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paper, its analytic solutions are discussed by locally reducing the equation to
another functional equation without iteration and by constructing solutions in
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1. INTRODUCTION

The iterative functional equation
1

f f x � 2 f x � x � g f x � g x , x � R, 1.1Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .
2

Ž � �.is deduced from the problem of invariant curves see 6 for a delay
Ž .differential equation with a piecewise constant argument EPCA for short

d 2

� �x t � g x t � 0, t � R, x � R, 1.2Ž . Ž .Ž .Ž .2dt

1 Ž .Supported by NNSFC China .
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� �where t denotes the greatest integer less than or equal to t and g : R � R
Ž . Ž .is continuous or piecewise continuous . Concerning 1.2 many nice re-

� � � �sults 2�5 on existence, periodicity, and oscillation have been given. In 6
a planar mapping G : R2 � R2,

1
G x , y � y , 2 y � x � g y � g x , 1.3Ž . Ž . Ž . Ž .Ž .ž /2

Ž . Ž .was derived from 1.2 , which reflects the basic dynamics of 1.2 . The
Ž .invariant curves of G in the form of y � f x can be obtained by solving

Ž .Eq. 1.1 .
Ž .Analyticity of known and unknown functions in 1.1 was once consid-

� � Ž .ered in 6 , where it was proved that there is an analytic function g x �
2 � Ž .k 2 k Ž . Ž .�2 x � 2 x � 8Ý �1 x on the interval �1, 1 such that Eq. 1.1k�1

Ž . 2 � �has a solution f x � x . It was also mentioned in 6 that we do not have
to restrict ourselves to this particular f. Obviously, it is interesting to

Ž . Ž .deeply study analytic solutions of 1.1 further by discussing 1.1 in the
complex field C, that is,

1
f f z � 2 f z � z � g f z � g z , z � C, 1.4Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .

2

where f is unknown and g is a given function which is analytic in a
Ž . Ž .neighborhood of 0 � C such that g 0 � 0 and its derivative g � 0 � � � 0.

Ž .In this paper we prove the existence of analytic solutions for 1.1 by
locally reducing the equation to another functional equation without
iteration

1
2� � z � 2� � z � � z � g � � z � g � z , z � C,Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .

2
1.5Ž .

Ž .called the auxiliary equation of 1.1 , where � � 0 satisfies the algebraic
equation

2�2 � 4 � � � � 2 � � � 0, 1.6Ž . Ž .
and by constructing solutions in uniformly convergent power series for the
auxiliary equation.

� �2. AUXILIARY EQUATION WHEN � � 1

� �LEMMA 1. Assume that 0 � � � 1. Then for any � � C, the auxiliary
Ž . Ž .equation 1.5 has an analytic solution � z in a neighborhood of the origin

Ž . Ž .such that � 0 � 0 and �� 0 � � .
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Ž . Ž .Proof. Clearly, if � � 0, 1.5 has a trivial solution � z � 0. Assume
� � 0. Let

�
ng z � a z , where a � � . 2.7Ž . Ž .Ý n 1

n�1

Without loss of generality, we assume that

� �a 	 1, n � 2, 3, . . . . 2.8Ž .n

In fact, g is analytic in a neighborhood of 0 � C; that is, the series
�

n�1� � a zÝ n
n�2

is uniformly convergent in a neighborhood of 0 � C. This means that there
� � n�1exists a constant � � 0 such that a 	 � , n � 2, 3, . . . . Then we studyn

new functions

˜ �1 �1� z � �� � z and g z � � g � zŽ . Ž .Ž . Ž .˜
˜Ž . Ž .instead, because from 1.5 we see � z satisfies

1
2˜ ˜ ˜ ˜ ˜� � z � 2� � z � � z � g � � z � g � z , z � C,Ž . Ž . Ž . Ž . Ž .˜ ˜Ž . Ž .Ž .2

Ž .the same form of 1.5 but
�

�1 1�n ng z � � g � z � � z � a � z ,Ž . Ž .˜ Ý n
n�2

� 1�n �where obviously the coefficient a � 	 1, n � 2, 3, . . . .n
Furthermore, let

