
MATHEMATICS 

A THEOREM ABOUT THE DETERMINATION OF A CERTAIN 

BEST CONSTANT IN THE APPROXIMATION BY SOME LINEAR 

OPERATORS 

BY 

H. VAN IPEREN 1) 

(Communicated by Prof. A. VAN WIJNGAABDEN at the meeting of January 27, 1968) 

1. Introduction 

By 0[0, 1] we denote the set of all real-valued functions defined and 
continuous on the closed interval [0, 1] of the real axis. We define P to 
be a fixed set of parameters containing at least the following elements: 

n: a positive integer; 

"' ( 1) q~c=Qk(x) (k=O, 1, ... n): q" EO[O, 1], _L q~c==l; 
k~o 

~~c(k=O,l, ... n): ~kE[O,l],~k<~k+l (k=O,l, ... ,n-1). 

Let L be the operator on 0[0, 1 ], with respect to P, defined by 

"' (2) LI=L{f(t);x}= L l(~k)qk(x) 
k-0 

for each IE 0[0, 1]. Obviously, L is a linear operator, mapping 0[0, I] 
into itself, with the property that 

(3) Ll =I. 

In order to derive estimations for the difference I-Ll, which are uniform 
in x and valid for arbitrary IE 0[0, 1], we introduce the norm 11!711 of a 
bounded function g defined on [0, 1] by 

( 4) 11!711 = sup Jg(x)J 
X E [0.1] 

as well as the modulus of continuity co( b) of a function IE 0[0, 1] for 
arbitrarily chosen but fixed b > 0 by 

(5) w(b)= max ll(x)-l(y)l. 
lx-vi.;;;6 

X. !IE (0.1] 

1) The author wishes to express his gratitude to Prof. P. C. Sikkema for his 
stimulating critical remarks during the preparation of this paper. 
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In this paper we derive a method for determining the quantity u such 
that 

(6) u= inf K, 

i.e. the infimum of all numbers K, independent of f, for which 

(7) \\f-Lf\\ <.Kw(b) 

holds for each f E 0[0, 1], with c5 a fixed positive number. From (3) we 
see that the case of f being constant on [0, 1] needs no investigation, 
since c- Lc = 0 for any constant c. In the following we exclude these 
constant functions. Then- for arbitrarily chosen but fixed c5 > 0- we may 
and do restrict ourselves without loss of generality to the functions f of 
the subset 01[0, 1] of 0[0, 1], with the property that for each f E 0 1[0, I] 

(8) w(b) = l. 

Consequently the following problem is equivalent to the one formulated 
by means of (6) and (7): 

Determine the quantity u such that 

(9) n= sup llf-L/11· 
f €0,[0,1) 

2. A theorem and a method for the determination of u in (9). 

Theorem I. Let c5 with respect to ~Tc (k=O, I, ... , n) in (I) be a fixed 
number with the property that 

( IO) b;> max (~Tc+l-~Tc), ~o, I-~n; 
k-0,1, ...... -1 

then for each fixed x E [0, I] there exists a function 1p E 01 [0, I] with 1p(x) = 0, 
such that 

(II) max if(x)-L{f(t); x}\=L{'IP(t); x}. 
f € 0,[0,1] 

The proof of this theorem will be given by means of three lemmas 
which will be stated and proved in 3. 

As a result of theorem I we are able to derive a method for determining 
the quantity u as defined in (9). This method consists of the following 
two steps (i) and (ii): 

(i) For all fixed x E [0, I] determine 

(I2) K(x) = L{1p(t); x}, 

the right hand being defined by (II). 
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Then K(x) for x E [0, 1] is a bounded function for which 

(13) max if(x)-L{f(t); x}I=K(x) 
IE 0 1[0,1] 

holds for each x E [0, 1]. 

