MATHEMATICS

A THEOREM ABOUT THE DETERMINATION OF A CERTAIN BEST CONSTANT IN THE APPROXIMATION BY SOME LINEAR OPERATORS

BY

H. VAN IPEREN 1)

(Communicated by Prof. A. VAN WIJNGAARDEN at the meeting of January 27, 1968)

1. Introduction

By C[0, 1] we denote the set of all real-valued functions defined and continuous on the closed interval [0, 1] of the real axis. We define P to be a fixed set of parameters containing at least the following elements:

(1)

$$\begin{cases}
n: \text{ a positive integer;} \\
q_k = q_k(x) \ (k=0, 1, ..., n): \ q_k \in C[0, 1], \ \sum_{k=0}^n q_k \equiv 1; \\
\xi_k(k=0, 1, ..., n): \ \xi_k \in [0, 1], \ \xi_k < \xi_{k+1} \quad (k=0, 1, ..., n-1).
\end{cases}$$

Let L be the operator on C[0, 1], with respect to P, defined by

(2)
$$Lf = L\{f(t); x\} = \sum_{k=0}^{n} f(\xi_k) q_k(x)$$

for each $f \in C[0, 1]$. Obviously, L is a linear operator, mapping C[0, 1] into itself, with the property that

$$L1 \equiv 1.$$

In order to derive estimations for the difference f - Lf, which are uniform in x and valid for arbitrary $f \in C[0, 1]$, we introduce the norm ||g|| of a bounded function g defined on [0, 1] by

(4)
$$||g|| = \sup_{x \in [0,1]} |g(x)|$$

as well as the modulus of continuity $\omega(\delta)$ of a function $f \in C[0, 1]$ for arbitrarily chosen but fixed $\delta > 0$ by

(5)
$$\omega(\delta) = \max_{\substack{|x-y| \leqslant \delta \\ x, y \in [0, 1]}} |f(x) - f(y)|.$$

¹) The author wishes to express his gratitude to Prof. P. C. Sikkema for his stimulating critical remarks during the preparation of this paper.

²¹ Series A

In this paper we derive a method for determining the quantity \varkappa such that

(6)
$$\varkappa = \inf K$$

i.e. the infimum of all numbers K, independent of f, for which

(7)
$$||f - Lf|| \leq K\omega(\delta)$$

holds for each $f \in C[0, 1]$, with δ a fixed positive number. From (3) we see that the case of f being constant on [0, 1] needs no investigation, since c - Lc = 0 for any constant c. In the following we exclude these constant functions. Then – for arbitrarily chosen but fixed $\delta > 0$ – we may and do restrict ourselves without loss of generality to the functions f of the subset $C_1[0, 1]$ of C[0, 1], with the property that for each $f \in C_1[0, 1]$

(8)
$$\omega(\delta) = 1.$$

Consequently the following problem is equivalent to the one formulated by means of (6) and (7):

Determine the quantity \varkappa such that

(9)
$$\varkappa = \sup_{f \in C_1(0,1]} ||f - Lf||.$$

2. A theorem and a method for the determination of \varkappa in (9).

Theorem 1. Let δ with respect to ξ_k (k=0, 1, ..., n) in (1) be a fixed number with the property that

(10)
$$\delta \ge \max_{k=0,1,\ldots,n-1} (\xi_{k+1} - \xi_k), \ \xi_0, \ 1 - \xi_n;$$

then for each fixed $\bar{x} \in [0, 1]$ there exists a function $\psi \in C_1[0, 1]$ with $\psi(\bar{x}) = 0$, such that

(11)
$$\max_{f \in C_1(0,1]} |f(\bar{x}) - L\{f(t); \bar{x}\}| = L\{\psi(t); \bar{x}\}.$$

The proof of this theorem will be given by means of three lemmas which will be stated and proved in 3.