�
n� z � b z 2.9Ž . Ž .Ý n

n�1

Ž . Ž .be the expansion of a formal solution � z of 1.5 . Substituting to � and
Ž . Ž . Ž .g their power series 2.9 and 2.7 respectively in 1.5 we have

� �
2 n n n nb � z � 2� � 1 b zŽ .Ý Ýn n

n�1 n�1

�1
n n� � a b b 			 b zÝ Ý k l l l1 2 kž /2 kn�1 Ž .1	k	n , l �AAj n

�1
n� a b b 			 b z , 2.10Ž .Ý Ý k l l l1 2 kž /2 kn�1 Ž .1	k	n , l �AAj n
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k �Ž . k 4where AA � n , . . . , n � Z : n � 0, j � 1, . . . , k, n � 			 �n � n .n 1 k j 1 k
Comparing coefficients we obtain

1
2 n n n� � 2� � 1 b � � � � 1 a b b 			 b , 2.11Ž . Ž . Ž .Ýn k l l l1 2 k2 kŽ .1	k	n , l �AAj n

for n � 1, 2, . . . . This implies that

1

2� � 2� � 1 � � � 1 � b � 0Ž . 1ž /2

1
2 n n n� � 2� � 1 � � � 1 � b� Ž . n 2.12Ž .ž /2

1
n� � � � 1 a b b 			 b ,Ž . Ý k l l l1 2 k2 k� Ž .2	k	n , l �AAj n

Ž .for n � 2, 3, . . . . From 1.6 the coefficient of b in the first equality of1
Ž . Ž . Ž .2 Ž .2.12 is zero. In particular, 1.6 implies � � �2 � � 1 � � � 1 , so the

Ž .second equality of 2.12 is reduced to

� � 1 �n � 1Ž . Ž .
b � � a b b 			 b .Ýn k l l ln n�1 n 1 2 k2 � � � � � � � � � 3Ž . Ž . kŽ .2	k	n , l �AAj n

2.13Ž .

Then for arbitrarily chosen b � � � 0, we can uniquely determine the1
� 4� Ž .sequence b by 2.13 recursively.n n�2

Ž .In what follows we prove the convergence of series 2.9 in a neighbor-
� �hood of the origin. Note that 0 � � � 1. Then

� � 1
n� � 1 � � 1 � �Ž . Ž . , 0 � � � 1,� � 3 � �lim � Ž .n n�1 nn�� 2 � � � � � � � � � 3Ž . Ž . � � �0, � � 1.

Hence there exists M � 0 such that

n� � 1 � � 1Ž . Ž .
	 M , 
n 
 2. 2.14Ž .n n�1 n2 � � � � � � � � � 3Ž . Ž .

Ž . Ž .From 2.13 and 2.8 we see

� � � � � � � �b 	 M b b 			 b , n � 2, 3, . . . . 2.15Ž .Ýn l l l1 2 k
kŽ .2	k	n , l �AAj n
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To construct a governing series we consider the function

1 2 2� � � � � �'W z � 1 � � z � 1 � 2 2 M � 1 � z � � z , 2.16Ž . Ž . Ž .½ 52 1 � MŽ .

which clearly satisfies the equality

2W zŽ .Ž .
� �W z � � z � M . 2.17Ž . Ž .

1 � W zŽ .

Ž . Ž . � Ž . �Obviously, W z is continuous and W 0 � 0, so W z � 1 and
� �

n n2� � � �W z � � z � M W z W z � � z � M W zŽ . Ž . Ž . Ž .Ž . Ž . Ž .Ý Ý
n�0 n�2

2.18Ž .

Ž .for z in a sufficiently small neighborhood U 0 of the origin. Moreover,r1

when

�1 2'� � � �z � r � � 2 M � 1 � 2 M � M 2.19Ž .Ž .2

Ž . � � � � 2 2 Ž . Ž .the subradical term 1 � 2 2 M � 1 � z � � z � 0 and W z in 2.16 is
Ž . Ž . Ž .analytic in U 0 . Thus W z in 2.16 can be expanded into a convergentr2

series
�

nW z � B z , 2.20Ž . Ž .Ý n
n�1

Ž . Ž . Ž .uniformly in U 0 . Replacing 2.20 into 2.18 and comparing coefficientsr2

we obtain that

� �
B � � ,1� 2.21Ž .B � M B B 			 B , n � 2, 3, . . . .Ýn l l l1 2 k
k� Ž .2	k	n , l �AAj n

