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A data set of a commercial Nellore beef cattle selection program was used to compare

breeding models that assumed or not markers effects to estimate the breeding values,

when a reduced number of animals have phenotypic, genotypic and pedigree information

available. This herd complete data set was composed of 83,404 animals measured for

weaning weight (WW), post-weaning gain (PWG), scrotal circumference (SC) and muscle

score (MS), corresponding to 116,652 animals in the relationship matrix. Single trait

analyses were performed by MTDFREML software to estimate fixed and random effects

solutions using this complete data. The additive effects estimated were assumed as the

reference breeding values for those animals. The individual observed phenotype of each

trait was adjusted for fixed and random effects solutions, except for direct additive

effects. The adjusted phenotype composed of the additive and residual parts of observed

phenotype was used as dependent variable for models’ comparison. Among all measured

animals of this herd, only 3160 animals were genotyped for 106 SNP markers. Three

models were compared in terms of changes on animals’ rank, global fit and predictive

ability. Model 1 included only polygenic effects, model 2 included only markers effects

and model 3 included both polygenic and markers effects. Bayesian inference via Markov

chain Monte Carlo methods performed by TM software was used to analyze the data for

model comparison. Two different priors were adopted for markers effects in models 2 and

3, the first prior assumed was a uniform distribution (U) and, as a second prior, was

assumed that markers effects were distributed as normal (N). Higher rank correlation

coefficients were observed for models 3_U and 3_N, indicating a greater similarity of

these models animals’ rank and the rank based on the reference breeding values. Model

3_N presented a better global fit, as demonstrated by its low DIC. The best models in

terms of predictive ability were models 1 and 3_N. Differences due prior assumed

to markers effects in models 2 and 3 could be attributed to the better ability of normal

prior in handle with collinear effects. The models 2_U and 2_N presented the worst

performance, indicating that this small set of markers should not be used to genetically

evaluate animals with no data, since its predictive ability is restricted. In conclusion,

model 3_N presented a slight superiority when a reduce number of animals have

phenotypic, genotypic and pedigree information. It could be attributed to the variation

retained by markers and polygenic effects assumed together and the normal prior

assumed to markers effects, that deals better with the collinearity between markers.
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1. Introduction

Traditionally selection for economically relevant quanti-
tative traits is realized based on two sources of information,
pedigree and phenotype, under mixed model methodology
that combines them to estimate the best linear unbiased
prediction (BLUP; Henderson, 1984) of breeding value, which
has been a successful approach.

Currently, a third source of information based on DNA
markers became available. During last decades, genetic
polymorphisms were described and their use on the
selection was named marker assisted selection (MAS).
The basic idea of MAS is to exploit statistical dependen-
cies (linkage disequilibrium) existing in the joint distribu-
tion of markers and quantitative trait loci (QTL) genotypes
(Gianola et al., 2003), which can be used to improve
predictions of genetic merit of candidates for selection
in a breeding program (Fernando and Grossman, 1989).

Developments of high dense single nucleotide poly-
morphism (SNP) genotyping have increased the interest
for applying MAS at a genome wide scale, which has been
termed genomic selection (Meuwissen et al., 2001). How-
ever, given the economic cost of this technology and
the animal breeding schemes, its practical application
remains mainly limited to dairy cattle, especially in the
Holstein breed. Moreover, there is still not a consensus
about what is the best methodology or strategy to apply
it. The first methodology proposed to estimate markers
effects was applying least squares method (Geldermann,
1975). In 1989, Fernando and Grossman estimated the
effect of one locus under mixed models theory. Ridge
regression methodology was also suggested to estimate
markers effects, as a way to handle with dimensional
problem and collinear effects (Whittaker et al., 2000). In
the last decade, Bayesian penalized and non-parametric
methods have been applied to markers effects estimations
(De los Campos et al., 2009; Gianola et al., 2006; Habier
et al., 2011; Meuwissen et al., 2001). In the meantime,
several strategies to incorporate markers information on
breeding programs have been proposed, as selection
index, two and single step analyses and non-parametric
methods (González-Recio et al., 2008; Legarra et al., 2009;
Soller, 1978; VanRaden, 2008).

In beef cattle, the genomic selection have not been
widely applied. As pointed out by Ibañez-Escriche and
Gonzalez-Recio (2011) it could be due to several factors:
the different sorts of organization in the breeding pro-
grams, the lack of systematic recording of phenotypic
information, different breeding goals between populations
and a smaller population size. In Zebu cattle, especially in
Nellore breed, the most prevalent in the Brazilian beef
industry, the number of studies on application of genetic
markers is scarce. In fact, these studies have mainly been
focused on investigation of associations between indivi-
dual polymorphisms and quantitative traits (Ayres et al.,
2010; Ferraz et al., 2009; Pinto et al., 2010). To our
knowledge, there are no scientific works reporting MAS
to estimate the genomic breeding value with SNP markers
on a Nellore cattle breeding program. The aim of the
present study was carrying out a first evaluation of MAS
implementation on a Nellore beef cattle breeding program,
applying different evaluation breeding models and com-
paring those approaches in terms of the changes on
animals’ rank, model global fit and predictive ability, when
a reduced number of animals have phenotypic, genotypic
and pedigree information available.