As a result of theorem 1 we are able to derive a method for determining the quantity \varkappa as defined in (9). This method consists of the following two steps (i) and (ii):

(i) For all fixed
$$\bar{x} \in [0, 1]$$
 determine

(12)
$$K(\bar{x}) = L\{\psi(t); \bar{x}\},\$$

the right hand being defined by (11).

 $\mathbf{305}$

Then K(x) for $x \in [0, 1]$ is a bounded function for which

(13)
$$\max_{f \in C_1[0,1]} |f(x) - L\{f(t); x\}| = K(x)$$

holds for each $x \in [0, 1]$.

(ii) Calculate, according to (4)

$$(14) \qquad \qquad \varkappa = \|K\|.$$

Then from (11) and (12) it follows that $|f(x) - L\{f(t); x\}| \leq K(x)$ for all $f \in C_1[0, 1]$ and each $x \in [0, 1]$, from which by (14) $||f - Lf|| \leq \kappa$ holds for all $f \in C_1[0, 1]$, and obviously

(15)
$$\sup_{f \in C_1[0,1]} ||f - Lf|| \leq \varkappa.$$

Moreover, from (14) it follows that there exists a sequence $\{x_{\hbar}\}$ with $x_{\hbar} \in [0, 1]$ $(\hbar = 0, 1, ...)$ such that $\lim_{h \to \infty} K(x_{\hbar}) = \varkappa$. Also, for each fixed \hbar by theorem 1 and definition (12) there exists a function $\psi_{\hbar} \in C_1[0, 1]$, with $\psi_{\hbar}(x_{\hbar}) = 0$ such that

$$K(x_h) = L\{\psi_h(t); x_h\} = |\psi_h(x_h) - L\{\psi_h(t); x_h\}|.$$

Estimating we obtain

$$\begin{aligned} & \varkappa = \lim_{h \to \infty} |\psi_h(v_h) - L\{\psi_h(t); x_h\}| < \lim_{h \to \infty} ||\psi_h - L\psi_h|| < \\ & < \lim_{h \to \infty} \sup_{f \in C_1[0, 1]} ||f - Lf|| = \sup_{f \in C_1[0, 1]} ||f - Lf||. \end{aligned}$$

This last result together with (15) shows that \varkappa from (14) is the one to be found in (9).

3. Proof of theorem 1.

Lemma 1. Let n, m_k, m_{kl} (k, l=0, 1, ..., n) be non-negative integers, and let q_k (k=0, 1, ..., n) be real numbers such that

(16)
$$\sum_{k=0}^{n} q_{k} = Q > 0.$$

Let A be the set of all (n+1)-tuples $\{\alpha_k\}$ of real numbers α_k (k=0, 1, ..., n) satisfying

(17)
$$\frac{|\alpha_k| < m_k}{|\alpha_k - \alpha_l| < m_{kl}} \Big\} (k, l = 0, 1, ..., n).$$

If $\{\beta_k\} \in A$ is such that

(18)
$$\sum_{k=0}^{n} \beta_k q_k \geq \sum_{k=0}^{n} \alpha_k q_k$$

for all $\{\alpha_k\} \in A$, then β_k (k=0, 1, ..., n) is integer.

Proof. The determination of an (n+1)-tuple $\{\beta_k\} \in A$ which satisfies (18) is a problem of linear programming which has at least one solution in a vertex $\{\beta_k\}$ of the (n+1)-dimensional simplex defined by (17). Then it immediately follows that

$$\beta_k = \sigma \pmod{1}; \ 0 \leq \sigma < 1 \qquad (k = 0, 1, ..., n).$$

Assume $\sigma \neq 0$, then it follows that

$$\beta_k = n_k + \sigma \text{ with } n_k \in \{-m_k, -m_k + 1, ..., 0, ..., m_k - 1\}$$
 $(k = 0, 1, ..., n).$

