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KILLING VECTOR FIELDS AND LAGRANGIAN 
SUBMANIFOLDS OF THE NEARLY KAEHLER S” 

By L. VRANCKEN (‘) 

ABSTRACT. - In this paper, we study Lagrangian submanifolds of the nearly K&hler 6-sphere S6(1). We obtain 
a classification of the Lagrangian submanifolds which admit a unit length Killing vector field whose integral 
curves are great circles by relating them to almost complex surfaces in S6 (1) or holomorphic curves in CP”(4). 
0 Elsevier, Paris 

1. Introduction 

Considering R7 as the imaginary Cayley numbers, it is possible to introduce a vector 
cross product x on R7, which in its turn induces an almost complex structure J on the 
standard unit sphere Se’ in R7 which is compatible with the standard metric. Details about 
this construction are recalled in Section 2. 

With respect to the almost complex structure J on S’, there are two natural classes of 
submanifolds M to be investigated. Namely those which are almost complex, i.e. those for 
which J maps the tangent space into itself and those which are totally real, i.e. those for 
which J maps the tangent space into the normal space. It is shown in [G] that if M is an 
almost complex submanifold then the dimension of M equals two. 

Almost complex surfaces are always minimal and have ellipse of curvature a circle, 
i.e. the map u c+ CY(V, w), where v E UM, and Q denotes the second fundamental form 
describes a circle in the normal space. If the map w H (Va)( w, v, ‘u), 21 E UMp also 
describes a circle, then M2 is called superminimal. This class of almost complex surfaces 
has been investigated by Bryant [B]. In particular, he showed the existence of almost 
complex superminimal surfaces in S6 for every genus. Other special classes of almost 
complex submanifolds have been studied in [BPW] and [BVWl]. 

A totally real submanifold of S6 is either 2- or 3-dimensional. Unlike almost complex 
surfaces, a totally real surface need not be minimal. However, if it is minimal a classification 
can be found in [BVW2] relating these to either: 

* minimal surfaces in S3, 
* totally real minimal surfaces in CP2, 
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* a special class of S1-symmetric immersions of W2 into S” contained in either a 
totally geodesic S4 or S5. 

Here in this paper, we want to investigate 3-dimensional totally real submanifolds of 
S6. Traditionally, those submanifolds are called Lagrangian submanifolds. It was shown 
by Ejiri [El] that such submanifolds are automatically minimal. Some special classes of 
examples of Lagrangian submanifolds were previously studied in [DV2] and [DDVV]. It 
turns out that all of these examples are related to either almost complex surfaces in S6 or 
holomorphic surfaces in CP2. We investigate the Lagrangian submanifolds of S’s which 
admit a unit length Killing vector field X whose integral curves are great circles in S”. We 
relate these submanifolds with Hopf lifts of holomorphic curves in CP2 and with tubes of 
radius ; in the direction of the first or second normal bundle on a superminimal almost 
complex surface. A more precise formulation will be given in Section 3. 

Finally, in Section 4, we then investigate some further properties of those holomorphic 
curves which are tubes of radius 5 in the direction of the first normal bundle. For properties 
of the two other classes of Lagrangian submanifolds mentioned in the theorem, we refer 
to [DV2]. 

2. Preliminaries 

We give a brief exposition of how the standard nearly Kahler structure on S”(1) arises 
in a natural manner from the Cayley multiplication. We also describe how we can use 
the vector cross product on W7 in order to define the Sasakian structure on S5( 1). For 
further details about the Cayley numbers and their automorphism group G2, we refer the 
reader to [W] and [HL]. 

The multiplication on the Cayley numbers 0 may be used to define a vector cross 
product x on the purely imaginary Cayley numbers R7 using the formula 

(2.1) ZL x 71 = &L,: - ML), 

while the standard inner product on lR7 is given by 

(2.2) (u,.u) = -;(,,,I + ?JtL). 

It is now elementary [HL] to show that 

(2.3) 7L x (u x w) + (u x 7l) x w = 2(u, w)v - (u, v)w - (w, v)u 

and that the triple scalar product (U x 71, w) is skew symmetric in U, v, w. 
Conversely, Cayley multiplication on 0 is given in terms of the vector cross product 

and the inner product by: 

(2.4) (7. + u)(s + u) = 7-s - (7L, 7l) + 7-u + su + (u x 71). r, s E Re(O), u> ‘u E Im(Q). 

