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Abstract

Integrity checking is important in many activities, such as logistics, telecommunications or even usual tasks such
as checking for someone missing in a group. While the computing and telecommunications worlds commonly use
digital integrity checking, many activities from the real world do not benefit from automatic mechanisms for ensuring
integrity. We propose the concept of coupled objects where groups of physical objects are tagged with RFID chips
enabling pervasive and autonomous integrity checking.
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1. Introduction

Checking for integrity of a set of objects is often needed in various activities, both in the real world and in the
information society. The basic principle is to verify that a set of objects, parts, components or people remain the same
along some activity or process, or remains consistent against a given property.

In the real world, it is a common step in logistic: objects to be transported are usually checked by the sender
(for their conformance to the recipient expectation), and on delivery by the recipient. When a school gets a group of
children to a museum, people responsible for the children will regularly check that no one is missing. Yet another
common example is to check for our personal belongings when leaving a place, to avoid losts. While important, these
verification are tedious, vulnerable to human errors, and often forgotten.

Because of these vulnerabilities, problems arise: E-commerce clients sometimes receive incomplete packages,
valuable and important objects (notebook computers, passports etc.) get lost in airports, planes, trains, hotels, etc.
sometimes causing tragic consequences.

While there are very few automatic solutions to improve the situation in the real world, integrity checking in the
computing world is a basic and widely used mechanism: magnetic and optical storage devices, network communica-
tions are all using checksums and error checking codes to detect information corruption, to name a few.

The emergence of Ubiquitous computing and the rapid penetration of RFID devices enable similar integrity check-
ing solutions to work for physical objects. In this paper, we present a general approach to pervasive integrity checking,
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called coupled objects, and some of its possible applications. The paper is organized as follows: in the next section,
we introduce the idea of coupled objects, and the motivations. Then we explain the concepts and the model of coupled
objects. The fourth section discusses the implementation, some applications, and performance issues. Some related
works are reviewed in fifth section. Finally, some perspectives are presented in conclusion.

2. Introducing coupled objects

2.1. An analogy with computer networks

Let’s consider a typical E-commerce scenario: A client orders a set of items to an online store S. The items are
shipped by a transport service. On delivery, the client will have to accept or reject the package after visually examining
its conditions (package unsealed or broken, ...). Unfortunately, even when the package seems in good conditions, some
items can still be missing inside. Moreover, it is impossible to determine the responsability for the problem:

1. The missing items could have not been shipped by the sender (the store)
2. The package could have been opened at one step in the transport, and some items stolen
3. The client could be of bad faith and pretend that some items are missing while it is not the case

Now consider what happens in a computer network: digital objects are fragmented into “packets”, which can
be transported independently of each other in the network. When they arrive at a destination point, packets are
assembled together to rebuild the original object, which is checked for integrity. For this purpose, packets include
additional information enabling error detection. Of course, networks are more complex than this simple view, with
multiple encapsulation and fragmentation levels, but for the analogy with the logistic scenario the basic principle is
sufficient.

We can consider a set of physical objects as “data” that are going to be transported and eventually separated at
some occasions. At some point where the set of physical objects is assumed to be complete, integrity checks will take
place. For instance, the transport service could check the integrity of the package before accepting it, and the client
could do the same on delivery.

2.2. General principle of coupled objects

Essentially, coupled objects are a set of physical objects that defines a logical group. An important feature is that
the group information is self contained within the objects themselves in such a way as that group properties checking
(such as completeness) is possible just using the objects. In other words, the physical objects can be seen as fragments
of a composite object. A trivial example could be a group made of a person, his jacket, his mobile phone, his passport
and his cardholder.

More precisely, as an arbitrary object cannot describe by itself group information, we assume that a digital artifact
including the group information is embedded on the object. A relevant implementation of this artifact is to use RFID
technology, as we will see later: RFID tags with group information can be associated to each physical object member
of the group.

Tagging physical objects with embedded chips is of course not new. But the originality in our approach is to avoid
any central identification and to make the integrity checking self contained into the set of objects. Our goal was to
propose a system that would support the following requirements :

1. ease of use and as low impact as possible on existing processes
2. scalability and reliability

3. low (or even no) dependance on information systems

4. privacy respect

We think it is important to stress the two latter requirements. Integration and interoperability issues can lead to
death of emerging technologies or experimental systems: the cost of integrating something new into an operational
infrastructure is very high, and dependence or impact on existing information systems should be as low as possible
for a chance of acceptance.

