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a b s t r a c t

Biomedical prediction based on clinical and genome-wide data has become increasingly important in dis-
ease diagnosis and classification. To solve the prediction problem in an effective manner for the improve-
ment of clinical care, we develop a novel Artificial Neural Network (ANN) method based on Matrix
Pseudo-Inversion (MPI) for use in biomedical applications. The MPI-ANN is constructed as a three-layer
(i.e., input, hidden, and output layers) feed-forward neural network, and the weights connecting the hid-
den and output layers are directly determined based on MPI without a lengthy learning iteration. The
LASSO (Least Absolute Shrinkage and Selection Operator) method is also presented for comparative pur-
poses. Single Nucleotide Polymorphism (SNP) simulated data and real breast cancer data are employed to
validate the performance of the MPI-ANN method via 5-fold cross validation. Experimental results dem-
onstrate the efficacy of the developed MPI-ANN for disease classification and prediction, in view of the
significantly superior accuracy (i.e., the rate of correct predictions), as compared with LASSO. The results
based on the real breast cancer data also show that the MPI-ANN has better performance than other
machine learning methods (including support vector machine (SVM), logistic regression (LR), and an
iterative ANN). In addition, experiments demonstrate that our MPI-ANN could be used for bio-marker
selection as well.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction and background

In the biomedical area, predicting clinical outcomes and diag-
nosing disease from available information, such as clinical and ge-
netic evidence, is an important task for patient care and disease
cure, especially for cancer applications [1,2]. Biomedical prediction
problems are widely encountered in clinical applications including
prognosis, diagnosis, and prediction of response to therapy. As
information technology and medical equipment rapidly develop,
more and more data, including clinical and genetic information,
can be collected for medical utilization, which can increase the
accuracy of biomedical prediction. However, as data become very
large, especially genome-wide data, the processing of the data
and the computation time for biomedical prediction is time-con-
suming and difficult. The biomedical prediction problem has been
increasingly investigated by biomedical and informatics research-
ers [1–4]. This paper will address this challenging problem via
developing an effective method and its algorithm.
The biomedical prediction problem can be mathematically
described as follows. Given an N-sample training data set with
elements defined as fXi;YigN

i¼1, where Xi = [xi1,xi2, ... ,xim]T e Rm (with
m being the number of features/attributes) and Yi = [yi1,yi2, . . . ,yin]T

e Rn (with n being the number of targets), the prediction problem is
to discover the relation between Xi and Yi and develop a model to
describe such a relation, so that the output of the model, bY i, can be
as close to the actual targets Yi as possible. The problem can be
described as

Xi !M! Yi; s:t:jYi � bY ij ! 0; i 2 f1;2; . . . ;Ng: ð1Þ

The discovered model M can then be used for the outcome pre-
diction of a new observation eX. This is important and useful for
genetic prediction, clinical diagnosis, and disease classification.
The problem is difficult to solve because biomedical data are often
discontinuous, incomplete (values missing) and large-scale.

Different models and methods have been developed for the bio-
medical prediction problem [3,5–11]. For instance, a Bayesian ap-
proach using the logistic regression model was presented in [5]
for cancer classification and prediction. The risk prediction of pros-
tate cancer recurrence was investigated in [6] through regularized
rank estimation in partly linear AFT (Accelerated Failure Time)
models using high-dimensional gene and clinical data. An automat-
ically derived class predictor was presented in [3] to determine the
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class of new leukemia cases based on gene expression monitoring
by DNA micro-arrays. An effective hybrid approach for selecting
marker genes was developed in [7] for phenotype classification
using micro-array gene expression data. A Bayesian network model
for disease outbreak prediction was developed in [8].

Artificial Neural Networks (ANNs) are widely used in science
and information technology due to their notable properties includ-
ing parallelism, distributed storage, and adaptive self-learning
capability [12–15]. They have also been utilized to solve biomedi-
cal problems, especially in the areas of classification and prediction
[9–11]. For example, an artificial neural network, which was devel-
oped in [9] to determine whether breast cancer is present based on
the age of the patient, mass shape, mass border, and mass density,
achieved high predictive rates. A noise-injected neural network
was designed in [10] for the classification of small-sample expres-
sion data for breast cancer patients. It demonstrated superior per-
formance compared to the other methods tested. Another artificial
neural network approach was used to reduce the number of gene
signatures for the classification of breast cancer patients and the
prediction of clinical outcomes, including the capability to accu-
rately predict distant metastases [11]. However, all these ANN
methods become very time-consuming as data become bigger, be-
cause the traditional learning method based on back-propagation
algorithm is employed, and therefore they may not be applicable
to practical biomedical prediction. A hybrid neural network and
genetic algorithm method was applied to breast cancer detection
in [16]; it used a genetic algorithm to determine the weights of
the neural network (i.e., a multi-layer perceptron (MLP)). However,
time-consuming iterations are still needed to get the weights for
this hybrid ANN method.