2. Materials and methods

2.1. Data

The data set for this study was obtained from the Agro-
Pecuária CFM Ltda., a Brazilian beef cattle breeding
company, whose genetic evaluation is carried out by the
Animal Breeding and Biotechnology Group at the Univer-
sity of Sao Paulo (www.usp.br/gmab). All evaluated ani-
mals were born between 1984 and 2009 and are
progenies of bulls selected for production and reproduc-
tion traits under pasture conditions. The analyzed traits
were weaning weight (WW), post-weaning gain (PWG),
scrotal circumference (SC) and muscle score (MS). WW
was recorded at around 205 days of age. Post-weaning
gain was calculated as the weight gain between 205 and
550 days of age. Scrotal circumference measurements
were taken at the greatest diameter of the scrotum, using
a metal tape device, and were carried out at around 550
days of age. Muscle score was determined by a set of
experts after visual evaluation of each animal at around
550 days of age. Animals with the poorest muscle content
received a score of 1, and animals with the highest muscle
content received a score of 6.

2.2. Data adjustment

Single trait analyses were performed by MTDFREML
software (Boldman et al., 1995) to estimate fixed and
random effects solutions for WW, PWG, SC and MS traits,
under animal model, using the complete data set available
for this herd. Fixed effects fitted were contemporary
group composed by farm, year, season, sex and manage-
ment group, age at measurement taken into account as a
linear covariate and dam age as a quadratic covariate.
Maternal additive and permanent environmental effects
were fitted as random effects to WW and management
group at weaning was fitted as a random effect for PWG,
SC and MS.

Basic edits in the data set involved consistency checks
of ages and measures, as well the elimination of records
measured on animals with unknown dam, born from
multiple sire group and on contemporary group com-
posed of less than 5 animals. The descriptive statistics of
the complete data set analyzed to estimate fixed and
random effects solutions were presented in Table 1. The
corresponding relationship matrix was composed of a
total of 116,652 animals.

The individual records for all analyzed traits were
adjusted for the same fixed and random effects fitted
in the models used to estimate these effects solutions,
except for animal effect. The adjusted phenotype repre-
sents the sum of direct additive and residual portions
of the observed phenotype. The additive genetic effects
were considered to be the reference breeding value for
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Table 1
Summary statistics of the complete data set used to estimate fixed and

random effects solutions for weaning weight (WW), post-weaning gain

(PWG), scrotal circumference (SC) and muscle score (MS).

Trait N Mean SD CV

WW 83,404 188.93 27.35 14.48

PWG 68,424 114.47 32.25 28.18

SC 35,401 27.36 3.43 12.53

MS 63,854 3.61 1.00 27.84

N: number of data; SD: standard deviation; CV: coefficient of variation.

Table 2
Summary statistics for weaning weight (WW), post-weaning gain

(PWG), scrotal circumference (SC) and muscle score (MS) of genotyped

animals.

Trait N Mean SD CV

WW 3,042 207.05 22.90 11.06

PWG 3,033 125.19 30.50 24.36

SC 2,664 27.18 3.36 12.36

MS 3,149 3.58 1.17 32.68

N: number of data; SD: standard deviation; CV: coefficient of variation.
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genotyped and non-genotyped animals. Adjusted pheno-
type and additive genetic values will be used in the next
steps for model comparison.

2.3. Genotypic data

From this herd, a sample of 3549 animals were
genotyped, of which 3160 composed the genotypic data
set, once they had known sire and dam. The genotypic
data set consisted of 377 females and 2783 males. A total
of 3010 dams and 752 sires were represented on this data
set, of these 104 dams and 278 sires were also genotyped.
Most of dams have just one progeny analyzed and 46 sires
have more than 10 progenies on genotypic data set, from
that 21 were genotyped sires. Descriptive statistics for
WW, PWG, SC and MS of genotyped animals are pre-
sented in Table 2.

Animals were genotyped to 222 SNP markers identi-
fied on Bos taurus breeds, represented by 123 SNP markers
described on literature to be associated with genes that
affect production traits expression, of which 85–90% are
on transcript regions and 10–15% are on promote regions,
and 99 SNP markers used in paternity tests, which,
although were not described to be associated with any
biological function, are distributed along the genome and,
then, they could be in linkage disequilibrium with genes
that are affecting these traits. The genotyping process was
carried out in laboratories, licensed by Merial/Igenitys, a
company that holds the rights of use of those markers.

