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Abstract

We show that the product of finitely many subspaces of ordinals is strongly zero-dimensional. In
contrast, for each natural numberthere is a subspace @b + 1) x ¢ of dimensior.
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1. Introduction

All spaces are assumed to be completely regulariand

A spaceX is said to bezero-dimensionalf it has a base of clopen sets. A spaxds
said to bestrongly zero-dimension#lfor every disjoint pair of zero-setg8p andZ1, there
is a clopen seW with Zg c W C X \ Z1. In this situation, we say thafg and Z; are
separated by a clopen set. It is well-known that a spade strongly zero-dimensional if
and only if 8X is zero-dimensional, see [3, 7.1.17]. It is straightforward to verify that a
spaceX is normal and strongly zero-dimensional iff every pair of disjailosedsets ofX
are separated by a clopen set.

In [6], it was proved that for every subspace of the product space of two ordinals,
normality, collectionwise normality, and the shrinking property are equivalent. While
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extending this equivalence to subspagéesf the product of finitely many ordinals, the

first author [4] found it convenient to first prove thatif is normal, thenX is strongly
zero-dimensional. Moreover, it was shown earlier (see [7]) ¥hatY is not normal when

X andY are disjoint stationary sets . So it is natural to ask if thiX x Y is strongly
zero-dimensional. More generally, since all subspaces of product spaces of ordinals are
zero-dimensional, it is also natural to ask if such subspaces are strongly zero-dimensional.

We answer all these questions in the present paper.

First we generalize the notion of stationary sets in Section 2, and show a Generalized
Pressing Down Lemma (Theorem 3.2) in Section 3. One corollary is that if < n,
is ann-tuple of distinct, regular, uncountable cardinals, then every continuous function
¢:[1;-, ki — R is constant on a final segment. Example 3.9 shows that this result is not
true when the;’s are not distinct. In Theorem 4.2, we show that after a small clopen set is
deleted from the domaim, has finite range. (“Small” is defined precisely in Definition 4.1.)

Using Theorem 4.2, we prove that the product of finitely many subspaces of ordinals
is strongly zero-dimensional (Theorem 5.1), thus answering the first question above in the
affirmative.

In Section 6, however, we present a negative solution to the second question. Namely,
subspaces of the product of finitely many subspaces of ordinals are not necessarily strongly
zero-dimensional. More precisely, we prove that for every natural numbtrere is a
subspaceK of (w + 1) x ¢ such that dink = n (Theorem 6.11). An important step in
proving that theorem is to establish that for every maximal almost disjoint faRibf
subsets obv, B¥ (R) is embedded in the remainder of such a subspga¢&heorem 6.1).

HereWw (R) is a so-calledr -space generated 9y (see [3, 3.6.1] or [5, 5.1]). Section 6 can
be read independently of other sections.

We add that this paper is the result of the three authors’ collective efforts, although
Section 6 is due to the third author.

2. Generalized stationary sets

We will use set theoretical notation described in [9, Chapter I]. For example, 0 denotes
the empty set, an ordinal is the set of smaller ordinals, th&g0, 1, ..., n — 1} for each
natural numben.

For ann-tuplet = (to, ..., t,—1) and ann’-tuples’ = (¢}, ..., t,,_;), t~t' denotes the
(n+n')-tuples = (so, ..., Sp4w—1), Wheres; =1; fori <n ands,; =t/ fori <n’. The 0-
tuple is considered as the empty sequenee/as usual. For an-tupler = (tg, ..., t,—1)
of subsetsry, ..., 1,—1 of ordinals,[]+ denotes the usual produgt x --- x #,—1 and
Vit ={x e[]t: xo0<--- < x,—1} its subspace.

Fors C n, 1 | s denotes the sub-tuple: i € s) of t. ForA C []¢, A | s denotes the set
{x Is: x € A}. NoteA [0={0} if A#@. Form <n andx € [];_,, %, Alx] denotes the
set{y € nrn<i<n ti: x"ye€ A}. Observe thati[x] = A if m =0 andA[x]={0} if m =n
andx € A. Whenm = 1 anda € 19, we write A[«] instead ofA[(«)].

Fors Cn,x e[| ti, AC][randj ¢s, we let

ies

n}‘[A]:{aj: a€Aanda |s=x}.
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Whens = 0, this is the usual projection;[A] of A to thet;-axis.

Letx = (xp,...,xn—1), y = (Yo, ..., yn—1) ben-tuples of ordinals. Ifx; < y; for each
i <n, then we writex < y. We letx < y have the analogous meaning. The generalized
intervals(x, y) = [[,_, (xi, yi) and (x, y] = [];_, (xi, y;i] should be understood in terms
of these orders. In Sections 4 and 5 we will writex y whenx < y andx # y. All these
relations are well-founded on the class of raltuples of ordinals in the sense of [9, IlI
Definition 5.1].

For a subsefS of an ordinalu, let Lim,(S) = {y < u: suplS N y) =y}, in other
words, Lim,(S) is the closed set of all cluster points 8fin the spacq:. We will also
use the symbol SuggS) = S \ Lim,(S). When the situation is clear in its context, we
simply write LimS or SuccS instead of Lim,(S) or Sucg,(S), respectively. Observe that
if cf u > w1 andS is unbounded in, then LimS is cub (i.e., closed and unbounded)in

Let Cy, @ € A C k, be cub sets of an uncountable regular cardinalts diagonal
intersectionis defined by

AgeaCo={Bex: Ya e ANP)(B € Co)}.

ThenAycaCy is acub setine (see [9, Il Lemma 6.14]).

As usual (see [9, Il Definition 6.9]), a subsétf an uncountable regular cardinais
calledstationary(or « -stationary iff it meets every cub subsét of «. The question arises
how we should define-stationary seivhenx = (ko, ..., k,—1) iS not just a cardinal but
a finite-tuple of non-decreasing uncountable regular cardinals. There are two ways to do
this, namely,

o (] [-type stationaryY meets every [ C,
e (V-type stationaryy meets everWwC,

whereC is ann-tuple of cub set€’; of x;. When thec is strictly increasing, the two notions
are equivalent (different filter bases generate the same filter) and have a satisfactory theory.
Whenk; = «;41 for somei, however, the notions are not equivalent. The prototypic result,
“an open stationary set contains a final segment”, has a useful generalization (Theorem 3.5)
for the notionV-type stationary. In contrast, there can be disjoint opetype stationary
sets—this is the essential idea of Example 3.9.

