A THEOREM ABOUT THE DETERMINATION OF A CERTAIN BEST CONSTANT IN THE APPROXIMATION BY SOME LINEAR OPERATORS

BY

## H. VAN IPEREN ${ }^{1}$ )

(Communicated by Prof. A. van Wijngaarden at the meeting of January 27, 1968)

## 1. Introduction

By $C[0,1]$ we denote the set of all real-valued functions defined and continuous on the closed interval [ 0,1 ] of the real axis. We define $P$ to be a fixed set of parameters containing at least the following elements:

$$
\left\{\begin{array}{c}
n: \text { a positive integer; }  \tag{1}\\
q_{k}=q_{k}(x)(k=0,1, \ldots n): q_{k} \in C[0,1], \sum_{k=0}^{n} q_{k} \equiv 1 ; \\
\xi_{k}(k=0,1, \ldots n): \xi_{k} \in[0,1], \xi_{k}<\xi_{k+1} \quad(k=0,1, \ldots, n-1)
\end{array}\right.
$$

Let $L$ be the operator on $C[0,1]$, with respect to $P$, defined by

$$
\begin{equation*}
L f=L\{f(t) ; x\}=\sum_{k=0}^{n} f\left(\xi_{k}\right) q_{k}(x) \tag{2}
\end{equation*}
$$

for each $f \in C[0,1]$. Obviously, $L$ is a linear operator, mapping $C[0,1]$ into itself, with the property that

$$
\begin{equation*}
L 1 \equiv 1 \tag{3}
\end{equation*}
$$

In order to derive estimations for the difference $f-L f$, which are uniform in $x$ and valid for arbitrary $f \in C[0,1]$, we introduce the norm $\|g\|$ of a bounded function $g$ defined on [0, 1] by

$$
\begin{equation*}
\|g\|=\sup _{x \in[0,1]}|g(x)| \tag{4}
\end{equation*}
$$

as well as the modulus of continuity $\omega(\delta)$ of a function $f \in C[0,1]$ for arbitrarily chosen but fixed $\delta>0$ by

$$
\begin{equation*}
\omega(\delta)=\max _{\substack{|x-v| \delta \delta \\ x, y \in[0,1]}}|f(x)-f(y)| . \tag{5}
\end{equation*}
$$

${ }^{1}$ ) The author wishes to express his gratitude to Prof. P. C. Sikkema for his stimulating critical remarks during the preparation of this paper.

21 Series A

In this paper we derive a method for determining the quantity $\varkappa$ such that

$$
\begin{equation*}
x=\inf K \tag{6}
\end{equation*}
$$

i.e. the infimum of all numbers $K$, independent of $f$, for which

$$
\begin{equation*}
\|f-L f\| \leqslant K \omega(\delta) \tag{7}
\end{equation*}
$$

holds for each $f \in C[0,1]$, with $\delta$ a fixed positive number. From (3) we see that the case of $f$ being constant on [ 0,1 ] needs no investigation, since $c-L c=0$ for any constant $c$. In the following we exclude these constant functions. Then - for arbitrarily chosen but fixed $\delta>0$-we may and do restrict ourselves without loss of generality to the functions $f$ of the subset $C_{1}[0,1]$ of $C[0,1]$, with the property that for each $f \in C_{1}[0,1]$

$$
\begin{equation*}
\omega(\delta)=1 \tag{8}
\end{equation*}
$$

Consequently the following problem is equivalent to the one formulated by means of (6) and (7):

Determine the quantity $x$ such that

$$
\begin{equation*}
x=\sup _{f \in C_{1}[0,1]}\|f-L f\| . \tag{9}
\end{equation*}
$$

2. A theorem and a method for the determination of $x$ in (9).

Theorem 1. Let $\delta$ with respect to $\xi_{k}(k=0,1, \ldots, n)$ in (1) be a fixed number with the property that

$$
\begin{equation*}
\delta \geqslant \max _{k=0,1, \ldots, n-1}\left(\xi_{k+1}-\xi_{k}\right), \xi_{0}, 1-\xi_{n} \tag{10}
\end{equation*}
$$

then for each fixed $\bar{x} \in[0,1]$ there exists a function $\psi \in C_{1}[0,1]$ with $\psi(\bar{x})=0$, such that

$$
\begin{equation*}
\max _{f \in C_{1}[0,1]}|f(\bar{x})-L\{f(t) ; \bar{x}\}|=L\{\psi(t) ; \bar{x}\} \tag{11}
\end{equation*}
$$

The proof of this theorem will be given by means of three lemmas which will be stated and proved in 3.

