Compact Graphs and Equitable Partitions

C. D. Godsil*
Combinatorics and Optimization
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

Submitted by Richard A. Brualdi

Abstract

Let G be a graph with adjacency matrix A, and let Γ be the set of all permutation matrices which commute with A. We call G compact if every doubly stochastic matrix which commutes with A is a convex combination of matrices from Γ. We characterize the graphs for which $S(A)=\{I\}$ and show that the automorphism group of a compact regular graph is generously transitive, i.e., given any two vertices, there is an automorphism which interchanges them. We also describe a polynomial time algorithm for determining whether a regular graph on a prime number of vertices is compact. © Elsevier Science Inc., 1997

1. EQUITABLE PARTITIONS AND DOUBLY STOCHASTIC MATRICES

A matrix is doubly stochastic if it is nonnegative and each of its rows and each of its columns sums to one. If A is the adjacency matrix of the graph G, we define $S(A)$ to be the set of all doubly stochastic matrices which commute with A. We note that $S(A)$ is a convex polytope, since it consists all matrices X such that

$$
X A=A X, \quad X \mathbf{1}=X^{T} \mathbf{1}=\mathbf{1}, \quad X \geqslant 0 .
$$

[^0]Fach automorphism of G determines a permutation matrix which commutes with A; denote the set of these matrices by Γ. Then Γ is a matrix group isomorphic to the automorphism group of G, and each matrix in Γ is an extreme point of $S(A)$. We call G compact if all extreme points of $S(A)$ lie in Γ. The basic theory of compact graphs has been developed by Tinhofer, who has proved, amongst other things, that trees and cycles are compact [9 , Theorems 2, 3] and that the disjoint union of isomorphic copies of a compact graph is compact [10, Theorem 6]. For related results, see [3].

Clearly the identity matrix I is contained in $S(A)$; the main result of this section is a characterization of the graphs for which $S(A)=I$. Our characterization makes use of equitable partitions, which we now discuss. (For more background, see Chapter 5 of [5].) Let G be a graph with n vertices, and let π be a partition of $V(G)$, with cells C_{1}, \ldots, C_{r}. We call π equitable if, for any ordered pair of cells $\left(C_{i}, C_{j}\right)$, the number of vertices in C_{j} adjacent to a fixed vertex in C_{i} only depends on i and j. We denote the number of cells in π by $|\pi|$. A partition is discrete if each cell is a singleton. The orbits of any group of automorphisms of G always form an equitable partition; we call such partitions orbit partitions. A partition π can be represented by what we call its normalized characteristic matrix $P(\pi)$, defined as follows. Suppose that $\pi=\left(C_{1}, \ldots, C_{m}\right)$ and $c_{i}:=\left|C_{i}\right|$. Then $P(\pi)$ is the $n \times m$ matrix with i th column equal to $c_{i}^{-1 / 2}$ times the characteristic vector of C_{i}, viewed as a subset of $V(G)$. Note that the columns of P are pairwise orthogonal unit vectors in \mathbb{R}^{n}.

Lemma 1.1. Let A be the adjacency matrix of G, and let π be a partition of $V(G)$ with normalized characteristic matrix P. Then π is equitable if and only if A and $P P^{T}$ commute.

Proof. From [6, Theorem 2.1] we know that π is equitable if and only if there is an $m \times m$ matrix B such that

$$
\begin{equation*}
A P=P B \tag{1.1}
\end{equation*}
$$

where $P=P(\pi)$. If π is equitable, then (1.1) yields that

$$
B=P^{T} A P
$$

whence B is symmetric. Using (1.1) again, we see that

$$
A P P^{T}=P B P^{T}
$$

and therefore $A P P^{T}$ is symmetric. Since A and $P P^{T}$ are both symmetric, it follows that A and $P P^{T}$ commute.

For the converse we note that π is equitable if and only if each cell induces a regular subgraph of G and the edges joining any two distinct cells form a semiregular bipartite graph. It is easy to verify that this holds if and only if $A P P^{T}=P P^{T} A$.

If π is a partition with normalized characteristic matrix P, then $P P^{T}$ is doubly stochastic; we denote the latter matrix by X_{π}. Given this, we have the following reformulation of Lemma 1.1.

Corollary 1.2. Let π be a partition of the vertices of $V(G)$ with normalised characteristic matrix P. Then π is equitable if and only if $X_{\pi} \in S(A)$.