In the present paper we will develop the theorywbfype stationary sets.

For expository reasons, we prefer to start with concepts equivaleri¥-tgpe
stationarity. However, we soon prove (Proposition 2.4) thist« -stationary ifftY N VC; #
@ for everyn-tuple C with C; a cub subset of;. Here is our official definition.

Definition 2.1. Let ¥ = (ko, k1, ..., k,—1) be ann-tuple of non-decreasing uncountable
regular cardinals.
Y C [[« is calledk-stationaryif there isZ C Y such that, for alk € Z andi < n, the

setr?'[Z] = 7%V Z] is ;-stationary.

We call the se¥ in the abovepruned Z is obviously itselfic-stationary. Note that, i
is an uncountable regular cardinalx§-stationary” and k -stationary” are synonymous.
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In the discussion of-stationary sets, it is often useful to use induction on the length of
the tuplex.

Proposition 2.2. For an n-tuple x = (ko, k1, ..., ks—1) andY C []«, the following are
equivalent.

(1) Y is k-stationary,

(2) there are aco-stationary setk and, for eachy € K, (1, ..., k,—1)-Stationary set_,,
such that{y} x L, C Y for eachy € K,

(3) there are a(xy, ..., k,—2)-Stationary setS and, for eachs € S, a x,—1-Stationary set
T; such that{s} x T, C Y foreachs € S.

Proof. We show the equivalence of (1) and (2). The equivalence of (1) and (3) is seen quite
similarly.

We proceed by induction and suppose that (1) and (2) are shown to be equivalent for
of length< (n — 1).

Let « be of lengthn, and suppos& is «-stationary. LetZ C Y be pruned and =
molZ]. ThenK is ko-stationary. Foreach € K, letL,, = Z[y]. Then, for eacly € L,, and

O<i<n, nf“ """ gV"‘l)[Ly] = nl.W’“""’;"‘l}[Z] = ni({”}ﬁg)“[Z] is k;-stationary. Hence, by
the definition, eaclL, is (k1, ..., x,_1)-Stationary.

Suppose that (2) holds. Then, by induction hypothesis, there is#,setL, so that,
for eachz € Z, and 0<i <n, nl.(“ """ Z"‘”[Zy] is «;-stationary. This set is identical

to niW’“"“’z”*l)[Z] whereZ = |, g {y} x Z,. ObviouslyZ C Y holds and hence, the
induction is complete. O

For convenience we will call singletons O-stationary for the O-tuple.

Proposition 2.3. Letk = (ko, ..., k,—1) be ann-tuple andY «-stationary.

(1) If Y C X, thenX is alsox-stationary.

(2) 1Y =,y Zo @anda < ko, then someZ,, is k-stationary.

(3) If C; is cub ink; for eachi < n, thenY N[J,_, C; is alsox-stationary. In particular,
if s <k is ann-tuple, thenY N (s, k) is alsok-stationary.

(4) Y NVk is k-stationary.

Proof. We prove this by induction on. Suppose this is true fartuples for alli < n. Let
k' =(k1,...,kn—1), and takeK andL, as in Proposition 2.2(2). Thek is xo-stationary
and eaclL, is «’-stationary.

(1) Obvious from the definition.

(2) For eachy e K, let Z,, = Z,[y]. ThenL, C |, Z.,, and hence, by induction
hypothesisZ, ., is «’-stationary for some = «(y). SincekK = J,_,{y: a(y) =a}is
ko-Stationary and. < o, there is a$ so that{y: «a(y) =38} = H is ko-stationary [9, Il
Lemma 6.8]. Then, by definitiory,s > UyeH{V} x Zs,, Is k-stationary.



W.G. Fleissner et al. / Topology and its Applications 132 (2003) 109-127 113

(8) For eachy € K, L, N []y.;-, Ci is «’-stationary, by induction hypothesis, and
{y}x (L, N[[;.,CH) cYNJJ;_, Ci holds.

(4) By induction hypothesis, for eaghe K, there is ac’-stationary set, C L,, such
thatry <--- <t,_1foreachy = (t1,...,4,-1) €Y,. By (3),Z, =Y, N(y, k1) X k2 X - -+ X
Kkn—1is k’-stationary. TherZ =, . {y} x Z, is k-stationary and contained in. O

We have developed enough machinery to prove that the official definitiorstaftionary
is equivalent to the motivating notioR,-type stationary.

Proposition 2.4. Y is k-stationary iffy N VC £ ¢ for everyn-tuple C with C; a cub subset
of ;. Therefore the collection of all nown-stationary subsets df] « forms ac-complete
ideal.

Proof. It suffices to show only the sufficiency part, the necessity part being included in
Proposition 2.3.

Assume the sufficiency part fortuples for alli <» and let«’ = (k1, ..., k,_1).

Suppose that’ is not k-stationary. For eackx € np[Y], let us consider the subset
Ly, = Y[a], and letK = {a: L, is «’-stationary. Since K is not «g-stationary by
Proposition 2.2(2), there is a cub 964 disjoint from K. For eachwe € Cp, L, is not
«’-stationary. Then, by induction hypothesis, there is a culgetC «; foreach O<i <n
such thatLy, N Vo<i<nCo,i = 9. Letkg="--- =ky—1 < k;y. Then defineC; = AyecyCa.i
forO<i <m,andC; = ﬂaeco Cq.i for m <i <n. Obviously eaclC; is cub ink;.

To showY NV, ., C; =@, suppose = (fo, ..., t,—1) € YNV;.,C;. Then{ts, ..., t,-1)
€ Liy N Vo<i<nCi. Thusty < t; € C; = AgecyCa,i for 0<i <m, andg <t; € C; =
MNacco Cai for m <i < n. This implies thats; € Cy,; for 0 <i < n, and hence
(t1, ..., th—1) € Liy N Vo<;<nCyy,i, @ contradiction. Thu¥ NV, ,C; =9. O

Corollary 2.5. Let x = {(ko, ..., kn—1) be ann-tuple andA; C «; for eachi < n. Then
Y =[], ., Ai is k-stationary iff eachd; is «;-stationary.