We define $\bar{\beta}_k = \beta_k + 1 - \sigma$ (k = 0, 1, ..., n) and see that $\bar{\beta}_k = n_k + 1$ so that $|\bar{\beta}_k| \leq m_k$ (k = 0, 1, ..., n). From this result, and $|\bar{\beta}_k - \bar{\beta}_l| = |\beta_k - \beta_l| \leq m_{kl}$ (k, l = 0, 1, ..., n) we conclude that $\{\bar{\beta}_k\} \in A$. Consequently we can write

$$\sum_{k=0}^{n} \bar{\beta}_{k} q_{k} = \sum_{k=0}^{n} (\beta_{k} + 1 - \sigma) q_{k} = \sum_{k=0}^{n} \beta_{k} q_{k} + (1 - \sigma) Q > \sum_{k=0}^{n} \beta_{k} q_{k},$$

in which the inequality follows from (16). So the assumption $\sigma \neq 0$ leads to a contradiction of (18), with which lemma 1 has been proved.

Lemma 2. Let \bar{x} be a fixed point of the interval [0, 1], and let the quantities m_k , m_{kl} and q_k (k, l=0, 1, ..., n) appearing in lemma 1 be chosen as follows:

(19)
$$\begin{cases} q_k = q_k(\bar{x}) \\ m_k = 1 + \left[\frac{|\bar{x} - \xi_k|}{\delta} \right]^2 \\ m_{kl} = 1 + \left[\frac{|\xi_k - \xi_l|}{\delta} \right] \end{cases} (k, l = 0, 1, ..., n),$$

with n, $q_k(x)$, ξ_k (k=0, 1, ..., n) elements of the parameterset P defined in (1) and δ satisfying (10).

If $\psi(x)$ is a function defined on [0, 1] with the properties that

(20)
$$\begin{cases} \psi(\bar{x}) = 0\\ \psi(\xi_k) = \beta_k \quad (k = 0, 1, ..., n), \end{cases}$$

where the numbers β_k satisfy (18) of lemma 1, then for each $f \in C_1[0, 1]$

(21)
$$|f(\bar{x}) - L\{f(t); \bar{x}\}| \leq L\{\psi(t); \bar{x}\},\$$

L being the operator defined in (2).

Proof: From (1) and (2) it follows that for each $f \in C[0, 1]$

(22)
$$f(\bar{x}) - L\{f(t); \bar{x}\} = \sum_{k=0}^{n} \{f(\bar{x}) - f(\xi_k)\} q_k(\bar{x}).$$

²) For each real a,]a[denotes the greatest integer less than a.

For each $f \in C_1[0, 1]$ the numbers $\{f(\bar{x}) - f(\xi_k)\}$ (k = 0, 1, ..., n) satisfy

(23)³)
$$\begin{cases} |f(\bar{x}) - f(\xi_k)| < 1 + \left] \frac{|\bar{x} - \xi_k|}{\delta} \right] = m_k \\ |f(\xi_k) - f(\xi_l)| < 1 + \left] \frac{|\xi_k - \xi_l|}{\delta} \right] = m_{kl} \end{cases} (k, l = 0, 1, ..., n),$$

the equal-signs following from (19). With β_k (k=0, 1, ..., n) satisfying (17), from the assumptions of lemma 2 it follows

(24)
$$\sum_{k=0}^{n} \{f(\bar{x}) - f(\xi_k)\} q_k(\bar{x}) < \sum_{k=0}^{n} \beta_k q_k(\bar{x}),$$

the right hand of which by (20) is equal to $L\{\psi(t); \bar{x}\}$. Since (24) holds for each $f \in C_1[0, 1]$, it does for -f; consequently with (22) now (21) holds for each $f \in C_1[0, 1]$. This completes the proof of lemma 2.

Lemma 3. There exists a function $\psi \in C_1[0, 1]$ which satisfies (20), such that lemma 2 holds.