Based on our previous work on weight determination of neural
networks [13,14] and related work on ANN learning [17], we devel-
op a Matrix-Pseudo-Inversion based Artificial Neural Network (MPI-
ANN) for biomedical prediction. MPI-ANN is a feed-forward neural
network with one input layer, one hidden layer and one output layer.
Most importantly, MPI-ANN can directly determine the weights of
the neural network in one step using pseudo-inversion without a
traditional weight-updating iteration. For comparison purposes,
LASSO (Least Absolute Shrinkage and Selection Operator) [18,19] is
also presented for the biomedical prediction problem. Experimental
results based on a set of simulated data sets and a real data set dem-
onstrate the effectiveness and efficiency of the developed MPI-ANN
method. Not only does MPI-ANN significantly outperform LASSO in
terms of prediction accuracy for the simulated datasets, but it also
demonstrates better performance in terms of statistical measure-
ments and efficiency than other machine learning methods includ-
ing support vector machine (SVM), logistic regression (LR) and an
iterative ANN when analyzing a real breast cancer data.

The remainder of this paper is organized in four sections. Section 2
presents the MPI-ANN and the LASSO methods, and also introduces
the experiment data sets and methods. In Section 3, experimental re-
sults are described and analyzed. A discussion appears in Section 4,
and Section 5 concludes the paper with final remarks.
2. Methods

In this section, the MPI-ANN method is presented and devel-
oped for the biomedical prediction problem. The comparative
method, LASSO, is also presented. Experimental data sets and the
experimental method are finally introduced.
2.1. MPI-ANN

To solve the biomedical prediction problem, a feed-forward
neural network is constructed according to the structure diagram
shown in Fig. 1. The constructed MPI-ANN has three layers, i.e.,
the input layer, the hidden layer, and the output layer. The inputs
to the neural network are the observed values of the features in the
data set, while the outputs are the targets.

Specifically, in the input layer of MPI-ANN, the kth
(k = 1,2, . . . ,m) input of the MPI-ANN is the observed value of the
kth feature. Each neuron of the input-layer uses a linear activation
function f(x) = x; i.e., the values input into the neural network are
directly passed to the hidden layer. Moreover, the hidden layer
has p neurons, which employs a group of activation functions fl

(l = 1,2, . . . ,p); i.e., the lth hidden-layer neuron adopts fl as its acti-
vation function. Different kinds of non-regular functions [14,17]
can be employed as the activation function of the hidden nodes.
In this paper, based on a universal approximation theorem [20],
the sigmoid function (i.e., f(x) = 1/(1 + e�x)) is employed for the
MPI-ANN, since it is continuous (and thus differentiable), its deriv-
ative can be computed quickly, and it has a limited range (from 0 to
1, exclusive) [20]. The connecting weights between the input and
hidden layers, ukl e R (k = 1,2, . . . ,m; l = 1,2, . . . ,p), and the biases
of the neurons in the hidden layer, bl e R(l = 1,2, . . . ,p), are ran-
domly generated in any intervals of R, since random choice of
the input weights and hidden layer biases can exactly learn the
training observations, make learning extremely fast, and produce
good generalization performance according to [17,21]. Further-
more, the neurons in the output layer also use a linear activation
function, and the inputs from the hidden layer are summed as
the outputs of the neural network. The MPI-ANN can be considered
as a kind of BP (Back Propagation) neural network; so it could use
an error back-propagation algorithm [13,15,22] as its training law
to determine the weights, wlj e R (l = 1,2, . . . ,p; j = 1,2, . . . ,n), be-
tween the hidden and output layers. To avoid the lengthy learning
iteration of the traditional error back-propagation (BP) algorithm
based on the gradient-descent method [13,15,22], we develop a
matrix pseudo-inversion based weight direct determination meth-
od to determine such weights for biomedical prediction.