In view of (2.1), (2.2) and (2.4), it is clear that the group G2 of automorphisms of 0 is 
precisely the group of isometries of W7 preserving the vector cross product. 
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An ordered basis ul, . . . . u7 is said to be a Ga-frame if 

(2.5) 213 = Ul x ‘U2, ug = Ul x u4, ‘zL6 = ‘112 x U4, u7 = u3 x u4. 

For example, the standard basis el , . . . . er of R7 is a Gz-frame. Moreover, if ul, ua, ~4 are 
mutually orthogonal unit vectors with u4 orthogonal to u1 x u2, then ul, ua, u4 determine a 
unique G2-frame ul, . . . . u7 and ( W7, x ) is generated by ul, us, u4 subject to the relations : 

(2.6) ui x (Uj x IQ) + (Ui x Uj) x Uk = 2s;ku.j - &jUk - SjglLi* 

Therefore, for any G2-frame, we have the following very useful1 multiplication table [WI : 

X ‘IL1 u2 u3 u4 U5 u6 u7 

Ul 

u2 

213 

u4 

U5 

U6 

u-i 

0 u3 -u2 UC5 -u4 -u7 U6 

-u3 0 Ul u6 ‘LG7 -u4 -U.5 

7J2 -u1 0 u7 -u6 u5 -u4 

-a5 -u6 -‘L17 0 ‘Ul u2 u3 

u4 -u7 u6 -u1 0 -u3 7JJ2 

u7 u4 -Us -u2 u3 0 -211 

-u6 ‘1L5 214 -u3 -u2 Ul 0 

The standard nearly Kaehler structure on S6(1) is then obtained as follows : 

Ju = x x u, u E T,&!?(l), x E P(1). 

It is clear that J is an orthogonal almost complex structure on S6(1). In fact J is a nearly 
Kahler structure in the sense that the (2,1)-tensor field G on S6( 1) defined by 

G(X, Y) = (f&- J)Y, 

where p is the Levi-Civita connection on S6( 1) is skew-symmetric. A straightforward 
computation also shows that 

G(X,Y)=XxY-(xxX,Y)x. 

For more information on the properties of ., J and G, we refer to [BVWl] and [DVV]. 
It is well-known (see for instance [B, page 321 or [DVl]) that the complex structure of 

C3 induces a Sasakian structure (cp, [, v, g) on S5( 1) starting from C3. This structure can 
also be expressed using the vector cross product. We consider S5 (1) as the hypersphere 
in S6( 1) c W7 given by the equation x4 = 0 and define : 

j : P(1) 4 C3 : (x1,~2,~3,0,~5,x6,~7) H (x1 + ix5,z2 + ix6,x3 + ix7). 

Then at a point p = (xl, x2, x3,0, x5, x6, x7), the structure vector field < is given by: 

t(p) = (x5, z6,27,0, -21, -x2, -53) = e4 x P, 
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and for any tangent vector 21, we get that 

(2.7) v(v) = u x e4 - (u x e4,p)p. 

Following [YI], we call a submanifold A!.?” of S5 (1) invariant if (p(T,M) c T,M for 
every p. If n is odd, then < is automatically tangent to M. Assume n = 3. The Hopf 
fibration h : S5( 1) --f CP2(4) annihilates [, i.e. dh([) = 0. Then if M3 is invariant, 
h(M3) is a holomorphic curve. Conversely, let 4 : Ni + CP2(4) be a holomorphic curve, 
let PNi be the circle bundle over N1 induced by the Hopf fibration and let 4 be the 
immersion such that the following diagram commutes : 

(2.8) 

PNl --% S5(l) 

1 1 
h 

d 
NI - C2(4) 

Then $ is an invariant immersion in the Sasakian space form S5 (1) with structure vector 
field [ tangent along [. 

