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Abstract

In modern numerical simulation of prospecting and exploiting oil–gas resources and environmental science, it is important
to consider a numerical method for nonlinear convection-dominated diffusion problems. Based on actual conditions, such as
the three-dimensional characteristics of large-scale science-engineering computation, we present a kind of characteristic finite
volume element method. Some techniques, such as calculus of variations, commutating operators, the theory of prior estimates and
techniques, are adopted. Suboptimal order error estimate in L2 norm and optimal order error estimate in H1 norm are derived to
determine the errors for the approximate solution. Numerical results are presented to verify the performance of the scheme.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, with the rapid development of energy resources and environmental science, it is very important
to study the numerical computation of underground fluid flow and the history of its changes under heat. In
actual numerical simulation, the nonlinear three-dimensional convection-dominated diffusion problems need to be
considered.

We consider the mathematical model, the following nonlinear partial differential equations with initial-boundary
value problems [1,2]:

∂u

∂t
+ Eb(x, u) · ∇u − ∇ · {a(x, u)∇u} = f (x, t, u), x = (x1, x2, x3)

T
∈ Ω , t ∈ J = (0, T ],

u(x, t) = 0, x ∈ Γ , t ∈ J,
u(x, 0) = u0(x), x ∈ Ω ,

(1.1)

where ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3)
T, Eb(x, u) = (b1(x, u), b2(x, u), b3(x, u))T, Eb(x, u)|Γ = E0 = (0, 0, 0)T, Ω ⊂ R3

is a bounded region with boundary Γ ,
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a(x, u) =

 a1(x, u)
a2(x, u)

a3(x, u)

 .
The finite volume element method (FVEM) is a discretization technique for partial differential equations, especially

for those arising from physical conservation laws including mass, momentum and energy. This method has been
introduced and analyzed by Li and his collaborators since 1980s [3]. The FVEM uses a volume integral formulation
of the original problem and a finite element partition of the domain Ω̄ = Ω

⋃
Γ to discretize the equations. The

approximate solution is chosen from a finite element space [3–5]. The FVEM is widely used in computational fluid
mechanics and heat transfer problems [4–7]. It possesses the important and crucial property of inheriting the physical
conservation laws of the original problem locally. Thus it can be expected to capture shocks, to produce simple
stencils, or to study other physical phenomena more effectively.

On the other hand, the convection-dominated diffusion problem has strongly hyperbolic characteristics, therefore
constructing a numerical method to solve such a problem is very difficult in mathematics and mechanics. When
the central difference method is used to solve the convection-dominated diffusion problem, although it has second-
order accuracy, it produces numerical diffusion and oscillation near discontinuity. Douglas and Russell published
an important paper on the characteristic finite element method and finite difference method [1] to overcome
the difficulties. Tabata and his collaborators have been studying upwind schemes based on triangulation for the
convection–diffusion problem since 1977 [8–12]. In modern numerical simulation of prospecting and exploiting
oil–gas resources and environmental science, the problems are often three-dimensional large-scale ones. Yuan
presented a characteristic finite element alternating direction method with moving meshes [2] and an upwind finite
difference fractional step method [13] for simulating these problems.

Most of the papers in the literature concern FVEMs for one- and two-dimensional linear partial differential
equations [3–6,14,15]. In recent years, Feistauer [16,17], by introducing a lumping operator, constructed a finite
volume–finite element method for nonlinear convection–diffusion problems. On the other hand, because a finite
element method (FEM) involves great expense in solving the multiple space problems, we usually adopt finite
difference methods (FDMs) to approximate the problems [13]. In this paper, we present a characteristic finite volume
element method (CFVEM) for multiple space nonlinear convection-dominated diffusion problems. We adopt some
techniques, such as calculus of variations, commutating operator, the theory of prior estimates and techniques, and
derive the suboptimal order error estimate in L2 norm and the optimal order error estimate in H1 norm to determine
the errors for the approximate solution. Finally, numerical results show that the CFVEM is effective in avoiding
numerical diffusion and nonphysical oscillations.

The paper is organized as follows. In Section 2, we describe the CFVEM for problem (1.1). In this section, we
introduce notation, and construct mesh partition Th of Ω and its dual partition. Some auxiliary lemmas and the
corresponding proofs are shown in Section 3. The error estimates in L2 norm and H1 norm of the scheme are derived
in Section 4. In Section 5, a numerical experiment shows that the method is effective in avoiding numerical diffusion
and nonphysical oscillations.