Proof: Let V_k (k a fixed non-negative integer) be a finite set of at east two points in [0, 1], and δ a fixed non-negative number such that

(25)
$$\begin{cases} \text{(i)} & a = \min \{z : z \in V_k\}, \\ \text{(ii)} & b = \max \{z : z \in V_k\}, \\ \text{(iii)} & c = \max \{(z_2 - z_1) : \{z_1, z_2\} \subset V_k, \ z_1 < z_2, \ (z_1, z_2) \cap V_k = \emptyset\}, \\ \text{(iv)} & \delta \ge \max \{a, \ 1 - b, \ c\}. \end{cases}$$

Let ψ_k be a polygon on [0, 1], of which the nodes are the points of V_k , with the following properties:

(26)
$$\begin{cases} (i) \quad \psi_{k}(z) \text{ integer for each } z \in V_{k}, \\ (ii) \quad |\psi_{k}(z_{1}) - \psi_{k}(z_{2})| < 1 + \int \frac{|z_{1} - z_{2}|}{\delta} \left[\text{ for each pair } \{z_{1}, z_{2}\} \subset V_{k}, \\ (iii) \quad \psi_{k}(x) = \psi_{k} \quad (a) \text{ for } x < a, \\ (iv) \quad \psi_{k}(x) = \psi_{k} \quad (b) \text{ for } x > b. \end{cases}$$

The modulus of continuity of ψ_k being $\omega(\delta)$, from the definition of ψ_k it follows that there is at least one pair $\{y_1, y_2\}$ of points in [0, 1] such that

(27)
$$\begin{cases} (i) & |\psi_{k}(y_{1}) - \psi_{k}(y_{2})| = \omega(\delta), \\ (ii) & y_{1} < y_{2}, \\ (iii) & for \ each \ pair \ \{\bar{y}_{1}, \bar{y}_{2}\} \ with \ y_{1} < \bar{y}_{2} < y_{2} \ and \\ & \bar{y}_{2} - \bar{y}_{1} < y_{2} - y_{1} \colon |\psi_{k}(\bar{y}_{1}) - \psi_{k}(\bar{y}_{2})| < \omega(\delta), \\ (iv) & y_{1} \in V_{k} \ \text{or} \ y_{2} \in V_{k}. \end{cases}$$

³) By (5) $\omega(\delta_1) \leq (1 +]\delta_1/\delta[) \omega(\delta)$ for any non-negative δ and δ_1 , and from (8): $\omega(\delta) = 1$.

We assume $y_2 \in V_k$; the case $y_1 \in V_k$ can be treated in a similar way. If also $y_1 \in V_k$, then from (26, ii) it follows that

$$(28) \qquad \qquad |\psi_k(y_1) - \psi_k(y_2)| < 1 + \left\lfloor \frac{y_2 - y_1}{\delta} \right\rfloor = 1$$

since $y_2 - y_1 < \delta$. If however $y_1 \notin V_k$, there are obviously the two possibilities

$$|\psi_k(y_1) - \psi_k(y_2)| \leqslant 1,$$

and

$$(30) |\psi_k(y_1) - \psi_k(y_2)| > 1.$$

In the latter case we consider the pair $\{x_1, x_2\} \subset V_k$ such that $y_1 \in (x_1, x_2)$ and $(x_1, x_2) \cap V_k = \emptyset$. From (25), (26), (27) and (30) simple reasoning leads to some properties of ψ_k on $[x_1, y_2]$:

(i) $\psi_k(x_1) \neq \psi_k(x_2)$,

(ii)
$$y_2-y_1=\delta$$
,

- (iii) $y_2 = \min \{z: z \in V_k, z > x_2, \psi_k(z) \neq \psi_k(x_2)\},\$
- (iv) $|\psi_k(x_1) \psi_k(y_2)| = 2.$