3. Lagrangian submanifolds admitting a certain Killing vector field 

Let F : M3 + S6(1) be a Lagrangian immersion. Then, as was shown by Ejiri [El], 
M3 is minimal and G(X,Y) is orthogonal to M for any tangent vector fields X and Y. 
We denote the Levi-Civita connection of M by V. The formulas of Gauss and Weingarten 
are then respectively given by: 

(34 ~‘xR(Y) = F,(VxY) + h(X, Y), 

(3.2) %I = -F,(A,X) + r&, 

for tangent vector fields X and Y and normal vector q. The second fundamental form h 
is related to A, by (h(X, Y, 7) = (A,X, Y). From (3.1) and (3.2) we find that 

(3.3) VjiJF,(Y) = JF,(VxY) + G(F,X, F,Y) 

(3.4) F*(AJYX) = -Jh(X, Y). 

The above formulas imply immediately that 

(3.5) (h(X, Y), J&z) = (h(X, Z), JF,, Y), 

i.e. (h(X, Y), JF,Z) is totally symmetric. Whenever there is no confusion possible, we 
will identify M with its image in S6 and therefore omit F, in the equations (3.1) up to (3.5). 
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Now, we investigate the Lagrangian submanifolds of S6( 1) who admit a unit length 
Killing vector field whose integral curves are great circles in S6( 1). We start by introducing 
a class of Lagrangian submanifolds. 

THEOREM 1. - Let q!~ : N2 + S6( 1) be an almost complex su$ace without totally geodesic 
points. Dejine 

Then, $ defines a Lagrangian immersion if and only if cp is super-minimal. 

Proof. - Let {F,,..., 8’7) be the Gz-frame defined by F1 = 4, Fz = &V, F3 = 
J&(V), F4 = cx(V, V)/p, F5 = CL(V, U)/p = Ja(V, V)/p = FI x F4, Fs = F2 x F4 
and F7 = F3 x F4. Here {U, V} are a local orthonormal frame on N2, Q: is the second 
fundamental form of the surface in S6( 1) and ~1 = I[Q( V, V) 11. We also use the formulas 
of Section 5 of [DV2]. It follows that we can parameterize $ by 

$(Q, t) = costFd(q) + sintFg(q). 

Hence 

(3.6) =- sin tF4 + cos tF5, 

(3.7) $*(V) = (~2 + %I)$* 
( > 

g -p(cos tF2 + sin tF3) 

+ (a3 COS t + (1 + ~4) Sin t)F6 + (~4 cos t - a3 sin t)F7, 

(3.8) h(u) = (a~ - ?&)$J), 
d 

( > 
- at +p(- sin tF2 + cos tF3) 

+((1+u~)~0st-~3sint)F6+(-~3cost-~~sint)F~, 

where b = llh(~,~)I. Th ere ore, f since p # 0, II, defines an immersion. First of all, we 
notice that 

is orthogonal to 1cI+ (&), $J* (V) and $A (U). Next, we put 

a 
x = v - (a2 + 2/J+, at 

We then get that 

y = u - (a1 - 2&. 

(3.9) II, x ti*(W =c1 cos 2tF6 + ,LA sin 2tF7 + a3 cos 2t + f sin 2t + u4 sin 2t F2 

+ (~4 cos 2t - u3 sin 2t - sin2 t)F3. 
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Clearly $J x $*(X) is orthogonal to both G*(X) and &( $). Hence 4) : UN2 -+ S” 
defines a Lagrangian immersion if and only if 

(3.10) 0 = ($ x d)*(X). Q*(Y)). 

Using (3.9) and (3.8), we see that (3.10) is equivalent to 

0 = 4 -2~3 sin 3t + (2~4 + 1) cos 3t). 

Since this has to be valid for all values of t, we deduce that $ is Lagrangian if and 
only if a3 = 0 and a4 = -i, i.e. if and only if 4 : N* -+ S6(1) is a superminimal 
almost complex curve. n 
In case a non totally geodesic surface is branched or has totally geodesic points, it is still 
possible to define plane bundles Lo and L1 such that Lo and L1 correspond to $* (TN*) 
and the first normal space except at the isolated branch points or totally geodesic points (see 
[SW]). This allows us to extend 4 to branched points and totally geodesic points. Since for 
an almost complex superminimal surface, we have a3 = 0 and u4 = - k, it immediately 
follows from (3.6), (3.7) and (3.8) that if 4 is an immersion, $ is an immersion too. 

