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ABSTRACT 

Let G be a graph with adjacency matrix A, and let I- be the set of all 
permutation matrices which commute with A. We call G compact if every doubly 
stochastic matrix which commutes with A is a convex combination of matrices from 
I’. We characterize the graphs for which S( A) = {I} and show that the automorphism 
group of a compact regular graph is generously transitive, i.e., given any two vertices, 
there is an automorphism which interchanges them. We also describe a polynomial 
time algorithm for determining whether a regular graph on a prime number of 
vertices is compact. 0 Elsevier Science Inc., 1997 

1. EQUITABLE PARTITIONS AND DOUBLY STOCHASTIC 
MATRICES 

A matrix is doubly stochastic if it is nonnegative and each of its rows and 
each of its columns sums to one. If A is the adjacency matrix of the graph G, 
we define S(A) to be the set of all doubly stochastic matrices which commute 
with A. We note that S(A) is a convex polytope, since it consists all matrices 
X such that 

XA=AX, Xl = XT1 = 1, x 2 0. 
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Each automorphism of G determines a permutation matrix which commutes 
with A; denote the set of these matrices by r. Then r is a matrix group 
isomorphic to the automorphism group of G, and each matrix in r is an 
extreme point of S( A). We call G comZ~~& if all extreme points of S( A) lie in 
r. The basic theory of compact graphs has been developed by Tinhofer, who 
has proved, amongst other things, that trees and cycles are compact [9, 
Theorems 2, 33 and that the disjoint union of isomorphic copies of a compact 
graph is compact [lo, Theorem 61. For related results, see [3]. 

Clearly the identity matrix Z is contained in S(A); the main result of this 
section is a characterization of the graphs for which S(A) = I. Our character- 
ization makes use of equitable partitions, which we now discuss. (For more 
background, see Chapter 5 of [5].) Let G be a graph with n vertices, and let 
r be a partition of V(G), with cells C,, . . . , C,. We call r equitable if, for 
any ordered pair of cells (Cj, Cj>, the number of vertices in Cj adjacent to a 
fued vertex in Ci only depends on i and j. We denote the number of cells in 
rr by 17~1. A partition is discrete if each cell is a singleton. The orbits of any 
group of automorphisms of G always form an equitable partition; we call 
such partitions orbit partitions. A partition rr can be represented by what we 
call its normalized characteristic matrix P(T), defined as follows. Suppose 
that 7r = CC,, . . . , C,) and ci := (Ci). Then P(m) is the n X m matrix with 
ith column equal to -r/’ ci times the characteristic vector of Ci, viewed as a 
subset of V(G). Note that the columns of P are pairwise orthogonal unit 
vectors in R”. 

LEMMA 1.1. Let A be the adjacency matrix of G, and let rr be a 
partition of V(G) with normulized characteristic matrix P. Then rr is equi- 
table if and only if A and PPT commute. 

Proof. From [6, Theorem 2.11 we know that rr is equitable if and only if 
there is an m x m matrix B such that 

AP = PB, 

where P = P(v). If 7r is equitable, then (1.1) yields that 

B = PTAP, 

(1.1) 

whence B is symmetric. Using (1.1) again, we see that 

APPT = PBPT 

and therefore APPT is symmetric. Since A and PPT are both symmetric, it 
follows that A and PPT commute. 
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For the converse we note that 7~ is equitable if and only if each cell 
induces a regular subgraph of G and the edges joining any two distinct cells 
form a semiregular bipartite graph. It is easy to verity that this holds if and 
only if APPT = PPTA. ??

If r is a partition with normalized characteristic matrix P, then PPT is 
doubly stochastic; we denote the latter matrix by X,. Given this, we have the 
following reformulation of Lemma 1.1. 

COROLLARY 1.2. Let r be a partition of the vertices of V(G) with 
normalised characteristic matrix P. Then 7~ is equitable if and only if 
X, E S(A). 

As an immediate consequence we have: 

COROLLARY 1.3. Zf G is compact, then every equitable partition is an 
orbit partition. 

The distance partition with respect to a vertex v in G is the partition 
whose ith cell is the set of vertices in G at distance i from o, for each i. 
From the definition of distance-regular graphs (see, e.g., [2]) it follows that in 
a distance-regular graph the distance partition with respect to any vertex is 
equitable. From the previous corollary we deduce that the distance partition 
with respect to a vertex v is the partition formed by the orbits of the 
stabiliser of v in the automorphism group, and from this we obtain the 
following: 

COROLLARY 1.4. Zf G is compact and distance-regular, then it is dis- 
tance-transitive. 

If n > 7, then the line graph of the complete graph K, is distance-transi- 
tive, but not compact. To see this, choose a subgraph G of K, isomorphic to 
C, tJ C,_,. Let 7r be the partition of L(K,) with two cells, one consisting of 
the vertices corresponding to the edges of G, and the other formed by the 
remaining vertices. Then it is easy to verify that r is equitable, but it is not 
an orbit partition (since G is not vertex-transitive). 

