function of a scalar field. In the U (1) case, the coupling to the gauge field 
contains a term of the form g(φ) jμ(Aμ + ∂μB) where B is an auxiliary field and jμ is the Dirac current. 
The scalar field φ determines the local value of the coupling of the gauge field to the Dirac particle. The 
consistency of the equations determines the condition ∂μφ jμ = 0 which implies that the Dirac current 
cannot have a component in the direction of the gradient of the scalar field. As a consequence, if φ
has a soliton behaviour, like defining a bubble that connects two vacua, we obtain that the Dirac current 
cannot have a flux through the wall of the bubble, defining a confinement mechanism where the fermions 
are kept inside those bags. Consistent models with time dependent fine structure constant can be also 
constructed

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

In this paper it will be shown that an alternative coupling of 
gauge fields to charged particles is possible in such a way that the
coupling constants can be dynamical. The gauge coupling has a 
term of the form g(φ) jμ(Aμ + ∂μB) where B is an auxiliary field 
and the current jμ is the Dirac current. Before studying the issue 
of dynamical gauging, we review how the B field can be used in 
a gauge theory playing the role of a scalar gauge field [1]. That
can be used to define a new type of covariant derivative. Starting 
with a complex scalar field we now gauge the phase symmetry of 
φ by introducing a real, scalar B(xμ) and two types of covariant 
derivatives as

D A
μ = ∂μ + ie Aμ; D B

μ = ∂μ + ie∂μB. (1)

The gauge transformation of the complex scalar, vector gauge field 
and scalar gauge field have the following gauge transformation

φ → eieΛφ; Aμ → Aμ + ∂μΛ; B → B − Λ. (2)

It is easy to see that terms like D A
μφ and D B

μφ will be covariant 
under (2), that is, they transform the same way as the scalar field 
φ and their complex conjugates will transform as φ∗ does. Thus 
one can generate kinetic energy type terms like (D A

μφ)(D Aμφ)∗ , 
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(D B
μφ)(D Bμφ)∗ , (D A

μφ)(D Bμφ)∗ , and (D B
μφ)(D Aμφ)∗ . Unlike Aμ ,

where one can add a gauge invariant kinetic term involving only 
Aμ (i.e. Fμν F μν ), this is apparently not possible to do for the 
scalar gauge field B . However, note that the term Aμ + ∂μB is 
invariant under the gauge field transformation alone (i.e. Aμ →
Aμ + ∂μΛ and B → B − Λ). Thus one can add a term like 
(Aμ + ∂μB)(Aμ + ∂μB) to the Lagrangian which is invariant with 
respect to the gauge field part only of the gauge transformation in 
(2). This gauge invariant term will lead to both mass-like terms for 
the vector gauge field and kinetic energy-like terms for the scalar 
gauge field. In total, a general Lagrangian which respects the new 
gauge transformation and is a generalization of the usual gauge 
Lagrangian, has the form

L = c1 D A
μφ

(
D Aμφ

)∗ + c2 D B
μφ

(
D Bμφ

)∗ + c3 D A
μφ

(
D Bμφ

)∗

+ c4 D B
μφ

(
D Aμφ

)∗ − V (φ) − 1

4
Fμν F μν

+ c5(Aμ + ∂μB)
(

Aμ + ∂μB
)
, (3)

where ci ’s are constants that should be fixed to get a physically 
acceptable Lagrangian where c3 = c∗

4 and c1, c2, c5 are real.
At first glance one might conclude that B(x) is not a physical 

field, it appears that one could “gauge” it away by taking Λ = B(x)
in (2). However, in the case of symmetry breaking when one in-
troduces a complex charged scalar field that gets expectation value 
which is not zero, one must be careful since this would imply 
that the gauge transformation of the field φ would be of the form 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 

https://core.ac.uk/display/82456505?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2014.05.057
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/3.0/
mailto:guendel@bgu.ac.il
mailto:roeexs@gmail.com
http://dx.doi.org/10.1016/j.physletb.2014.05.057
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2014.05.057&domain=pdf


246 E.I. Guendelman, R. Steiner / Physics Letters B 734 (2014) 245–248
φ → eieBφ, i.e. the phase factor would be fixed by the gauge trans-
formation of B(x). In this situation one would no longer be able 
to use the usual unitary gauge transformation to eliminate the 
Goldstone boson in the case when one has spontaneous symme-
try breaking.

Indeed, in the case when there is spontaneous symmetry break-
ing, the physical gauge (the generalization of the unitary gauge) is 
not the gauge B = 0, as discussed in [1], it is a gauge where the 
scalar gauge field B has to be taken proportional to the phase of 
the scalar field, with a proportionality constant that depends on 
the expectation value of the Higgs field. Also, in general there are 
the three degrees of freedom of a massive vector field and the 
Higgs field, and therefore altogether five degrees of freedom.