As a result of theorem 1 we are able to derive a method for determining the quantity $x$ as defined in (9). This method consists of the following two steps (i) and (ii):
(i) For all fixed $\bar{x} \in[0,1]$ determine

$$
\begin{equation*}
K(\bar{x})=L\{\psi(t) ; \bar{x}\} \tag{12}
\end{equation*}
$$

the right hand being defined by (11).

Then $K(x)$ for $x \in[0,1]$ is a bounded function for which

$$
\begin{equation*}
\max _{f \in G_{1}[0,1]}|f(x)-L\{f(t) ; x\}|=K(x) \tag{13}
\end{equation*}
$$

holds for each $x \in[0,1]$.
(ii) Calculate, according to (4)

$$
\begin{equation*}
x=\|K\| . \tag{14}
\end{equation*}
$$

Then from (11) and (12) it follows that $|f(x)-L\{f(t) ; x\}| \leqslant K(x)$ for all $f \in C_{1}[0,1]$ and each $x \in[0,1]$, from which by (14) $\|f-L f\| \leqslant x$ holds for all $f \in C_{1}[0,1]$, and obviously

$$
\begin{equation*}
\sup _{f \in C_{1}[0,1]}\|f-L f\| \leqslant \varkappa . \tag{15}
\end{equation*}
$$

Moreover, from (14) it follows that there exists a sequence $\left\{x_{h}\right\}$ with $x_{h} \in[0,1](h=0,1, \ldots)$ such that $\lim _{h \rightarrow \infty} K\left(x_{h}\right)=\varkappa$. Also, for each fixed $h$ by theorem 1 and definition (12) there exists a function $\psi_{h} \in C_{1}[0,1]$, with $\psi_{h}\left(x_{h}\right)=0$ such that

$$
K\left(x_{h}\right)=L\left\{\psi_{h}(t) ; x_{h}\right\}=\left|\psi_{h}\left(x_{h}\right)-L\left\{\psi_{h}(t) ; x_{h}\right\}\right| .
$$

Estimating we obtain

$$
\begin{aligned}
x & =\lim _{h \rightarrow \infty}\left|\psi_{h}\left(x_{h}\right)-L\left\{\psi_{h}(t) ; x_{h}\right\}\right| \leqslant \lim _{h \rightarrow \infty}\left\|\psi_{h}-L \psi_{h}\right\| \leqslant \\
& \leqslant \lim _{h \rightarrow \infty} \sup _{f \in C_{1}[0,1]}\|f-L f\|=\sup _{f \in C_{1}[0,1]}\|f-L f\| .
\end{aligned}
$$

This last result together with (15) shows that $\varkappa$ from (14) is the one to be found in (9).

## 3. Proof of theorem 1.

Lemma 1. Let $n, m_{k}, m_{k l}(k, l=0,1, \ldots, n)$ be non-negative integers, and let $q_{k}(k=0,1, \ldots, n)$ be real numbers such that

$$
\begin{equation*}
\sum_{k=0}^{n} q_{k}=Q>0 . \tag{16}
\end{equation*}
$$

Let $A$ be the set of all $(n+1)$-tuples $\left\{\alpha_{k}\right\}$ of real numbers $\alpha_{k}(k=0,1, \ldots, n)$ satisfying

$$
\left.\begin{array}{c}
\left|\alpha_{k}\right| \leqslant m_{k}  \tag{17}\\
\left|\alpha_{k}-\alpha_{l}\right| \leqslant m_{k l}
\end{array}\right\}(k, l=0,1, \ldots, n) .
$$

If $\left\{\beta_{k}\right\} \in A$ is such that

$$
\begin{equation*}
\sum_{k=0}^{n} \beta_{k} q_{k} \geqslant \sum_{k=0}^{n} \alpha_{k} q_{k} \tag{18}
\end{equation*}
$$

for all $\left\{\alpha_{k}\right\} \in A$, then $\beta_{k}(k=0,1, \ldots, n)$ is integer.