Allelic and genotypic frequencies for each marker were
estimate by simple count of different alleles and geno-
types, using PROC FREQ from SAS. SNP markers with
minor allelic frequency lower than 5% were removed from
the data set, and, after that, 106 genetic markers were
kept for analyses. This reduction of the number of mar-
kers kept for analyses compared to genotyped markers is
due to the fact that those markers were described on Bos

taurus breeds and Nellore is a Bos indicus breed resulting
in many markers fixed or presenting a minor allelic
frequency less than 5%.

2.4. Statistical models

Three linear mixed models were used to predict genetic
and markers effects for genotyped animals, that represent
less than 8% of all animals measured in this herd.

Model 1: This model included only polygenic effects
and can be expressed, in matrix algebra notation, as

y¼ mþZaþe

where y is a vector n�1 of the adjusted phenotype
(n¼number of records); m is the overall mean; a is a vector
q�1 of additive genetic polygenic effects (q¼number of
animals on relationship matrix); Z is the additive genetic
effects design matrix of order n� q; and e is the residuals
vector.

Model 2: This model included only markers effects and
can be described as

y¼ mþXgþe

where y is a vector n�1 of adjusted phenotype
(n¼number of records); m is the overall mean; g is a vector
p�1 of allele substitution marker effect (p¼number of
analyzed markers); X is the incidence genotype matrix of
order n� p, whose elements were set up as an additive
model, with values 1, 2 or 3 for aa, Aa and AA, respectively;
and e is the residuals vector.

Model 3: This model included both markers and poly-
genic effects

y¼mþXgþZaþe

where y is a vector n�1 of adjusted phenotype (n¼number
of records); m is the overall mean; g is a vector of p�1 allele
substitution marker effect (p¼number of analyzed mar-
kers); X is the incidence genotype matrix of order n�p,
whose elements were set up as an additive model, with
values 1, 2 or 3 for aa, Aa and AA, respectively; a is a vector
q�1 of additive genetic polygenic effects (q¼number of
animals on relationship matrix); Z is the additive genetic
effects design matrix of order n� q; and e is the residuals
vector.

The number of records corresponds to the number of
genotyped animals for each analyzed trait, as it was
presented in Table 2. The relationship matrix considered
in models 1, 3_U and 3_N was the same previous
described, composed of 116,652 animals.

2.5. Statistical analyses

Bayesian inference via Markov chain Monte Carlo
methods was used to analyze the data. The distribution
of data was assumed to be a normal distribution

y9yj �Nðmj,Is2
e Þ

where the subscript j¼1, 2 and 3 denotes model 1, model 2
and model 3, respectively; yj are the unknown parameters
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for each model; s2
e is the residual variance. Note that,

m1¼mþZa, m2¼mþXg and m3¼mþXgþZa.
For all models, a uniform prior was used for m, and

residual effects were assumed to be distributed as N(0, Is2
e)

with s2
e distributed as Inv�w2 (n, s2), with n¼�2 and s2

¼0.
In models 1 and 3, additive genetic effects were assumed to
be distributed as N(0, As2

a), where A is the relationship
matrix and s2

a is the additive variance assumed to be
distributed as Inv�w2 (n, s2), with n¼�2 and s2

¼0. Two
different priors were used for markers effects in models 2
and 3. The first prior assumed was an uniform distribution,
which is similar to the regression analysis described by
Meuwissen et al. (2001) where markers effects were esti-
mate by least squares method. The second prior assumed
that markers effects were distributed as N(0, Is2

g), where s2
g

is the marker additive variance assumed to be distributed
as Inv�w2 (n, s2), with n¼�2 and s2

¼0. This approach,
called as Bayesian ridge regression, was proposed by
Gianola et al. (2003), it is similar to the ridge regression
estimator proposed by Whittaker et al. (2000) in a frequen-
tist context. Next, models 2 and 3 will be identified accord-
ing to the prior assumed to markers effects as 2_U and 3_U
for uniform distribution prior and as 2_N and 3_N for a
normal distribution prior. Therefore, model comparison
will be considered to have five different models. The fully
conditional posterior distributions for all models were
normal distribution for m, g and a and inverted scaled chi-
square distribution for s2

a, s2
g and s2

e.
The analyses to estimate markers and genetic effects

on models 1, 2_U, 2_N, 3_U and 3_N were performed by
TM software (Legarra et al., 2008) modified to include
markers effects. For each analysis, a single chain with a
total of 1,000,000 Gibbs sampler iterations, a burn-in
period of 80,000 and a thin interval of 100 samples were
used. Convergence was tested separately for all unknown
parameters using the Raftery and Lewis (1992) algorithm,
the Z criterion of Geweke (1992), the Monte Carlo sam-
pling errors computed using the time-series procedures
described by Geyer (1992) and a visual check of the chain
plot. All those tests were performed by BOA (Bayesian
Output Analysis) diagnostic program from R package.