3. Generalized Pressing Down Lemma

The usual Pressing Down Lemma [9, || Lemma 6.15] says that a fung¢tich— «
defined on a stationary subsg&tof an uncountable regular cardinalis constant on a
stationary subset f if f(«) <« for eacha. We now generalize this.

Definition 3.1. Let o« = {(«ag, ..., ay—1) be ann-tuple of ordinals, and suppose that a
function f sendst € [ to f(x) € [] .

We call f regressivef f(x) < x for all x e domf, and astem functiorif f(x); =
f(x")j whenever [ j=x'j.

Observe that iff is a stem function therf (x)o is constant, and that a stem function
defined on a set of 1-tuples is constant. Hencentkel case of the following theorem is
the Pressing Down Lemma.
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Theorem 3.2 (Generalized Pressing Down Lemmbgt« be ann-tuple, R a k-stationary
subsetof [«, and f : R — [« regressive. Then there iskastationary subseYt of R so
that f restricted toY is a stem function.

Proof. Assume this theorem foi-tuples for alli < n, and let us considex = (o,
e kp_1). Let =k [ (n —1).

By Proposition 2.2(3), there arexd-stationary subsef, and,_j-stationary setqy,
s € 8, sothat{s} x Ty C R.

For eachs € S and eachr € Ts, note that the pointf(s™t) consists of the first
(n — 1) coordinatesfi(s—t) and the last coordinat¢gx(s™t). We have fi(s"t) < s
and f2(s"1) < t. Since|S| < k,—2, the set of allfi(s™t) has cardinality< «,_1. By
Proposition 2.3(2) and the Pressing Down Lemma applied;tdhere are a stationary
subsety; of Ty, g(s) € [[«” andy; € k,—1 such thatfi(s 1) = g(s) and f2(s 1) = ys,
thatis, f(s™ 1) = g(s) "y, forall s € S andt € Y5.

Apply the induction hypothesis to the regressive functjoto get a stationary subset
Y’ of § so thatg restricted toY’ is a stem function. Let¥ = .y {s} x Y;. To verify
that f restricted toY is a stem function, let, 7’ e Y. If z | j=Z7 [ jandj <n — 1,
thenf(z)j =gz n—-1;=¢gC' n-1;=fE);.fzIn-1=z7n—-1=s,then
f@un1=ys= f(Z/)n—l holds. O

A consequence of the Pressing Down Lemma is that a real-valued continuous function
on a stationary subset of a regular uncountable cardinal is constant on its-ta# (
intersection with a final segment). We can generalize this result for a nhon-decreasing
tuple of regular uncountable cardinals (Theorem 3.7).

We begin with definitions.

Definition 3.3. Let x = (ko,...,k,—1) be ann-tuple. Let us say that an-tuple C =
(Co, ..., Cp_1) Of cub setsC; of «; is attuned toc, or simply,«-attuned if the following
holds:

(1) ¢j cLimg; forall j <n,
(2) ifx; <kjp1, thenCjpn C (), kj41),
3) if Kj=Kjt1, thean =Cjy1.

Note that everyn-tuple (Do, ..., D,—1) of cub sets can be attuned g that is,
there is ax-attuned tupl&Co, ..., C,—1) such thatC; C D; for eachj. In fact, when
Kol <Kg=-=Kp <Kkpal, l€tCi=---=Cp = ﬂl<j<m Dj N (kg—1, k¢) N Lim k.

Definition 3.4. We say that am-tuple x is entwined witranothem-tuplec if

CO<X<CL< " <C(Cj<Xj<Cj41<:-<Cp-1<Xp-1.

Letx be a non-decreasingtuple of uncountable regular cardinals, anthe an attuned
n-tuple of cubs. Then we Ief (C) denote the collection of all € Vi which are entwined
with somec € [[ C.
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Observe that the set of which are entwined with a specificis an open set. Hence
E(C) is an open set. Further observe thakdf< - -- < «,_1, thenx € E(C) iff min C; <
x; for all j, that is, E(C) = (s, «) is a final segment where= min([[ C) denotes the
minimum of the sef | C in the sense of the ordet.

Itis easily seen that the sB{C) is never empty. More precisely, by takidlj = Lim C;
for eachj, we haveE (C) > VD =[] DN Vk. Thus by Proposition 2.3, fora-stationary
setY, Y N E(C) is alwaysk-stationary.

Theorem 3.5. Letx be ann-tuple andU an operk-stationary subset df] «. Then there
is an attuned:-tuple C of cub sets, so thaf (C) is contained inU.

Proof. Let f:U — [« be regressive so that for eaeche U, the half-open interval
(f(u),u] C U. By our definition and Theorem 3.2, there is a pruned stationary siibset
U sothatf | Y is a stem function. For each< n, let D; be the set of < «; satisfying:
if yeY andyo,...,yj—1 <y, then

1) f»mj<v,
2) Lim@ Vv s y.

Note that, becausg [ Y is a stem function, to knovf (y); it suffices to knowy [ j; in

particular, we know the constant valyfi¢y)g at the start. Also note that each Lim: i [Yn
is cub. ThenD; is a cub set ok; (see, e.g., the proof of [9, Il Lemma 6.13]). LEtbe
attuned tac with D; > C; for eachj < n.

To verify the conclusion, let € [] « be entwined withe € [ ] C. By induction onj < n,
we shall definey; and verify that

fO)j<cj<xj<yj<cjta.

Let y; be the least element m‘f;y"""’yf’”[Y] greater than ;. This is possible because

n}yo""’y"”[Y] = nj.“[Y] foranyz € Y with z | j = (yo, ..., yj—1), and isx;-stationary.
We verify the inequalities left to right. Firsf,(y); < ¢; because of (1). Second, < x;
because is entwined withe. Third, x; < y; by our choice ofy;. Finally,y; < c;11is seen
in the following way. Itis obvious ik; < k1. If k; = k41, then (2) implies this because
cj+1€ Cj;1=C; C D;. Thus, we have verified thate (f(y), y] C U, as required. O

Corollary 3.6. Letx be a strictly increasing-tuple andU an operk-stationary subset of
[I«. Then there is am € V« so that the final segmel, «) is contained inU.