Proof. The determination of an $(n+1)$-tuple $\left\{\beta_{k}\right\} \in A$ which satisfies (18) is a problem of linear programming which has at least one solution in a vertex $\left\{\beta_{k}\right\}$ of the $(n+1)$-dimensional simplex defined by (17). Then it immediately follows that

$$
\beta_{k}=\sigma(\bmod 1) ; 0 \leqslant \sigma<1 \quad(k=0,1, \ldots, n) .
$$

Assume $\sigma \neq 0$, then it follows that
$\beta_{k}=n_{k}+\sigma$ with $n_{k} \in\left\{-m_{k},-m_{k}+1, \ldots, 0, \ldots, m_{k}-1\right\} \quad(k=0,1, \ldots, n)$.
We define $\bar{\beta}_{k}=\beta_{k}+1-\sigma(k=0,1, \ldots, n)$ and see that $\bar{\beta}_{k}=n_{k}+1$ so that $\left|\bar{\beta}_{k}\right| \leqslant m_{k} \quad(k=0,1, \ldots, n)$. From this result, and $\left|\bar{\beta}_{k}-\bar{\beta}_{l}\right|=\left|\beta_{k}-\beta_{l}\right| \leqslant m_{k l}$ $(k, l=0,1, \ldots, n)$ we conclude that $\left\{\bar{\beta}_{k}\right\} \in A$. Consequently we can write

$$
\sum_{k=0}^{n} \bar{\beta}_{k} q_{k}=\sum_{k=0}^{n}\left(\beta_{k}+1-\sigma\right) q_{k}=\sum_{k=0}^{n} \beta_{k} q_{k}+(1-\sigma) Q>\sum_{k=0}^{n} \beta_{k} q_{k},
$$

in which the inequality follows from (16). So the assumption $\sigma \neq 0$ leads to a contradiction of (18), with which lemma 1 has been proved.

Lemma 2. Let $\bar{x}$ be a fixed point of the interval [0,1], and let the quantities $m_{k}, m_{k l}$ and $q_{k}(k, l=0,1, \ldots, n)$ appearing in lemma 1 be chosen as follows:

$$
\left\{\begin{array}{c}
q_{k}=q_{k}(\bar{x})  \tag{19}\\
\left.m_{k}=1+\right] \frac{\left|\bar{x}-\xi_{k}\right|}{\delta}\left[^{2}\right) \\
\left.m_{k l}=1+\right] \frac{\left|\xi_{k}-\xi_{l}\right|}{\delta}[
\end{array}\right\}(k, l=0,1, \ldots, n),
$$

with $n, q_{k}(x), \xi_{k}(k=0,1, \ldots, n)$ elements of the parameterset $P$ defined in (1) and $\delta$ satisfying (10).

If $\psi(x)$ is a function defined on $[0,1]$ with the properties that

$$
\left\{\begin{array}{l}
\psi(\bar{x})=0  \tag{20}\\
\psi\left(\xi_{k}\right)=\beta_{k} \quad(k=0,1, \ldots, n),
\end{array}\right.
$$

where the numbers $\beta_{k}$ satisfy (18) of lemma 1, then for each $f \in C_{1}[0,1]$

$$
\begin{equation*}
|f(\bar{x})-L\{f(t) ; \bar{x}\}| \leqslant L\{\psi(t) ; \bar{x}\} \tag{21}
\end{equation*}
$$

$L$ being the operator defined in (2).
Proof: From (1) and (2) it follows that for each $f \in C[0,1]$

$$
\begin{equation*}
f(\bar{x})-L\{f(t) ; \bar{x}\}=\sum_{k=0}^{n}\left\{f(\bar{x})-f\left(\xi_{k}\right)\right\} q_{k}(\bar{x}) . \tag{22}
\end{equation*}
$$

${ }^{2}$ ) For each real $\left.a,\right] a[$ denotes the greatest integer less than $a$.