2.6. Model comparison

The animal’s rank based on the reference breeding
values estimated using the complete data set of this herd
was compared to the rank given by the breeding values
estimated on models 1, 2_U, 2_N, 3_U and 3_N. The
association between the rank of genotyped animals based
on reference breeding values with the rank based on
breeding values estimated by the five models were calcu-
lated using two non-parametric measures of ordinal asso-
ciation computed by PROC CORR from SAS.

Spearman’s rank correlation coefficient (rs). Spearman’s
rank correlation coefficient is computed by ranking the
data and using the ranks in the Pearson product–moment
correlation formula, as shown below. In case of ties,
averaged ranks are used.

rs ¼

P
iððRi�RÞðSi�SÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðRi�RÞ2
P
ðSi�SÞ2

q

where Ri is the rank of each observation based on
reference breeding value; Si is the rank of each observa-
tion based on genetic value estimated from models 1, 2_U,
2_N, 3_U or 3_N; R is the mean of Ri values; S is the mean
of Si values.

Kendall’s tau-b rank correlation coefficient (tb). The data
are double sorted, first the observations are ranked
according to the reference breeding values and, then,
re-ranked according to the breeding values obtained
from models 1, 2_U, 2_N, 3_U or 3_N. Kendall’s tau-b is
calculated based on the number of concordant and dis-
cordant pairs of observations, as

tb ¼
nc�nd

ð1=2Þnðn�1Þ

where nc is the number of concordant pairs; nd is the
number of discordant pairs; n is the total number of
measured animal.

The models 1, 2_U, 2_N, 3_U and 3_N were also
compared in terms of global fit and predictive ability by
the following methods.

Deviance information criteria (DIC). The DIC compares the
global adjusted quality of two or more models, accounting for
model complexity (Spiegelhalter et al., 2002). For a particular
model M, the DIC is defined as

DIC¼ 2D�DðyMÞ

The term D¼�2
R
½logpðy9yMÞ�pðyM9y,MÞdyM ¼ EyM9y½DðyMÞ�

is the posterior expectation of the deviance DðyMÞ, and
DðyMÞ ¼�2logpðy9yMÞ is the deviance evaluated at the
posterior mean of the parameter vector yM . DIC expression
is the result of combining both terms, where D is a measure
of model fit and D�DðyMÞ is related to the effective number
of parameters (pd). Models with smaller DIC exhibit a better
global fit after accounting for model complexity. Differences
in DIC of more than 7 are considered as important by
Spiegelhalter et al. (2002).

K-fold cross-validation. K-fold cross-validation approach
was used to evaluate the models based on their ability to
predict data. The entire genotypic data set was split into
a training set for model fitting and a validation set to
test the predictive ability of the model, using two distinct
strategies: (1) 1-fold earlier progeny cross-validation,
training set was composed of the older animals and
validation set was composed of the youngest individuals,
born in 2009, representing around of 25% of genotyped
animals. This temporal strategy of splitting the data set
has a strong relation with breeding programs, where the
phenotype of ancestors and the relationship information
are used to estimate the breeding values of the youngest
animals; (2) 4-fold cross-validation, partitioning genotypic
data set into four disjoint subsets, each with approxi-
mately one-fourth of the records, by taking random
samples of data points. The cross-validation procedure
used three of the four subsets for training set and the
remaining subset was used for validation set. This proce-
dure was realized four times for changing the subset used
to test the predictive ability of the model. This non-
temporal strategy permitted to evaluate the predictive
ability of models when one-fourth of the records, defined
randomly, were not measured.
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Two different criteria were used to compare the pre-
dictive ability of the models.

Mean squared error. The mean squared error (MSE) was
computed as

MSE¼
1

ndata

Xndata

i ¼ 1

ðy�ŷÞ2

where y and ŷ correspond to the observed and predicted
observations, respectively; and ndata is the number of data
points in the validation subset. Models having the smal-
lest MSE were regarded as those with the best predictive
ability.

Pearson’s correlation. Pearson’s correlation (r) between
observed and predicted observations was calculated as

ry,ŷ ¼
1

ndata

Xndata

i ¼ 1

covðy,ŷÞ

sysŷ

where covðy,ŷÞ is the covariance estimate between
observed and predicted records; sy and sŷ are the esti-
mates of standard deviations of observed and predicted
records; and, as above, ndata is the number of data points in
the validation subset. The model providing the highest
correlation was considered as the one with the best pre-
dictive ability.

3. Results

Posterior distributions convergence for all unknown para-
meters in the five models tested by the Raftery and Lewis
method, Z criterion of Geweke and a visual check of the chain
plot did not detect any lack of convergence. The Monte Carlo
sampling error for posterior distributions of all unknown
parameters was irrelevant, as it was at least 20 times lower
than the standard deviation of posterior distributions. This
low magnitude of Monte Carlo sampling error also suggests
convergence of chains, according to Blasco et al. (2003).