Mathematically, the MPI-ANN model can be formulated as

yij ¼
Xp

l¼1

hilwlj; ð2Þ

where i = 1,2, . . . ,N; j = 1,2, . . . ,n and

hil ¼ fl

Xm

k¼1

uklxik þ bl

 !
; ð3Þ

is the output of the lth node of the hidden layer for the ith sample.
Based on matrix theory [23], the MPI-ANN model (2) can be ex-

pressed as the following matrix form.

Y ¼ HW; ð4Þ

where

Y¼

y11 y12 � � � y1n

y21 y22 � � � y2n

..

. ..
. . .

. ..
.

yN1 yN2 � � � yNn

266664
3777752RN�n; H¼

h11 h12 � � � h1p

h21 h22 � � � h2p

..

. ..
. . .

. ..
.

hN1 hN2 � � � hNp

266664
3777752 RN�p;

W¼

w11 w12 � � � w1n

w21 w22 � � � w2n

..

. ..
. . .

. ..
.

wp1 wp2 � � � wpn

266664
3777752Rp�n:

The matrix-form error-function for MPI-ANN is expressed as
follows:

E ¼ kY � Y k2 ¼ kY �HWk2
; ð5Þ



Fig. 1. Structure diagram for MPI-ANN.
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which is equivalent to the traditional element-wise error function
for ANN learning. Next, we present a matrix-based weight determi-
nation theorem based on previous work [13,14,17].

Theorem. Given observation {X, Y}, the weight matrix W of MPI-ANN
can be directly determined by

W ¼ HyY; ð6Þ

where Hy ¼ HTH
� ��1

HT is the pseudo-inverse (Moore-Penrose

generalized inverse) [23] of matrix H defined in (4) and (3).

Proof. Based on the variable definitions of the matrix-form
MPI-ANN model (4) and the definition of the matrix-form error
function (5), the traditional training BP algorithm [13,15,22] for the
neural network can be written in matrix form as follows according
to matrix theory [23]:

Wðkþ 1Þ ¼WðkÞ � gð@E=@WÞjW¼WðkÞ

¼WðkÞ � gHTðHWðkÞ � YÞ: ð7Þ

After a sufficient number of iterations, the error function (5) would
become small enough, i.e., limk?1 E = 0 and the weights can then be
obtained. At the same time, the values of the connecting weights
would become unchanged; i.e., limk?1(W(k + 1) �W(k)) = 0. Thus,
we can let W(k + 1) = W(k) = W. Eq. (7) then reduces to HT(HW
� Y) = 0 and we have W = (HTH)�1HTY. As the pseudo-inverse
(Moore-Penrose generalized inverse) [23] of matrix H can be
defined as H� = (HTH)�1HT, we have W = H�Y. The proof is now com-
plete. h

In fact, the weight W determined by (9) is the least square solu-
tion of linear Eq. (6) based on an error function (5) [17]. We see
that the weights can be determined by (6) in one step, which is
much more efficient than traditional feed-forward neural network
with lengthy training iterations. Preliminary research using simu-
lations has shown that much less computational time (e.g., about
1850 times less time in the example of non-linear system identifi-
cation in [14] and about 255 times less time in the example of real
medical diagnosis in [17]) is required for this type of pseudo-in-
verse weight-determination ANN than conventional BP neural net-
works [13,14,17]. In all, we see the significantly superior efficiency
of MPI-ANN over traditionally iterative ANN, which has been
analyzed above and also mathematically and practically proven
in the analysis and results in previous work [13,14,17] (including
our previous work [13,14]).
Based on the theoretical analysis of the MPI-ANN model above,
the procedure of the MPI-ANN algorithm can be described by the
following steps.

(1) Network construction: construct MPI-ANN based on the net-
work structure shown in Fig. 1.

(2) Weight and bias generation: randomly generate weights, ukl

(k = 1,2, . . . ,m; l = 1,2, . . . ,p), between the input and hidden
layers, as well as the biases of the hidden neurons,
bl(l = 1,2, . . . ,p).

(3) Weight determination: calculate the weights, wlj

(l = 1,2, . . . ,p; j = 1,2, . . . ,n), between the hidden and output
layers based on (6) and the training data sample fðXi;YiÞgN

i¼1.
(4) Prediction testing: calculate the predicted outcome for the

testing data sample feXig
N

i¼1 using (2) based on the deter-
mined weights wlj.