As an immediate consequence we have:
Corollary 1.3. If G is compact, then every equitable partition is an orbit partition.

The distance partition with respect to a vertex v in G is the partition whose i th cell is the set of vertices in G at distance i from v, for each i. From the definition of distance-regular graphs (see, e.g., [2]) it follows that in a distance-regular graph the distance partition with respect to any vertex is equitable. From the previous corollary we deduce that the distance partition with respect to a vertex v is the partition formed by the orbits of the stabiliser of v in the automorphism group, and from this we obtain the following:

Corollary 1.4. If G is compact and distance-regular, then it is dis-tance-transitive.

If $n \geqslant 7$, then the line graph of the complete graph K_{n} is distance-transitive, but not compact. To see this, choose a subgraph G of K_{n} isomorphic to $C_{3} \cup C_{n-3}$. Let π be the partition of $L\left(K_{n}\right)$ with two cells, one consisting of the vertices corresponding to the edges of G, and the other formed by the remaining vertices. Then it is easy to verify that π is equitable, but it is not an orbit partition (since G is not vertex-transitive).

Our next observation is that every matrix in $S(A)$ determines a nontrivial equitable partition of G. To prove this we need one property of doubly stochastic matrices. Suppose X is a doubly stochastic matrix. Define $D(X)$ to be the directed graph with the rows of X as its vertices, and $i j$ entry equal to one if and only if $(X)_{i j} \neq 0$.

тнеовем 1.5. If $X \in S(A)$, then the partition whose cells are the strong components of $D(X)$ is equitable.

Proof. We show first that any weak component of X is a strong component. Assume that C is a subset of $V(D)$ such that there is no arc (u, v) with $u \in C$ and $v \notin C$. Then the sum of the entries of X in the rows corresponding to C is $|C|$, whence the sum of the entries in the submatrix of X with rows and columns indexed by C is again $|C|$. But this implies that if $v \notin C$ and $u \in C$ then $(X)_{v u}=0$, and therefore there are no arcs in D from a vertex not in C to a vertex in C. It follows that if X is doubly stochastic, then we may write it in block-diagonal form as

$$
X=\left(\begin{array}{lll}
X_{1} & & \\
& \ddots & \\
& & X_{r}
\end{array}\right)
$$

where X_{1}, \ldots, X_{r} are doubly stochastic matrices and $D\left(X_{1}\right), \ldots, D\left(X_{r}\right)$ are strongly connected.

Since $D\left(X_{i}\right)$ is strongly connected, 1 is a simple eigenvalue of it, whence we see that 1 has geometric and algebraic multiplicity r as an eigenvalue of X. Let U denote the right eigenspace of X associated to 1 . Then U consists of the vectors which are constant on the components of $D(X)$, and therefore the matrix representing orthogonal projection onto it has block-diagonal form:

$$
\left(\begin{array}{ccc}
m_{1}^{-1} J_{m 1} & & \tag{1.2}\\
& \ddots & \\
& & m_{r}^{-1} J_{m_{r}}
\end{array}\right)
$$

If $u \in U$ then $u^{T} X=u^{T}$. Hence if $y \in U^{\perp}$ and $u \in U$ then $u^{T} X y=$ $u^{T} y=0$, whence we see that U^{\perp} is invariant under X.

If $p(T):=\operatorname{det}(t I-X) /(t-1)^{r}$ and $y \in U$, then $p(X) y=p(1) y$. By the Cayley-Hamilton theorem, $p(X)(X-I)^{r}=0$, and if $y \in U^{\perp}$ then

$$
0=p(X)(X-I)^{r} y=(X-I)^{r} p(X) y
$$

But $p(X) y \in U^{\perp}$, and the nullspace of $(X-I)^{r}$ is U; consequently $p(X) y$ must be zero. If E is the matrix $p(1)^{-1} p(X)$, it follows that E is diagonalizable and that its eigenvalues are 0 and 1 . Hence $E^{2}=E$.

If u and v belong to U, then $(X u, v)=(u, v)=(u, X v)$. Using this, it follows easily that $p(X)$ is symmetric, and hence E is a projection. Since E has rank r, it must be equal to the matrix in (1.2), and consequently it can be written as $P P^{T}$, where P is the normalized characteristic matrix of the partition whose cells are the components of X. Since E commutes with A, it follows that π is equitable.

Corollary 1.6. We have $S(A)=\{I\}$ if and only if G has no nontrivial equitable partitions.