LEMMA 3.1. - Let cp : N2 + 5’” be an almost complex superminimal immersion without 
totally geodesic points and let q!! be as dejined in Theorem 1. 

Then li,* ($) is a unit length Killing vector field whose integral curves are great circles. 

Proof. - Since 

it follows that 

h’d=O (‘ > at’% ’ 
v&=0. 
(- ->= 
aa 1 dt’dt . 

This proves that $*( $) is a unit length vector field whose integral curves are great circles 
in S6( 1). Therefore, in order to show that $A+( &) is Killing, it is sufficient to show that : 

(3.11) 

(3.12) 

(v,$x) = (v,.;,,) =o, 

(V,~,Y)+(V&X) =o 

In order to show (3.11) and (3.12), we first remark that since cp : N2 + S6(l) is 
superminimal, (3.7) and (3.8) reduce to: 

(3.13) h(X) = $J* 
( 

V - (~2 + 2pl)$)= -p(costF2 + sintF3) + i(sintF, - costFi); 

(3.14) A(Y) = 6 u - (~1 - 2p2)$) = -p(sin tF2 - cos tF3) + i(,os tFs + sin tF7). 
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Now, it follows that 

=D v-((LL+2~Ll)~(-sintF4+costF:,) 

= - sin t 
( 

--j~F2 + (u2 + 2p1)F5 - iF7 
> 

+ cost 
( 

-j~Fz - (uZ + 2p1)F4 + ;F6 
> 

- (a2 + 2P,)(- cos tF4 - sin tF5) 

=h(sin tF2 - costF3) + i(cos tFG + sintF7). 

Similarly, we obtain that 

(3.16) DY$* =p(-costF2-sintF?)+i(-sintFe+costF~). 

On the other hand, (3.9) reduces to 

(3.17) ‘$ x G*(X) = j1,cos2tFc + psin2tF7 - iF3. 

Using similar computations, we also find that 

(3.18) li/ x G,*(Y) = psin2tFG - pcos2tF7 + i4. 

Therefore, (3.15) and (3.16) imply that : 

(3.19) 

(3.20) 

(3.21) 

The equations (3.11) and (3.12) now immediately follow from (3.19) and (3.20). This 
completes the proof of the Lemma. n 

Now, we are able to formulate the Main Theorem of this paper : 

THEOREM 2. - Let F : I@ + S6( 1) be a Lagrangian immersion which admits a unit 
length Killing vector j?eld whose integral curves are great circles. Then there exist an 
open dense subset U of iW3 such that each point p of U has a neighborhood V such that 
F : V -+ S6 (1) satisfies Chen’s equality , or F : V + S”( 1) is obtained as in Theorem 1. 
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Proof. - The proof of the theorem will be divided into different steps. We start with the 
construction of a orthonormal tangent frame on an open dense subset of M. 

Step 1. - We choose E3 as the unit length Killing vector field whose integral curves 
are great circles in S6. Then we have 

(3.23) h(E3, Es) = 0. 

Hence AJE3 E3 = 0 and E3 is an eigenvector of A JEW. Denote by Ur = {p E MIAJ~s z 0} 
and by Us = M \ ur. Then Ur U Uz is an open dense subset of M. 

First, assume that p E Uz. Then AJAX = 0. Hence it follows that h(E3, X) = 0, for 
any tangent vector field X. From [CDVVl] and [CDVV2] we know that this implies that 
M satisfies Chen’s equality. 

Therefore, we may assume that p E U1. Since by [El], a Lagrangian submanifold is 
automatically minimal, it follows that we can choose local differentiable vector fields El 
and Ez such that G(E1, E2) = JE3 and 

(3.24) h(El, Es) = XJEl, 
(3.25) h(E2, Es) = -XJEz; 

where X is a nonzero function. We then introduce local functions (t and ,fj such that 

(3.26) h(El, El) = aJEl - /3JEz + XJE3, 
(3.27) h(Ez, E2) = -cxJE1 + /3JE2 - XJE3, 
(3.28) h(El, E2) = -,L?JE1 - crJEz. 

Since Es is a Killing vector field, we also know that we can write 

(3.29) 
VE~EI =aEa, VET E2 = -aEl, VE~ ES = 0, 
vElE3 =bEz, \JE,-& = cE2, VEX& = -cEl - bE3, 
VEXES = -bEI, V,,E2 = dEl, VE2E1 = -dEz + bEy. 