Our next observation is that every matrix in S(A) determines a nontrivial 
equitable partition of G. To prove this we need one property of doubly 
stochastic matrices. Suppose X is a doubly stochastic matrix. Define D(X) to 
be the directed graph with the rows of X as its vertices, and ij entry equal to 
one if and only if (Xjij # 0. 
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THEOREM 1.5. Zf X E S(A), then the partition whose cells are the strong 
components of D(X) is equitable. 

Proof. We show first that any weak component of X is a strong 
component. Assume that C is a subset of V(D) such that there is no arc 
(u, V) with u E C and o @ C. Then the sum of the entries of X in the rows 
corresponding to C is ICI, whence the sum of the entries in the submatrix of 
X with rows and columns indexed by C is again ICI. But this implies that if 
0 e C and u E C then (X),, = 0, and therefore there are no arcs in D 
from a vertex not in C to a vertex in C. It follows that if X is doubly 
stochastic, then we may write it in block-diagonal form as 

Xl 
x= -. 

i -1 x, 

where Xi,..., X,. are doubly stochastic matrices and D(X,), . . . , D(X,) are 
strongly connected. 

Since D(Xi) is strongly connected, 1 is a simple eigenvahre of it, whence 
we see that 1 has geometric and algebraic multiplicity r as an eigenvalue of 
X. Let U denote the right eigenspace of X associated to 1. Then U consists of 
the vectors which are constant on the components of D(X), and therefore 
the matrix representing orthogonal projection onto it has block-diagonal form: 

(1.2) 

If u E U then u~X = or. Hence if y E ZJ’ and u E U then urXy = 
uTy = 0, whence we see that U ’ is invariant under X. 

If p(T) := det(tZ - X)/(t - 1)’ and y E U, then p(X)y = p(l)y. By 
the Cayley-Hamilton theorem, p(XXX - I)’ = 0, and if y E U ’ then 

But p(X)y E U’ , and the nullspace of (X - Z)’ is U; consequently p(X) y 
must be zero. If E is the matrix p(l)-‘p(X), it follows that E is diagonaliz- 
able and that its eigenvalues are 0 and 1. Hence E2 = E. 
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If u and u belong to U, then (Xu, u> = (u, u) = (u, Xu). Using this, it 
follows easily that p(X) is symmetric, and hence E is a projection. Since E 
has rank r, it must be equal to the matrix in (1.21, and consequently it can be 
written as PPT, where P is the normalized characteristic matrix of the 
partition whose cells are the components of X. Since E commutes with A, it 
follows that 7~ is equitable. 

COROLLARY 1.6. We have S( A) = {Z} if and only if G has no nontrivial 
equitable partitions. 

From [4], for example, we know that the coarsest equitable partition of a 
graph can be found in polynomial time. 

2. COMPACT REGULAR GRAPHS 

Tinhofer [lo; Section 41 observes, and it also follows from our Corollary 
1.3, that a compact regular graph must be vertex transitive. In fact a 
somewhat stronger statement can be proved. The rank of transitive permuta- 
tion group is defined to be the number of orbits of the stabilizer of a point. A 
permutation group on a set X is generously transitive if, given any two 
points, there is a permutation which interchanges them. (So the dihedral 
group acting on n points is generously transitive, and a regular permutation 
group is generously transitive if and only if it is an elementary abelian 
2-group.) 

THEOREM 2.1. Let G be a regular graph with exactly r distinct eigenval- 
ues. Zf G is compact, then Am(G) is a generously transitive permutation 
group with rank r. 

Proof. If G is compact and regular, then it is vertex-transitive. Hence its 
components are all isomorphic, and can easily be seen to be compact. It 
follows that we may assume without loss that G is connected. Let I be the 
set of all permutation matrices which commute with A, and let g be the 
convex hull of F. We aim to compare the dimensions of S(A) and %. 

Let mi be the multiplicity of the ith eigenvalue of G. The space C(A) of 
matrices which commute with A has dimension 
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As G is connected, J is a polynomial in A, and therefore it commutes with 
any matrix in C(A). Accordingly all matrices in C( A) have constant row and 
column sums. Consequently the dimension of S(A) is equal to the dimension 
of the span of the nonnegative elements of C(A). If M E C(A), then for all 
sufficiently small values of ??, 

J+EMEC(A). 