From [4], for example, we know that the coarsest equitable partition of a graph can be found in polynomial time.

2. COMPACT REGULAR GRAPIIS

Tinhofer [10; Section 4] observes, and it also follows from our Corollary 1.3, that a compact regular graph must be vertex transitive. In fact a somewhat stronger statement can be proved. The rank of transitive permutation group is defined to be the number of orbits of the stabilizer of a point. A permutation group on a set X is generously transitive if, given any two points, there is a permutation which interchanges them. (So the dihedral group acting on n points is gencrously transitive, and a regular permutation group is generously transitive if and only if it is an elementary abelian 2-group.)

Theorem 2.1. Let G be a regular graph with exactly r distinct eigenvalues. If G is compact, then $\operatorname{Aut}(G)$ is a generously transitive permutation group with rank r.

Proof. If G is compact and regular, then it is vertex-transitive. Hence its components are all isomorphic, and can easily be seen to be compact. It follows that we may assume without loss that G is connected. Let Γ be the set of all permutation matrices which commute with A, and let \mathscr{E} be the convex hull of Γ. We aim to compare the dimensions of $S(A)$ and \mathscr{E}.

Let m_{i} be the multiplicity of the i th eigenvalue of G. The space $C(A)$ of matrices which commute with A has dimension

$$
\sum_{m=1}^{r} m_{i}^{2}
$$

As G is connected, J is a polynomial in A, and therefore it commutes with any matrix in $C(A)$. Accordingly all matrices in $C(A)$ have constant row and column sums. Consequently the dimension of $S(A)$ is equal to the dimension of the span of the nonnegative elements of $C(A)$. If $M \in C(A)$, then for all sufficiently small values of ϵ,

$$
J+\epsilon M \in C(A)
$$

This implies that $S(A)$ and $C(A)$ have the same (linear) dimension.
Now we consider the dimension of the space spanned by Γ. If ρ denotes the permutation representation of Γ on the vertices of G, then there are irreducible representations Ψ_{i} and nonnegative integers c_{i} such that

$$
\rho=\sum_{i=1}^{s} c_{i} \psi_{i}
$$

(If the c_{i} are all equal to one, ρ is said to be multiplicity-free.) From Theorem II.l in [7] it follows that the space spanned by $\rho(\Gamma)$ has dimension

$$
\sum_{i=1}^{s} \psi_{i}(e)^{2}
$$

where e denotes the identity of Γ.
Next we relate the two pieces of information we have gained. Each eigenspace of A is Γ-invariant, and ρ is the direct sum of the representations of Γ on the distinct eigenspaces of A. This implies that the dimension of the span of Γ is bounded above by the dimension of $S(A)$, with equality if and only if $r=s$ and $m_{i}=\psi_{i}(e)$ for $i=1, \ldots, r$ (perhaps after some reordering). Further, since

$$
n=\sum m_{i}-\sum c_{i} \psi_{i}
$$

we see that, if equality holds, then $c_{i}=1$ for all i, and ρ is multiplicity-free.
By a result of P. Cameron (see [2, Proposition 2.9.2]) a multiplicity-free permutation group is generously transitive if and only all irreducible constituents of its permutation character are real. Hence the theorem follows.

It follows from [6, Theorem 4.8] that a vertex-transitive graph on n vertices has at most $3 n / 4$ distinct eigenvalues when $n>2$. As a transitive permutation group on n points is regular if and only if its rank is n, the automorphism group of a compact graph X with more than two vertices cannot act regularly on $V(X)$. If G is the path on five vertices, then the space of matrices which commute with A and J has dimension three, being spanned by J and the projections onto the eigenspaces of A with eigenvalues

1 and -1 . However, G is compact (by [9, Theorem 3]) and $|\Gamma|=2$, so $S(A)$ has dimension two. This shows that if G is not regular, then the dimensions of $S(A)$ and $C(A)$ may differ.

Theorem 2.1 implies that a compact connected regular graph G is the union of some classes in a symmetric association scheme on the same set of vertices.

The proof of Theorem 2.1 raises the problem of deciding when the intersection of the span of Γ with $S(A)$ is equal to the convex hull of Γ. Equality must hold for compact graphs, of course. Schreck and Tinhofer [8] show that a transitive graph on p points (p prime) which is neither complete nor empty can be compact if and only if its automorphism is dihedral of order $2 p$. Their proof shows that if the automorphism group is larger than this, then the intersection of $S(A)$ with the real span of Γ strictly contains \mathscr{E}.