Spearman’s (rs) and Kendall’s tau-b (tb) rank correla-
tion coefficients for WW, PWG, SC and MS, calculated to
compare the ranks of animals based on breeding values
estimated by models 1, 2_U, 2_N, 3_U and 3_N with the
rank based on reference breeding values estimated using
this herd complete data set, are given in Table 3. In general,
tb coefficients were lower than rs coefficients for all
models and traits, suggesting tb as a more conservative
Table 3
Estimates of Spearman’s (rs) and Kendall’s tau-b (tb) rank correlation coefficien

on the reference breeding values.

Correlation Trait Model 1 Model 2_U

rs WW 0.47 0.22

PWG 0.53 0.36

SC 0.57 0.31

MS 0.57 0.29

tb WW 0.32 0.15

PWG 0.37 0.24

SC 0.40 0.21

MS 0.41 0.20

WW: weaning weight; PWG: post-weaning gain; SC: scrotal circumference;

N: normal distribution prior for markers effects.
measure. The lowest values for both measures of associa-
tion were exhibited by models 2_U and 2_N, indicating
greatest divergences in the animals’ rank based on these
models’ estimates of breeding values and the rank based
on the reference breeding values. The highest values for
models 3_U and 3_N suggest small differences between the
rank of animals by these models and the rank given by
the reference breeding values. Furthermore, models that
assumed normal prior distribution to markers effects
presented rank correlation coefficients slightly higher.

The posterior means and the highest 95% posterior
density intervals (HPD95%) of additive, markers and
residual variances and coefficients of heritability esti-
mated for WW, PWG, SC and MS by models 1, 2_U, 2_N,
3_U and 3_N are presented in Table 4. Posterior distribu-
tions of the additive variances and heritability for models
1, 3_U and 3_N within traits were similar and their
HPD95% were overlapped. Comparing the estimates of
residual variances, the lowest values within traits were
observed for model 3_N and the highest values for models
2_U and 2_N.

Table 5 shows the estimates of the deviance informa-
tion criterion (DIC), the deviance (D) and the effective
number of parameters (pd) for all models. The DIC
criterion is based on a balance between the fit of the data
to the model and the corresponding complexity of the
model and its behavior is based on the ability to make
short-term predictions of a repeat set of similar data. In
our case, model 3_N presented the highest global fit for all
analyzed traits, except for WW.

Two cross-validation strategies, 1-fold and 4-fold, and
two criteria, mean squared error (MSE) and Pearson’s
correlation, were adopted to evaluate the predictive ability
of models 1, 2_U, 2_N, 3_U and 3_N. Tables 6 and 7 present
the results of MSE and Pearson’s correlation for 1-fold
earlier progeny cross-validation analyses, respectively. In
terms of MSE, smaller values were exhibited by model 1 for
WW and PWG and by model 3_N for SC and MS, suggesting
a better predictive ability of these models for those traits.
Estimates of Pearson’s correlation of models 1 and 3_N
were the same for WW and PWG and, for SC and MS,
model 3_N presented values slightly higher than model 1.

In Tables 8 and 9 are presented the results of MSE and
Pearson’s correlation for 4-fold cross-validation analyses,
respectively. In agreement with 1-fold results, the best
ts from models 1, 2_U, 2_N, 3_U and 3_N compared with the rank based

Model 2_N Model 3_U Model 3_N

0.25 0.66 0.82

0.37 0.83 0.90

0.30 0.94 0.97

0.29 0.84 0.89

0.17 0.48 0.63

0.25 0.64 0.72

0.20 0.80 0.85

0.20 0.65 0.71

MS: muscle score; U: uniform distribution prior for markers effects;



Table 4
Estimates of posterior means and 95% highest posterior density intervals in parenthesis for additive (s2

a), markers (s2
g) and residual (s2

e) variances and

heritabilities (h2) of weaning weight (WW), post-weaning gain (PWG), scrotal circumference (SC) and muscle score (MS).

Model Parameter PDES GPDES PE EM

1 s2
a

25.47 (15.10, 37.28) 127.01 (92.80, 160.11) 3.66 (2.85, 4.43) 0.38 (0.28, 0.50)

s2
e

133.21 (121.33, 144.11) 259.34 (229.36, 289.12) 3.31 (2.69, 3.93) 0.61 (0.51, 0.69)

h2 0.16 (0.09, 0.23) 0.33 (0.25, 0.41) 0.52 (0.43, 0.62) 0.39 (0.29, 0.48)

2_U s2
e

156.24 (148.53, 164.46) 367.53 (349.20, 386.36) 6.47 (6.12, 6.83) 0.93 (0.89, 0.98)

2_N s2
g

0.02 (0.00, 0.05) 0.50 (0.25, 0.76) 0.01 (0.005, 0.02) 0.001 (0.0004, 0.002)

s2
e

156.24 (148.22, 164.06) 367.44 (348.73, 386.07) 6.50 (6.16, 6.88) 0.93 (0.89, 0.98)