For each $f \in C_{1}[0,1]$ the numbers $\left\{f(\bar{x})-f\left(\xi_{k}\right)\right\}(k=0,1, \ldots, n)$ satisfy
$\left.(23)^{3}\right) \quad\left\{\begin{array}{l}\left.\left|f(\bar{x})-f\left(\xi_{k}\right)\right| \leqslant 1+\right] \frac{\left|\bar{x}-\xi_{k}\right|}{\delta}\left[=m_{k}\right. \\ \left.\left|f\left(\xi_{k}\right)-f\left(\xi_{l}\right)\right| \leqslant 1+\right] \frac{\left|\xi_{k}-\xi_{l}\right|}{\delta}\left[=m_{k l}\right.\end{array}\right\}(k, l=0,1, \ldots, n)$,
the equal-signs following from (19). With $\beta_{k}(k=0,1, \ldots, n)$ satisfying (17), from the assumptions of lemma 2 it follows

$$
\begin{equation*}
\sum_{k=0}^{n}\left\{f(\bar{x})-f\left(\xi_{k}\right)\right\} q_{k}(\bar{x}) \leqslant \sum_{k=0}^{n} \beta_{k} q_{k}(\bar{x}) \tag{24}
\end{equation*}
$$

the right hand of which by (20) is equal to $L\{\psi(t) ; \bar{x}\}$. Since (24) holds for each $f \in C_{1}[0,1]$, it does for $-f$; consequently with (22) now (21) holds for each $f \in C_{1}[0,1]$. This completes the proof of lemma 2.

Lemma 3. There exists a function $\psi \in C_{1}[0,1]$ which satisfies (20), such that lemma 2 holds.

Proof: Let $V_{k}$ ( $k$ a fixed non-negative integer) be a finite set of at east two points in $[0,1]$, and $\delta$ a fixed non-negative number such that

$$
\begin{cases}\text { (i) } & a=\min \left\{z: z \in V_{k}\right\},  \tag{25}\\ \text { (ii) } & b=\max \left\{z: z \in V_{k}\right\}, \\ \text { (iii) } & c=\max \left\{\left(z_{2}-z_{1}\right):\left\{z_{1}, z_{2}\right\} \subset V_{k}, z_{1}<z_{2},\left(z_{1}, z_{2}\right) \cap V_{k}=\emptyset\right\}, \\ \text { (iv) } & \delta \geqslant \max \{a, 1-b, c\} .\end{cases}
$$

Let $\psi_{k}$ be a polygon on [0, 1], of which the nodes are the points of $V_{k}$, with the following properties:

$$
\left\{\begin{array}{l}
\text { (i) } \psi_{k}(z) \text { integer for each } z \in V_{k}, \\
\text { (ii) } \left.\left|\psi_{k}\left(z_{1}\right)-\psi_{k}\left(z_{2}\right)\right| \leqslant 1+\right] \frac{\left|z_{1}-z_{2}\right|}{\delta}\left[\text { for each pair }\left\{z_{1}, z_{2}\right\} \subset V_{k},\right.  \tag{26}\\
\text { (iii) } \psi_{k}(x)=\psi_{k}(a) \text { for } x \leqslant a, \\
\text { (iv) } \psi_{k}(x)=\psi_{k}(b) \text { for } x \geqslant b .
\end{array}\right.
$$

The modulus of continuity of $\psi_{k}$ being $\omega(\delta)$, from the definition of $\psi_{k}$ it follows that there is at least one pair $\left\{y_{1}, y_{2}\right\}$ of points in $[0,1]$ such that

$$
\begin{cases}\text { (i) }\left|\psi_{k}\left(y_{1}\right)-\psi_{k}\left(y_{2}\right)\right|=\omega(\delta),  \tag{27}\\ \text { (ii) } y_{1}<y_{2}, \\ \text { (iii) for each pair }\left\{\bar{y}_{1}, \bar{y}_{2}\right\} \text { with } y_{1} \leqslant \bar{y}_{1}<\bar{y}_{2} \leqslant y_{2} \text { and } \\ & \bar{y}_{2}-\bar{y}_{1}<y_{2}-y_{1}:\left|\psi_{k}\left(\bar{y}_{1}\right)-\psi_{k}\left(\bar{y}_{2}\right)\right|<\omega(\delta), \\ \text { (iv) } y_{1} \in V_{k} \text { or } y_{2} \in V_{k} . & \end{cases}
$$