2.2. LASSO

For comparative purposes, the LASSO (Least Absolute Shrinkage
and Selection Operator) method is also presented to solve the pre-
diction problem. LASSO is a shrinkage linear method for regression,
which is simple and often provides an adequate and interpretable
description of how the inputs affect the output [18,19].

LASSO fits the following linear model for the jth (j = 1,2, . . . ,n)
target of the biomedical problem (1),

ŷij ¼ b0 þ b1xi1 þ b2xi2 þ . . .þ bmxim; ð8Þ

where b0,b1, . . . ,bm are the model parameters and can be obtained
by

min
XN

i¼1

ðyij � ŷijÞ2 s:t:
Xm

k¼0

jbkj 6 s; ð9Þ

with s being the bound turning parameter. LASSO could also be ex-
pressed as the equivalent Lagrangian form

b̂ ¼ arg min
b

cj � vb
� �T

ðcj � vbÞ þ kkbk1; ð10Þ

where cj = [y1j,y2j, . . . ,yNj]T e RN�1, bj = [b0,b1, . . . ,bm]T e R(m+1)�1,

v = [v1,v2, . . . ,vm]T e RN�m, with vi = [1, x1i,x2i, . . . ,xNi]T e RN�1, and
k P 0 determines the amount of shrinkage. We see that the compu-
tation of the LASSO solution is a Quadratic Programming (QP) prob-
lem. The QP problem could be solved readily using the MATLAB
routine ‘‘QUADPROG’’ [24], or solved preferably by using neural
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networks [25,26]. Note that when s is large enough (i.e., k ¼ 0), LAS-
SO is multiple linear least squares regression; when s P 0 (i.e.,
k > 0) is a smaller value, LASSO solutions are shrunken versions of
the least squares estimates [19].

The computation of the entire path of the LASSO solution can be
achieved based on Least Angle Regression (LAR) [27], which is inti-
mately connected with LASSO. That is, LAR provides an extremely
efficient algorithm for computing the entire LASSO path, which
gives the entire path of LASSO solutions. Different packages have
been developed for the computation of LASSO, such as ‘‘lasso4j’’
[28] in JAVA and ‘‘glmnet’’ [29] in R [30]. In our experiments, ‘‘las-
so4j’’ is used.

2.3. Data sets

Two different data sets are employed for the validation of the
performance of the developed MPI-ANN algorithm as well as the
LASSO method. They are SNP (Single Nucleotide Polymorphism)
simulated data sets [31] and the publicly available UCI-BCW [Uni-
versity of California, Irvine (UCI) Breast Cancer Wisconsin] real
data set [32].

The SNP simulated data are computer-generated SNP data. They
consist of 28,000 simulated data sets generated from 70 different
genetic models of 2-SNP strict epistasis. The models were devel-
oped based on 70 different penetrance functions that define a
probabilistic relationship between genotype and phenotype, which
lead to different sensitivities between SNPs and diseases [31]. For
example, according to Supplementary Table 1 in [31] and our find-
ings using Bayesian network based methods in our previous stud-
ies [33–35], Models 55–59 have the weakest broad-sense
heritability (0.01) and a minor allele frequency (0.2), which would
have the lowest detection sensitivity between features and target.
In contrast, Models 25–29 have the strongest broad-sense herita-
bility (0.4) and a major allele frequency (0.4), which has the high-
est detection sensitivity. For each model, there are 4 different
sample-sizes of data sets, i.e. 200, 400, 800, and 1600. For each
sample-size in each model, 100 data sets are generated. Within
each data set, there are 20 features (F0,F1, . . . ,F19) with values being
0, 1, or 2 (corresponding to three different states of a SNP), and one
disease class indicator with value being 0 or 1 indicating non-dis-
ease or having-disease. The numbers of non-disease and having-
disease samples are the same in each data set. Note that, for a gen-
erated pair of epistatic SNP values (i.e., F0 and F1), a set of other 18
SNPs (i.e., F2 � F19) assigned random values was appended to sim-
ulate SNPs that are non-informative with respect to the disease
status [31–35]. The first and the second features (i.e., F0 and F1)
are the predictors for the disease.

The UCI-BCW real data set was obtained from the University of
Wisconsin Hospitals, Madison from Dr. William H. Wolberg [32],
and is available through the UCI Machine Learning Repository
(http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+
%28Original%29). The UCI-BCW data set has 683 samples with
Table 1
Experimental results of MPI-ANN and LASSO for SNP simulated data.