(ii) Calculate, according to (4) 

(14) ~=IIKII· 

Then from (11) and (12) it follows that lf(x)-L{f(t); x}J ,;;;;K(x) for all 
f E 01[0, 1] and each x E [0, 1], from which by (14) llf-Lfll <~ holds for 
all f E 01 [0, 1 ], and obviously 

( 15) sup llf-Lfll < ~. 
1 E G1[0.Il 

Moreover, from (14) it follows that there exists a sequence {x11} with 
x11 E [0, 1] (h=O, 1, ... ) such that lim K(x11)=~. Also, for each fixed h 

h->00 

by theorem 1 and definition ( 12) there exists a function 1fn E 01 [0, 1 ], 
with 1fn(Xn) = 0 such that 

K(xn)=L{1fn(t); xn}= l1fn(Xn)-L{1fn(t); Xn}J. 

Estimating we obtain 

~=lim 11fn("rn)-L{1fn(t);xn}l< lim ll1fn-L1fnll< 
h--'1-00 h--'1-00 

< lim sup llf-Lfll = sup llf-LfJI. 
h->-00 I EG.[O.l] I E01[0,1l 

This last result together with (15) shows that ~ from (14) is the one 
to be found in (9). 

3. Proof of theorem l. 

Lemma 1. Let n, mk, mkl (k, l=O, 1, ... , n) be non-negative integers, 
and let qk (k=O, 1, ... , n) be real numbers such that 

( 16) 

Let A be the set of all (n +I)-tuples {cxk} of real numbers <Xk (k= 0, 1, ... , n) 
satisfying 

(17) 

If {th} E A is such that 
n n 

(18) 1 /3k qk ;;;:. 1 <Xk qk 
lc=O lc=O 

for all {cxk} EA, then {h (k=O, 1, ... , n) is integer. 
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Proof. The determination of an (n+ I)-tuple {,Bk} E A which satisfies 
(18) is a problem of linear programming which has at least one solution 
in a vertex {,Bk} of the (n+ I)-dimensional simplex defined by (17). Then 
it immediately follows that 

(k= 0, 1, ... , n). 

Assume a# 0, then it follows that 

We define Pk=,Bk+l-a (k=O, l, ... , n) and see that Pk=nk+l so that 
IPkl ,;;;;mk (k=O, l, ... , n). From this result, and IPk-Pzl = I,Bk-,Bzl <mkl 
(k, l=O, l, ... , n) we conclude that {Pk} EA. Consequently we can write 

n n n n 

! pkqk = ! (/Jk+l-a) qk= ! /Jkqk+(l-a) Q> ! ,Bkqk, 
k~o ~c~o k~o lc~o 

in which the inequality follows from (16). So the assumption a#O leads 
to a contradiction of (18), with which lemma l has been proved. 

Lemma 2. Let x be a fixed point of the interval [0, 1], and let the 
quantities mk, mkl and qk (k, l=O, l, ... , n) appearing in lemma l be chosen 
as follows: 

(19) 

with n, qk(x), ~k (k=O, l, ... , n) elements of the parameterset P defined in 
(1) and 15 satisfying (10). 

If w(x) is a function defined on [0, l] with the properties that 

(20) 
~ 7p(x) = 0 

l1f'(~k)=,Bk (k=O, l, ... , n), 

where the numbers ,Bk satisfy (18) of lemma 1, then for each f E 01[0, l] 

(21) /f(x) -L{f(t); x}/ ,;;;;L{w(t); x}, 

L being the operator defined in (2). 

Proof: From (1) and (2) it follows that for each fEO[O, l] 

n 
(22) f(x) -L{f(t); x}= ! {f(x)- f(~k)} qk(x). 

k~o 

2) For each real a, ]a[ denotes the greatest integer less than a. 
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For each f e=01[0, 1] the numbers {/(i)-/(1;,,)} (k=O, 1, ... , n) satisfy 

( 23) 3 ) 

j/(i)- f(;k)j < 1 + J jx ~ ;kj [ = mk I 
(k, l=O, 1, ... ,n), 

.;k-;d 
Jf(;k)-/(;!)J<1+]! 0 [=mkl 

the equal-signs following from (19). With /h (k=O, 1, ... , n) satisfying 
(17), from the assumptions of lemma 2 it follows 

n n 

(24) 2 {f(x)- /( ;k)} qk(x) < 2 {h qk(x), 
k-0 k=O 

the right hand of which by (20) is equal to L{1p(t); x}. Since (24) holds 
for each f e=01[0, 1], it does for -f; consequently with (22) now (21) 
holds for each f E 01[0, 1]. This completes the proof of lemma 2. 

