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Abstract

We show that the product of finitely many subspaces of ordinals is strongly zero-dimensio
contrast, for each natural numbern, there is a subspace of(ω+ 1)× c of dimensionn.
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1. Introduction

All spaces are assumed to be completely regular andT1.
A spaceX is said to bezero-dimensionalif it has a base of clopen sets. A spaceX is

said to bestrongly zero-dimensionalif for every disjoint pair of zero-setsZ0 andZ1, there
is a clopen setW with Z0 ⊂W ⊂ X \ Z1. In this situation, we say thatZ0 andZ1 are
separated by a clopen set. It is well-known that a spaceX is strongly zero-dimensional
and only ifβX is zero-dimensional, see [3, 7.1.17]. It is straightforward to verify th
spaceX is normal and strongly zero-dimensional iff every pair of disjointclosedsets ofX
are separated by a clopen set.

In [6], it was proved that for every subspace of the product space of two ord
normality, collectionwise normality, and the shrinking property are equivalent. W
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extending this equivalence to subspacesX of the product of finitely many ordinals, the
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first author [4] found it convenient to first prove that ifX is normal, thenX is strongly
zero-dimensional. Moreover, it was shown earlier (see [7]) thatX× Y is not normal when
X andY are disjoint stationary sets inω1. So it is natural to ask if thisX × Y is strongly
zero-dimensional. More generally, since all subspaces of product spaces of ordin
zero-dimensional, it is also natural to ask if such subspaces are strongly zero-dimen

We answer all these questions in the present paper.
First we generalize the notion of stationary sets in Section 2, and show a Gene

Pressing Down Lemma (Theorem 3.2) in Section 3. One corollary is that ifκi , i < n,
is ann-tuple of distinct, regular, uncountable cardinals, then every continuous fun
ϕ :

∏
i<n κi → R is constant on a final segment. Example 3.9 shows that this result

true when theκi ’s are not distinct. In Theorem 4.2, we show that after a small clopen s
deleted from the domain,ϕ has finite range. (“Small” is defined precisely in Definition 4.

Using Theorem 4.2, we prove that the product of finitely many subspaces of or
is strongly zero-dimensional (Theorem 5.1), thus answering the first question above
affirmative.

In Section 6, however, we present a negative solution to the second question. N
subspaces of the product of finitely many subspaces of ordinals are not necessarily s
zero-dimensional. More precisely, we prove that for every natural numbern, there is a
subspaceK of (ω + 1) × c such that dimK = n (Theorem 6.11). An important step
proving that theorem is to establish that for every maximal almost disjoint familyR of
subsets ofω, βΨ (R) is embedded in the remainder of such a subspaceK (Theorem 6.1).
HereΨ (R) is a so-calledΨ -space generated byR (see [3, 3.6.I] or [5, 5.I]). Section 6 ca
be read independently of other sections.

We add that this paper is the result of the three authors’ collective efforts, alth
Section 6 is due to the third author.

2. Generalized stationary sets

We will use set theoretical notation described in [9, Chapter I]. For example, 0 de
the empty set, an ordinal is the set of smaller ordinals, thusn= {0,1, . . . , n− 1} for each
natural numbern.

For ann-tuple t = 〈t0, . . . , tn−1〉 and ann′-tuple t ′ = 〈t ′0, . . . , t ′n′−1〉, t�t ′ denotes the
(n+n′)-tuples = 〈s0, . . . , sn+n′−1〉, wheresi = ti for i < n andsn+i = t ′i for i < n′. The 0-
tuple is considered as the empty sequence 0= ∅ as usual. For ann-tuplet = 〈t0, . . . , tn−1〉
of subsetst0, . . . , tn−1 of ordinals,

∏
t denotes the usual productt0 × · · · × tn−1 and

∇t = {x ∈∏
t : x0< · · ·< xn−1} its subspace.