Throughout this paper, we use C (without or with a subscript) to denote a generic constant independent of
discretization parameters. We also adopt the standard notations of Sobolev spaces and norms and semi-norms as
in [18,19].

2. The characteristic finite volume element method

We define the bounded set G on R as

G = {u : |u| ≤ K0} ,

where K0 is a positive constant.
We assume that the coefficients of problem (1.1) satisfy the following conditions:
(A1) Generally, (1.1) is a positive definite problem, i.e.,

0 < a∗ ≤ ai (x, u) ≤ a∗, ∀(x, t) ∈ Ω × (0, T ), u ∈ G (i = 1, 2, 3),
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and there exist constants C1, C2 which depend on K0 such that

| f (x, t, u)| ≤ C1|u| + C2, ∀(x, t) ∈ Ω × (0, T ), u ∈ R,
Eb(x, u) = (b1(x, u), b2(x, u), b3(x, u))T ∈ W 1

∞(G)× W 1
∞(G)× W 1

∞(G),

f (x, t, u) ∈ W 1
∞(G × Ω × (0, T ]), u0(x) ∈ C(Ω̄)

⋂
H1

0 (Ω).

(A2) a(x, u), Eb(x, u) and f (x, t, u) are Lipschitz continuous with respect to the last variable u

|ai (x, u)− ai (x, v)| ≤ L|u − v|, ∀u, v ∈ G,

‖Eb(x, u)− Eb(x, v)‖ ≤ L|u − v|, ∀u, v ∈ G,

| f (x, t, u)− f (x, t, v)| ≤ L|u − v|, ∀u, v ∈ G,

where L is a Lipschitz constant related to K0 and ‖Eb(x, u)− Eb(x, v)‖ is defined as

‖Eb(x, u)− Eb(x, v)‖ =

{
3∑

i=1

(|bi (x, u)− bi (x, v)|)
2

}1/2

.

The weak form of problem (1.1) is(
∂u

∂t
, v

)
Ω

+ (Eb(x, u) · ∇u, v)Ω + (a(x, u)∇u,∇v)Ω = ( f (x, u), v)Ω , ∀v ∈ H1
0 (Ω), t ∈ (0, T ], (2.1)

where Ω is the given three-dimensional region with coordinates x = (x1, x2, x3)
T

∈ R3. For simplicity, we omit
subscript Ω in (·, ·)Ω and define a(w; u, v) = (a(x, w)∇u,∇v); further, we have(

∂u

∂t
, v

)
+ (Eb(x, u) · ∇u, v)+ a(u; u, v) = ( f (x, u), v), ∀v ∈ H1

0 (Ω), t ∈ (0, T ], (2.2)

and we assume that the weak solution u of problem (1.1) satisfies the following regularity:
(A3) u ∈ L∞(0, T ; H2(Ω))

⋂
L∞(0, T ; W 1,∞

0 (Ω)), |u(x, t)| ≤ K0,∀ (x, t) ∈ Ω × (0, T ], ut , ut t ∈ L2

(0, T ; H2(Ω)).
We discuss the CFVEM approximation of nonlinear convection-dominated diffusion problem (1.1). For

convenience, let Ω be a cuboid domain Ω = (0, X L) × (0, YL) × (0, ZL). First, we consider a family of regular
cuboid partition Th of the domain Ω̄ [3]. Let h be maximum diameter of cell of Th . For a fixed cuboid partition
Th = {K }, we define a closed cuboid set {Ki }

NK
i=1 and node set Ω̄h = {Pi }

M2
i=1, where Ω0 = {Pi }

M1
i=1 is the inner node

set of Ω and Γh = Ω̄ − Ω0 = {Pi }
M2
i=M1+1 is the boundary node set on ∂Ω . Let Eh = {ei : 1 ≤ i ≤ ME } be a set of

all edges.

Definition 2.1. Suppose that T = {Th : 0 < h ≤ h0} is a set of cuboid partition of Ω ; the set T is termed regular if
there exists a positive constant σ1 independent of h, such that

max
K∈Th

hK

ρK
≤ σ1, ∀h ∈ (0, h0),

where hK and ρK are the diameter of K and the maximum diameter of the circumscribing sphere of cuboid K ,
respectively.