3_U s2
a

25.35 (14.67, 36.82) 112.41 (79.13, 148.18) 3.48 (2.72, 4.33) 0.36 (0.25, 0.46)

s2
e

133.97 (122.16, 145.04) 264.68 (233.21, 294.66) 3.31 (2.67, 3.94) 0.62 (0.52, 0.71)

h2 0.16 (0.09, 0.23) 0.30 (0.21, 0.38) 0.51 (0.41, 0.61) 0.36 (0.26, 0.47)

3_N s2
a

25.50 (15.22, 35.46) 120.98 (87.21, 153.11) 3.55 (2.78, 4.40) 0.37 (0.27, 0.48)

s2
g

0.007 (0.00, 0.03) 0.24 (0.07, 0.44) 0.005 (0.00, 0.01) 0.0006 (0.00, 0.001)

s2
e

133.09 (122.03, 143.62) 257.54 (228.98, 287.30) 3.28 (2.66, 3.91) 0.60 (0.51, 0.69)

h2 0.16 (0.10, 0.22) 0.32 (0.24, 0.40) 0.52 (0.42, 0.62) 0.38 (0.28, 0.48)

U: uniform distribution prior for markers effects; N: normal distribution prior for markers effects.

Table 5

Estimates of the deviance information criterion (DIC), the deviance (D)

and the effective number of parameters (pd) from models 1, 2_U, 2_N,

3_U and 3_N.

Model Parameter WW PWG SC MS

1 DIC 23,934.89 26,316.04 11,965.48 8,408.07

D 23,507.92 25,457.25 10,738.52 7,359.02

pd 426.97 858.80 1226.96 1,049.04

2_U DIC 24,105.70 26,626.99 12,640.97 8,820.40

D 23,997.42 26,518.86 12,532.96 8,712.36

pd 108.28 108.12 108.01 108.05

2_N DIC 24,005.91 26,573.64 12,598.50 8,766.28

D 23,995.46 26,518.48 12,544.31 8,716.90

pd 10.45 55.16 54.20 49.38

3_U DIC 24,037.92 26,377.91 11,984.66 8,455.03

D 23,526.44 25,521.65 10,731.66 7,395.34

pd 511.47 856.26 1253.00 1059.69

3_N DIC 23,936.58 26,297.91 11,941.03 8,390.72

D 23,505.37 25,437.93 10,709.36 7,337.42

pd 431.21 859.98 1231.67 1,053.30

WW: weaning weight; PWG: post-weaning gain; SC: scrotal circumfer-

ence; MS: muscle score; U: uniform distribution prior for markers

effects; N: normal distribution prior for markers effects.

Table 6
Estimates of mean squared error from models 1, 2_U, 2_N, 3_U and 3_N

by 1-fold earlier progeny cross-validation.

Trait Model 1 Model 2_U Model 2_N Model 3_U Model 3_N

WW 148.50 158.13 149.33 157.76 148.71

PWG 362.05 390.62 369.14 390.13 363.85

SC 6.06 6.72 6.35 6.36 6.03

MS 1.18 1.23 1.20 1.20 1.17

WW: weaning weight; PWG: post-weaning gain; SC: scrotal circumfer-

ence; MS: muscle score; U: uniform distribution prior for markers

effects; N: normal distribution prior for markers effects.

Table 7
Estimates of Pearson’s correlation from models 1, 2, 3 by 1-fold earlier

progeny cross-validation.

Trait Model 1 Model 2_U Model 2_N Model 3_U Model 3_N

WW 0.06 0.00 �0.01 0.02 0.06

PWG 0.11 0.04 0.06 0.07 0.11

SC 0.22 0.09 0.10 0.20 0.24

MS 0.14 0.08 0.09 0.13 0.15

WW: weaning weight; PWG: post-weaning gain; SC: scrotal circumfer-

ence; MS: muscle score; U: uniform distribution prior for markers

effects; N: normal distribution prior for markers effects.
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models in terms of predictive ability were models 1 and
3_N, with minor differences between them. For WW,
model 1 presented the lower mean value of MSE and
the highest mean value for Pearson’s correlation, there-
fore, a better predictive ability of this model for that trait.
Model 3_N was the preferred model for PWG, SC and MS,
as indicated by its lowest values for MSE and highest
values for Pearson’s correlation.

Differences of predictive ability between model 1 and
model 3_N were very small for both cross-validation
strategies and criteria. Nevertheless, the worst model in
terms of predictive ability was model 2_U, that presented
the highest values of MSE and the lower values of
Pearson’s correlation for both cross-validation strategies.