For s ⊂ n, t � s denotes the sub-tuple〈ti : i ∈ s〉 of t . ForA⊂∏
t , A � s denotes the se

{x � s: x ∈ A}. NoteA � 0= {0} if A �= ∅. Form � n andx ∈∏
i<m ti , A[x] denotes the

set{y ∈∏
m�i<n ti : x

�y ∈ A}. Observe thatA[x] = A if m= 0 andA[x] = {0} if m= n
andx ∈A. Whenm= 1 andα ∈ t0, we writeA[α] instead ofA[〈α〉].

For s ⊂ n, x ∈∏
i∈s ti , A⊂

∏
t andj /∈ s, we let

πxj [A] = {aj : a ∈A anda � s = x}.
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Whens = 0, this is the usual projectionπj [A] of A to thetj -axis.
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Let x = 〈x0, . . . , xn−1〉, y = 〈y0, . . . , yn−1〉 ben-tuples of ordinals. Ifxi < yi for each
i < n, then we writex < y. We letx � y have the analogous meaning. The general
intervals(x, y) =∏

i<n(xi, yi) and(x, y] =∏
i<n(xi, yi] should be understood in term

of these orders. In Sections 4 and 5 we will writex ≺ y whenx � y andx �= y. All these
relations are well-founded on the class of alln-tuples of ordinals in the sense of [9, I
Definition 5.1].

For a subsetS of an ordinalµ, let Limµ(S) = {γ < µ: sup(S ∩ γ ) = γ }, in other
words, Limµ(S) is the closed set of all cluster points ofS in the spaceµ. We will also
use the symbol Succµ(S) = S \ Limµ(S). When the situation is clear in its context, w
simply write LimS or SuccS instead of Limµ(S) or Succµ(S), respectively. Observe tha
if cf µ� ω1 andS is unbounded inµ, then LimS is cub (i.e., closed and unbounded) inµ.

Let Cα, α ∈ A ⊂ κ , be cub sets of an uncountable regular cardinalκ . Its diagonal
intersectionis defined by

∆α∈ACα =
{
β ∈ κ : (∀α ∈A∩ β)(β ∈Cα)

}
.

Then∆α∈ACα is a cub set inκ (see [9, II Lemma 6.14]).
As usual (see [9, II Definition 6.9]), a subsetY of an uncountable regular cardinalκ is

calledstationary(or κ-stationary) iff it meets every cub subsetC of κ . The question arise
how we should defineκ-stationary setwhenκ = 〈κ0, . . . , κn−1〉 is not just a cardinal bu
a finite-tuple of non-decreasing uncountable regular cardinals. There are two ways
this, namely,

• (
∏

-type stationary)Y meets every
∏
C,

• (∇-type stationary)Y meets every∇C,

whereC is ann-tuple of cub setsCi of κi . When theκ is strictly increasing, the two notion
are equivalent (different filter bases generate the same filter) and have a satisfactory
Whenκi = κi+1 for somei, however, the notions are not equivalent. The prototypic re
“an open stationary set contains a final segment”, has a useful generalization (Theor
for the notion∇-type stationary. In contrast, there can be disjoint open

∏
-type stationary

sets—this is the essential idea of Example 3.9.
In the present paper we will develop the theory of∇-type stationary sets.
For expository reasons, we prefer to start with concepts equivalent to∇-type

stationarity. However, we soon prove (Proposition 2.4) thatY is κ-stationary iffY ∩∇Ci �=
∅ for everyn-tupleC with Ci a cub subset ofκi . Here is our official definition.

Definition 2.1. Let κ = 〈κ0, κ1, . . . , κn−1〉 be ann-tuple of non-decreasing uncountab
regular cardinals.
Y ⊂∏

κ is calledκ-stationaryif there isZ ⊂ Y such that, for allz ∈ Z andi < n, the

setπz�ii [Z] = π 〈z0,...,zi−1〉
i [Z] is κi -stationary.