Definition 2.2. The cuboid partition Th is called a Delaunay mesh if K does not include the remainder of the nodes
of Ωh for each K ∈ Th .

Definition 2.3. The two cuboid cells are called face-adjacent if they have one common face, but edge-adjacent if they
have one common edge.

Definition 2.4. The two nodes are called adjacent if they form one edge which belongs to Eh . Denote
∧

i = { j : Pj
is adjacent to Pi , Pi , Pj ∈ Ωh}.
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For a given cuboid partition Th with nodes {Pi } ∈ Ωh and edges {ei } ∈ Eh , we construct two kinds of
dual partitions. First, we define an average center dual partition of Th . ∀Pi ∈ Ωh ; let Ωh(Pi ) = {K : K ∈

Th, Pi is a vertex of K }. Let Q j be a center of K (∈ Ωh(Pi )). Connecting Q j (1 ≤ j ≤ 8) of the two face-adjacent
cuboid cells which belong to Ωh(Pi ), then we can derive a cuboid K ∗

Pi
which surrounds the node Pi . Q j (1 ≤ j ≤ 8)

are vertexes of K ∗

Pi
, which is called an average center dual partition corresponding to node Pi . T ∗

h = {K ∗

Pi
: Pi ∈ Ωh}

is the average center dual partition of Th . Suppose Pi j is the midpoint of Pi and its adjacent node Pj .
The other dual partition is as follows. ∀ek ∈ Eh , let Ωh(ek) = {K : K ∈ Th and ek be an edge of K }. Denote two

vertexes of the edge ek by Pk1 and Pk2 . Q j (1 ≤ j ≤ 4) are the centers of the cuboids K ∈ Ωh(ek). Let K ∗
ek

be a

polyhedron whose vertexes are Pk1 , Pk2 and Q j (1 ≤ j ≤ 4). K ∗
ek

is called a dual cell for edge ek . T̄ ∗

h = {K ∗
ek

}
ME
k=1 is

a dual partition to Th .
Let Ω∗

h denote the node set of dual partition. For Q ∈ Ω∗

h , let K Q denote a cuboid cell which includes Q. Let
|K ∗

P | and |K Q | be the volumes of the dual cell K ∗

P and cuboid cell K Q , respectively. As follows, we assume that
the partition family Th is regular, i.e., there exist positive constants C3,C4 independent of h, such that the following
condition (A4) satisfies:{

C3h3
≤ |K ∗

P | ≤ C4h3, P ∈ Ω̄h,

C3h3
≤ |K Q | ≤ C4h3, Q ∈ Ω∗

h .
(2.3)

Let trial function space Uh ⊂ H1
0 (Ω), whose basis functions are {ϕ(P), P ∈ Ω̄h}, be an isoparametric three linear

space based on Th [3] and let test function space Vh ⊂ L2(Ω) be a piecewise constant space on dual partition T ∗

h ,
whose basis functions are {ψ(P), P ∈ Ω∗

h }, defined by

ψ(P) =

{
1, P ∈ K ∗

P ,

0, otherwise,

and ψ(P) = 0, P ∈ Γh .

Let Π ∗

h be an interpolation operator from H1
0 to Vh satisfying

Π ∗

h u =

∑
K ∗

P∈T ∗
h

u(P)ψ(P). (2.4)

For using the characteristic procedure to treat the first-order part of problem (1.1), we rewrite the Eq. (1.1) in the
form

∂u

∂t
= −Eb(x, u) · ∇u + ∇ · (a(x, u)∇u)+ f (x, t, u). (2.5)

Let τ = τ(x, t) be an unit vector in the direction (b1(x, u), b2(x, u), b3(x, u), 1) and

Ψ(x, u) = [1 + |Eb(x, u)|2]1/2, |Eb(x, u)|2 =

3∑
i=1

b2
i (x, u). (2.6)

Then we have

∂

∂τ(x, u)
=

1
Ψ(x, u)

∂

∂t
+

Eb(x, u)

Ψ(x, u)
· ∇. (2.7)

Now we can write Eq. (2.5) in the form

Ψ(x, u)
∂u

∂τ
− ∇ · (a(x, u)∇u) = f (x, t, u). (2.8)

The equivalent weak form of Eq. (2.5) is(
Ψ(x, u)