Step 2. - Next, we investigate the Codazzi and Gauss equations, in order to obtain some 
relations between the functions a, b! c, d, ~11, ,6’ and X and their derivatives. First, we remark 
that the Codazzi equation states that 

(Vh)(X, Y, 2) = V+-h(Y, 2) - h(VsY, 2) - h(Y, VsZ). 

is symmetric in X, Y and 2. Therefore, since 

(Vh)(E,, Es, I-33) = - 2h(VE,E3, E3) = 2bXJE2, 

(Vh)(JhEl,E3) =E&)JEI + XV&JEI - h(VE,El, E3) - h(EI,VE3E3) 
=Es(X)JEl + XJE2 + XaJE2 + aXJE2 
=Es(X) JE1 + (2a $ l)XJE2, 

TOME77-1998-N”7 
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and X is a nonzero function, we deduce that : 

(3.30) E3(4 = 0, 

(3.31) .,b_l 
2’ 

Similarly, we obtain from (Vh)(E2, El,&) = (Vh)(&, Ez, E3) that 

(3.32) E&t) = 2Xc, 

(3.33) El(X) = 2Xd. 

Investigating the consequences of (3.30), (3.32) and (3.33), we also find that 

0 = &(&(A))-&@l(A))- (bE3 - VE~EIP 

= -2XE3(d) - 2(b - a)Xc. 

Hence we have 

(3.34) 

Similarly, we also obtain that 

Es(d) = -;c. 

(3.35) Es(c) = ;d. 

We now use the Gauss equation. Since 

R(E1, E,)E3 =El - A /L(E~,E$~ + A(E~,E& 

=El - XAJE~ E3 

=(l - X2)E1, 

and 

R(El,-WG =VE~VE~E~ - VE~V&E~ - Vcb-ajEzE3 

= - Es(b)& + baE~ + (b - a&T1 

= - E3(b)E2 + b2E1, 

it follows that 

(3.36) b2 + x2 = 1. 

From 

WdWh = -A~(E~,E,& + AIL(E~,E~)E~ 

= A&a-& +-+JE~-~JE~E~ 

= X(--BE, - cyE2) - PXEl + cuAEz 

= -2PXE1, 
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and 

R(Ez>EdEz = VE,~E,& - VE~VE.~E~ - V(,--b)ErE2 
= -Ed+% - &(b)E3 - acE2 + E&)E1 + ncE2 - (a - b)dEl 

= -+I - Es(b)Es + E&)E1 + ;dEl 

= E&WI - J%(~)J%, 

it follows that 

(3.37) El(a) = -2px. 

Similarly, it follows by computing R(E3, E2)E1 in two different ways that 

(3.38) E2(u) = -2aX. 

Step 3. - An exceptional case. We interprete the above equations in the case that 
X = fl on an open subset of U1. It then follows by (3.31) and (3.36) that on this open 
subset, we have b = 0 and n = -i. Then (3.32) (3.33), (3.37) and (3.38), imply that 
n = ,l3 = c = d = 0. Since now 

(‘C7h)(E1, E2, E2) = V& (-XJE2) = -XJE3, 

and 
(Vh)(Ez, EI, Ez) = -h(b,E~, E2) - h(El, b2E2) = 0, 

a contradiction follows. Therefore, we can restrict ourselves to the open dense subset V 
of Ui on which X2 # 1. 

Step 4. - Since 0 # X2 # 1, we can introduce a function s such that by (3.36) we have 

(3.39) b = cos s, 

(3.40) X = sin s. 

where cos s # 0 # sins. From (3.31) and (3.37) (respectively (3.31) and (3.38)) it then 
follows that : 

(3.41) dsins = pcoss, 

(3.42) csin.9 = acoss. 

Step 5. - The construction of the corresponding almost complex surface. We take local 
coordinates (t, U, U) in a neighborhood of p E V such that $ = E3 and p corresponds 
to (0, 0,O). We identify M3 with I x N2, where the variable t corresponds to I and we 
define by map (p from M3 into S6 by 

cp(t; u, u) = F x F,(E3)(tr u, II). 