Theorem 3.7. If « is ann-tuple, andg:Y — R is a continuous function defined on a
k-stationary setr’, then there is & -attunedn-tuple C so thaty is constantore(C) N'Y.

Proof. For eachi € w, R is covered by countably many open séi§, k), k € w, of
diameter< 1/(i +1). By Proposition 2.3, for each there is &; such thaty " [B(i, k;)] is
k-stationary. LeU (i) be an open set 4f] « in whichg " [B(, k;)] = U (i)NY . Obviously,
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U (i) is k-stationary, and by Theorem 3.5, there is-attuned:-tuple C (i) of cub sets such
thatE(C(i)) C U(@).

Define C; = (; C(@)j. Then C = (Cp,...,Cy—1) is attuned tox and E(C) C
; E(C@)) C(; UG). Thus we haveE(C) NY C (), o[BG, k)1 = [[); BG, k)]
SinceE(C)NY is k-stationary and hence non-empty as we have noted apQvB(i, k;)
is a singleton. This means that' £(C) NY is constant. O

In case the tuple is strictly increasing, we have

Corollary 3.8. If « is a strictly increasing:-tuple andy : Y — R is a continuous function
defined on ac-stationary set’, then there is an € Vi so thaty is constant on the final
segments, k) NY of Y.

As Proposition 2.3(4) shows, the essential partofdationary set lies in its intersection
with V. The above seE (C) also lies inVk. In particular, ifx is strictly increasingE (C)
is a final segment itself and its complement is seen to be small (i.e., related to smaller
cardinals). If«; = k; 41 for somei < n, however, the complement is not small enough and
we must partitior] [ . The partition is suggested by the following two examples. We will
develop the idea of partitioning in the next section. (The idea of partitioningppears in
[8], which also contains the equivalence of “inductively” stationary ®atype stationary
fork = (w1, ..., w1)).

Example 3.9. Let X = Ag x A1, where eachd; is stationary inw; and Ag N A1 =

{§+1: £ €wi}, call it N. Let ¢: N — R have uncountable range. Defipe X — R

by casesip(xg, x1) = 0 if xo < x1; @(x0,x1) = 1 if x0 > x1; @(x0,x1) = @& + 1) if

xo =x1 =& + 1. Now ¢ is continuous, but is not constant on any final segment. That
is, the conclusion of Corollary 3.8 fails fgr. Theorem 4.2 will give more information on

this; we must be able to discard the diagonal from a final segment and be satisfied with a
finite range.

Here is a space on which every real-valued continuous function is constant on a final
segment. The technique of applying the Pressing Down Lemma on a subset of our space to
obtain a final segment of the whole space will reappear in Lemma 4.4.

Example 3.10. Let k = (w1, w1). Let X =[x = w1 x w1. Lety: X — R be continuous.
Defines: w1 — X by §(&) = (£, ). To prove thaty is constant on a final segment &f
it suffices (by the proof of Theorem 3.7) to assume thiais open inX and§é < [U] is
stationary, and then show thétcontains a final segmer, «) of X.

For eaclt suchthat (&) e U, definef (§) < & sothat((f(£),&] x (f(§),&]) CU. By
the Pressing Down Lemma, thereziso thatf (£) = ¢ for a stationary set of's. Now U
contains the final segme@(¢), «).
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4. Finiterange

We begin with the promised precise definition of small. It includes not only sets bounded
in (at least) one coordinate, but also sets like the diagonal in Example 3.9.

Definition 4.1. Let X C [[a (=[];., ). We say that a clopen subsétof X is bounded
if V.C[]B for somen-tuple <« (i.e., B <« but8 # «). MoreoverV is smallif V is
represented as the union of a locally finite family of bounded clopen subsgts of

Note that whem = 1, the complement of a small set contains a final segment. So the
next theorem is the promised generalization. We devote this section to its proof.

Theorem 4.2. Let X = [[;_, Ai, where eachA,; is stationary. Letyp:X — R be
continuous. Then there is a small clopen subigeaif X such thaty | (X \ V) has finite
range.

The strategy of the proof is as follows. After more notation, we partition the space
X into a small clopen subsét* and finitely many subspace§, 6 € ®, and classify
these subspaces. A first approximation to the desired small gV * together with the
subspaces of Type 1. We prove thais constant on “almost all” of each subspace of
Type 2. Finally, we defin& and verify the conclusion of our theorem.

Throughout this section, we fix, ann-tuple of ordinals of uncountable cofinality. For
eachi < n, let A; be a stationary subset af, and define the-tuplex via x; = cfa;. We
fix the spaceX =[], _, Ai.

For eachi, let M; : cfa; = x; — «; be a strictly increasing continuous function whose
range is cofinal iny;. We call M; normal functions. For each< n, let u;:a; — «;
be the function defined by;(y) = min{B < k;: y < M;(B)}. Observe thap; almost
is an inverse toM;. In particular, u; (M;(§)) = & and y < M;(u;(y)) always hold,
andy = M;(u;(y)) holds whenevey; (y) € ranM;. Note that eachu; is continuous.
Therefore the product map: [« — [« defined byu(x); = u;(x;) is continuous.

Foreach <n, setx;” =supk;: ki < k;} (by convention, sup = 0). ThenV* = {x €
X: 3i <n)(u(x); <«; )} is a small clopen set. Becau$€&' will be part of the small
clopen setV discarded in the conclusion of Theorem 4.2, from now on we assume that
wu(x); > «; foralli andx.

Let ® be the family of function® from n onto someny, (necessarilyny < n), which
additionally satisfy

if ki <k, thend@) <6@).

We say thatd is coarserthan¢’, or ¢’ is finer than @, if (i) < 8(i’) implies that
0'(i) <0'(").

For example, when all the's are equal, then the constant O function is the coarsest
the permutations are the fingss. At the other extreme, if the;’s are distinct, the® has
only one element: the permutationofvhich arranges the;’s in increasing order.