[^0]We assume $y_{2} \in V_{k}$; the case $y_{1} \in V_{k}$ can be treated in a similar way. If also $y_{1} \in V_{k}$, then from (26, ii) it follows that

$$
\begin{equation*}
\left.\left|\psi_{k}\left(y_{1}\right)-\psi_{k}\left(y_{2}\right)\right| \leqslant 1+\right] \frac{y_{2}-y_{1}}{\delta} \cdot[=1 \tag{28}
\end{equation*}
$$

since $y_{2}-y_{1} \leqslant \delta$. If however $y_{1} \notin V_{k}$, there are obviously the two possibilities

$$
\begin{equation*}
\left|\psi_{k}\left(y_{1}\right)-\psi_{k}\left(y_{2}\right)\right| \leqslant 1 \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\psi_{k}\left(y_{1}\right)-\psi_{k}\left(y_{2}\right)\right|>1 . \tag{30}
\end{equation*}
$$

In the latter case we consider the pair $\left\{x_{1}, x_{2}\right\} \subset V_{k}$ such that $y_{1} \in\left(x_{1}, x_{2}\right)$ and ( $x_{1}, x_{2}$ ) $\cap V_{k}=\emptyset$. From (25), (26), (27) and (30) simple reasoning leads to some properties of $\psi_{k}$ on $\left[x_{1}, y_{2}\right]$ :
(i) $\psi_{k}\left(x_{1}\right) \neq \psi_{k}\left(x_{2}\right)$,
(ii) $y_{2}-y_{1}=\delta$,
(iii) $y_{2}=\min \left\{z: z \in V_{k}, z>x_{2}, \psi_{k}(z) \neq \psi_{k}\left(x_{2}\right)\right\}$,
(iv) $\left|\psi_{k}\left(x_{1}\right)-\psi_{k}\left(y_{2}\right)\right|=2$.

With $x_{3}=\max \left\{z: z \in V_{k}, x_{2} \leqslant z<y_{2}, \psi_{k}(z)=\psi_{k}\left(x_{2}\right)\right\}$ we conclude that essentially $\psi_{k}$ on [ $x_{1}, y_{2}$ ] is as follows


Fig. 1.
where as an example we assume $\psi_{k}\left(y_{2}\right)>\psi_{k}\left(y_{1}\right)$ and $x_{3} \neq x_{2}$.
Let $y_{3}=\max \left\{x_{3}, x_{1}+\delta\right\}$, then consequently $x_{2} \leqslant x_{3} \leqslant y_{3}<y_{2}$.
We define the continuous function $\psi_{k+1}$ on [0, 1] by

$$
\left\{\begin{align*}
\psi_{k+1}(x) & =\psi_{k}(x) \text { for } x \in[0,1] \backslash\left\{\left(x_{1}, x_{2}\right) \cup\left(x_{2}, y_{2}\right)\right\},  \tag{31}\\
& =\psi_{k}\left(x_{2}\right) \text { for } x \in\left[y_{1}, y_{3}\right] \\
& \text { linear for } x \in\left[x_{1}, y_{1}\right) \text { and } x \in\left(y_{3}, y_{2}\right]
\end{align*}\right.
$$

Taking for example $\psi_{k}$ as partially described in figure 1 , and $y_{3}>x_{3}$ then by (31) $\psi_{k+1}$ on $\left[x_{1}, y_{2}\right]$ is as follows


Fig. 2.
We define $V_{k+1}=V_{k} \cup\left\{y_{1}, y_{3}\right\}$, and write $(25)_{l},(26)_{l}$ and so on when we are considering the case $k=l$. We assert that (25) $)_{k+1}$ and $(26)_{k+1}$ hold; from these $(26, \mathrm{ii})_{k+1}$ will be proved in the following, the other parts being obvious.