If there is no spontaneous symmetry breaking, fixing the gauge 
B = 0 does not coincide with the gauge that allows us to display 
that the photon has two polarizations, this gauge being Coulomb 
gauge. This is true even if we do not add a gauge invariant mass 
term (possible given the existence of the B field). By fixing the 
Coulomb gauge, which will make the photon manifestly having 
only two polarizations, we will have already exhausted the gauge 
freedom and cannot in general in addition require the gauge B = 0. 
So, in Coulomb gauge where the photon will have two polariza-
tions, the B field and in addition the two other scalars, the real 
and imaginary parts of φ, all represent true degrees of freedom, so 
altogether we have five degrees of freedom, the same as the case 
displaying spontaneous symmetry breaking. If we add a gauge in-
variant mass term, even when there is no spontaneous symmetry 
breaking (the c5 term), in the gauge B = 0 we have three polariza-
tions of the massive vector field and still the real and imaginary 
parts of the complex scalar field φ, still five degrees of freedom 
altogether.

Also, one can use this kind of field to define a coupling of elec-
trodynamics to charged scalar field which enjoys only global U (1)

symmetry [2]. In “Global scalar QED”, we work with the following 
Lagrangian density

L = gμν ∂ψ∗

∂xμ

∂ψ

∂xν
− U

(
ψ∗ψ

) − 1

4
F μν Fμν + jμ

(
Aμ + ∂μB

)
(4)

where

jμ = ie

(
ψ∗ ∂ψ

∂xμ
− ψ

∂ψ∗

∂xμ

)
(5)

and where we have also allowed an arbitrary potential U (ψ∗ψ) to 
allow for the possibility of spontaneous breaking of symmetry. The 
model is separately invariant under local gauge transformations

Aμ → Aμ + ∂μΛ; B → B − Λ (6)

and the independent global phase transformations

ψ → exp(iχ)ψ (7)

The use of a gauge invariant combination (Aμ + ∂μB) can be 
utilized for the construction of mass terms[3] or both mass terms 
and couplings to a current defined from the gradient of a scalar in 
the form (Aμ + ∂μB)∂μ A [4]. In the non-abelian case, mass terms 
constructed along these lines have been considered by Cornwall 
[7]. Since the subject of this paper is electromagnetic couplings of 
photons and there is absolutely no evidence for a photon mass, 
we will disregard such type of mass terms and concentrate on the 
implications of the (Aμ + ∂μB) jμ couplings. It is also interesting 
to point out that the use of scalars instead of vectors fields has 
been studied in [8] in their general study of gauge procedure with 
gauge fields of various ranks.
Fig. 1. On the domain wall there is no communication between the two sectors of 
the domain, which give a confinement.

2. Confining boundary conditions from dynamical coupling 
constants

In this chapter and the following one we will show that dynam-
ical coupling constants can lead to confinement. The dynamical 
coupling constants is dynamical mostly at the boundary of the 
confinement and out side the boundary.

Let us proceed with the same consideration as in the chapter 
before, but with Dirac field ψ and real scalar field φ, with the 
action:

S =
∫

ψ̄
(
iγ μ∂μ − m + eγ μ Aμ

)
ψ d4x − 1

4

∫
F μν Fμν d4x

+
∫

d4x

[
g(φ)ψ̄γ μψ(Aμ + ∂μB)

+ 1

2
∂μφ∂μφ − V (φ)

]
(8)

The model is invariant under local gauge transformations

Aμ → Aμ + ∂μΛ; B → B − Λ (9)

ψ → exp(ieΛ)ψ (10)

The Noether current conservation law for global symmetry 
ψ → eiθψ , θ = constant, is:

∂μ jμN = (∂μ)

(
∂L

∂ψ,μ
δψ

)
= ∂μ

(
ψ̄γ μψ

) = 0 (11)

The gauge field equation, containing in the right hand side the cur-
rent which is the source of the gauge field, is:

∂μF μν = (
e + g(φ)

)
ψ̄γ νψ = jνSource (12)

By considering the divergence of the above equation, we obtain the 
additional conservation law:

∂μ jμSource = ∂μ

(
g(φ)

)
ψ̄γ μψ + g(φ)∂μ

(
ψ̄γ μψ

)
= ∂μ

(
g(φ)

)
ψ̄γ μψ = 0 (13)

If we have scalar potential V (φ) with domain wall between two 
false vacuum states (see Fig. 2), then because of the transition 
of the scalar field on the domain wall ∂μ(g(φ)) = ∂ g(φ)

∂φ
∂μφ =

∂ g(φ)
∂φ

nμ f �= 0 (see Fig. 3). We must conclude that nμ(ψ̄γ μ ×
ψ)|x=domain wall = 0. This means that on the domain wall there is 
no communication between the two sectors of the domain, which 
give a confinement (see Fig. 1).
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Fig. 2. Scalar potential V (φ) with domain wall between two false vacuum states.

Fig. 3. Transition of the scalar field on the domain wall ∂μ(g(φ)) = ∂ g(φ)
∂φ

∂μφ =
∂ g(φ)
∂φ

nμ f �= 0.