Feature combination Correct rate

MPI-ANN LASSO

Training Testing Training Testing

F0 0.524998 0.499619 0.517434 0.499686
F1 0.524987 0.500023 0.517518 0.499695
F0 � F1 0.676720 0.661922 0.528117 0.501470
F0 � F2 0.634639 0.603899 0.533506 0.500638
F0 � F3 0.606649 0.566907 0.538429 0.500508
F0 � F4 0.587628 0.542026 0.543084 0.500541
F0 � F19 0.558203 0.501313 0.584856 0.499962
complete attribute values. Each sample has 10 features/attributes
(i.e., F0 – ID Number, F1 – Clump Thickness, F2 – Uniformity of Cell
Size, F3 – Uniformity of Cell Shape, F4 – Marginal Adhesion, F5 – Sin-
gle Epithelial Cell Size, F6 – Bare Nuclei, F7 – Bland Chromatin, F8 –
Normal Nucleoli, F9 – Mitoses) and one class feature with value
being 2 (for benign tumor) or 4 (for malignant tumor). Note that,
there are 444 benign tumor samples and 239 malignant tumor
samples in the data set.

2.4. Experimental method

The MPI-ANN algorithm and LASSO algorithm were imple-
mented in JAVA [36] with the matrix package ‘‘JAMA’’ [37] em-
ployed for matrix calculation in the algorithm, while all
experiments of MPI-ANN and LASSO were conducted in the eclipse
environment [38]. In the experiments, as a representative example,
the weights between the input and hidden layers of MPI-ANN were
randomly generated within the range of (�1, 1) and the biases of
the hidden nodes were randomly generated within the range of
(0,1). The number of hidden nodes of MPI-ANN was fixed to 10,
i.e., p = 10, which is chosen based on experiment testing of differ-
ent performances of MPI-ANN with different numbers of hidden
nodes. The experiments were run on a computer with Intel� Core™
2 Duo CPU E7600 3.06 GHz, 4.00 GB RAM.

Since the targets of the two data sets include two class types
(non-disease and having-disease for SNP data, benign tumor and
malignant tumor for UCI-BCW data), the number of outputs of
MPI-ANN was set to two. The first output yi1 would output 1 if
the ith sample belongs to the first class, otherwise, it would output
�1. The same definition holds for yi2 relative to the second class.
Specifically, for SNP simulated data, yi1 = 1 and yi2 = �1 are for class
value equal to 1, while yi1 = �1 and yi2 = 1 are for class value equal
to 0. For the UCI-BCW data set, yi1 = 1 and yi2 = �1 are for the be-
nign tumor class, while yi1 = �1 and yi2 = 1 are for the malignant
tumor class.

The correct rate was employed as the accuracy performance
evaluation index, which is the proportion of the number of cor-
rectly predicted samples. In the SNP simulated data experiments,
the average correct rate for all sample-size datasets in each model
was calculated and compared for different feature combinations
(e.g., F0, F1, F0 � F1, F0 � F2, F0 � F3, F0 � F4, and F0 � F19). Feature
combinations were selected to test the performance of MPI-ANN
for different sizes of feature sets. Predictors F0 and/or F1 were in-
cluded in each combination in order to test the capability of MPI-
ANN for predictor discovery. For the UCI-BCW real data set, the
average correct rate of each combination of features was computed
and compared. This list of feature combinations for testing was se-
lected based on the performance of each feature. Each feature was
first input into the MPI-ANN separately and the top-performing
features were used to generate new combinations of features. In
the UCI-BCW data experiment, each feature combination was
tested 100 times to get the average correct rate. In addition, the
Outperformance% MPI-ANN: LASSO p-Value MPI-ANN: LASSO

Training (%) Testing (%) Training Testing

1.46 �0.01 3.03 � 10�3 4.22 � 10�11

1.44 �0.07 7.06 � 10�3 5.10 � 10�15

28.09 31.94 2.20 � 10�7 2.04 � 10�6

18.94 20.60 1.10 � 10�4 2.02 � 10�3

12.66 13.25 7.46 � 10�7 1.21 � 10�3

8.20 8.28 5.22 � 10�5 1.90 � 10�2

�4.56 0.27 4.41 � 10�2 4.32 � 10�3

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
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outperformance percent and the p-value based on the t statistic
test were calculated in order to compare the performance of
MPI-ANN and LASSO.

