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1. Introduction 

By 0[0, 1] we denote the set of all real-valued functions defined and 
continuous on the closed interval [0, 1] of the real axis. We define P to 
be a fixed set of parameters containing at least the following elements: 

n: a positive integer; 

"' ( 1) q~c=Qk(x) (k=O, 1, ... n): q" EO[O, 1], _L q~c==l; 
k~o 

~~c(k=O,l, ... n): ~kE[O,l],~k<~k+l (k=O,l, ... ,n-1). 

Let L be the operator on 0[0, 1 ], with respect to P, defined by 

"' (2) LI=L{f(t);x}= L l(~k)qk(x) 
k-0 

for each IE 0[0, 1]. Obviously, L is a linear operator, mapping 0[0, I] 
into itself, with the property that 

(3) Ll =I. 

In order to derive estimations for the difference I-Ll, which are uniform 
in x and valid for arbitrary IE 0[0, 1], we introduce the norm 11!711 of a 
bounded function g defined on [0, 1] by 

( 4) 11!711 = sup Jg(x)J 
X E [0.1] 

as well as the modulus of continuity co( b) of a function IE 0[0, 1] for 
arbitrarily chosen but fixed b > 0 by 

(5) w(b)= max ll(x)-l(y)l. 
lx-vi.;;;6 

X. !IE (0.1] 

1) The author wishes to express his gratitude to Prof. P. C. Sikkema for his 
stimulating critical remarks during the preparation of this paper. 
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In this paper we derive a method for determining the quantity u such 
that 

(6) u= inf K, 

i.e. the infimum of all numbers K, independent of f, for which 

(7) \\f-Lf\\ <.Kw(b) 

holds for each f E 0[0, 1], with c5 a fixed positive number. From (3) we 
see that the case of f being constant on [0, 1] needs no investigation, 
since c- Lc = 0 for any constant c. In the following we exclude these 
constant functions. Then- for arbitrarily chosen but fixed c5 > 0- we may 
and do restrict ourselves without loss of generality to the functions f of 
the subset 01[0, 1] of 0[0, 1], with the property that for each f E 0 1[0, I] 

(8) w(b) = l. 

Consequently the following problem is equivalent to the one formulated 
by means of (6) and (7): 

Determine the quantity u such that 

(9) n= sup llf-L/11· 
f €0,[0,1) 

2. A theorem and a method for the determination of u in (9). 

Theorem I. Let c5 with respect to ~Tc (k=O, I, ... , n) in (I) be a fixed 
number with the property that 

( IO) b;> max (~Tc+l-~Tc), ~o, I-~n; 
k-0,1, ...... -1 

then for each fixed x E [0, I] there exists a function 1p E 01 [0, I] with 1p(x) = 0, 
such that 

(II) max if(x)-L{f(t); x}\=L{'IP(t); x}. 
f € 0,[0,1] 

The proof of this theorem will be given by means of three lemmas 
which will be stated and proved in 3. 

As a result of theorem I we are able to derive a method for determining 
the quantity u as defined in (9). This method consists of the following 
two steps (i) and (ii): 

(i) For all fixed x E [0, I] determine 

(I2) K(x) = L{1p(t); x}, 

the right hand being defined by (II). 
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Then K(x) for x E [0, 1] is a bounded function for which 

(13) max if(x)-L{f(t); x}I=K(x) 
IE 0 1[0,1] 

holds for each x E [0, 1]. 

(ii) Calculate, according to (4) 

(14) ~=IIKII· 

Then from (11) and (12) it follows that lf(x)-L{f(t); x}J ,;;;;K(x) for all 
f E 01[0, 1] and each x E [0, 1], from which by (14) llf-Lfll <~ holds for 
all f E 01 [0, 1 ], and obviously 

( 15) sup llf-Lfll < ~. 
1 E G1[0.Il 

Moreover, from (14) it follows that there exists a sequence {x11} with 
x11 E [0, 1] (h=O, 1, ... ) such that lim K(x11)=~. Also, for each fixed h 

h->00 

by theorem 1 and definition ( 12) there exists a function 1fn E 01 [0, 1 ], 
with 1fn(Xn) = 0 such that 

K(xn)=L{1fn(t); xn}= l1fn(Xn)-L{1fn(t); Xn}J. 