Lemma 3. There exists a function 1p E 01[0, 1] which satisfies (20), 
such that lemma 2 holds. 

Proof: Let Vk (k a fixed non-negative integer) be a finite set of at 
east two points in [0, 1], and o a fixed non-negative number such that 

l (i) a=min {z: z E Vk}, 

(ii) b=max {z: z E Vk}, 

(25) (~ii) c=max {(z2-z1):{zr,z2}CVk, z1<z2, (z1,z2)n Vk=0}, 

(lv) o:;;;,max {a, 1-b, c}. 

Let "Pk be a polygon on [0, l ], of which the nodes are the points of V k, 
with the following properties: 

(26) 

(i) 1/!k(z) integer for each z E Vk, 

(ii) !VJk(Zl) -1pk(Z2) I< 1 + J jzl ~z2 ! [tor each pair { Zr, zz} c vk, 

(iii) 1/!k(x)=VJk (a) for x<;a, 

(iv) 1/!k(x) =1f!k (b) for x;;;;,b. 

The modulus of continuity of 1/!k being w(o), from the definition of "Pk 
it follows that there is at least one pair {y1, y2} of points in [0, 1] such that 

(i} IVJk(YI) -"Pk(Yz)! =w(o), 

(ii) y1 < y2, 

(27) (iii) for each pair {yr, y2} with Yl < Y1 < Yz < y2 and 
Y2 -yl < Y2- Yl: IVJk(Yl) -1pk(Y2)j < w(o), 

3) By (5) w(61) ~ (1 + ]61/6[) w(6) for any non-negative 6 and (h, and from 
(8): w(6) = 1. 
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We assume y2 E V k; the case Yl E V k can be treated in a similar way. 
If also Y1 E Vk, then from (26, ii) it follows that 

(28) 

since y2-y1<.~. If however Y1 ¢:. Vk, there are obviously the two possi
bilities 

(29) 

and 

(30) 

In the latter case we consider the pair {xt, x2} C V k such that Yl E (xt, x2) 
and {xt, x2) II V k = 0. From (25), (26), (27) and (30) simple reasoning leads 
to some properties of 1pk on [ x1, y2] : 

( i) "Pk( x1) =I= 1pk( x2), 

(ii) y2-y1=~, 

(iii) Y2= min {z: z E Vk, z>x2, "Pk(z)=I="Pk(x2)}, 

(iv) i"Pk(xl) -1pk(Y2)i = 2. 

With Xa= max {z: z E Vk, x2<.z<y2, "Pk(z)=1pk(x2)} we conclude that 
essentially "Pk on [ x1, y2] is as follows 

xa 

Fig. 1. 

where as an example we assume "Pk(Y2) > "Pk(Yl) and xa =1= x2. 
Let ya= max {xa, x1 +~}, then consequently x2<.xa<.Ya<Y2· 
We define the continuous function "Pk+l on [0, I] by 

) 
'lflk+l(x) =1pk(x) for x E [0, 1]\{(xt, x2) U (x2, y2)}, 

(31) =1pk(x2) for x E [yt, Ya], 
linear for x E [ x1, y1) and x E (ya, y2]. 
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Taking for example "Pk as partially described in figure 1, and Y3 > X3 
then by (31) "Pk+l on [x1, yz] is as follows 

Y1 

Fig. 2. 

We define V~c+l = V~c u {y1, y3}, and write (25)1, (26)! and so on when 
we are considering the case k=l. We assert that (25)k+1 and (26)k+1 hold; 
from these (26, ii)k+l will be proved in the following, the other parts 
being obvious. 

It is sufficient to prove 

(32) 

I "Pk+l(Yl)- "Pk+l(Z) I< 1 + J I Yl ~ [, (' 
for each z E V~c, 

I "Pk+I(Ys)- "Pk+I(z) I< 1 + J I y3 ~ [, 

I"Pk+I(YI)-"Pk+l(Y3)1<1+ JIYI~Ysl[, 
the proof of (32, i) being necessary, and that of (32, ii, iii) being necessary 
only if y3=X1 +<h~oxs, since otherwise ys E V~c. The inequality (32, iii) 
trivially holds since "fJk+I(Yl) = "Pk+l(ys). We will prove (32, i) in the case 
of figure 2; (32, ii) and the case of "Pk(YI) > "Pk(Yz) can be treated analogous. 