Using Schreck and Tinhofer's result, we can decide in polynomial time whether a regular graph on a prime number of vertices is compact. For this we need the following result.

Lemma 2.2. Let G be a connected regular graph on a prime number of vertices. If G has an eigenvalue with multiplicity at least three and is not a complete graph, it is not compact.

Assume $p=|V(G)|$, and let k denote the valency of G. If G is not vertex-transitive, it is not compact. If G is vertex-transitive, then the Sylow p-subgroup of $\operatorname{Aut}(G)$ acts transitively on $V(G)$, and therefore G is a circulant.

Let θ be a primitive p th root of unity, and let V be the Van der Monde matrix with $i j$ entry equal to $\theta^{(i-1)(j-1)}$. Then the columns of V form a set of n pairwise orthogonal eigenvectors for $A=A(G)$. (Although V will have complex entries in general, the eigenvalues corresponding to these eigenvectors will all be real.) Let V_{i} denote the i th column of V. The vectors V_{2}, \ldots, V_{p} are algebraically conjugate over the rationals. Now one eigenspace of A is spanned by V_{1}, and each of the remaining eigenspaces is spanned by some subset of the vectors V_{2}, \ldots, V_{p}. It follows that these eigenspaces are also algebraically conjugate, and so they all have the same dimension. Therefore all eigenvalues of G not equal to k have the same multiplicity, m say.

Now, from the proof the previous theorem, the dimension of $S(A)$ is

$$
1+m(p-1)
$$

Let Γ be the set of all permutation matrices which commute with A. If the dimension of the span of Γ is less than $1+m(p-1)$, then G is not compact. If $\operatorname{Aut}(G)$ is dihedral of order $2 p$, then G is compact, whence the
dimension of $S(A)$ and that of the span of Γ both equal $2 p-1$. However, $m \geqslant 3$, and thus either $\operatorname{Aut}(G)$ is not dihedral, or the dimension of the span of Γ is smaller than the dimension of $S(A)$. In either case G is not compact.

So suppose that G is a regular graph on p vertices. We may compute the characteristic polynomial of $\varphi(G, x)$ of G. The greatest common divisor of $\varphi(G, x)$ and its second derivative is the constant polynomial if and only if all eigenvalues of G have multiplicity at most two. However, if all eigenvalues of G have multiplicity at most two, then we can compute generators for, and the order of, Aut (G) in polynomial time. (See [1, theorem 4.1].) Using the generators, we can determine whether $\operatorname{Aut}(G)$ is vertex-transitive. If it is not, then G is not compact. If $\operatorname{Aut}(G)$ is vertex-transitive, then it is a subgroup of the 1-dimensional affine group over $G F(p)$, and hence it is dihedral if and only if $|\operatorname{Aut}(G)|=2 p$. This completes our argument.

REFERENCES

1 L. Babai, D. Yu. Grigoryev, and D. M. Mount, Isomorphism of graphs with bounded eigenvalue multiplicity, in Proceedings of the 14th ACM STOC, 1982, pp. 310-324.
2 A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
3 R. A. Brualdi, Some applications of doubly stochastic matrices, Linear Algebra Appl. 107:77-100 (1988).
4 D. G. Corneil and C. C. Gottleib, An efficient algorithm for graph isomorphism, J. Assoc. Comput. Mach. 17:51-64 (1970).

5 C. D. Godsil, Algebraic Combinatorics Chapman and Hall, New York, 1993.
6 C. D. Godsil and B. D. McKay, Feasibility conditions for the existence of walk-regular graphs, Linear Algebra Appl. 30:51-61 (1980).
7 M. A. Naimark and A. I. Štern, Theory of Group Representations, Springer-Verlag, New York, 1982.
8 H. Schreck and G. Tinhofer, A note on certain subpolytopes of the assignment polytope associated with circulant graphs, Linear Algebra Appl. 111:125-134 (1988).

9 G. Tinhofer, Graph isomorphism and theorems of Birkhoff type, Computing 36:285-300 (1986).
10 G. Tinhofer, A note on compact graphs, Discrete Appl. Math. 30:253-264 (1991).

[^0]: *Support from grant OGP0009439 of the National Sciences and Engineering Council of Canada is gratefully acknowledged.