Since 

(3.43) = F,(Es) x F,(G) + F x (DESF*(&)) = 0, 

TOME 77 - 1998 - No 7 
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it follows that (p is independent of t. We call 

We find that 

(3.44) cp,(El) = Fe(&) x F&F&) + F x (C(E2) + AF x Fe(&)) 

= (b - l)F x F,(E2) - XF,(&), 

and 

(3.45) cp,(&) = F,(Ez) x F&E,) + F x (-bF&%) - AF x F*(G)) 
= AF,(&) - (b - l)F x Fe(&). 

From (3.43), (3.44) and (3.45) it follows that cp defines an immersion of N2 into S6. 
Defining local functions f, g : N2 -+ R such that VI = E1(O,u, w) + f(u,u)l&(O, u,v) 
and V2 = Ea(O,z~,v) + g(u,v)Es(O, ZL, w) are tangent to N2, we deduce from (3.44) and 
(3.45) that 

(3.46) p*(h) = (b - 1)F x F@2) - ~F~(~l)lt=o, 

(3.47) y*(h) = M-7,(&) - (b - 1)F x F,(&)lt=o. 

Since 

(F x F*(E3)) x Fe(&) = F&G) 

(F x F@3)) x Fe@,) = -F,(G) 

(F x J’,(E3)) x (F x R(E2)) = Fe(E3) x F,(&) = -F x F,(G) 

(F x R(E3)) x (F x Fe(&)) = F,(E3) x F&G) = F x F,(E,) 

the equations (3.46) and (3.47) imply that cp defines an almost complex surface in S6. 
We now compute the first normal space. Since cp defines an almost complex surface, it 
suffices to compute DVI cp* (VI) and DV2 cp*(Vl). Using the equations derived in Step 3 
and 4 of the proof, it follows that: 

h;%(K) =&+fE3 ((b - 1)F x R(E2) - AF,(E,)) 

=-- 2- ;;;;dF x F,(E2) + (b - l)F&%) x F,(E2) + (b - l)F x (-cF,(E,) 

- bF,(E3) - PF x Fe(&) - aF x F,(E2)) 
- 2sinsdF,(El) - sins(cF,(&) - F + aF x F,(&) - ,BF x Fq(E2) 

+ M’ x F,(E3)) 

+ f(b - 1)(-F x F&S)) + (b - l)fF x (-aF,(l.$) - XF x F,(E,)) 

- kf(aFe(E2) + XF x F,(G)) 

+ sinsFjt,o + ~(COSS - l)F x F,(E3)ltTo, 
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and 

@4(P*wl) =a%+& 0 - l)F x WE,) - M*(E,)) 
ZZ- 2- ;;;p x F*(E2)+@- 1)F x (dF*(E1)- F - aF x F*(&) 

+ PF x F,(E2) - XF x F,(Es)) 

- 2sinscF,(El) - sins(-dF,(E2) + bF x F,(E3) - pF x F,(l$) 

- aF x FJE2)) 

+ S(b - V&W x Ji(&) + g(b - 1)F x (-aF,(El) - XF x F,(E2)) 

- h(aF,(&) + XF x F,(E,)) 

=(-lg + ;)v*(v, + cQ+%*(W 
+ sinsF,(E3)ltE0. 

Since F x F,(E3)jt,o = cp, the above formulas imply that the first normal to the almost 
complex immersion cp is spanned by Fltzo and F,E3 jt=a. Since the integral curves of 
Es are great circles, we see that 

F(t, u, u) = cos tFlt,o + sin tF,E31t+ 

Hence F is obtained as a tube with radius $ in the direction of the first normal bundle on 
an almost complex surface. Applying Theorem 1 shows that cp is necessarily superminimal. 
This completes the proof. n 

Remark. - The totally real submanifolds of S6( 1) which satisfy Chen’s equality have 
been classified in [DV2]. It is shown that they correspond to the Hopf lift of a holomorphic 
curve in CP2 or to a tube with radius t in the direction of the second normal bundle on 
an almost complex surface in S 6. It is straightforward to compute that all examples of the 
first type admit a Killing vector field, whereas the examples of the second type admit a 
Killing vector field if and only if the almost complex surface is superminimal. 