For each z E vk with Z,:;;>Xz 

I"Pk+l(YI)-"Pk+I(z)l = I"Pk+l(xz)-"Pk+l(z)l< 

J z- X2 [ J z -- Yl [ <1+ -b- <I+ -b- . 

For each z E V k with z < xz, i.e. z < x1, it follows that if "Pk+l(YI)
-1p~c+I(z);;;.O: 

I"Pk+l(YI) -"Pk+l(z) I= {"fJ~c+l(yz) -1 }-"Pk+l(z) = 

= I"Pk+l(Yz) -"Pk+l(z)l-1 < 

l J Yz- z [ I _ J Yl + b- z [ _ <+--------
b b 

] Yl-Z[ = 1 + --b- ' 
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and if tpk+l(Yl) -tpk+l(z) < 0: 

I"Pk+l(Yl) -1pk+l(z) I =tpk+l(z)- { '1/'k+l(xl) +'1} = 

=l'l/'k+l(xl)-tpk+l(z)j-1 < 

J X1- Z [ J Yl- Z [ < 1 + -(J- - 1 < -(J- . 

This completes the proof of (32, i) and as a result we may and do 
conclude that (25)k+l and (26)k+l hold. 

From the definition of tpk+l follows that if (30)k holds 

(33) 

in case Y1+t E vk+l as well as y~+l E vk+l· The upper indices for a moment 
serve to distinguish similar symbols y1, y2 and y3 for the different functions 
tpk and tpk+l· Obviously ~-~>0, so that 

(34) 

With these preparatory results we will prove the statement in lemma 3. 
Let Vo be the set {:i, .;o, ... , .;n} of points in [0, 1] described in the 

assumptions of lemma 2. We choose a (J satisfying (10), and so (25)o 
applies to Vo. 

Let tpo be the polygon on [0, 1], of which the nodes are the points of 
the set Vo, such that it satisfies (20) for 1p _ 1po, and is constant for 
x;;;. max {x, .;n} and x< min {x, .;o}. Then (26)o holds. 

Next, for k = 0, 1, ... we investigate which of (28)k, (29)k or (30)k holds. 

From (33) and (34) follows that there is an m<1+ ]~[such that (28)m 

or (29)m holds. As a result we conclude that for 1pm 

(35) w(tJ) < 1, 

while also 1pm satisfies (20) for tp = "Pm· 
Assume w(tJ) < l in (35). Then from (26, i, ii), or by definition of tpo 

from (20), (18) and lemma 1, it follows that 

so that 

(36) 

!'ll'm( .;k) -tpm( .;k+l) I = 0 

1'1/'m(.;k)!=O 

(k=O, l, ... , n-1), 

(k=O, 1, ... , n), 

(k=O, l, ... , n). 

This only is the case if for a certain integer l, with 0 < l < n 

(37) 

(k=O, l, ... ,n; k¥=l). 
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In this special case we define the polygon "P E 01 [0, l] by 

( 1p(~)= l for an arbitrary ~ E (~k, ~k+l), 

(38) 
) k arbitrary such that 0 < k < n ~ l ; 

) 1p(x) 0 for x E [0, 1)\(~k, ~k+l); 

~ 1p(x) linear for x E [~k, ~) and x E ( ~, ~k+d· 

In all other cases (36) leads to a contradiction of the assumption on fh 
( k = 0, l, ... , n) since from ( l) it follows that there is at least one qz( x) 

(O<l<n) such that qz(x)>O, so that with /ik=OkZ (k=O, l, ... , n), Okz being 
the Kronecker-symbol 

n n 

L /ik qk(x) = q1(x) > L fJk qk(x) = o. 
k~O k~O 

So, except in the case (37), for "Pm 

w(o) = l 

holds. Defining then "P to be identically equal to "Pm then, in view of (38), 
lemma 3 has been proved. 

Finally, lemma 2 and lemma 3 immediately lead to the validity of 
theorem I. 
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