Privacy concerns raise strong resistance to RFID technology [1]. As we will see, a core idea of coupled objects is
to ensure standalone, anonymous operation and no dependence on databases or remote information systems.
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3. Concepts and model of coupled objects

3.1. Some definitions and terminology

Considering a set of physical objects, or a set of parts of a physical object, we define a coupled object as a logical
association of these objects (or parts), self contained within the objects.

These objects are called fragments: a fragment is simply a physical object augmented with an electronic artifact
that provides a digital memory for the information required to describe the association of the fragment with the other
fragments of the coupled object. This electronic artifact is called tag, in reference to the typical implementation using
RFID tags.

Association or coupling is the process of writing the tag memories of all the fragments of a coupled objects with
the appropriate information to make a coupled object: each fragment f; is labeled with a piece of data g; such that the
set g; is sufficient to describe the belonging of the fragment to this particular coupled object.

Checking is the process of reading the data gy, ..., g, from the tags of a set of fragments fi, ..., f; and determining
whether g1, ..., g, is a valid coupled object.

3.2. Data structure

An essential property of a coupled object is that the logical association between the fragments should be self
contained within the fragments themselves, and the data in the tags should be self sufficient to describe the association.

A trivial solution would be to associate a unique identifier to each fragment, and describe the coupled object as
the set of identifiers of all its fragments. However, this is not realistic given existing technological constraints: the
memory size of the tag for each fragment would have to grow linearly with the number of fragments. The same
is true for the quantity of data to read when checking a coupled object. Using for example 96 bits identifiers for
the fragments, a ten fragments coupled objects would require 960 bits, which is beyond the capacity of the 512 bit
memory tags in common use. Larger memory tags do exist, but this approach is not scalable to a large number of
fragments. Moreover, the explicit enumeration of global identifiers in each fragment raises a threat for privacy, as it
eases the tracking of group of objects and directly expose the association of group of objects.

Another solution would be to associate a unique identifier to each coupled object. But this would assume the
existence of a global authority and service to allocate the identifiers. Once again, threats on privacy and confidentiality
of coupled objects would be strong issues.

An autonomous and distributed alternative of the latter approach is to use a hashing or signature functions to
generate quasi-unique fingerprint information describing a coupled object. We assume that each individual fragment
has a specific information which is associated to it, which we will call /D;. The information used to define the group
is a function computed from the set of /D;, typically a hash function: H(ID, ...ID», ...ID,). Using a hash function has
several advantages :

1. group representation is compact
2. integrity check can be performed efficiently
3. group representation is meaningless and does not allow to deduce any relevant information

For a set of fragments f; with respective identifiers id; the association information stored on the fragments would
be g; = H(idy, ..., id,), or simply g as g; is the same for all the fragments of the same coupled object. The tag memory
of each fragment include both the individual identifier id; and the coupled object fingerprint g

3.3. Proxy fragment

In some cases, we would like to make a coupled object without having all the fragments physically together
(meaning, in close proximity). This can be interesting for example in a logistic application if we want to create a
coupled object including the sender and the recipient as fragments: the sender would like to ensure that his package
would only be delivered to the right recipient, while the latter would like to only accept a shipment from the right
sender. As the sender and the recipient would typically not be present together at shipping and delivery time, it seems
not possible to create and check a coupled object in these situations.
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For these cases, we introduce the notion of proxy fragment. If we have a physical fragment f; with a tag containing
the coupled object data g, a proxy fragment f; is simply another physical object with the same data g that is used
elsewhere in place of f;, where the latter cannot be physically present.

Actually, the proxy fragment can be virtual, in the sense that g has to be known at the checking time to validate
the coupled object, but g is not necessarily on a tag: it can be provided to the checking process through another way:
for example, it could be sent through a secured channel to the checking terminal.

A typical application would be the sender-recipient scenario: the sender S creates a coupled object made of two
DVDs and a fragment representing the recipient. As the latter is not physically there for the coupling, a proxy fragment
is used, such as a client number or a public key. Let’s call R this identifier. The sender then creates the coupled object
by generating a fingerprint Q = H(id, id,, R) where id; and id, are the identifiers for the two DVDs. This fingerprint
is stored in all the physical fragments of the package, in this case on the tag attached to each.