Furthermore,

� �b 	 B , n � 1, 2, . . . . 2.22Ž .n n

� � � � � �In fact b � � � B . For inductive proof we assume that b 	 B ,1 1 j j
Ž . � � � �j 	 n � 1. Observe that in 2.15 , b 	 B , j � 1, 2, . . . , k, because 1 	l lj j

Ž . � � Ž .l , . . . , l 	 n � 1. From 2.21 we know b 	 B and 2.22 is proved. By1 k n n
Ž . Ž .the convergence of 2.20 and the inequality 2.22 we see that the series

Ž . � � � 42.9 converges uniformly for z 	 r � min r , r . This completes the3 1 2
proof.
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� �3. AUXILIARY EQUATION WHEN � � 1

� �In this section we assume that � � 1 and that

Ž .H � is not a root of unity, and
1

log 	 K log n , n � 2, 3, . . .n� �� � 1
for a constant K � 0. The proof of the following useful lemma can be

� �found in 5, Chap. 6; 7, pp. 166�174 .

� � Ž .LEMMA 2. Assume that � � 1 and H holds. Then there is a positi�e
� n ��1 Ž .�number � such that � � 1 � 2n for n � 1, 2, . . . . Furthermore, the

� 4�sequence d defined by d � 1 andn n�1 1

1
d � max d 			 d , n � 2, 3, . . . ,� 4n n nn�1 1 kk� �� � 1 Ž .k
2, n �BBj n

k �Ž . k 4where BB � n , . . . , n � Z : 0 � n 	 			 	 n , n � 			 �n � n ,n 1 k 1 k 1 k
satisfies

n�15��1 �2 �d 	 2 n , n � 1, 2, . . . .Ž .n

� � Ž .LEMMA 3. Assume that � � 1 and H holds. Then for any � � C with
� � Ž . Ž .0 � � 	 1, the auxiliary equation 1.5 has an analytic solution � z in a

Ž . Ž .neighborhood of the origin such that � 0 � 0 and �� 0 � � .

Proof. As in the proof of Lemma 1 we are seeking for a power series
Ž . Ž .solution of 1.5 of the form 2.9 . For chosen b � � , using the same1

� 4�arguments as above we can uniquely determine the sequence b byn n�2
Ž . Ž . Ž .2.13 recursively. Note that � � exp 2� i
 , 
 � R � Q, since H implies
� � n� � 1 and � � 1, 
n � 1, 2, . . . . Thus

� �� � 3 � cos 2�
 � i sin 2�
 � 3 
 3 � cos 2�
 
 2,Ž . Ž . Ž .
� � Ž .that is, N � � � 3 � 2 � 0. From 2.13 ,

� � � � n� � 1 � � 1Ž . Ž .
� �b 	n n�1 nn�1� � � � � � � � � �2 � � � 1 � � 3 � � � �Ž .

� � � � � �� b b 			 bÝ l l l1 2 k
kŽ .2	k	n , l �AAj n

2
� � � � � �	 b b 			 bÝ l l ln�1 1 2 k� � � �� � 1 � � 3 � 2Ž . kŽ .2	k	n , l �AAj n

2 �1n�1� � � � � � � �	 � � 1 b b 			 b , 
n 
 2. 3.23Ž .Ý l l l1 2 kN kŽ .2	k	n , l �AAj n
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To construct a governing series we consider the function

N 4
2V z � 1 � z � 1 � 2 � 1 z � z , 3.24Ž . Ž .( ž /½ 52 2 � N NŽ .

which satisfies the equality
22 V zŽ .Ž .

V z � z � . 3.25Ž . Ž .
N 1 � V zŽ .