The 5-fold cross validation method [39] was used for each data
set to get the correct rates of training and testing. Each dataset was
divided into five parts based on the proportion between case and
control of the original dataset, i.e., the proportion in each of the five
parts were approximately the same as the one of the original data-
set (i.e., 1:1 for SNP simulated data, and 444:239 for UCI-BCW real
data). For each fold of cross validation, one part of the five parts of
the dataset was selected as the testing data while the remaining
four parts were considered as the training data. This was repeated
for all five parts and the average value of the correct rate was gen-
erated for both training and testing.

To demonstrate the efficacy of MPI-ANN further for practical
applications, SVM and LR were also compared with MPI-ANN using
the UCI-BCW dataset. SVM and LR were implemented using ‘‘LIB-
LINEAR’’ [40] in MATLAB. We conducted experiments for the pre-
diction with all features (i.e., F0 � F9) of the UCI-BCW dataset as
the input of the MPI-ANN and compared the results with SVM
and LR. Correct rate, sensitivity, specificity and computing time
were used as the evaluation indices for their comparison. Note
that, the sensitivity and specificity are statistical measures for
the performance of a binary classification. Sensitivity measures
the proportion of true positives that are correctly identified, while
specificity measures the proportion of true negatives that are
Fig. 2. Correct rate comparison of MPI-AN
correctly identified. Classification should be both sensitive and
specific as much as possible [16]. Moreover, to show the superior
efficiency of MPI-ANN as compared to iterative ANN methods, we
compared the outcome of MPI-ANN with the latest iterative ANN
method (i.e., the hybrid genetic algorithm and neural network (hy-
brid GA-NN) method presented in [16]) using the UCI-BCW
dataset.
3. Results

In this section, the experimental results are presented,
described and compared for the SNP simulated data and the UCI-
BCW real data.
3.1. Results of SNP simulated data

The experimental results for the SNP simulated data are shown
in Fig. 2 and Table 1.

Fig. 2 shows that MPI-ANN obtains the best correct rate (red so-
lid curve in Fig. 2(a and b)) for each model when using the data of
Features F0 and F1 (the predictors in the SNP simulated data sets as
mentioned in subsection 2.3) as the inputs of MPI-ANN, as
compared with the other feature combinations, both in training
and in testing. The simulation results (including the ones using
other feature combinations, e.g., F0 � F5, F0 � F6, ... ,F0 � F18, not
N and LASSO for SNP simulated data.
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shown in Fig. 2) demonstrate that, when non-informative features
are combined with the predictors (i.e., F0 and F1), a lower correct
rate is achieved. Moreover, from Table 1, we see that the best aver-
age correct rates (i.e., 0.676720 and 0.661922) is obtained for train-
ing and testing when using Features F0 and F1. Meanwhile, the
results from LASSO in the figure and table show that the best cor-
rect rate (less than 0.59) can only be achieved when all features
(i.e., F0 � F19) are input for training, while other correct rates are
around 0.5, especially for testing. This indicates that MPI-ANN
can discover the predictors from the SNP simulated data, while
LASSO may not have such capability for the SNP simulated data.
This also implies that MPI-ANN can be applied in bio-marker selec-
tion in biomedical problems, e.g., via simply calculating the correct
rates of different feature combinations and selecting the combina-
tion with best correct rate as the bio-marker.

Moreover, Fig. 2 also shows that MPI-ANN can perform well for
both easy-to-detect models (e.g., Models 25–29) and hard-to-de-
tect models (e.g., Models 55–59); i.e., it achieves higher correct
rates for easy-to-detect models and lower correct rates for hard-
to-detect models. This is consistent with our previous findings
(e.g., the ones in [34]) of model-related sensitivity using Bayesian
networks, which was mentioned in subsection 2.3. We see that
MPI-ANN is able to discover how strong the features are related
to the targets/diseases, while LASSO does not show this ability
since LASSO exhibits no significant difference between correct
rates for different models. The experiment results also show that
MPI-ANN only needs less than 0.022 s to finish the training and
less than 0.005 s to obtain the output for the testing data. The com-
putational times are slightly larger than the ones for LASSO
(around 0.001 s), but it is efficient enough for practical applications
even in real-time situations.