Now we can define the partition. Fére @, let

Xg={xeX:00)<0(") < nx)i <px)i}.
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Observe thak = | J{Xp: 0 € ©}.
Next, we define theng-tuple < by «;, = k. (So«” is formed from« by possibly
identifying some equal coordinates.) And we define xfer X and;j < my,

g () =min{u();: 6@ =j} and ug (x); =max{u)i: 6G) = j}.

Thenthe mapg, , MZ : X — []«? are continuous. By the definition, these maps coincide
on Xy and give us amapg : Xy — V«?.

The next lemma basically repeats Theorem 3.5 with more notation and a stronger
conclusion. The prototype is Example 3.10 above. Note that it is true fot al] | «,
not just those of the fornf] A. We need the following notation to express this stronger
conclusion in a general setting.

Definition 4.3. For C, amg-tuple of cub sets attuned id, let E¢(C) be the set of € X
such that there is € [ | C satisfying

o<ty (o< g (X)o<c1 <+ < Cmp—1 < Ky (Vmy—1.

In this case we say thatis 6-entwined withc. Notice thatEy (C) ¢ X N X because&”
is attuned. Observe thaty (D) C Eo(C) if D; C C; for all j < my. Note that the set of
x € X which aref-entwined with a specifie € [ C is an open subset &f; henceEy (C)
is open inX.

Lemma 4.4. LetU be an open subset &f such thatug[U N X4] is ax?-stationary subset
of Vk?. Then there is an attunedy-tuple C of cub sets so thaliy (C) is contained inU.

Proof. Let Y be the set of elementsof us[U N X4] such that every coordinatg is a
limit ordinal. By Proposition 2.3Y is «’-stationary. Because eagh is limit, there is a
uniquey € Xy such thatug (y) = y. Chooseb(y) < y so that(b(y), y] N X C U. Define
f(») e Ve via f(y); = ng (b(3));. Because each; is a limit, f(y); < y;. In other
words, f(y) < y and f is regressive.
Now we follow the proof of Theorem 3.5 closely. We point out only differences. There

is a pruned stationary subsiét of ¥ so thatf restricted toY’ is a stem function. Find an
attunedC to satisfy (1) and (2). Let be an arbitrary element diy (C). Definey; to be

the least element of;.yo """ Y-y greater than (x) ;. Verify that £(y); < uy (x); <

ug(x)j < y; foreachj < mg, which yieldsh(y) < x; < y; for all i <n. We have verified
thatx € (b(y), y1 C U, as required. O

And this implies, as before (see Theorem 3.7),

Lemma4.5. Letd € © satisfyug[Xs] is «?-stationary, and leyy : X — R be continuous.
Thenyr is constant ornEy (C) for some attuned:y-tuple C of cub sets.

Now we return to the proof of Theorem 4.2.
For a carefully chose@, ¢ will be constant orty (C). However, we cannot ensure that
Xg \ E9(C) is small. So we introduce a slightly larger set.
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Definition 4.6. Let E4(C) be the set ok € X such that there is € [] C satisfying
o<ty (o< pug (o< e <+ < Cmy—1 < g (X)my—1.

We say that is weakly9-entwined withc.

Observe thaEy (D) C Eg(C) if D; C Cj for all j <mg. Note that the set of € X
which aref-entwined with a specific € [] C is an open subset &f; henceE, (C) is open
in X.

Let ¢ be the coarsest element 6, in other wordsx*¢ lists the coordinates of in
strictly increasing order. For example, when all th&s are equal, therg is constant 0
function andk® is a 1-tuple. At the other extreme, if the’s are distinct, thert is the
unique element o®.

For £ < m¢, let S¢ be the collection ofs C ¢ [{¢}] such that();., ni[A;] is not

stationary iﬁ(g. Let S =J, Se. We now classify the elements of the partition.

Definition 4.7. We say that is Type 1if 0 [{j}] € S for somej < my. We say thab is
Type 2otherwise.

Sinced corresponds to subspad® in a unique way, we can sayy is Type 1 or 2
wheng is Type 1 or 2, respectively.

Note that by Corollary 2.5.49[Xs] is «?-stationary iffé is Type 2. If0’ is coarser than
® andd is Type 1, ther®’ is Type 1.

The next lemma is where we use tiahas the fornf [, _, A;.

Lemma 4.8. Let D = (Do, ..., Dy,—1) be a «?-attuned tuple of cub sets which
additionally satisfies: for all < n, Dy;y C M;~[Lim A;]. Then

E¢(D) C Clx(Eo(D)).

Proof. Takey e Eq(D) arbitrarily and suppose thatis weaklyd-entwined withc. Let
H= {i <n: 0() <mg —1andu;(y;) = ce(,-)+1}.

We claim that ifi € H, then/cg(i) = Kg(i)+l. Indeed, ifi € H and/cg(i) < Kg(l-)_H_, then
co()+1 € Doy+1 C (Kg(i), Kg(i)_H_) andcp(iy+1 = i (i) < Kg(i), which is a contradiction.
Thus we havecg(l.) = Kg(i)-i-l' Sincew; (yi) = coi)+1 € Doy+1 = Do) C M;_[Lim Ail,
we havey; = M;(u;(y;)) € Lim A;. Let (z, y] be an arbitrary neighborhood gf We
seekx € (z,y] N Eg(D). If i ¢ H, let x; = y;. If i € H, choosex; € A; so that
maxz;, Mi(Cg(,'))} <xi <y.lt is possible becausM,-(ce(i)) < M;(ui(yi)) = yi. Now
itis clear thatx € (z, y] N X, and routine to verify that € Eg(D). O

By Lemmas 4.5 and 4.8, we have

Lemma4.9. Letd be Type2, andg: X — R be continuous. Thep is constant orE, (C)
for someC.
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For eachd of Type 2, let us fixC? so thaty is constant onEg(C?). Let E =
U{Ee(C?): 6 is Type 3. Theny | E has finite range. We must show thiit\ E is
contained in a small clopen set.