Symmetrically at delivery, before opening the package, the recipient checks for the integrity of the coupled object:
he makes his proxy fragment R available for the checking process, and the tags inside the package are read:

1. on each tag i, the individual identifier id;
2. the coupled object fingerprint Q stored on all tags

X = H(id,, ..., id,, R) is computed and checked against Q. If X = Q, the coupled object is considered valid and the
package can be accepted by the recipient. Otherwise, either the recipient is not the right one or the set of items inside
the package do not match the set of objects seen at coupling time.

3.4. Coupled objects hierarchies

The set of physical objects composing a coupled object could itself be used as a fragment in another, upper level,
coupled object. This recursive process leads to hierarchies of coupled objects. A simple example is a first coupled
object O; made of some parts of a bike: the wheels, the frame and the seatpost making a total of four fragments. Then,
at an upper level we would like to create a coupled object O, made of two fragments: the bike and his owner.

Previously, we were using a flat addressing scheme with all the fragments at the same level. Coupled object trees
require a hierarchical data structure to allow the independent validation of each tree or sub-tree. To this end, we have
to introduce a secondary fingerprint in the tag memory: the primary fingerprint corresponds to the coupled object of
the first level to which the fragment belongs to, while the secondary fingerprint corresponds to the coupled object of
upper level to which the fragment belongs to (see figure 1).

4. Implementation

We designed and implemented several integrity checking systems based on the coupled objects model. These
systems are using RFID UHF tags and readers complying with the EPC Global standard [2] (EPC gen2) . The primary
applications that we were interested for coupled objects involved reliable checking of several moving tags at once.
UHF RFID class1 gen?2 tags were the most readily available solution featuring anti collision and providing acceptable
performances in our context. This section discusses the implementation issues for the data structure mapping, the
coupling and the checking processes.

4.1. Memory allocation

Beside the usual EPC 96-bit identifier that is used as the fragment identifier, the tags have a 512 bits writable
user memory. This memory is used to store the fingerprints for the coupled objects. We were using sha-256 hash
function to generate the fingerprints, so given our user memory capacity coupled object hierarchy can be supported
(two fingerprints are needed, as explained in section 3.4). See [3] for good discussion of hash functions in the context
of RFID.
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Figure 1: Mapping the tree structure on the fragments

4.2. Coupling and checking

The coupling process consists in the following steps: first, all the objects that are to be the fragments of a coupled
objects are equipped with a tag, pre-programmed with a unique identifier (stored in the EPC identifier). Then all the
fragments are placed in the range of a reader. The coupling software enumerates the tags using the appropriate “read
inventory” inquiry, getting the set of identifiers. The fingerprint P = H(id, ..., id,) is computed, and then written in
the user memory of each tag.

The checking process is similar: the coupled object to be checked is placed in the range of the checking reader.
Then coupled object fingerprint P is read from the tag memories, along with the identifiers of the fragments from the
EPC identifier. Of course, if the fingerprint stored for a given fragment is different from the fingerprint stored on the
others, the checking fails at this point. Otherwise, Q = H(iy, ..., i,) is computed and compared against P (stored on
each fragment). The coupled object is valid when P = Q.

4.3. Applications

Several systems based on this protocol were implemented, for different purposes. A first one consists of RFID-
controlled gates to warn people when some of their belongings are missing, such as when leaving a train, a plane
or a hotel [4]. This assumes that a coupled object is created from the valuable objects of the user and himself. A
strong point highlighted by this application is that the identifiers of the personal objects can be meaningless and often
changed; the system can operate without compromising privacy.

A similar application is being experimented for airport workers that have to operate inside terminals, where tools
are normally forbidden: special toolset equipped with tags configured as coupled objects are provided to the workers,
which have to cross a checking gate when entering or leaving sensitive areas. Leaving a tool inside the sensitive area
is detected when leaving as the toolset is not valid.

Another system demonstrates the application of coupled objects in logistics, in particular for E-commerce: it
allows to check for the integrity of a package from its actual content, provided that the content is a coupled object,
and the identities of the sender and the addressee. The standalone operation provided by the architecture avoid
interoperability issues between the information systems of the clients and the logistic operator.

Finally, an experimental system is being deployed for bicycle security: some parts of a bicycle and the owner of
the bicycle make a coupled object, and a protected area uses integrity checking to operate the opening of an automatic
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door. An advantage of this solution is that individual bikes do not need heavy and cumbersome physical protection:
the protection is shared by the bikes inside the protected area.