We call the setZ in the abovepruned. Z is obviously itselfκ-stationary. Note that, ifκ
is an uncountable regular cardinal, “〈κ〉-stationary” and “κ-stationary” are synonymous.
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In the discussion ofκ-stationary sets, it is often useful to use induction on the length of
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Proposition 2.2. For an n-tuple κ = 〈κ0, κ1, . . . , κn−1〉 and Y ⊂∏
κ , the following are

equivalent.

(1) Y is κ-stationary,
(2) there are aκ0-stationary setK and, for eachγ ∈K, 〈κ1, . . . , κn−1〉-stationary setLγ

such that{γ } ×Lγ ⊂ Y for eachγ ∈K,
(3) there are a〈κ0, . . . , κn−2〉-stationary setS and, for eachs ∈ S, a κn−1-stationary set

Ts such that{s} × Ts ⊂ Y for eachs ∈ S.

Proof. We show the equivalence of (1) and (2). The equivalence of (1) and (3) is seen
similarly.

We proceed by induction and suppose that (1) and (2) are shown to be equivalenκ
of length� (n− 1).

Let κ be of lengthn, and supposeY is κ-stationary. LetZ ⊂ Y be pruned andK =
π0[Z]. ThenK is κ0-stationary. For eachγ ∈K, letLγ =Z[γ ]. Then, for eachζ ∈ Lγ and

0< i < n, π 〈ζ1,...,ζi−1〉
i [Lγ ] = π 〈γ,ζ1,...,ζi−1〉

i [Z] = π({γ }�ζ)�ii [Z] is κi -stationary. Hence, b
the definition, eachLγ is 〈κ1, . . . , κn−1〉-stationary.

Suppose that (2) holds. Then, by induction hypothesis, there is a setZγ ⊂ Lγ so that,

for eachz ∈ Zγ and 0< i < n, π 〈z1,...,zi−1〉
i [Zγ ] is κi -stationary. This set is identica

to π 〈γ,z1,...,zi−1〉
i [Z] whereZ =⋃

γ∈K{γ } × Zγ . ObviouslyZ ⊂ Y holds and hence, th
induction is complete. ✷

For convenience we will call singletons 0-stationary for the 0-tuple.

Proposition 2.3. Let κ = 〈κ0, . . . , κn−1〉 be ann-tuple andY κ-stationary.

(1) If Y ⊂X, thenX is alsoκ-stationary.
(2) If Y =⋃

α<λ Zα andλ < κ0, then someZα is κ-stationary.
(3) If Ci is cub inκi for eachi < n, thenY ∩∏

i<n Ci is alsoκ-stationary. In particular,
if s < κ is ann-tuple, thenY ∩ (s, κ) is alsoκ-stationary.

(4) Y ∩∇κ is κ-stationary.

Proof. We prove this by induction onn. Suppose this is true fori-tuples for alli < n. Let
κ ′ = 〈κ1, . . . , κn−1〉, and takeK andLγ as in Proposition 2.2(2). ThenK is κ0-stationary
and eachLγ is κ ′-stationary.

(1) Obvious from the definition.
(2) For eachγ ∈ K, let Zα,γ = Zα[γ ]. ThenLγ ⊂⋃

α Zα,γ and hence, by inductio
hypothesis,Zα,γ is κ ′-stationary for someα = α(γ ). SinceK =⋃

α<λ{γ : α(γ ) = α} is
κ0-stationary andλ < κ0, there is aδ so that{γ : α(γ ) = δ} = H is κ0-stationary [9, II
Lemma 6.8]. Then, by definition,Zδ ⊃⋃

γ∈H {γ } ×Zδ,γ is κ-stationary.



W.G. Fleissner et al. / Topology and its Applications 132 (2003) 109–127 113

(3) For eachγ ∈ K, Lγ ∩∏
0<i<n Ci is κ ′-stationary, by induction hypothesis, and
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{γ } × (Lγ ∩∏
i<n Ci)⊂ Y ∩

∏
i<n Ci holds.