Fix ax®-attuned tupldGo, ..., Gm,—1) of cub sets satisfying

(1) if 6 is Type 2 andf =« , thenG, C €Y,
(2) if s € §¢, thenG, N mies nilAil=49.

Let VI ={x € X: (3 <n)(ux); < minG¢@y)}. Then v1 is a small clopen set and
vicvt

For eachs € S, we will define a small clopen séf;. Lets € Sy. Fory € Gy, let y+
be the least element @, greater thary. If & ¢ G, then eithe < minG, or there is
y € Gy suchthaty <& <y ™. Let

vV, = {xeX: y <pn(x); <yt foralli es},
Vi={JVy: v €Gul.

Lemma 4.10. For eachs € §, V; is a small clopen set.

Proof. Fix s € S,. Observe that each, is clopen. We must show thav,: y € G,} is
discrete. Towards that end, lete X be arbitrary. First consider the case thdt); ¢ G,
for somei € s. If u(x); < minGy, then the clopen sat’ 5 x missesV;,. Otherwise, for
somey € Gy, the clopen sety € X: y < u(y)i < ¥y 1} > x meets onlyv,,.

Next consider the case thaix); € Gy forall i € s. If u(x); = u(x)y foralli,i’ €,
thenu(x); € Ge N (e, nilAil =9. So letu(x); < u(x); for somei, i’ € s. Then the
clopensefy € X: u(x); < u(y)y andu(y); < u(x);} containse and misse¥d;. 0O

SetV = VTUJ,.g Vs. We claim thatv satisfies the conclusion of Theorem 4.2. So we
fix an arbitraryx € X and prove that € V U E. We assume that ¢ V*. Definen € ® so
that (informally)n (i) < n(i’) iff G separateg(x); andu(x);,. Formally,n(i) < n(i’) iff
n(x); <y < u(x)y forsomey € Gy If x € Xp, thenn is coarser than (possibly, but not
necessarily, equal t@).

Lemma 4.11. If 5 is Typel, thenx € V. If  is Type2 andx ¢ VT, thenx € E.

Proof. Assume that) is Type 1. By Definition 4.7, there arg s, and¢ so thaty < [{j}] =

s € S¢. From the definition ofy, there isy’ € G, so that mify € G¢: u(x); < y} are equal
to y’ for all i € s. The assumption that’ € Lim G, together with (2) of the definition of
G, leads to a contradiction, g = y* for somey € G,. Thenx ¢ V,CcVyCV.

Assume that is Type 2 andx ¢ V1. We will show thatx € E,(C"). We definec e
[1C" by cases. Ifi =0 or if K]'.’_l < K]'.’, then set; = minC}’. In this case¢; < u; (x);
becauser ¢ V1. If K?_l = K]'.’, let ¢; be the least element aﬂ? greater than or equal to
u;;(x)j_l. In this case¢; < Ky (%), because by definition of, there isy € G, such that
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) j-1 <y < py (1), andGe C C;7. In both casesy;f (x) -1 < ¢; is obvious. Sox is
weakly n-entwined withc, andx € E,(C") CE. O

Thus ends our proof of Theorem 4.2.
To end this section, we calculate the upper bounidf(X \ V)| in Theorem 4.2. For

that we need to find a standard form of sEfgC”) on whichy | (X \ V) is constant.
Take anyv € ©. Since¢ is coarser than, there is, for eacli < mg, a uniquel < m;

such thak? = «{ and hence, we can define-&-attuned tupleD? by D = G¢.

Lemma 4.12. If n is coarser tharg, thenEq (DY) C E,(C").

Proof. For eachk < m,, let j (k) = min@[n*[{k}]]. Note thatxf(k) =k
Let x be weaklyo-entwined withd € [ | DY and define;, = dj) for k < m,. Sinces
is coarser tham, there is a uniqué < m; so thatxf = K;j. This implies

Ck :dj(k) € D?(k) =Gy C C;z,
and
c={co,....Cm,-1) € HC”.

Let us see that is weakly n-entwined withc. Let k < m,, n(i) =k andé(i) = j.
Thenj € 6[n[{k}]]impliesj > j (k), which furtherimpliesy =d;u) <d; < puy (x); <
p(x)i, and hencecy < w, (x)x. Whenk < my — 1, observe thati +1 < j(k + 1)
because; is coarser thad. Thenu(x); < /,L;_(X)j <djy1 <dj+1) = cry1, and hence
1} (0)k < cxra. This showsy € E,(C). O

Corollary 4.13. Under the assumptions of Theordr®, there is a small clopen sét of X
such that

o T XAV < T (JeHen]) <nl.

L<mg

Proof. By the proof of Lemma 4.11, the values@f (X \ V) are given by constant values
@[E,(CM)], wheren is determined by ¢ vt Leto(n) € © be a permutation finer than
suchn. Then, by Lemma 4.12,

o[E4(C™)] = ¢[Eon (D"™)].

Since there are at mo${,_,, (£ < [{£}]])-many permutations i®), we havely [ (X \

Let {A;: i < n} be a pairwise disjoint collection of stationary setsuifnn ThenX =
[1;=, Ai is the free union ofXy's, wheref is a permutation om. So we can define a
continuous mag on X such thate | (X \ V)| =n! for each small clopen séf.
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5. Main theorem
In this section, we state and prove
Theorem 5.1 (Main). The product of finitely many subspaces of ordinals is strongly zero-

dimensional. In other words, ik; C ; for all i < n, thenX =[], _, A; is strongly zero-
dimensional.

i<n

Proof. Here is our induction hypothesis. For a tuple= (o, ..., «,—1) of ordinals,
let SZD(«) abbreviate “ifA; C o; for all i < n, thenX =1]J,;_, A; is strongly zero-
dimensional”.
We will prove SZD(«) for all finite-tuples of ordinals by induction on the order
AssumingSzZD(B) for all B < «, we will showSZD(«). Let Zg andZ1 be disjoint zero-
sets ofX. By [5, 1.15], we may assume th&p = A [{0}] and Z1 = A [{1}] for some
continuous functior : X — [0, 1].

Case 1. For somel < n, «; has the formg + 2, or cfo; = w, or cfa; > w and A; is not
stationary ing; .