4.4. Performance and reliability

Integrity checks requires to capture the data stored on all the tags that make a coupled object. Usually, two main
approaches are possible: reading the tags sequentially, or using the “inventory read” primitive that readers provide to
collect all the tags data at once. We called the first one soft as the read process is software controlled and the second
one hard as it relies on the reader. The figure 2 shows the failure rate that we experienced with a Motorola XR480
reader.

" 'k’v\-\

80
70

60 f‘

50 \ / ~—SOFT
40 N == HARD
30

20
10
0 T T T T T T T T 1

Figure 2: Percentage of successful read vs. number of tags

As we can see, the hard method using “inventory read” can miss a significant proportion of tags. The soft method
is more reliable: as the number of tags increases, more than 80% of tags are still captured.

However, the capture time is constant for the hard method, while it increases linearly with the number of tags
with the softf method. In order to read all the tags, we have to repeat the read process several times. We determined
experimentally the time required for both method to capture a given set of tags, as shown on figure 3.

We can see that the hard method is more efficient, keeping below 2s reading up to ten simultaneous tags.

Tags can still be missed, and even with a low probability the occurrence of this problem, inherent to the RFID
technology, has to be examined. Actually, in many application the coupled object architecture can make the read
process fail safe, meaning that a missed tag will result in a false warning (seeing the coupled object as invalid),
providing an opportunity to check again. The case where all the tags would be missed leading to a silent failure is
very unlikely.

5. Related works

RFID is a hot topic with many issues given its broad application domain and emerging success in security, ac-
countability, tracking, etc. However, coupled-objects principle differs from many RFID systems where the concept of
identification is central and related to database supported information systems. In some works, the tag memories are
used to store semantic information, such as annotation, keywords, properties [5, 6]. Our approach is in the line of this
idea: RFID are used to store in a distributed way group information over a set of physical artifacts. The concept using
distributed RFID infrastructure as pervasive memory storage is due to Bohn and Mattern [7].

Maintaining group membership information in order to cooperate with “friend devices” is a basic mechanism
(known as pairing or association) in personal area networks (PAN) such as Bluetooth or Zigbee. Some personal



326 Paul Couderc et al. / Procedia Computer Science 5 (2011) 320-327

14000

12000

10000

8000
/ —0—SOFT
6000 // —#—HARD

4000 /
200 W

Figure 3: Time required (in ms) to read all the tags vs. number of tags

security systems based on PAN for luggages were proposed [8], which enable the owner to monitor some of his
belongings, such as his briefcase, and trigger an alarm when the object is out of range. A major drawback of active
monitoring is the energy power which is required, as well as potential conflicts with radio regulations that can exist in
some places, namely in airplanes.

Still in the context of Bluetooth, RFID has also been used to store PAN addresses in order to improve discovery
and connexions establishment time [9]. It can be seen as storing “links” between physical objects, such as in coupled
objects, but without the idea of a fragmented group. Yet another variant is FamilyNet [10], where RFID tags are used
to provide intuitive network integration of appliances. Here, there is a notion of group membership, but it resides on
information servers instead of being self-contained in the set of tags as in Ubi-Check. Probably the closest concept
to Ubi-Check is SmartBox [11], where abstractions are proposed to determine common high level properties (such as
completeness) of groups of physical artifacts using RFID infrastructures.

6. Conclusion

We presented the principles of coupled objects, enabling the design of pervasive integrity checking solution for
many applications. The strong points of this solution are its independence from any remote information system
support or network support, and user’s privacy respect as it is anonymous and does not rely on global identifiers.

In some applications where many tags have to be read at once on mobile objects, the performance of current
hardware with respect to inventory read reliability and speed can be an issue. Another issue is security: the tags used
in any RFID security solution should resist to tag cloning attacks or tag destruction attempt. This typically involve
tag level cryptography logic, which require more execution cycles, more power, and more time to be read. These
solutions are orthogonal to the coupled objects principles discussed here, which could make use of secured tags.
This topic could lead to further research: as a coupled object is supported by a collection of tags, some of the costly
cryptography mechanisms may be distributed over the set of tags, but such approaches would go outside current tags.

Other perspectives are other application scenarios; we are in particular examining green-IT solutions for waste
recycling using coupled objects to ensure the quality of the returned materials. Finally, we are also examining the
mapping of other complex data structures (beside trees) on a set of memory-limited tags considered as fragments.
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