4. Further properties 

In this section, we investigate some further properties of the class of Lagrangian 
immersions discovered in the previous section. We continue with the computations started 
in Lemma 3.1. Putting 

El =X/ p2+;, 

Ea =Y/ p2 + f; 

Es =a/at, 
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a lengthy but straightforward computation shows that: 

al sin t - a2 cost) al cost + u2 sin t) 
(p2 + a,: (p” + +,s 

J-I.& + ficost JE3 
(P” + $) 

h(El E2) =- ~p(alcost+a2sint) JE1 _ &p(ulsint-azcost) JE2+ psint JE 
3 2 (p” + p 2 (p2 + i)Z b2++) 3 

h(E2 E2)=-~p(uisint-u~cost)JE1+~p(u~CoSt+u~sint)JE2- pcost JE 

1 2 (p2 + p 2 (CL2 + +,g (p2+i) 3 

h(El, Es) =- pcost JE1 + 
p2 + i 

!!.CJE~ 

p2 + $ 

h(E2,E3) =*JE~ - !!ELJE~ 
p2 + a p2 + $ 

h(E3, E3) =O. 

Using the Gauss equation, it now follows that the normalized scalar curvature p of the 
immersion $ is given by 

(4.1) 
2 

p=l- 
(p2”+ ,)2 

1 p2(aT + u;) -- 
6 (p2+ +)” ’ 

and that the eigenvalues of the Ricci tensor are given by 

X3=2- 2P2 
(p” + i)” - J 

1 p4(u: + a$>” + P2# + a;> 1 /J2(uT + u;> 
Is 

-- 
(p2+ a)6 b2 + a>” 4 (/A2 + a,3 * 

Therefore, the Ricci tensor has a double eigenvalue, in which case the example can also 
be obtained as one of the examples in [DDVV] if and only if ai = uz = 0, and hence K 
is constant. It is well known, see a.o. [E2] that a superminimal almost complex surface 
with constant curvature, which is not totally geodesic, is Gs-congruent to the Veronese 
surface with constant curvature i in S6. It then follows that the corresponding Lagrangian 
submanifold A4 is an Einstein space. Since it is S-dimensional, it has constant sectional 
curvature. 

From Corollary 5.1, we notice that A4 has constant scalar curvature if and only if there 
exists a constant k such that 

(4.2) +‘+ ;)“= 6p2(p2 + ;)+(Vo)2 + (U(p))“. 

Clearly the superminimal almost complex surface with constant Gaussian curvature 5 
satisfies (4.2). In the remainder of this section, we will show that this is actually the only 
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almost complex superminimal surface in S6( 1) which satisfies (4.2). We compute that the 
Gauss and Ricci equation for a superminimal almost complex surface is S6 reduce to 

(4.3) V(,&!) + U(p1) - pf - p; = 1 - 2P2, 

(4.4) V(Q) - U(Q)+ +p1n2 - ~2~x1 = 0. 

THEOREM 3. - The Lagrangian immersion $, corresponding to an almost complex 
super-minimal surjace ‘p : N2 + SG, as obtained in Theorem I has constant scalar 
curvature if and only if cp is the Veronese immersion in S6 with constant curvature i. 

Proof. - Using the classification of superminimal almost complex surfaces with constant 
curvature, it is sufficient to show that b is constant. We assume that this is not the case 
and will derive a contradiction. 

We choose a local orthonormal basis such that U(p) = 0. We restrict to the open set on 
which p # 0 # al. Since or. is non-constant this is an open dense subset of N2 and it follows 
that a2 = 0. Recall that V(p) = alp. Since V(U(p)) - U(V(p)) = (VvU - 17uV)pL, 
we deduce that u(al) = alpl. Combining this with (4.2) we deduce that hl = 0. Hence 
(4.4) reduces to 

(4.5) V(a) = p2a1 - 

Deriving (4.2) in the direction of V, using (4.5) and (4.2) we deduce after a long but 
straightforward computation that 

(4.6) 16aIp2k2 - 32kpG - 12kp4 + 401*.* + t = 0. 
4 

We now put p2 = --&. From (4.6) it then follows that 

p = &(-k - 160~~ + 48k,u4 + 128k$). 

Substituting this into (4.3), using again (4.2) we deduce after a straightforward computation 
that p is constant, which is a contradiction. n 
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