∂u

∂τ
, v

)
+ a(u; u, v) = ( f (x, u), v), ∀v ∈ H1

0 (Ω), t ∈ (0, T ], (2.9)
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where

a(w; u, v) = (a(x, w)∇u,∇v) =

∑
P∈Ω̄h

[∫
K ∗

P

a(x, w)∇u · ∇vdx −

∫
∂K ∗

P

a(x, w)∇u · νvds

]
. (2.10)

For Eq. (2.9), we adopt the backward difference along the τ -characteristic tangent at (x, tn+1) as the approximation
of Ψ(x, u)(∂u/∂τ), and then we have(

Ψ(x, u)
∂u

∂τ

)
(x, tn+1) ≈ Ψ(x, un+1)

u(x, tn+1)− u(x̌, tn)

∆t
=

u(x, tn+1)− u(x̌, tn)

∆t
, (2.11)

where x̌ = x − Eb(x, un+1)∆t . Let uh(x, t) be a finite element solution of (2.9), un+1
h = uh(x, tn+1), ûn

h = uh(x̂, tn),
x̂ = x − Eb(x, un

h)∆t .
So far, we can obtain the CFVEM: find uh ∈ Uh , such that(

un+1
h − ûn

h

∆t
, vh

)
+ a(un

h; un+1
h , vh) = ( f (x, ûh), vh), ∀vh ∈ Vh . (2.12)

Here Vh is a piecewise constant space, so

a(wh; uh, vh) = −

∑
P∈Ω̄h

vh(P)
∫
∂K ∗

P

a(x, wh)∇uh · νds, ∀wh, uh ∈ Uh . (2.13)

Noting that Eb(x, u)|Γ = (0, 0, 0)T , we can deduce that x̂ = x − Eb(x, un
h)∆t is a homeomorphism map, when ∆t is

suitably small. Generally, ûn
h are not node values, so they should be derived by interpolation formulas on un

h .

3. Auxiliary lemmas

Define the discrete norm and the discrete semi-norm:

|||uh |||
2
0 = (uh,Π ∗

h uh), |uh |
2
1,h =

∑
K∈Th

|uh |
2
1,h,K ,

|uh |
2
1,h,K =

4∑
i=1

[(uh(P
b
i+1)− ub

h(Pi ))
2
+ (uh(P

u
i+1)− uh(P

u
i ))

2
+ (uh(P

u
i )− uh(P

b
i ))

2
]h,

where Pb
i+1 = Pb

1 , Pu
i+1 = Pu

1 , as i = 4; Pb
i (i = 1, 2, 3, 4) and Pu

i (i = 1, 2, 3, 4) are the bottom vertexes and upper
vertexes of cuboid cell K . Obviously, the discrete norm and discrete semi-norm are equivalent to the continuous norm
and full-norm on Uh , respectively. i.e., there exist positive constants C5,C6, such that

C5‖uh‖0 ≤ |||uh |||0 ≤ C6‖uh‖0, C5|uh |1 ≤ |uh |1,h ≤ C6|uh |1.

We assume that the cuboid cells are parallel to the coordinate axes, and denote the isometric partition steps along
the x1-, x2- and x3-directions by hx1 , hx2 and hx3 . As follows, we assume that the partition family Th is regular again,
i.e., there exist positive constants C3,C4 independent of h, such that the following condition (A5) satisfies:

C3 ≤
hx1

hx2

,
hx1

hx2

,
hx2

hx3

≤ C4. (3.1)

Lemma 3.1. For ∀uh, ūh ∈ Uh , there exists a positive constant C, such that

(uh,Π ∗

h ūh) = (ūh,Π ∗

h uh), (3.2)

(uh,Π ∗

h ūh) ≤ C‖uh‖0 · ‖ūh‖0. (3.3)
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Proof. From the properties of Uh , for each partition cell K (∈ Th), whose eight vertexes are Pb
i , Pu

i (i = 1, 2, 3, 4)
respectively, we know that uh |K has the following expression:

uh(x, t)|K =

4∑
i=1

[uh(P
b
i )ϕ(P

b
i )+ uh(P

u
i )ϕ(P

u
i )], (3.4)

where

ϕ(Pr
i ) = φPr

i
(x1)χPr

i
(x2)ψPr

i
(x3), r = b, u; i = 1, 2, 3, 4.