This implies that S(A) and C(A) have the same (linear) dimension. 
Now we consider the dimension of the space spanned by I. If p denotes 

the permutation representation of I on the vertices of G, then there are 
irreducible representations qi and nonnegative integers ci such that 

P = C ‘iJli. 

i=l 

(If the ci are all equal to one, p is said to be multiplicity-free.) From 
Theorem II.1 in [7] it follows that the space spanned by p(T) has dimension 

i 45(e)', 

i=l 

where e denotes the identity of F. 
Next we relate the two pieces of information we have gained. Each 

eigenspace of A is I-invariant, and p is the direct sum of the representations 
of F on the distinct eigenspaces of A. This implies that the dimension of the 
span of F is bounded above by the dimension of S(A), with equality if and 
only if r = s and m, = t,+(e) for i = 1,. . . , T (perhaps after some reorder- 
ing). Further, since 

n = C m, = C ciq!Ji, 

we see that, if equality holds, then ci = I for all i, and p is multiplicity-free. 
By a result of P. Cameron (see 12, Proposition 2.9.21) a multiplicity-free 

permutation group is generously transitive if and only all irreducible con- 
stituents of its permutation character are real. Hence the theorem follows. ??

It follows from [6, Theorem 4.81 that a vertex-transitive graph on 72 
vertices has at most 3n/4 distinct eigenvalues when n > 2. As a transitive 
permutation group on n points is regular if and only if its rank is 72, the 
automorphism group of a compact graph X with more than two vertices 
cannot act regularly on V(X). If G is the path on five vertices, then the space 
of matrices which commute with A and J has dimension three, being 
spanned by J and the projections onto the eigenspaces of A with eigenvalues 
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1 and - 1. However, G is compact (by [9, Theorem 31) and ll?l = 2, so S(A) 
has dimension two. This shows that if G is not regular, then the dimensions 
of S(A) and C(A) may differ. 

Theorem 2.1 implies that a compact connected regular graph G is the 
union of some classes in a symmetric association scheme on the same set of 
vertices. 

The proof of Theorem 2.1 raises the problem of deciding when the 
intersection of the span of I? with S(A) is equal to the convex hull of F. 
Equality must hold for compact graphs, of course. Schreck and Tinhofer [B] 
show that a transitive graph on p points ( p prime) which is neither complete 
nor empty can be compact if and only if its automorphism is dihedral of order 
2p. Their proof shows that if the automorphism group is larger than this, 
then the intersection of S(A) with the real span of F strictly contains ‘Z. 

Using Schreck and Tinhofer’s result, we can decide in polynomial time 
whether a regular graph on a prime number of vertices is compact. For this 
we need the following result. 

LEMMA 2.2. Let G be a connected regular graph on a prime number of 
vertices. lf G has an eigenvalue with multiplicity at least three and is not a 
complete graph, it is not compact. 

Assume p = lV(G>l, and let k denote the valency of G. If G is not 
vertex-transitive, it is not compact. If G is vertex-transitive, then the Sylow 
p-subgroup of Am(G) acts transitively on V(G), and therefore G is a 
circulant. 

Let 0 be a primitive pth root of unity, and let V be the Van der Monde 
matrix with y entry equal to 8 (i- lxj- ‘). Then the columns of V form a set of 
n pair-wise orth ogonal eigenvectors for A = A(G). (Although V will have 
complex entries in general, the eigenvalues corresponding to these eigenvec- 
tors will all be real.) Let Vi denote the i th column of V. The vectors 
V 2>“‘> VP are algebraically conjugate over the rationals. Now one eigenspace 
of A is spanned by V,, and each of the remaining eigenspaces is spanned by 
some subset of the vectors V 
also algebraically conjugate, 

2, . . . , VP. It follows that these eigenspaces are 
and so they all have the same dimension. 

Therefore all eigenvalues of G not equal to k have the same multiplicity, m 
say. 

Now, from the proof the previous theorem, the dimension of S(A) is 

1 +m(p - 1). 

Let r be the set of all permutation matrices which commute with A. If the 
dimension of the span of I is less than 1 + m( p - l), then G is not 
compact. If Am(G) is dihedral of order 2p, then G is compact, whence the 
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dimension of S( A) and that of the span of r both equal 2 p - 1. However, 
m > 3, and thus either Aut(G) is not dihedral, or the dimension of the span 
of r is smaller than the dimension of S(A). In either case G is not compact. 

??

So suppose that G is a regular graph on p vertices. We may compute the 
characteristic polynomial of (p(G, x> of G. The greatest common divisor of 
qo(G, x> and its second derivative is the constant polynomial if and only if all 
eigenvalues of G have multiplicity at most two. However, if ah eigenvalues of 
G have multiplicity at most two, then we can compute generators for, and the 
order of, A&G) in polynomial time. (See [l, theorem 4.11.) Using the 
generators, we can determine whether Am(G) is vertex-transitive. If it is not, 
then G is not compact. If Aut(G) is vertex-transitive, then it is a subgroup of 
the l-dimensional affine group over GF( p), and hence it is dihedral if and 
only if [Atit( = 2p. This completes our argument. 
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