3. Confining boundary conditions holding at a specific region in 
a domain wall

The constraint that we have gotten in the last section is too 
strong and non-trivial and holds everywhere even if the gradients 
are small, but we want to have constraint only in the region were 
the domain wall is located, so let us proceed with the same con-
sideration as above but with coupling of the gauge field and the 
scalar field so that the constraint will follow from the equation of 
motion and only at a specific location. We will see that if in the 
action we add an additional term (the 1/l0 term):

S =
∫

ψ̄
(
iγ μ∂μ − m + eγ μ Aμ

)
ψ d4x − 1

4

∫
F μν Fμν d4x

+
∫

d4x

[
g(φ)ψ̄γ μψ(Aμ + ∂μB) + 1

2
∂μφ∂μφ − V (φ)

+ 1

l0
∂μφ

(
Aμ + ∂μB

)]
(14)

The model is invariant under local gauge transformations as in 
Eq. (9).

The Noether current conservation law for global symmetry 
ψ → eiθψ , θ = constant, is:

∂μ jμN = (∂μ)

(
∂L

∂ψ,μ
δψ

)
= ∂μ

(
ψ̄γ μψ

) = 0 (15)

The gauge field equation, containing in the right hand side the cur-
rent which is the source of the gauge field, is:

∂μF μν = (
e + g(φ)

)
ψ̄γ νψ + 1

l0
∂νφ = jνSource (16)

We can see that we have additional long range term to the con-
straint (13). By considering the divergence of the above equation, 
we obtain the additional conservation law:
∂μ jμSource = ∂μ

(
g(φ)

)
ψ̄γ μψ + g(φ)∂μ

(
ψ̄γ μψ

) + 1

l0
∂μ∂μφ

= ∂μ

(
g(φ)

)
ψ̄γ μψ + 1

l0
∂μ∂μφ = 0 (17)

The variation on the action by φ gives:

∂μ∂μφ + ∂V

∂φ
− 1

l0
∂μ

(
Aμ + ∂μB

)

+ ∂ g(φ)

∂φ
ψ̄γ μψ(Aμ + ∂μB) = 0 (18)

Let us consider a scalar potential V (φ) with domain wall be-
tween two false vacuum states V (ν1) and V (ν2) (see Fig. 2), and 
statically solution. Then, for finite energy solution we need to de-
mand that ∂iφ(±∞) = 0 and φ(∞) = ν1 and φ(−∞) = ν2.

From Rolle’s mathematical theorem, we must conclude that at 
some point of the transition of the scalar field on the domain wall 
we have that ∂i∂iφ = 0, so Eq. (17) on some point on the transition 
reads:

∂μ

(
g(φ)

)
ψ̄γ μψ = 0 (19)

because on the point of the transition, were ∂i∂iφ = 0, ∂iφ �= 0, 
then ∂μ(g(φ)) = ∂ g(φ)

∂φ
∂μφ = ∂ g(φ)

∂φ
nμ f �= 0 (see Fig. 2).

So we must conclude that nμ(ψ̄γ μψ) |x=domain wall= 0. This 
means that on the domain wall there is no communication be-
tween the two sectors of the domain, which give a confinement 
(see Fig. 1). Also we can see that the coupling constant far from 
the domain wall is constant.

4. Consistent models with time dependent fine structure 
constant

The formalism developed here provides the possibility of for-
mulating a consistent formalism where the effective electric charge 
can change with space and time; such possibility has been consid-
ered in cosmological contexts. Many papers have been published 
on the subject of the variation of the fine structure constant. There 
are some clues that show that the structure constant has been 
slightly variable, although this is not generally agreed. Bekenstein 
[5] has shown a different approach to formulate consistently a the-
ory with a variable coupling constant. The Oklo natural geological 
fission reactor has lead to a measurement that some claim it im-
plies the structure constant has changed by a small amount of the 
order of α̇

α ≈ 1 × 10−7 [6].

5. Discussion and conclusions

It is shown that it is possible to consistently and gauge in-
variantly formulate models where the coupling constant is a non-
trivial function of a scalar field. In the U (1) case, the coupling to 
the gauge field contains a term of the form g(φ) jμ(Aμ + ∂μB)

where B is an auxiliary field and jμ is the Dirac current. The scalar 
field φ determines the local value of the coupling of the gauge field 
to the Dirac particle. The consistency of the equations determines
the condition ∂μφ jμ = 0 which implies that the Dirac current can-
not have a component in the direction of the gradient of the scalar 
field. As a consequence, if φ has a soliton behaviour, like defining 
a bubble that connects two vacua, we obtain that the Dirac cur-
rent cannot have a flux through the wall of the bubble, defining a 
confinement mechanism where the fermions are kept inside those 
bags. This gives rise to a condition that was considered also for 
example in M.I.T. bag model [9] (for a review see [10]), but the 
way to obtain it is quite different. It will be interesting to study 
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new effects that may appear when the gauge symmetry is broken. 
For example, a modification of the M.I.T. bag model when there is 
symmetry breaking as has been studied in Ref. [11], as we pointed 
before the physical gauge in this case is not B = 0 but it is a gauge 
where the B field and the phase of the Higgs field are proportional 
with the proportionality constant that depends on the expectation 
value of the Higgs field [1].

The formalism developed here provides the possibility of for-
mulating a consistent formalism where the effective electric charge 
can change with space and time; such possibility has been consid-
ered in cosmological contexts.
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