Table 1 also shows that MPI-ANN outperforms LASSO in most of
the feature combinations, especially when the combination is the
predictors (i.e., F0 and F1). For example, MPI-ANN outperforms
LASSO by 31.94% in testing and 28.09% in training when the
combination is F0 and F1. The p-values based on the t-test that ap-
pear in Table 1 show that the superior performance of MPI-ANN over
LASSO is significant in both training and testing, especially when the
combination is F0 and F1. This result substantiates the superiority of
MPI-ANN for biomedical prediction as compared with LASSO.

Above all, the experimental results based on SNP simulated
data, show MPI-ANN’s ability to detect biomarkers and
discover features and target relationships, as well as MPI-ANN’s
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Fig. 3. Correct rate comparison of MPI-
significantly superior performance for biomedical prediction as
compared with LASSO.
3.2. Results of UCI-BCW real data

The experimental results for the UCI-BCW real data are shown
in Fig. 3. From the figure, we see that both MPI-ANN and LASSO
can get high correct rates for the UCI-BCW data (from 0.75 to
0.95). However, MPI-ANN performs better (3.23% for training and
2.94% for testing) than LASSO for most combinations of features.
The result of MPI-ANN outperforming LASSO is significant at the
9.26 � 10�10 level training and at the 2.90 � 10�9 level for testing.
This again substantiates the effectiveness and superiority of the
MPI-ANN method for biomedical prediction, as compared with
LASSO. The experiment results also show that MPI-ANN uses less
than 0.009 s for training and less than 0.003 s for testing, which
is also efficient for practical applications. Note that the combina-
tions of features are listed as follows:

ffF1g1; fF2g2; fF3g3; fF4g4; fF5g5; fF6g6; fF7g7; fF8g8; fF9g9;

fF2; F3g10; fF2; F5g11; fF2; F7g12; fF3; F5g13; fF3; F6g14; fF3; F7g15;

fF5; F6g16; fF5; F7g17; fF6; F7g18; fF3; F5; F6g19; fF2; F3; F5; F6; F7g20g:

As mentioned in subsection 2.4, the feature selection for this list
is based on the performance of each feature. Specifically, each of
the ten features (i.e., F0 � F9) is input into the MPI-ANN separately,
and the performances of the outcomes are compared. Top features
are used to generate new combinations of features for testing. This
shows the potential of using MPI-ANN as a tool for bio-marker
selection via comparing the network outputs of different features.

The comparative results of MPI-ANN, SVM and LR for the pre-
diction with all features (i.e., F0 � F9) in the UCI-BCW are shown
in Table 2. From the table, we see that the correct rates of the pre-
dicted output of MPI-ANN are about 3–4% better than the ones of
SVM and LR in both training and testing. The sensitivity values of
MPI-ANN are about 4–5% better than the ones of SVM and LR.
The specificity values for MPI-ANN are slightly better than the ones
for SVM, and are almost the same as the ones for LR. Moreover, the
training time of MPI-ANN is about 3.6 times less than that of LR
and slightly less than that of SVM, while the testing time of MPI-
ANN is more than 10 times less than those of SVM and LR. This
shows the efficiency of MPI-ANN owing it using a one-step weight
determination algorithm. In summary, MPI-ANN outperforms SVM
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Table 2
Comparison of MPI-ANN, SVM and LR for all-feature UCI-BCW data.

Methods Correct rate Sensitivity Specificity Computation time (s)

Training Testing Training Testing Training Testing Training Testing

MPI-ANN 0.902182 0.897344 0.930118 0.927830 0.850430 0.841355 0.012962 0.002720
SVM 0.872625 0.858051 0.889490 0.876864 0.840717 0.818350 0.015600 0.031200
LR 0.872990 0.857986 0.885083 0.865766 0.850403 0.847645 0.046800 0.031200
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and LR for the real UCI-BCW dataset with all 9 features not only in
statistical measurements but also in efficiency.