We shall show thaX is the free sum of spaces known to be strongly zero-dimensional
by induction hypothesis, and hence is itself strongly zero-dimensional.

Indeed, for notational convenience, we may assum@. LetY =[], _, Ai.

The first casedp = 8 + 2): We haveX = (AgN(B+ 1) x YPAoN{B+1}) xY
and(ApN{B + 1}) x Y is homeomorphictg0} x Y if 8+ 1€ Ap.

The second case (€ = w): Fix a normal functionM :w — ag. Then we have
X=@,c,(AoN(M@n —1),M(n)]) x Y, whereM (—1) is considered as 1.

The third case (afg > w and A is not stationary inxg): Since Ag is not stationary in
oo and cfag > w, one can fix a normal functioM : cfag — ag such that ra N Ag = 9.
ThenX =@, _¢r,o(AoN(M(y — 1), M(y)]) x Y.

Case 2. For some < n, «; has the formk + 1, wherex is a limit ordinal.

For notational convenience, we may assume that 0. Moreover by induction
hypothesis, we may assume that Ag. SetY = ]’[Kkn A; and X1 = {A} x Y. Set
hi=h|X;.

By the induction hypothesis, there is a clopen 8etof Y so thath;~[[0, 1/3]] €
{A} x W andh;[[2/3, 111 C {A} x (Y \ W).

Let X2 = (Ao \ {A}) x W andhy = h | X». By induction hypothesis, there is a clopen
subsetV;, of X» such thatk5 [[0,5/6]] C V2 andh5 [{1}] C X2 \ V2. Analogously, by
letting X3 = (Ap \ {A}) x (Y \ W) andh3z =h | X3, one can find a clopen s&g of X3
suchthat3 [{0}] C Vz andh3 [{1}] C X3\ V3. ThenV = ({1} x W)U V> U V3 obviously
containsZg and is disjoint fromz;.

To show thatV is open, letr € V. SinceV, andV3 are open inX, it suffices to consider
the case that = (A, y) € {A} x W. It follows fromh(x) < 2/3 < 5/6 that there arez < A
and a neighborhoodd of y such thaty ¢ W and((«, A\]N Ag) x U € h°[[0, 2/3)]. Then
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it is straightforward to show thaiw, A] N Ag) x U C V, thusV is open inX. Similarly
we can show thak \ V is open inX, and hencé’ is clopen.

Case3. Foralli < n, cfa; > w andA; is stationary iny;.

We apply Theorem 4.2 to the function and obtain a small clopen sét so that
h | (X \ V) has finite range. Note thd¥* = ZogN (X \ V) is clopen inX.

By the definition of smally = [J{Vi: A € A}, where the induction hypothesis applies
to eachV,. That is, for each., there ist, clopen inV, (hence clopen irX) such that
ZoNV, C W2 C Vi \ Z1. BecausdVy: A e A} is locally finite in X, WO = (J{W?: » € A}
is clopen inX. Thenw* U W9 is the desired clopen set separatifigandZ;. O

6. Subspaces of the product space (@ + 1) x ¢ which arenot strongly
zero-dimensional

We begin by considering a MAD familR of subsets otv. HereR is called MAD
(= maximal almost disjoint) if it is almost-disjoints(N s’| < w for distincts, s’ € R), and
not contained properly in any other almost-disjoint family. For sitgHet ¥ (R) denote
the space which is defined on the aet) R and has the so-called-space topology, [5,
5.11,[3, 3.6.1]. That is, a subsdf of ¥ (R) is open iff

VseR (sEU:>|s\U|<a)).

LetL ={r ec: Aisalimit},andletS = ¢\ L. NotethatL| =|S| = ¢. Since|R| xc~ ¢,
the unindexed family can be index@l= {s,: « € S} in such a way that, for eache R,
H{a € S: s =54} = c. With R thus indexed, we consider the subspace

KR)y=wx LU U((S"‘ X {oe})U {(a),oz)})

aeS

of the product spacév + 1) x c.
Theorem 6.1. For every MAD familyR, B¥ (R) isembedded ik (R)* = BK(R)\ K (R).

As noted in [10, Concluding remarks], where the symiol R denotes our space
¥ (R), every first-countable separable compact space as well as the epaed. is
homeomorphic ta (R)* for someR.

(Let us take this opportunity to point out that extensions of this result, which were
subsequently obtained by a few authors, remain mostly unpublished, and that some of
their zero-dimensional versions are found in [1]. However, [1] is written in Boolean
algebraterms, and, by Stone’s duality, concerned with Banaschewski compactification (i.e.,
maximal zero-dimensional compactification)w{R) instead of [10]'s StonegSech one.
Hence results of [1] and [10] overlap only in the case ¥&R) is strongly zero-dimen-
sional, or, equivalently’ (R)* is zero-dimensional, see [10, Lemma 1.1]. Or, more clearly,
[10] contains a higher-dimensional version of some results of [1]. See also the interesting

paper [2].)
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Therefore

Corollary 6.2. Every first-countable, separable, compact space is embeddédin™* for
someR.

Corollary 6.3. The spacey; + 1 is embedded ik (R)* for someR.

Throughout the rest of this section we will fik a MAD family indexed bysS in the
special way described above. We will often write or ¥ in place of K(R) or ¥ (R),
respectively, for simplicity’s sake.

For the proof of Theorem 6.1, we define in the sp&ce K(R)

Hy=(w+1) x(x,c)NK, «a<c,
and in the spacg K

Y=()\Clgk Hao.  Y'=YNClgk[{w} x S].
a<c
Obviously eachH,, is a clopen subset df. Being the intersection of compact setsand
Y’ are compact subspaceskf.

The following well-known lemma, which is a consequence of the Pressing Down
Lemma, and its corollaries are central to our argument.

Lemma 6.4. Let L C A C ¢. Then every continuous map € C(A) is constant on
AN\, ¢ for somer < c.

Corollary 6.5. For every continuous functioyi: K — R, there is a\ < ¢ such thatf is
constantonthe sefa} x (A, c)N K and{{w,a): @ > A ands =s,} N K forall n < w and
sEeR.