Ž . Ž . � Ž . �Obviously, V z is continuous and V 0 � 0, so V z � 1 and
�2 n

W z � z � V z 3.26Ž . Ž . Ž .Ž .ÝN n�2

Ž .for z in a sufficiently small neighborhood U 0 of the origin. Moreover,r4

when
4 4 2

� �z � r � � 1 � 2 � 3.27Ž .(5 2N NN
4 2Ž . Ž . Ž .the subradical term 1 � 2 � 1 z � z � 0 and V z in 3.24 is analyticN

Ž . Ž . Ž .in U 0 . Thus V z in 3.24 can be expanded into a convergent seriesr5

�
nV z � C z , 3.28Ž . Ž .Ý n

n�1

Ž . Ž . Ž .uniformly in U 0 . Replacing 3.28 into 3.26 and comparing coefficientsr5

we obtain that

C � 1,
 1

2� 3.29Ž .C � C C 			 C , n � 2, 3, . . . .Ýn l l l1 2 kN k� Ž .2	k	n , l �AAj n

Ž .Similar to 2.22 we can prove that
� �b 	 C d , n � 1, 2, . . . , 3.30Ž .n n n

� � � �where d is defined in Lemma 2. In fact, b � � 	 1 � C d . Forn 1 1 1
� � Ž . Ž .inductive proof we assume that b 	 C d , j 	 n � 1. From 3.23 , 3.29 ,j j j

and Lemma 2,
2 �1n�1� � � �b 	 � � 1 C d 	 C d 			 C 	 dÝn l l l l l l1 1 2 2 k kN kŽ .2	k	n , l �AAj n

� n�1 ��1	 C � � 1 max d 			 d� 4n l l1 kkŽ .2	k	n , l �BBj n

	 C d . 3.31Ž .n n
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Ž . Ž .Note that the series 3.28 converges uniformly in U 0 . Hence there is ar5

constant T � 0 such that C 	 T n, n � 1, 2, . . . . By Lemma 2,n

n�1n 5��1 �2 �� �b 	 T 2 n , n � 1, 2, . . . , 3.32Ž . Ž .n

that is,
Ž .n�1 �n1�n 5��1 �2 � � n 5��1� �lim sup b 	 lim sup T 2 n � T 2 .Ž . Ž .Ž .n

n�� n��

Ž .This implies that the convergence radius of 2.9 is not less than r �6
Ž Ž 5��1..�1 Ž .T 2 . Then we ensure that the series 2.9 converges uniformly for
� � � 4z 	 min r , r , r . This completes the proof.4 5 6

4. EXISTENCE OF ANALYTIC SOLUTIONS

� � � � Ž .THEOREM 1. Assume that 0 � � � 1 or that � � 1 and H holds.
Ž . Ž . Ž �1Ž ..Then Eq. 1.4 has an analytic solution of the form f x � � �� z in a

Ž .neighborhood of the origin, where � z is an analytic solution of the auxiliary
Ž .equation 1.5 .

Ž .Proof. By Lemmas 1 and 3, we can find an analytic solution � z of the
Ž . Ž . Ž .auxiliary equation 1.5 in the form of 2.9 such that � 0 � 0 and

Ž . �1Ž .�� 0 � � � 0. Clearly the inverse � z exists and is analytic in a
neighborhood of the origin. Let

f x � � ���1 z , 4.33Ž . Ž . Ž .Ž .
Ž .which is also analytic in a neighborhood of the origin. From 1.5 , it is easy

to see

f f z � � ���1 � ���1 z � � �2��1 zŽ . Ž . Ž .Ž . Ž . Ž .Ž .Ž .
� 2� ���1 z � � ��1 zŽ . Ž .Ž . Ž .

1
�1 �1� g � �� z � g � � zŽ . Ž .Ž . Ž .Ž . Ž .Ž .

2

1
� 2 f z � z � g f z � g z ,Ž . Ž . Ž .Ž .Ž .

2
Ž .that is, the function f in 4.33 , defined in a neighborhood of the origin,

Ž .satisfies Eq. 1.4 .

The following example shows how to construct an analytic solution of
Ž .1.4 for a concrete function

� 2
z ng z � 2 1 � e � � z . 4.34Ž . Ž . Ž .Ý n!n�1
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Ž .The algebraic equation corresponding to 1.6 is

�2 � 3� � 0, 4.35Ž .
which has a nonzero root � � 3. By Lemma 1, the auxiliary equation1

1
� 9 z � 2� 3 z � � z � g � 3 z � g � z 4.36Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .

2
Ž .has a solution of the form 2.9 where b � � � 0 is given arbitrarily and1
Ž .b , b , . . . are determined by 2.13 recursively, i.e.,2 3

3n � 1 1
b � b b 			 b . 4.37Ž .Ýn l l ln�1 n�1 1 2 kž /k!3 � 1 3Ž . kŽ .2	k	n , l �AAj n

In particular,

�� 0 5Ž .
2b � � � ,2 2! 54

� � 0 33 � 1 b3 72Ž . 1 3b � � b b � � � ,3 1 2 72 4 ž /3! 6 2 	 33 � 1 3Ž .
. . . . . . .
Ž . Ž . �1Ž .Since � 0 � 0, �� 0 � � � 0, and the inverse � z is analytic near the

origin, we can calculate
1 1 1

�1� � 0 � � � ,Ž .Ž . �1 �� 0 ��� � 0 Ž .Ž .Ž .
�� ��1 0 ��1 � 0 �� 0 ��1 � 0 5Ž . Ž . Ž . Ž .Ž . Ž .Ž .�1� � 0 � � � � � � ,Ž .Ž . 2 2�1 27��� 0Ž .Ž .�� � 0Ž .Ž .Ž .

��1 � 0Ž .Ž .
2 2�1 �1 �1 �1 �1� � � 0 � � 0 � �� � 0 � � 0 �� � 0Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž . Ž . Ž .Ž . Ž .½ 5

� � 4�1�� � 0Ž .Ž .Ž .
�� ��1 0 ��1 � 0 	 2�� ��1 0 �� ��1 0 ��1 � 0Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž . Ž . Ž .

� 4�1�� � 0Ž .Ž .Ž .
5 2�2 �1 �1� � 0 � � �� 0 �� 0 � �� 0 � 	 2�� 0 �� 0 �Ž . Ž . Ž . Ž . Ž . Ž .Ž .½ 5ž /27�

� � 4
�� 0Ž .Ž .

26
� ,63 �

. . . . . . .
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Furthermore, we get

f 0 � � 3��1 0 � � 0 � 0,Ž . Ž . Ž .Ž .
1

�1 �1 �1f � 0 � �� 3� 0 	 3 � � 0 � 3�� 0 � � 0 � 3� � 3,Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .
�

102�1 �1 �1 �1f � 0 � 9�� 3� 0 � � 0 � 3�� 3� 0 � � 0 � ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž . Ž .Ž .
9

3�1 �1f � 0 � 27� � 3� 0 � � 0Ž . Ž . Ž .Ž .Ž . Ž .
� 18�� 3��1 0 ��1 � 0 ��1 � 0Ž . Ž . Ž .Ž . Ž .Ž .
� 9�� 3��1 0 ��1 � 0 ��1 � 0Ž . Ž . Ž .Ž . Ž .Ž .
� 3�� 3��1 0 ��1 � 0Ž . Ž .Ž .Ž .

49� 3 1 5� 2 1 5 26 28
� 27 � 27 � 3� � ,6 3 627 � 27� 273 � 3 �

. . . . . . .

Ž . Ž .Thus near 0 Eq. 1.4 with g in 4.34 has an analytic solution

5 17
2 3f z � 3 z � z � z � . . . . 4.38Ž . Ž .

9 81

Ž . Ž . � nRemark that if g x is an analytic real function, i.e., g z � Ý a zn�1 n
is a convergent series near 0 with real coefficients, and if a � � satisfies1

� � 0 or � 
 16, 4.39Ž .

Ž . Ž .then by Theorem 1, Eq. 1.4 has an analytic real solution. In fact, 4.39
Ž . 2 Ž .guarantees that 1.6 , i.e., 2� � 4 � � � � 2 � � � 0, has real roots �1

Ž .and � . Clearly by 2.13 where � � � or � , we can define a real2 1 2
� 4� Ž . Ž .sequence b and obtain a solution � z of 1.5 with real coefficients.n n�2

Restricted on R both the function � and its inverse are valued in R. Hence
Ž . Ž �1Ž ..the function f x � � � � z , j � 1, 2, is also a real function andj

Theorem 1 implies its analyticity.
� �The problem of analytic solutions in the case � � 1 without restriction

Ž .H is not solved yet. Such a difficulty was noted by C. L. Siegel when he
� �discussed the Schroder equation in 7 .¨
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