In addition, as compared with the latest ANN method (i.e., the
hybrid GA-NN method in [16]) for the all-feature UCI-BCW dataset,
the performance values of MPI-ANN in Table 2 are similar and
comparable to the ones of the hybrid GA-NN method presented
in the column ‘‘WPBC1’’ of Tables 3 and 4 of [16] (e.g., 0.9142 as
of the best testing correct rate). However, the MPI-ANN takes much
less time than the hybrid ANN method. The hybrid ANN takes at
least 348 s (using a similar-speed computer with Intel� Core™ 2
Extreme CPU X9000, 2.80 GHz and 4.00 GB RAM for the experi-
ments based on the same implementation language of JAVA) to
get the results as shown in the column ‘‘WPBC1’’ of Tables 7 and
8 in [16], while MPI-ANN needs only 0.015682 s for both training
and testing. That is more than 22,000 times less using similar-
speed computer and same programming language. We see that
MPI-ANN can achieve similar classification performance with the
hybrid ANN method, but it takes much less computing time than
the hybrid ANN method. Such superior efficiency is due to MPI-
ANN’s one-step weight determination rather than the iterations
used by the hybrid GA-NN method.

In summary, the experiments based on the simulated data and
the real data verify the effectiveness and efficiency of the devel-
oped MPI-ANN method for biomedical prediction, as well as the
superior performance over LASSO and other machine learning
methods.
4. Discussion

According to the results described in the previous section, the
developed MPI-ANN performed well for both simulated data and
real data in terms of accuracy and computation time. The results
indicate that MPI-ANN is sufficiently effective and efficient to be
applied in practical biomedical prediction applications. It is worth
mentioning that MPI-ANN is readily applicable to other data sets
with different numbers of features and targets via simply changing
the numbers of input and output nodes. It can even handle data
with targets including both discrete and continuous values. In
addition, MPI-ANN can solve the linear classification problems
for the simulated SNP data and the real breast cancer data more
effectively than linear classifiers, such as, LASSO, SVM and LR. It
is worth mentioning that MPI-ANN can also work well on non-lin-
ear classification problems due to its multiple-layer structure and
changeable activation functions. In the future, we will apply MPI-
ANN to non-linear classification problems.

For genome-wide data application, the number of features is
huge (in general, more than ten thousands), which is much bigger
than the numbers of features in the utilized data sets. Although
MPI-ANN has shown its capability of processing a large number
of data sets (28000 SNP simulated data sets), the handling of a
huge number of features in a genome-wide data set using MPI-
ANN is a challenging issue that should be considered in the future.
Also, the efficiency of MPI-ANN for large scale biomedical problems
compared to traditional methods (e.g., SVM, LASSO, LR, and itera-
tive ANN) is the subject of future research. Fortunately, from the
network structure and theory, MPI-ANN could easily scale to a
large data set by adding input and output nodes for features and
targets as mentioned above. Also, the experimental results demon-
strated that MPI-ANN would be able to do feature selection, which
would provide an effective way to process a huge number of fea-
tures. Thus, future work could be the investigation of a feature
selection algorithm based on MPI-ANN.

We set a fixed number of hidden nodes of the MPI-ANN for each
data set in the experiments. From experiments, we have found that
the number of hidden nodes may have some impact on the perfor-
mance of the MPI-ANN. That is, by setting different numbers of
hidden nodes, the accuracy performance of MPI-ANN may be dif-
ferent. Is there any relation between the number of hidden nodes
and the outcome? Can we get an optimal number of hidden nodes?
These are questions that need to be further investigated. Therefore,
future research can concern the development of an optimal num-
ber determination algorithm for the number of MPI-ANN hidden
nodes. In addition, whether multiple-hidden-layer ANN would im-
prove the performance of MPI-ANN for biomedical prediction
problem and how MPI-based weight determination method could
be applied to the multiple-hidden-layer ANN are interesting topics
that we will further investigate in the future.
5. Conclusions

We presented and developed an MPI-ANN (Artificial Neural
Network based on Matrix Pseudo-Inversion) to solve the biomedi-
cal prediction problem based on clinical and genomic data in this
paper. The weights of the MPI-ANN are directly determined with-
out the lengthy learning iteration often used in the traditional neu-
ral network method, which is very inefficient for practical
application. The LASSO (Least Absolute Shrinkage and Selection
Operator) method has also been presented for comparison. We
conducted experiments using SNP simulated data set and a breast
cancer real data set. The results demonstrated the efficiency and
the significantly superior performance of the MPI-ANN method
for disease classification and prediction, as compared with LASSO
and other machine learning techniques (e.g., SVM and logistic
regression). The results also implied that the MPI-ANN could be
employed for bio-marker selection. Future research may lie in test-
ing micro-array genetic data, the development of a determination
algorithm for the number of hidden nodes in MPI-ANN, and a fea-
ture selection algorithm based on MPI-ANN.
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