With $x_3 = \max \{z: z \in V_k, x_2 \leq z < y_2, \psi_k(z) = \psi_k(x_2)\}$ we conclude that essentially ψ_k on $[x_1, y_2]$ is as follows

where as an example we assume $\psi_k(y_2) > \psi_k(y_1)$ and $x_3 \neq x_2$. Let $y_3 = \max \{x_3, x_1 + \delta\}$, then consequently $x_2 \leqslant x_3 \leqslant y_3 \leqslant y_2$. We define the continuous function ψ_{k+1} on [0, 1] by

(31)
$$\begin{cases} \psi_{k+1}(x) = \psi_k(x) \text{ for } x \in [0, 1] \setminus \{(x_1, x_2) \cup (x_2, y_2)\}, \\ = \psi_k(x_2) \text{ for } x \in [y_1, y_3], \\ \text{linear for } x \in [x_1, y_1) \text{ and } x \in (y_3, y_2]. \end{cases}$$

Taking for example ψ_k as partially described in figure 1, and $y_3 > x_3$ then by (31) ψ_{k+1} on $[x_1, y_2]$ is as follows

We define $V_{k+1} = V_k \cup \{y_1, y_3\}$, and write $(25)_l$, $(26)_l$ and so on when we are considering the case k = l. We assert that $(25)_{k+1}$ and $(26)_{k+1}$ hold; from these $(26, ii)_{k+1}$ will be proved in the following, the other parts being obvious.

It is sufficient to prove

$$(32) \begin{cases} (i) & |\psi_{k+1}(y_1) - \psi_{k+1}(z)| \leq 1 + \left| \frac{|y_1 - z|}{\delta} \right|, \\ (ii) & |\psi_{k+1}(y_3) - \psi_{k+1}(z)| \leq 1 + \left| \frac{|y_3 - z|}{\delta} \right|, \\ (iii) & |\psi_{k+1}(y_1) - \psi_{k+1}(y_3)| \leq 1 + \left| \frac{|y_1 - y_3|}{\delta} \right|, \end{cases} for each \ z \in V_k,$$

the proof of (32, i) being necessary, and that of (32, ii, iii) being necessary only if $y_3 = x_1 + \delta \neq x_3$, since otherwise $y_3 \in V_k$. The inequality (32, iii) trivially holds since $\psi_{k+1}(y_1) = \psi_{k+1}(y_3)$. We will prove (32, i) in the case of figure 2; (32, ii) and the case of $\psi_k(y_1) > \psi_k(y_2)$ can be treated analogous. For each $z \in V_k$ with $z \ge x_2$

For each $z \in V_k$ with $z < x_2$, i.e. $z \leq x_1$, it follows that if $\psi_{k+1}(y_1) - -\psi_{k+1}(z) \ge 0$:

$$egin{aligned} |\psi_{k+1}(y_1) - \psi_{k+1}(z)| &= \{\psi_{k+1}(y_2) - 1\} - \psi_{k+1}(z) = \ &= |\psi_{k+1}(y_2) - \psi_{k+1}(z)| - 1 \leqslant \ &\leqslant 1 + \left] rac{y_2 - z}{\delta} \left[-1 =
ight] rac{y_1 + \delta - z}{\delta} \left[= \ &= 1 +
ight] rac{y_1 - z}{\delta} \left[, \end{aligned}$$

and if $\psi_{k+1}(y_1) - \psi_{k+1}(z) < 0$:

$$egin{aligned} &|\psi_{k+1}(y_1) - \psi_{k+1}(z)| = \psi_{k+1}(z) - \{\psi_{k+1}(x_1) + 1\} = \ &= |\psi_{k+1}(x_1) - \psi_{k+1}(z)| - 1 \leqslant \ &\leqslant 1 + \left] rac{x_1 - z}{\delta} iggl[- 1 \leqslant
ight] rac{y_1 - z}{\delta} iggl[\end{aligned}$$

This completes the proof of (32, i) and as a result we may and do conclude that $(25)_{k+1}$ and $(26)_{k+1}$ hold.

