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NOTE

A Note on a Vector-Variate Normal Distribution and
a Stationary Autoregressive Process
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It is shown that weak stationarity of a first-order autoregressive process implies
that eigenvalues of the coefficient matrix are less than 1 in absolute value. � 2000
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Nguyen (1997) has shown (Theorem 2.1) that if X1 and X2 are identi-
cally distributed random vectors such that

X2=BX1+U2 , (1)

U2 and X1 are independent, and U2 has the distribution N(0, 7) with 7
positive definite, then (a) the eigenvalues of B have modulus less than 1
and (b) X1 and X2 have a joint normal distribution with covariance matrix

E\X1

X2+ (X$1 , X$2)=\ 1

1B$
B1

1 + , (2)

where

1= :
�

s=0

Bs7B$s. (3)

If the result is stated in the form of

Xt=BXt&1+Ut , (4)
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for t=2, it may be recognized as a form of the statement that a strictly
stationary (autoregressive) process defined by (4) implies that the eigen-
values of B are less than 1 in absolute value and that if Ut is normal

Xt= :
�

s=0

Bs Ut&s (5)

is Gaussian.
The purpose of this note is to show in a simple way that only

stationarity in the wide sense needed for conclusion (a).

Theorem. Let X1 , X2 , and U2 be related by (1) with X1 and X2 having
the common covariance matrix 1, U2 having a nonsingular covariance matrix
7, and X1 and U2 uncorrelated. Then the eigenvalues of B are less than 1 in
absolute value.

Proof. An eigenvalue * and eigenvector x satisfy

B$x=*x. (6)

Then 1=B1B$+7 implies

x$1x� = |*|2 x$1x� +x$1x� . (7)

Since x$7x� >0, (7) implies x$1x� >0 and |*|2<1. K

A sequence of random vectors Xt can be constructed recursively by (4),
t=3, ... . A consequence of the theorem is that (5) converges in the mean
and [Xt] is stationary; if the Ut is independent of the Xt&1 , then [Xt] is
Gaussian. See, for example, Anderson (1971, p. 179).

If Xt has mean EXt=+ possibly different from 0, then (1) is modified to
(X2&+)=B(X1&+)+U2 or (1) holds with U2 having the distribution
N(&, 7), where &=(I&B) +.
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