φPr
i
(x1) =

1 −
1

hx1

|x1 − x1,Pr
i
|, x1,Pr

i
− hx1 ≤ x1 ≤ x1,Pr

i
+ hx1;

0, otherwise.

χPr
i
(x2) =

1 −
1

hx2

|x2 − x2,Pr
i
|, x2,Pr

i
− hx2 ≤ x2 ≤ x2,Pr

i
+ hx2;

0, otherwise.

φPr
i
(x3) =

1 −
1

hx3

|x3 − x3,Pr
i
|, x3,Pr

i
− hx3 ≤ x3 ≤ x3,Pr

i
+ hx3;

0, otherwise.

Here x j,Pr
i
( j = 1, 2, 3) are the x j -direction coordinates of nodes Pr

i . Let |K | = hx1 hx2 hx3 be the volume of the
cuboid cell K . Furthermore, we have

(uh,Π ∗

h ūh) =

∑
K∈Th

4∑
l=1

ūh(P
b
l )

∫ ∫ ∫
K ∗

Pb
l

⋂
K

uhdxdydz + ūh(P
u
l )

∫ ∫ ∫
K ∗

Pu
l

⋂
K

uhdxdydz

 .
Defining

α = (ūh(P
b
1 ), ūh(P

b
2 ), ūh(P

b
3 ), ūh(P

b
4 ), ūh(P

u
1 ), ūh(P

u
2 ), ūh(P

u
3 ), ūh(P

u
4 ))

and

β = (uh(P
b
1 ), uh(P

b
2 ), uh(P

b
3 ), uh(P

b
4 ), uh(P

u
1 ), uh(P

u
2 ), uh(P

u
3 ), uh(P

u
4 ))

T,

and noting equality (3.4), after complex integration computing we have that

(uh,Π ∗

h ūh) =

∑
K∈Th

|K |

512
α



27 9 3 9 9 3 1 3
9 27 9 3 3 9 3 1
3 9 27 9 1 3 9 3
9 3 9 27 3 1 3 9
9 3 1 3 27 9 3 9
3 9 3 1 9 27 9 3
1 3 9 3 3 9 27 9
3 1 3 9 9 3 9 27


β.

In the above computation, for simplicity we omit the variable t in function u(x, y, z, t). Based on the above equality,
we can complete the proof of Lemma 3.1 easily. �

Lemma 3.2. Supposing that all cells K Q of the partition Th satisfy conditions (A4) and (A5), T ∗

h is a circumcenter
dual partition. For ∀wh, uh, ūh ∈ Uh , there exist positive constants γ, C7, C8 independent of h, such that

a(wh; uh,Π ∗

h uh) ≥ γ ‖uh‖
2
1. (3.5)

a(wh; uh,Π ∗

h ūh) ≤ C7‖uh‖1‖ūh‖1. (3.6)

|a(wh; uh,Π ∗

h ūh)− a(wh; ūh,Π ∗

h uh)| ≤ C8h‖uh‖1‖ūh‖1. (3.7)
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Using positive definite condition (A1), Lipschitz continuity of the functions ai (x, u), the definition of a(·; ·, ·), the
property of Uh and the curve integration theorem, after complicated computation, we can complete proof of this
lemma.

Lemma 3.3. Let |||uh |||0 = (Π ∗

h uh,Π ∗

h uh)
1
2 . ||| · |||0 is equivalent to ‖ · ‖0 in Uh .

The proof of Lemma 3.3 can be completed by computing the integral on cell K Q directly.

Theorem 3.1 (Trace Theorem [20]). Supposing that Ω has a Lipschitz boundary, and that p is a real number in the
range 1 ≤ p ≤ ∞, then there exists a constant C, such that

‖v‖L p(∂Ω) ≤ C‖v‖
1−1/p
L p(Ω)‖v‖

1/p
W 1

p(Ω)
, ∀v ∈ W 1

p(Ω).

Lemma 3.4. Supposing that P ′ is a random point in dual partition cell K ∗

Pi
, Γi j = K ∗

Pi

⋂
K ∗

Pj
, then

∑
j∈
∧

i

∫ ∫
Γi j

|u(P ′)− u(x)|ds ≤ Ch2(‖u‖1,K ∗
Pi

+ ‖u‖2,K ∗
Pi
). (3.8)

Proof. From the Hölder inequality, we get that

∑
j∈
∧

i

∫ ∫
Γi j

|u(P ′)− u(x)|ds ≤ Ch
∑
j∈
∧

i

(∫ ∫
Γi j

|u(P ′)− u(x)|2ds

) 1
2

.