From the definition of ψ_{k+1} follows that if $(30)_k$ holds

(33)
$$y_1^{k+1} \notin (y_1^k - \delta, y_3^k),$$

in case $y_1^{k+1} \in V_{k+1}$ as well as $y_2^{k+1} \in V_{k+1}$. The upper indices for a moment serve to distinguish similar symbols y_1, y_2 and y_3 for the different functions ψ_k and ψ_{k+1} . Obviously $y_3^k - y_1^k > 0$, so that

(34)
$$y_3^k - (y_1^k - \delta) > \delta.$$

With these preparatory results we will prove the statement in lemma 3.

Let V_0 be the set $\{\bar{x}, \xi_0, ..., \xi_n\}$ of points in [0, 1] described in the assumptions of lemma 2. We choose a δ satisfying (10), and so (25)₀ applies to V_0 .

Let ψ_0 be the polygon on [0, 1], of which the nodes are the points of the set V_0 , such that it satisfies (20) for $\psi \equiv \psi_0$, and is constant for $x \ge \max{\{\bar{x}, \xi_n\}}$ and $x \le \min{\{\bar{x}, \xi_0\}}$. Then (26)₀ holds.

Next, for k=0, 1, ... we investigate which of $(28)_k$, $(29)_k$ or $(30)_k$ holds. From (33) and (34) follows that there is an $m < 1 + \frac{1}{\delta} \left[\text{such that } (28)_m \text{ or } (29)_m \text{ holds.} \right]$ As a result we conclude that for ψ_m

$$(35) \qquad \qquad \omega(\delta) \leqslant 1,$$

while also ψ_m satisfies (20) for $\psi \equiv \psi_m$.

Assume $\omega(\delta) < 1$ in (35). Then from (26, i, ii), or by definition of ψ_0 from (20), (18) and lemma 1, it follows that

$$\begin{aligned} |\psi_m(\xi_k) - \psi_m(\xi_{k+1})| &= 0 \qquad (k = 0, 1, \dots, n-1), \\ |\psi_m(\xi_k)| &= 0 \qquad (k = 0, 1, \dots, n), \end{aligned}$$

so that

(36)
$$\beta_k = 0$$
 $(k = 0, 1, ..., n).$

This only is the case if for a certain integer l, with $0 \le l \le n$

(37)
$$\begin{cases} \bar{x} = \xi_l, \\ q_l(\bar{x}) = 1, \\ q_k(\bar{x}) = 0 \qquad (k = 0, 1, ..., n; k \neq l). \end{cases}$$

In this special case we define the polygon $\psi \in C_1[0, 1]$ by

(38)
$$\begin{cases} \psi(\xi) = 1 \text{ for an arbitrary } \xi \in (\xi_k, \xi_{k+1}), \\ k \text{ arbitrary such that } 0 \leqslant k \leqslant n-1; \\ \psi(x) = 0 \text{ for } x \in [0, 1] \setminus (\xi_k, \xi_{k+1}); \\ \psi(x) \text{ linear for } x \in [\xi_k, \xi) \text{ and } x \in (\xi, \xi_{k+1}]. \end{cases}$$

In all other cases (36) leads to a contradiction of the assumption on β_k (k=0, 1, ..., n) since from (1) it follows that there is at least one $q_l(\bar{x})$ (0 < l < n) such that $q_l(\bar{x}) > 0$, so that with $\bar{\beta}_k = \delta_{kl}$ (k=0, 1, ..., n), δ_{kl} being the Kronecker-symbol

$$\sum_{k=0}^{n} \bar{\beta}_{k} q_{k}(\bar{x}) = q_{1}(\bar{x}) > \sum_{k=0}^{n} \beta_{k} q_{k}(\bar{x}) = 0.$$

So, except in the case (37), for ψ_m

 $\omega(\delta) = 1$

holds. Defining then ψ to be identically equal to ψ_m then, in view of (38), lemma 3 has been proved.

Finally, lemma 2 and lemma 3 immediately lead to the validity of theorem 1.

Mathematical Institute Technological University, Delft