4. Discussion

The advantage of including the information of a small
set of molecular markers, when a reduced number of
animals have phenotypic and genealogy information
available, has been evaluated here by the comparison of
five different models. First, we evaluated changes in the
rank of animals based on reference breeding values
estimated using the complete data set and the rank based



Table 8
Estimates of mean squared error from models 1, 2_U, 2_N, 3_U and 3_N to subsets 1, 2, 3 and 4, by 4-fold cross-validation.

Trait Subset Model 1 Model 2_U Model 2_N Model 3_U Model 3_N

WW 1 152.58 162.39 155.22 159.27 152.57

2 147.51 155.77 148.61 155.39 147.56

3 155.01 169.12 158.28 167.72 155.44

4 160.25 175.33 164.35 172.58 160.68

Mean 153.84 165.65 156.62 163.74 154.06

PWG 1 389.62 407.87 403.55 399.50 386.51

2 323.37 344.98 327.42 339.77 322.81

3 352.40 386.80 371.39 369.19 351.29

4 380.73 401.76 396.74 385.47 376.95

Mean 361.53 385.35 374.78 373.48 359.39

SC 1 7.21 7.62 7.57 7.27 7.15

2 5.41 6.00 5.85 5.57 5.38

3 5.98 6.66 6.42 6.23 5.96

4 6.18 7.04 6.75 6.42 6.16

Mean 6.20 6.83 6.65 6.37 6.16

MS 1 1.01 1.03 1.01 1.02 1.00

2 0.87 0.92 0.89 0.89 0.86

3 0.85 0.89 0.87 0.85 0.84

4 1.00 1.07 1.03 1.06 1.00

Mean 0.93 0.98 0.95 0.96 0.93

WW: weaning weight; PWG: post-weaning gain; SC: scrotal circumference; MS: muscle score; U: uniform distribution prior for markers effects;

N: normal distribution prior for markers effects.

Table 9
Estimates of Pearson’s correlation from models 1, 2_U, 2_N, 3_U and 3_N to subsets 1, 2, 3 and 4, by 4-fold cross-validation.

Trait Subset Model 1 Model 2_U Model 2_N Model 3_U Model 3_N

WW 1 0.12 0.00 �0.02 0.06 0.12

2 0.10 0.01 0.01 0.04 0.10

3 0.14 �0.02 �0.03 0.02 0.12

4 0.16 �0.03 �0.02 0.02 0.15

Mean 0.13 �0.01 �0.02 0.04 0.12

PWG 1 0.25 0.18 0.19 0.24 0.27

2 0.17 0.09 0.09 0.15 0.17

3 0.26 0.10 0.13 0.20 0.26

4 0.26 0.17 0.17 0.24 0.28

Mean 0.24 0.14 0.15 0.21 0.25

SC 1 0.27 0.18 0.18 0.27 0.29

2 0.30 0.16 0.14 0.29 0.31

3 0.28 0.12 0.12 0.25 0.29

4 0.31 0.12 0.12 0.27 0.31

Mean 0.29 0.15 0.14 0.27 0.30

MS 1 0.16 0.12 0.12 0.17 0.17

2 0.19 0.11 0.12 0.18 0.21

3 0.22 0.13 0.13 0.22 0.24

4 0.18 0.07 0.06 0.13 0.17

Mean 0.19 0.11 0.11 0.18 0.20

WW: weaning weight; PWG: post-weaning gain; SC: scrotal circumference; MS: muscle score; U: uniform distribution prior for markers effects;

N: normal distribution prior for markers effects.
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on breeding values estimated by each model on a reduced
data set. Later, models were compared regarding the
overall fit and predictive ability.

Higher divergences on animals’ rank were detected
by tb than by rs for all models and traits, they are in
agreement with Kendall (1947) that described for a large
number of data, tb is about two-thirds of the value of rs.
However, the interpretations of both association mea-
sures, Spearman’s (rs) and Kendall’s tau-b (tb) rank
correlation coefficients, were very similar and led to the
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same inferences. The same pattern of rank correlation
coefficients was observed for all analyzed traits. Higher
divergences on the rank of animals were exhibited by
models 2_U and 2_N, as indicated by their low correla-
tions with the rank of animals given by reference breed-
ing values. This divergence can be due to the small set of
markers analyzed, that were not enough to explain all
additive effect contained in the adjusted phenotype.
Nevertheless, model 1 presented intermediate values of
rank correlation coefficients, suggesting that this model
was more capable to retain the additive part of adjusted
phenotype than models 2_U and 2_N. It was expected
considering the information provided by the dense rela-
tionship matrix available for those animals. Furthermore,
the inclusion of markers and polygenic effects together in
models 3_U and 3_N lead to greater resemblance between
the rank of animals based on these models’ estimates of
breeding values and the rank using the reference breeding
values. The combination of both effects enhanced these
models’ efficiency to retain the additive effect contained
on adjusted phenotype, when a reduced data set is
available. The prior assumed for markers effects slightly
affected the estimations of direct additive genetic effects
between least square and ridge regression methods. The
higher rank correlation coefficients observed in models
that assumed normal prior distribution to markers effects
can be attributed to their better ability to handle collinear
effects (Whittaker et al., 2000).