Estimating we obtain 

~=lim 11fn("rn)-L{1fn(t);xn}l< lim ll1fn-L1fnll< 
h--'1-00 h--'1-00 

< lim sup llf-Lfll = sup llf-LfJI. 
h->-00 I EG.[O.l] I E01[0,1l 

This last result together with (15) shows that ~ from (14) is the one 
to be found in (9). 

3. Proof of theorem l. 

Lemma 1. Let n, mk, mkl (k, l=O, 1, ... , n) be non-negative integers, 
and let qk (k=O, 1, ... , n) be real numbers such that 

( 16) 

Let A be the set of all (n +I)-tuples {cxk} of real numbers <Xk (k= 0, 1, ... , n) 
satisfying 

(17) 

If {th} E A is such that 
n n 

(18) 1 /3k qk ;;;:. 1 <Xk qk 
lc=O lc=O 

for all {cxk} EA, then {h (k=O, 1, ... , n) is integer. 
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Proof. The determination of an (n+ I)-tuple {,Bk} E A which satisfies 
(18) is a problem of linear programming which has at least one solution 
in a vertex {,Bk} of the (n+ I)-dimensional simplex defined by (17). Then 
it immediately follows that 

(k= 0, 1, ... , n). 

Assume a# 0, then it follows that 

We define Pk=,Bk+l-a (k=O, l, ... , n) and see that Pk=nk+l so that 
IPkl ,;;;;mk (k=O, l, ... , n). From this result, and IPk-Pzl = I,Bk-,Bzl <mkl 
(k, l=O, l, ... , n) we conclude that {Pk} EA. Consequently we can write 

n n n n 

! pkqk = ! (/Jk+l-a) qk= ! /Jkqk+(l-a) Q> ! ,Bkqk, 
k~o ~c~o k~o lc~o 

in which the inequality follows from (16). So the assumption a#O leads 
to a contradiction of (18), with which lemma l has been proved. 

Lemma 2. Let x be a fixed point of the interval [0, 1], and let the 
quantities mk, mkl and qk (k, l=O, l, ... , n) appearing in lemma l be chosen 
as follows: 

(19) 

with n, qk(x), ~k (k=O, l, ... , n) elements of the parameterset P defined in 
(1) and 15 satisfying (10). 

If w(x) is a function defined on [0, l] with the properties that 

(20) 
~ 7p(x) = 0 

l1f'(~k)=,Bk (k=O, l, ... , n), 

where the numbers ,Bk satisfy (18) of lemma 1, then for each f E 01[0, l] 

(21) /f(x) -L{f(t); x}/ ,;;;;L{w(t); x}, 

L being the operator defined in (2). 

Proof: From (1) and (2) it follows that for each fEO[O, l] 

n 
(22) f(x) -L{f(t); x}= ! {f(x)- f(~k)} qk(x). 

k~o 

2) For each real a, ]a[ denotes the greatest integer less than a. 
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For each f e=01[0, 1] the numbers {/(i)-/(1;,,)} (k=O, 1, ... , n) satisfy 

( 23) 3 ) 

j/(i)- f(;k)j < 1 + J jx ~ ;kj [ = mk I 
(k, l=O, 1, ... ,n), 

.;k-;d 
Jf(;k)-/(;!)J<1+]! 0 [=mkl 

the equal-signs following from (19). With /h (k=O, 1, ... , n) satisfying 
(17), from the assumptions of lemma 2 it follows 

n n 

(24) 2 {f(x)- /( ;k)} qk(x) < 2 {h qk(x), 
k-0 k=O 

the right hand of which by (20) is equal to L{1p(t); x}. Since (24) holds 
for each f e=01[0, 1], it does for -f; consequently with (22) now (21) 
holds for each f E 01[0, 1]. This completes the proof of lemma 2. 

Lemma 3. There exists a function 1p E 01[0, 1] which satisfies (20), 
such that lemma 2 holds. 