It is sufficient to prove
(32) $\left\{\begin{array}{ll}\left.\text { (i) } \quad\left|\psi_{k+1}\left(y_{1}\right)-\psi_{k+1}(z)\right| \leqslant 1+\right] \frac{\left|y_{1}-z\right|}{\delta}[, \\ \left.\text { (ii) } \quad\left|\psi_{k+1}\left(y_{3}\right)-\psi_{k+1}(z)\right| \leqslant 1+\right] \frac{\left|y_{3}-z\right|}{\delta}[,\end{array}\right\}$ for each $z \in V_{k}$,
the proof of $(32, i)$ being necessary, and that of (32, ii, iii) being necessary only if $y_{3}=x_{1}+\delta \neq x_{3}$, since otherwise $y_{3} \in V_{k}$. The inequality (32, iii) trivially holds since $\psi_{k+1}\left(y_{1}\right)=\psi_{k+1}\left(y_{3}\right)$. We will prove (32, i) in the case of figure 2 ; (32, ii) and the case of $\psi_{k}\left(y_{1}\right)>\psi_{k}\left(y_{2}\right)$ can be treated analogous.

For each $z \in V_{k}$ with $z \geqslant x_{2}$

$$
\begin{aligned}
&\left|\psi_{k+1}\left(y_{1}\right)-\psi_{k+1}(z)\right|=\left|\psi_{k+1}\left(x_{2}\right)-\psi_{k+1}(z)\right| \leqslant \\
&\leqslant 1+] \frac{z-x_{2}}{\delta}[\leqslant 1+] \frac{z-y_{1}}{\delta}[.
\end{aligned}
$$

For each $z \in V_{k}$ with $z<x_{2}$, i.e. $z \leqslant x_{1}$, it follows that if $\psi_{k+1}\left(y_{1}\right)-$ $-\psi_{k+1}(z) \geqslant 0$ :

$$
\begin{aligned}
\left|\psi_{k+1}\left(y_{1}\right)-\psi_{k+1}(z)\right| & =\left\{\psi_{k+1}\left(y_{2}\right)-1\right\}-\psi_{k+1}(z)= \\
& =\left|\psi_{k+1}\left(y_{2}\right)-\psi_{k+1}(z)\right|-1 \leqslant \\
& \leqslant 1+] \frac{y_{2}-z}{\delta}[-1=] \frac{y_{1}+\delta-z}{\delta}[= \\
& =1+] \frac{y_{1}-z}{\delta}[,
\end{aligned}
$$

and if $\psi_{k+1}\left(y_{1}\right)-\psi_{k+1}(z)<0$ :

$$
\begin{aligned}
\left|\psi_{k+1}\left(y_{1}\right)-\psi_{k+1}(z)\right| & =\psi_{k+1}(z)-\left\{\psi_{k+1}\left(x_{1}\right)+1\right\}= \\
& =\left|\psi_{k+1}\left(x_{1}\right)-\psi_{k+1}(z)\right|-1 \leqslant \\
& \leqslant 1+] \frac{x_{1}-z}{\delta}[-1 \leqslant] \frac{y_{1}-z}{\delta}[.
\end{aligned}
$$

This completes the proof of $(32, i)$ and as a result we may and do conclude that $(25)_{k+1}$ and $(26)_{k+1}$ hold.

From the definition of $\psi_{k+1}$ follows that if $(30)_{k}$ holds

$$
\begin{equation*}
y_{1}^{k+1} \notin\left(y_{1}^{k}-\delta, y_{3}^{k}\right), \tag{33}
\end{equation*}
$$

in case $y_{1}^{k+1} \in V_{k+1}$ as well as $y_{2}^{k+1} \in V_{k+1}$. The upper indices for a moment serve to distinguish similar symbols $y_{1}, y_{2}$ and $y_{3}$ for the different functions $\psi_{k}$ and $\psi_{k+1}$. Obviously $y_{3}^{k}-y_{1}^{k}>0$, so that

$$
\begin{equation*}
y_{3}^{k}-\left(y_{1}^{k}-\delta\right)>\delta \tag{34}
\end{equation*}
$$

With these preparatory results we will prove the statement in lemma 3.
Let $V_{0}$ be the set $\left\{\bar{x}, \xi_{0}, \ldots, \xi_{n}\right\}$ of points in $[0,1]$ described in the assumptions of lemma 2 . We choose a $\delta$ satisfying (10), and so (25) ${ }_{0}$ applies to $V_{0}$.

