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NOTE

A Note on a Vector-Variate Normal Distribution and
a Stationary Autoregressive Process
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It is shown that weak stationarity of a first-order autoregressive process implies
that eigenvalues of the coefficient matrix are less than 1 in absolute value.  © 2000
Academic Press
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Nguyen (1997) has shown (Theorem 2.1) that if X; and X, are identi-
cally distributed random vectors such that

X,=BX, +U,, (1)
U, and X, are independent, and U, has the distribution N(0, X) with X

positive definite, then (a) the eigenvalues of B have modulus less than 1
and (b) X; and X, have a joint normal distribution with covariance matrix

X, r Br
¢ 1.X}) = 2
(X )xxo=(p ) @)
where
=Y BIB" (3)
s=0

If the result is stated in the form of

Xt:BXt—1+Ut» (4)
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for t=2, it may be recognized as a form of the statement that a strictly
stationary (autoregressive) process defined by (4) implies that the eigen-
values of B are less than 1 in absolute value and that if U, is normal

_ Y B, , (5)

s=0

is Gaussian.
The purpose of this note is to show in a simple way that only
stationarity in the wide sense needed for conclusion (a).

THEOREM. Let X, X,, and U, be related by (1) with X, and X, having
the common covariance matrix I', U, having a nonsingular covariance matrix
Y, and X, and U, uncorrelated. Then the eigenvalues of B are less than 1 in
absolute value.

Proof. An ecigenvalue 4 and eigenvector x satisfy
B'x = Ax. (6)
Then I' = BI'B’ + X implies
xTx=]4>xTx +xTx. (7)
Since x'Ex >0, (7) implies xTx >0 and |A|><1. |

A sequence of random vectors X, can be constructed recursively by (4),
t=3, ... A consequence of the theorem is that (5) converges in the mean
and {X,} is stationary; if the U, is independent of the X,_,, then {X,} is
Gaussian. See, for example, Anderson (1971, p. 179).

If X, has mean & X,=p possibly different from 0, then (1) is modified to
(X, —p)=B(X;—p)+ U, or (1) holds with U, having the distribution
N(v,X), where v=(I—B) pn
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