Proof: Let Vk (k a fixed non-negative integer) be a finite set of at 
east two points in [0, 1], and o a fixed non-negative number such that 

l (i) a=min {z: z E Vk}, 

(ii) b=max {z: z E Vk}, 

(25) (~ii) c=max {(z2-z1):{zr,z2}CVk, z1<z2, (z1,z2)n Vk=0}, 

(lv) o:;;;,max {a, 1-b, c}. 

Let "Pk be a polygon on [0, l ], of which the nodes are the points of V k, 
with the following properties: 

(26) 

(i) 1/!k(z) integer for each z E Vk, 

(ii) !VJk(Zl) -1pk(Z2) I< 1 + J jzl ~z2 ! [tor each pair { Zr, zz} c vk, 

(iii) 1/!k(x)=VJk (a) for x<;a, 

(iv) 1/!k(x) =1f!k (b) for x;;;;,b. 

The modulus of continuity of 1/!k being w(o), from the definition of "Pk 
it follows that there is at least one pair {y1, y2} of points in [0, 1] such that 

(i} IVJk(YI) -"Pk(Yz)! =w(o), 

(ii) y1 < y2, 

(27) (iii) for each pair {yr, y2} with Yl < Y1 < Yz < y2 and 
Y2 -yl < Y2- Yl: IVJk(Yl) -1pk(Y2)j < w(o), 

3) By (5) w(61) ~ (1 + ]61/6[) w(6) for any non-negative 6 and (h, and from 
(8): w(6) = 1. 
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We assume y2 E V k; the case Yl E V k can be treated in a similar way. 
If also Y1 E Vk, then from (26, ii) it follows that 

(28) 

since y2-y1<.~. If however Y1 ¢:. Vk, there are obviously the two possi­
bilities 

(29) 

and 

(30) 

In the latter case we consider the pair {xt, x2} C V k such that Yl E (xt, x2) 
and {xt, x2) II V k = 0. From (25), (26), (27) and (30) simple reasoning leads 
to some properties of 1pk on [ x1, y2] : 

( i) "Pk( x1) =I= 1pk( x2), 

(ii) y2-y1=~, 

(iii) Y2= min {z: z E Vk, z>x2, "Pk(z)=I="Pk(x2)}, 

(iv) i"Pk(xl) -1pk(Y2)i = 2. 

With Xa= max {z: z E Vk, x2<.z<y2, "Pk(z)=1pk(x2)} we conclude that 
essentially "Pk on [ x1, y2] is as follows 

xa 

Fig. 1. 

where as an example we assume "Pk(Y2) > "Pk(Yl) and xa =1= x2. 
Let ya= max {xa, x1 +~}, then consequently x2<.xa<.Ya<Y2· 
We define the continuous function "Pk+l on [0, I] by 

) 
'lflk+l(x) =1pk(x) for x E [0, 1]\{(xt, x2) U (x2, y2)}, 

(31) =1pk(x2) for x E [yt, Ya], 
linear for x E [ x1, y1) and x E (ya, y2]. 
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Taking for example "Pk as partially described in figure 1, and Y3 > X3 
then by (31) "Pk+l on [x1, yz] is as follows 

Y1 

Fig. 2. 

We define V~c+l = V~c u {y1, y3}, and write (25)1, (26)! and so on when 
we are considering the case k=l. We assert that (25)k+1 and (26)k+1 hold; 
from these (26, ii)k+l will be proved in the following, the other parts 
being obvious. 

It is sufficient to prove 

(32) 

I "Pk+l(Yl)- "Pk+l(Z) I< 1 + J I Yl ~ [, (' 
for each z E V~c, 

I "Pk+I(Ys)- "Pk+I(z) I< 1 + J I y3 ~ [, 

I"Pk+I(YI)-"Pk+l(Y3)1<1+ JIYI~Ysl[, 
the proof of (32, i) being necessary, and that of (32, ii, iii) being necessary 
only if y3=X1 +<h~oxs, since otherwise ys E V~c. The inequality (32, iii) 
trivially holds since "fJk+I(Yl) = "Pk+l(ys). We will prove (32, i) in the case 
of figure 2; (32, ii) and the case of "Pk(YI) > "Pk(Yz) can be treated analogous. 