Let $\psi_{0}$ be the polygon on $[0,1]$, of which the nodes are the points of the set $V_{0}$, such that it satisfies (20) for $\psi \equiv \psi_{0}$, and is constant for $x \geqslant \max \left\{\bar{x}, \xi_{n}\right\}$ and $x \leqslant \min \left\{\bar{x}, \xi_{0}\right\}$. Then $(26)_{0}$ holds.

Next, for $k=0,1, \ldots$ we investigate which of $(28)_{k},(29)_{k}$ or $(30)_{k}$ holds. From (33) and (34) follows that there is an $m \leqslant 1+] \frac{1}{\delta}\left[\right.$ such that $(28)_{m}$ or $(29)_{m}$ holds. As a result we conclude that for $\psi_{m}$

$$
\begin{equation*}
\omega(\delta) \leqslant 1 \tag{35}
\end{equation*}
$$

while also $\psi_{m}$ satisfies (20) for $\psi \equiv \psi_{m}$.
Assume $\omega(\delta)<1$ in (35). Then from (26, i, ii), or by definition of $\psi_{0}$ from (20), (18) and lemma 1, it follows that

$$
\begin{array}{cl}
\left|\psi_{m}\left(\xi_{k}\right)-\psi_{m}\left(\xi_{k+1}\right)\right|=0 & (k=0,1, \ldots, n-1), \\
\left|\psi_{m}\left(\xi_{k}\right)\right|=0 & (k=0,1, \ldots, n)
\end{array}
$$

so that

$$
\begin{equation*}
\beta_{k}=0 \quad(k=0,1, \ldots, n) \tag{36}
\end{equation*}
$$

This only is the case if for a certain integer $l$, with $0 \leqslant l \leqslant n$

$$
\left\{\begin{array}{l}
\bar{x}=\xi_{l},  \tag{37}\\
q_{l}(\bar{x})=1, \\
q_{k}(\bar{x})=0
\end{array} \quad(k=0,1, \ldots, n ; k \neq l)\right.
$$

In this special case we define the polygon $\psi \in C_{1}[0,1]$ by

$$
\left\{\begin{array}{l}
\psi(\xi)=1 \text { for an arbitrary } \xi \in\left(\xi_{k}, \xi_{k+1}\right)  \tag{38}\\
\quad k \text { arbitrary such that } 0 \leqslant k \leqslant n-1 \\
\psi(x)=0 \text { for } x \in[0,1] \backslash\left(\xi_{k}, \xi_{k+1}\right) \\
\psi(x) \text { linear for } x \in\left[\xi_{k}, \xi\right) \text { and } x \in\left(\xi, \xi_{k+1}\right] .
\end{array}\right.
$$

In all other cases (36) leads to a contradiction of the assumption on $\beta_{k}$ ( $k=0,1, \ldots, n$ ) since from (1) it follows that there is at least one $q_{l}(\bar{x})$ $(0 \leqslant l \leqslant n)$ such that $q_{l}(\bar{x})>0$, so that with $\bar{\beta}_{k}=\delta_{k l}(k=0,1, \ldots, n), \delta_{k l}$ being the Kronecker-symbol

$$
\sum_{k=0}^{n} \bar{\beta}_{k} q_{k}(\bar{x})=q_{1}(\bar{x})>\sum_{k=0}^{n} \beta_{k} q_{k}(\bar{x})=0 .
$$

So, except in the case (37), for $\psi_{m}$

$$
\omega(\delta)=1
$$

holds. Defining then $\psi$ to be identically equal to $\psi_{m}$ then, in view of (38), lemma 3 has been proved.

Finally, lemma 2 and lemma 3 immediately lead to the validity of theorem 1.


[^0]:    $\left.{ }^{3}\right) \mathrm{By}(5) \omega\left(\delta_{1}\right) \leqslant(1+] \delta_{1} / \delta[) \omega(\delta)$ for any non-negative $\delta$ and $\delta_{1}$, and from (8): $\omega(\delta)=1$.