Posterior means of coefficients of heritability estimated
by models 1, 3_U and 3_N within traits were in agreement
with the estimates obtained using this herd complete data
set, that were 0.19, 0.21, 0.50 and 0.21 for WW, PWG, SC
and MS, respectively. Since the HPD95% of those models
were overlapped, their estimates of heritability cannot be
considered different. Posterior means of heritability for
WW, PWG, MS and SC obtained in the present study for all
models were in the same range of estimates published in
the last genetic evaluation of this herd, which were 0.22,
0.32, 0.45 and 0.25, respectively (personal communica-
tion). Horimoto et al. (2007) and Van Melis et al. (2010)
while analyzing other samples of the same Nellore popula-
tion reported estimations of heritability for WW that were
out of the uncertainty interval presented here for this trait,
0.28 and 0.55, respectively. The authors described esti-
mates in the same range of the ones observed here for
PWG (0.32 and 0.25) and SC (0.55 and 0.42). And, for MS
their estimations were also out of uncertainty interval
presented here, 0.16 and 0.23.

The comparison of the residual variance estimated by
each model showed that model 3_N presented the lowest
values for all analyzed traits, although small differences
were observed between the estimates of residual variance
of models 1, 3_U and 3_N. These results indicated their
greater capacity for explaining the data variation in
comparison with models 2_U and 2_N. Almost no differ-
ence was observed due to the prior assumed to markers
effects on models 2_U and 2_N, that can be attributed to
the absence of dimensional problem on the estimation of
markers effects, since the number of markers was not
greater than the number of observations. The problem of
dimension was discussed by Meuwissen et al. (2001) as
the major limitation to the use of least squares method,
since it leads to biased estimations of markers effects.
Although there is no problem of dimension on the
analyzed data set, the assumption of a uniform prior on
model 3_U led to a slim confounding on the estimations of
polygenic and markers effects that is observed comparing
the residual and additive variances of models 1 and 3_U. It
was expected that the inclusion of markers effects on
model 3_U should reduce the residual variance regarding
model 1 without changes on the estimates of additive
variance, but it was not observed here. The slight super-
iority of model 3_N could be attributed to the variation
retained by markers and polygenic effects assumed
together and the normal prior assumed to markers effects,
that deals better with the collinearity between markers,
as was discussed by Whittaker et al. (2000).

The different criteria adopted to compare the five
models provided analogous results. In terms of global fit,
the deviance information criterion (DIC) clearly favored
model 3_N, except for WW, that model 1 presented the
lowest value. Once DIC differences below 7 were not
important (Spiegelhalter et al., 2002), those models pre-
sented the same global fit quality for WW.

The predictive ability of the models evaluated by mean
squared error (MSE) and Pearson’s correlation was con-
sistent across k-fold cross-validation approach. Models 1
and 3_N were equivalent in terms of predictive ability for
all analyzed traits, with slight superiority of model 1 for
WW and of model 3_N for SC, in both cross-validations
results. Differences between models 3_U and 3_N due to
the prior assumed to markers effects became evident, with
a worse predictive ability of model 3_U. This can be
attributed to the difficulty of model 3_U in dealing with
the existence of collinearity between markers effects,
which do not occur with the model 3_N. Given the small
SNP panel available to this Nellore population, it was
demonstrated that the predictive ability of the next gen-
eration performance or of randomly removed data based
only on markers information (models 2_U and 2_N) was
very limited. These results are in agreement with Lande
and Thompson (1990) that reported that the selection on
marker loci alone is more efficient when the proportion of
the additive genetic variance explained by the marker loci
exceeds the heritability of the character, which was not
observed in this study.

Even though almost no differences on the predictive
ability were observed when markers and polygenic effects
were assumed together, the great advantage of including
both effects was demonstrated by the rank correlation
coefficients. The ranks given by breeding values estimates
of models 3_U and 3_N were very similar with the rank
based on the reference breeding values. Finally, the use of
a normal prior for markers effects instead of a uniform
prior is justified by the ability of this approach in handling
with collinear effects between SNP markers.

5. Conclusion

In terms of rank correlation, a slight advantage was
observed in the models that assumed polygenic and mar-
kers effects together. The highest global fit was presented
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by the model that assumed both effects and a normal prior
to markers effects (model 3_N). No differences of predictive
ability were observed between model 1, which included
only polygenic effects, and model 3_N. The worst overall fit
and predictive ability were exhibited when only markers
effects were considered in the model, regardless of prior
assumed to these effects. In conclusion, for a reduced data
set the inclusion of polygenic and markers effects together
led to a better global fit and predictive ability to breeding
models, especially when penalized methods are applied to
markers effects.
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