Using Taylor expansion, the trace theorem in which we choose p = 2, and the Hölder inequality, the proof of
Lemma 3.4 can be completed. �

Using the positive definite condition (A1), local continuity of the functions ai (x, u), the definition of a(·; ·, ·), the
property of the function in Uh , and the curve integration theorem, after complicated computation, we can derive the
following two lemmas.

Lemma 3.5. Supposing that all cells K Q of the partition Th satisfy conditions (A4) and (A5), then T ∗

h is a
circumcenter dual partition. For ∀wh, uh, ūh ∈ Uh , there exists a positive constant C9 independent of h, such
that

|a(wh; u − uh,Π ∗

h ūh)| ≤ C9(h‖u‖2 + ‖u − uh‖1)‖ūh‖1. (3.9)

Lemma 3.6. Supposing that all cells K Q of the partition Th satisfy conditions (A4) and (A5), then T ∗

h is a
circumcenter dual partition. For ∀wh, ūh ∈ Uh , there exists a positive constant C10 independent of h, such that

|a(w; u,Π ∗

h ūh)− a(wh; u,Π ∗

h ūh)| ≤ C10(h
2
‖w‖2 + ‖w − wh‖0)‖u‖1,∞‖ūh‖1. (3.10)

4. Convergence analysis

Now we consider the error estimates of the approximate solution. Let

un+1
− un+1

h = (un+1
− Πhun+1)+ (Πhun+1

− un+1
h ) = ρn+1

h + en+1
h .

Choosing t = tn+1 in (2.9), then we have(
Ψ(x, un+1)

∂u

∂τ
(tn+1), v

)
+ a(un+1

; un+1, v) = ( f (x, un+1), v), ∀v ∈ Vh . (4.1)
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Subtracting (2.12) from (4.1), we obtain that(
en+1

h − en
h

∆t
, vh

)
+ a(un

h; en+1
h , vh) =

(
∂un+1

∂t
+ Eb(x, un

h) · ∇un+1
−

un+1
− ûn

h

∆t
, vh

)

+

(
ên

h − en
h

∆t
, vh

)
+

(
ρn+1

h − ρ̂n
h

∆t
, vh

)
+

(
ǔn

h − ûn
h

∆t
, vh

)
+ ([b(x, un+1)− b(x, un

h)] · ∇un+1, vh)

+ a(un
h; ρn+1

h , vh)+ (a(un+1
; un+1, vh)− a(un

h; un+1, vh))− ( f (x, un+1)− f (x, ûn
h), vh). (4.2)

Choosing vh = Π ∗

h en+1
h in (4.2), testing (4.2) against 2∆t and estimating the terms on the left-hand side of (4.2), from

the definition of ‖ · ‖0,h we have that

2

(
en+1

h − en
h

∆t
,Π ∗

h en+1
h

)
∆t = 2[‖en+1

h ‖
2
0,h − (en

h ,Π
∗

h en+1
h )].

Noting the equivalence of ‖ · ‖0,h and ‖ · ‖0, and using Lemma 3.1 and the Cauchy inequality with ε( suitably), we
have

2

(
en+1

h − en
h

∆t
,Π ∗

h en+1
h

)
∆t ≥ Cε(‖en+1

h ‖
2
0 − ‖en

h‖
2
0); (4.3)

2a(un
h; en+1

h ,Π ∗

h en+1
h )∆t ≥ 2γ ‖en+1

h ‖
2
1∆t. (4.4)

For each term of the right-hand side of (4.2), noting that∥∥∥∥∥∂un+1

∂t
+ Eb(x, un

h) · ∇un+1
−

un+1
− ûn

h

∆t

∥∥∥∥∥
2

0

≤

∫
Ω

(
1
∆t

)2

(Ψ∆t)3
∣∣∣∣∣
∫ x,tn+1

(x̂,tn)

∂2u

∂t2 dt

∣∣∣∣∣ dx ≤ ∆t‖Ψ3
‖0,∞

∫
Ω

∫ (x,tn+1)

(x̂,tn)