For each z E vk with Z,:;;>Xz 

I"Pk+l(YI)-"Pk+I(z)l = I"Pk+l(xz)-"Pk+l(z)l< 

J z- X2 [ J z -- Yl [ <1+ -b- <I+ -b- . 

For each z E V k with z < xz, i.e. z < x1, it follows that if "Pk+l(YI)­
-1p~c+I(z);;;.O: 

I"Pk+l(YI) -"Pk+l(z) I= {"fJ~c+l(yz) -1 }-"Pk+l(z) = 

= I"Pk+l(Yz) -"Pk+l(z)l-1 < 

l J Yz- z [ I _ J Yl + b- z [ _ <+--------
b b 

] Yl-Z[ = 1 + --b- ' 
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and if tpk+l(Yl) -tpk+l(z) < 0: 

I"Pk+l(Yl) -1pk+l(z) I =tpk+l(z)- { '1/'k+l(xl) +'1} = 

=l'l/'k+l(xl)-tpk+l(z)j-1 < 

J X1- Z [ J Yl- Z [ < 1 + -(J- - 1 < -(J- . 

This completes the proof of (32, i) and as a result we may and do 
conclude that (25)k+l and (26)k+l hold. 

From the definition of tpk+l follows that if (30)k holds 

(33) 

in case Y1+t E vk+l as well as y~+l E vk+l· The upper indices for a moment 
serve to distinguish similar symbols y1, y2 and y3 for the different functions 
tpk and tpk+l· Obviously ~-~>0, so that 

(34) 

With these preparatory results we will prove the statement in lemma 3. 
Let Vo be the set {:i, .;o, ... , .;n} of points in [0, 1] described in the 

assumptions of lemma 2. We choose a (J satisfying (10), and so (25)o 
applies to Vo. 

Let tpo be the polygon on [0, 1], of which the nodes are the points of 
the set Vo, such that it satisfies (20) for 1p _ 1po, and is constant for 
x;;;. max {x, .;n} and x< min {x, .;o}. Then (26)o holds. 

Next, for k = 0, 1, ... we investigate which of (28)k, (29)k or (30)k holds. 

From (33) and (34) follows that there is an m<1+ ]~[such that (28)m 

or (29)m holds. As a result we conclude that for 1pm 

(35) w(tJ) < 1, 

while also 1pm satisfies (20) for tp = "Pm· 
Assume w(tJ) < l in (35). Then from (26, i, ii), or by definition of tpo 

from (20), (18) and lemma 1, it follows that 

so that 

(36) 

!'ll'm( .;k) -tpm( .;k+l) I = 0 

1'1/'m(.;k)!=O 

(k=O, l, ... , n-1), 

(k=O, 1, ... , n), 

(k=O, l, ... , n). 

This only is the case if for a certain integer l, with 0 < l < n 

(37) 

(k=O, l, ... ,n; k¥=l). 



311 

In this special case we define the polygon "P E 01 [0, l] by 

( 1p(~)= l for an arbitrary ~ E (~k, ~k+l), 

(38) 
) k arbitrary such that 0 < k < n ~ l ; 

) 1p(x) 0 for x E [0, 1)\(~k, ~k+l); 

~ 1p(x) linear for x E [~k, ~) and x E ( ~, ~k+d· 

In all other cases (36) leads to a contradiction of the assumption on fh 
( k = 0, l, ... , n) since from ( l) it follows that there is at least one qz( x) 

(O<l<n) such that qz(x)>O, so that with /ik=OkZ (k=O, l, ... , n), Okz being 
the Kronecker-symbol 

n n 

L /ik qk(x) = q1(x) > L fJk qk(x) = o. 
k~O k~O 

So, except in the case (37), for "Pm 

w(o) = l 

holds. Defining then "P to be identically equal to "Pm then, in view of (38), 
lemma 3 has been proved. 

Finally, lemma 2 and lemma 3 immediately lead to the validity of 
theorem I. 
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