Proof. By Lemma 6.4, for each, there is an ordinal,, < cin which f | ({n} x (A,, ) N
K) is constant. Let. = sugA,: n}. Then we have thaf [ ({rn} x (A, ¢) N K) is constant
for eachn < w. Further lets € R, s = s, = sg and o, 8 > 1. Then it follows that
fUk,a)) = f((k, B)) for eachk € s. Since{(k,a): k € s} and{(k, B): k € s} converge
to (w, a) and{w, B) respectively, we havé ((w, «)) = f({(w, B)). O
Corollary 6.6. For every zero seZ of K, there is ax such that

LNH,NZ#G iff LNH, CZ

whereL = {n} x cor L = {{w, a): s =54} forn < w or s € R, respectively.
Now Theorem 6.1 follows from

Proposition 6.7. Y and ¥ are homeomorphic.
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Proof. In the sequel, we will identify points o K with z-ultrafilters onK. Thus, for
a zero-setZ of K and p € BK, Z € p is equivalent top € Clgg Z, that is, {p} =
ﬂZEP Clgx Z (cf. [5, 6.5(c)]). Note thatH, € p for everya < ¢ andp € Y, and hence
thatZ N H, € p foreveryZ € p, p € Y anda.

It suffices to show that contains aC*-embedded dense copy &f.

First note that Gx[{rn} x cN K] NY is a singleton for each < w, and determines
a point p,,. In fact, if the set contains two pointg, g1, then there are disjoint zero sets
Z; €q; sothatZ; c {n} x cN K. LetA be asin Corollary 6.6 foEZg andZ1. Then bothz;
contain{n} x (1, ¢) N K, which is impossible.

Obviously p, is isolated inY .

Likewise, for eachy € R, Clgg[{{w, @): s =s5,}1NY is a singleton and determines a
point p; of Y. Note that{{w, «): s = s} is also a zero set of .

We claim that the subspa@e= {p,: n < w}U{ps: s € R} is homeomorphic t@&, and
is C*-embedded and dense¥n

ForseR,let B=(s x¢cNK)U {{w,a). s, =s}. Then B is clopen inK. If
g € Y NClgg B\ {ps}, then there is a zero séte g such thatZ C B\ {{w, a): 54 = s}.
Let 1 be as in Corollary 6.6. Then, obviouslg, N H, meets{n} x ¢ for only finitely
manyn € s. Thusg = p, for somen, andY N Clgg B = {ps} U {p,: n € s}. HenceT is
homeomorphic tar.

To see that" is C*-embedded iy, take anyf : T — [0, 1]. Then a continuous function
F onKUT isdefined byF ({(n, a)) = f(p,) andF ({w, @)) = f(ps) Wheres = s,. Extend
FlKtoF:BK — [0, 1]. F | Y is the extension of .

Let f: BK — R be a continuous function which sends g}l to 0, and choosg as in
Corollary 6.5 forf | K. Then f({n, «)) = 0 for eachn < w anda > A. This implies that
f({w,a)) =0 for eacha > A, that is, f[H,] = {0}. Thus we have thaf[Y] = {0}, that
{pn: n < w} is dense inY, all our spaces being Tychonoff, and finally tHais dense in
Y. O

The above proof also shows
Corollary 6.8. Y’ is homeomorphic tg¥ \ w.
It appears that’ is the main part of the spagek . That is,

Proposition 6.9. Any compact subspace K is strongly zero-dimensional if it is disjoint
fromY’.

Proof. FirstletI' = (w + 1) x (¢ + 1), and consider the extensien K — I" of the
embeddingk — I". Note that{d (p)} = ("¢, Clr- Z for eachp € BK.

Then we have’’ = 6 [{{w, ¢)}].

For this, only the inclusiofy’ > 6 < [{(w, ¢)}] needs to be verified. #(p) = (», ¢) and
p & Clgg[{w} x S], thenthereis & € p sothatZ N{w} x S = 0. LetA be as in Corollary
6.6. Since Gt Z > (w, ¢), Z meets, and hence contaifag x (A, ¢) N K for infinitely many
n.LetA={n: Z > {n} x (&, ¢) N K}. Then, by the MAD-ness dR, A N s is infinite for
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somes € R. Further, by the special indexing &, s = s, for somea > A. This implies
that(w, @) € Z N {w} x S, which is a contradiction.

Now take any compact spadec 8K \ Y’'. Sinced[E] ¥ (w, ¢), there areN < w and
A < ¢ so thatd[E] N ((N, w] x (A, c]) =@. ThenE is contained in the8 K -closure of
the union of(w + 1) x [0, A] andUn@,{n} x [0, ¢). LetU = (w+1) x [0, A\]N K and
Gn = {n} x [0, ) N K. These are clopen sets &f andC*-embedded in it. Thus each of
Clggx U and Ckg G, is equivalent, as an extension, to the Stabeeh compactification of
U andG,, respectively.

SinceU consists of less-thanmany points, it has no continuous map ofip1]. This
means that 8= dimU = dimgU = dimClgx U. And, on the other hand, it is well-known
that eachG, is normal and strongly zero-dimensional, and hence that dig Gl, = 0.
ThereforeE C Clgx U U, <y Clgk G is strongly zero-dimensional.0l

We note the following Dowker—Morita’s Generalized Sum Theorem (see, e.g., [3,
Problem 7.4.11]): “LefX be a normal space ard its closed subspace such that difn<
n. If every closed sef’ C X disjoint from M satisfies dinF' < n, then dimX < »n.” Then
Corollary 6.8 and Proposition 6.9 assure us (notefliat, » consists of a compact seét*
and a discrete s&®)

Proposition 6.10. dimY’ =dimBK =dimy*,
Now here is what we have intended in this section.

Theorem 6.11. For every non-negative integer we can choos® so thatdimgK (R) =
n.

As we have pointed out in the last part of the proof of Proposition 6.9, every space of
cardinality < ¢ is strongly zero-dimensional. Hence

Theorem 6.12. ¢ is the minimum cardinal such théb + 1) x c is not hereditarily strongly
zero-dimensional.

We are grateful to the referee for suggesting the improvement of the proofs of
Propositions 6.7 and 6.9.
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