∣∣∣∣∂2u

∂t2

∣∣∣∣2 dtdx

≤ C∆t
∫
Ω

∫ tn+1

tn

∣∣∣∣∂2u

∂t2

∣∣∣∣2 dtdx,

then, using Lemma 3.1 and the Cauchy inequality, we have∣∣∣∣∣2
(
∂un+1

∂t
+ Eb(x, un

h) · ∇un+1
−

un+1
− ûn

h

∆t
,Π ∗

h en+1
h

)
∆t

∣∣∣∣∣
≤ C

{
∆t
∫
Ω

∫ tn+1

tn

∣∣∣∣∂2u

∂t2

∣∣∣∣2 dtdx + ‖en+1
h ‖

2
0

}
∆t, (4.5)

∣∣∣∣2( ên
h − en

h

∆t
,Π ∗

h en+1
h

)
∆t

∣∣∣∣ ≤ C‖en
h‖

2
0∆t + ε‖∇en+1

h ‖
2
0∆t ≤ C‖en

h‖
2
0∆t + ε̄‖en+1

h ‖
2
1∆t. (4.6)

From (
ρn+1

h − ρ̂n
h

∆t
,Π ∗

h en+1
h

)
=

(
ρn+1

h − ρn
h

∆t
,Π ∗

h en+1
h

)
+

(
ρn

h − ρ̂n
h

∆t
,Π ∗

h en+1
h

)
,∣∣∣∣∣

(
ρn+1

h − ρn
h

∆t
,Π ∗

h en+1
h

)∣∣∣∣∣ =

∣∣∣∣∣
(

1
∆t

∫ tn+1

tn

∂ρh

∂t
dt,Π ∗

h en+1
h

)∣∣∣∣∣ ≤ C

{
1
∆t

∫ tn+1

tn

∥∥∥∥∂ρh

∂t

∥∥∥∥2

0
dt + ‖en+1

h ‖
2
0

}
,∣∣∣∣(ρn

h − ρ̂n
h

∆t
,Π ∗

h en+1
h

)∣∣∣∣ ≤ C‖ρn
h ‖

2
0 + ε‖∇en+1

h ‖
2
0 ≤ C‖ρn

h ‖
2
0 + ε̄‖en+1

h ‖
2
1,
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then we have∣∣∣∣∣2
(
ρn+1

h − ρ̂n
h

∆t
,Π ∗

h en+1
h

)
∆t

∣∣∣∣∣ ≤ C

{
1
∆t

∫ tn+1

tn

∥∥∥∥∂ρh

∂t

∥∥∥∥2

0
dt + ‖en+1

h ‖
2
0 + ‖ρn

h ‖
2
0

}
∆t + ε̄‖en+1

h ‖
2
1∆t. (4.7)

From the continuity of the vector function Eb(x, u) and the triangle inequality, we know that

ǔn
h − ûn

h

∆t
≤ C(u)

|x̌ − x̂ |

∆t
= C(u)|Eb(x, un+1)− Eb(x, un

h)|

≤ C |un+1
− un

h | = C |un+1
− un

+ ρn
h + en

h | ≤ C(|un+1
− un

| + |ρn
h | + |en

h |).

With Lemma 3.1, we obtain∣∣∣∣2( ǔn
h − ûn

h

∆t
,Π ∗

h en+1
h

)
∆t

∣∣∣∣ ≤ C

{∫ tn+1

tn

∥∥∥∥∂u

∂t

∥∥∥∥2

0
dt + ‖en+1

h ‖
2
0 + ‖ρn

h ‖
2
0 + ‖en

h‖
2
0

}
∆t. (4.8)

Analogously, we have∣∣∣2([Eb(x, un+1)− Eb(x, un
h)] · ∇un+1,Π ∗

h en+1
h )∆t

∣∣∣ ≤ L

{∫ tn+1

tn

∥∥∥∥∂u

∂t

∥∥∥∥2

0
dt + ‖en+1

h ‖
2
0 + ‖ρn

h ‖
2
0 + ‖en

h‖
2
0

}
∆t.

(4.9)

From the Lipschitz continuous property of f (x, u) in condition (A2), making use of triangle inequality, an important
inequality and Lemma 3.1, we have

|2( f (x, un+1)− f (x, ûn
h),Π

∗

h en+1
h )∆t |

≤ C L‖un+1
− ûn

h‖0 · ‖en+1
h ‖0

≤ C
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0
dt + ‖ρn
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2
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h‖
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0∆t

}
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2
0(∆t)2

≤ C

{∫ tn+1
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0
dt + ‖ρn

h ‖
2
0 + ‖en

h‖
2
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2
0 + ‖un

h‖
2
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}
∆t + ε̄‖en+1

h ‖
2
1(∆t)2, (4.10)

where L is a Lipschitz constant.
From Lemmas 3.5 and 3.6, an important inequality, we can obtain the following important estimates:

|2a(un
h; ρn

h ,Π
∗

h en+1
h )∆t | ≤ C(h‖un

‖2 + ‖ρn
h ‖1)‖en+1

h ‖1∆t ≤ C
{

h2
‖un

‖
2
2 + ‖ρn

h ‖
2
1 + ‖en+1

h ‖
2
1

}
∆t, (4.11)

|2[a(un+1
; un+1,Π ∗

h en+1
h )− a(un

h; un+1,Π ∗

h en+1
h )]∆t |

≤ C(h2
‖un+1

‖2 + ‖un+1
− un

h‖1)‖en+1
h ‖1∆t

≤ C

{
h4
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‖

2
2 +

∫ tn+1

tn
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∥∥∥∥2

1
dt + ‖ρn
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2
1 + ‖en+1
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2
1

}
∆t. (4.12)

For error equation (4.2), by (4.3)–(4.12) and applying the Sobolev space embedding theorem, the interpolation
theorem and the inverse estimate, we can obtain

(‖en+1
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2
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Supposing that the spatial and temporal discretization satisfies the relation ∆t = O(h), then we have
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‖

2
2)}∆t. (4.13)

Summing from 0 to N − 1 with respect to n in the above inequality, we can obtain that
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2
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2
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0
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where η = 2 γ
Cε

− 3ε̄. Supposing that e0
h = 0, using the discrete Gronwall lemma, we know that
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0 + η∆t

N∑
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‖en
h‖

2
1

≤ C(∆t)2
∫ T

0
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∂t2

∥∥∥∥2

0
+

∥∥∥∥∂u
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2

)
dt + Ch2
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(‖un
‖

2
2 + h2

‖un+1
‖

2
2)∆t. (4.15)

Noting that N∆t ≤ T , combining with the interpolation theorem and the regularity condition (A3), we obtain the
final error estimate to the approximate solution as

‖u − uh‖L̄∞((0,T ],L2(Ω)) + ‖u − uh‖L̄2((0,T ],H1(Ω)) = O(h + ∆t), (4.16)

where ‖v‖L̄∞((0,T ],X) = supn∆t≤T ‖vn
‖X , ‖v‖L̄2((0,T ],X) = supN∆t≤T {η

∑N
n=0 ‖vn

‖X∆t}1/2.
Therefore we have the following theorem.

Theorem 4.1. Supposing that the solution of the problem (1.1) is sufficiently smooth. when h and ∆t are sufficiently
small, ∆t = O(h) and the initial value u0

h is chosen as an interpolation of u0, then Eq. (4.16) holds.

5. Numerical experiment

We test a one-dimensional problem on the cell Ω = [0, 1] with different ν:

∂u

∂t
+ b(x, u)

∂u

∂x
− ν

∂2u

∂x2 = f (x, u).

Choosing b(x, u) = u sin t , then f (x, u) = π cos(π(x − t))(u sin t −1)+νπ2 sin(π(x − t)), so that the exact solution
is u(x, t) = sin(π(x − t)). The initial condition and the boundary values are obtained directly. The maximum absolute
and relative errors which will be defined between the exact solution u and the approximate solution uh at t = 0.5 are
listed in Table 1. We choose a spatial step h = 0.01 and a temporal step ∆t = 0.001; AEmax and REmax are defined as

AEmax = max
1≤i≤ 1

h

|ui − uhi |.

REmax = max
1≤i≤ 1

h

|ui − uhi |

|ui |
.
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Table 1
The error table

AEmax REmax

ν = 10−3 2.6229e–003 4.0579e–002
ν = 10−2 1.4933e–003 3.9239e–002
ν = 10−1 1.1085e–003 2.7681e–002
ν = 1 1.5783e–004 6.0205e–004

From Table 1, we can see that our scheme is effective for avoiding numerical diffusion and nonphysical oscillations,
and that it is consistent with the theoretical analysis results.
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