(4) By induction hypothesis, for eachγ ∈K, there is aκ ′-stationary setYγ ⊂ Lγ such
thatt1< · · ·< tn−1 for eacht = 〈t1, . . . , tn−1〉 ∈ Yγ . By (3),Zγ = Yγ ∩ (γ, κ1)×κ2×· · ·×
κn−1 is κ ′-stationary. ThenZ =⋃

γ∈K{γ } ×Zγ is κ-stationary and contained inY . ✷
We have developed enough machinery to prove that the official definition ofκ-stationary

is equivalent to the motivating notion,∇-type stationary.

Proposition 2.4. Y is κ-stationary iffY ∩∇C �= ∅ for everyn-tupleC withCi a cub subse
of κi . Therefore the collection of all non-κ-stationary subsets of

∏
κ forms aσ -complete

ideal.

Proof. It suffices to show only the sufficiency part, the necessity part being includ
Proposition 2.3.

Assume the sufficiency part fori-tuples for alli < n and letκ ′ = 〈κ1, . . . , κn−1〉.
Suppose thatY is not κ-stationary. For eachα ∈ π0[Y ], let us consider the subs

Lα = Y [α], and letK = {α: Lα is κ ′-stationary}. SinceK is not κ0-stationary by
Proposition 2.2(2), there is a cub setC0 disjoint fromK. For eachα ∈ C0, Lα is not
κ ′-stationary. Then, by induction hypothesis, there is a cub setCα,i ⊂ κi for each 0< i < n
such thatLα ∩∇0<i<nCα,i = ∅. Let κ0= · · · = κm−1 < κm. Then defineCi =∆α∈C0Cα,i
for 0< i <m, andCi =⋂

α∈C0
Cα,i for m� i < n. Obviously eachCi is cub inκi .

To showY ∩∇i<nCi = ∅, supposet = 〈t0, . . . , tn−1〉 ∈ Y ∩∇i<nCi . Then〈t1, . . . , tn−1〉
∈ Lt0 ∩ ∇0<i<nCi . Thus t0 < ti ∈ Ci = ∆α∈C0Cα,i for 0< i < m, and t0 < ti ∈ Ci =⋂
α∈C0

Cα,i for m � i < n. This implies thatti ∈ Ct0,i for 0 < i < n, and hence
〈t1, . . . , tn−1〉 ∈ Lt0 ∩∇0<i<nCt0,i , a contradiction. ThusY ∩∇i<nCi = ∅. ✷
Corollary 2.5. Let κ = 〈κ0, . . . , κn−1〉 be ann-tuple andAi ⊂ κi for eachi < n. Then
Y =∏

i<n Ai is κ-stationary iff eachAi is κi -stationary.

3. Generalized Pressing Down Lemma

The usual Pressing Down Lemma [9, II Lemma 6.15] says that a functionf :S→ κ

defined on a stationary subsetS of an uncountable regular cardinalκ is constant on a
stationary subset ofS if f (α) < α for eachα. We now generalize this.

Definition 3.1. Let α = 〈α0, . . . , αn−1〉 be ann-tuple of ordinals, and suppose that
functionf sendsx ∈∏

α to f (x) ∈∏
α.

We call f regressiveif f (x) < x for all x ∈ domf , and astem functionif f (x)j =
f (x ′)j wheneverx � j = x ′ � j .

Observe that iff is a stem function thenf (x)0 is constant, and that a stem functi
defined on a set of 1-tuples is constant. Hence then= 1 case of the following theorem
the Pressing Down Lemma.
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Theorem 3.2 (Generalized Pressing Down Lemma).Letκ be ann-tuple,R a κ-stationary
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κ , andf :R→∏

κ regressive. Then there is aκ-stationary subsetY of R so
thatf restricted toY is a stem function.

Proof. Assume this theorem fori-tuples for all i < n, and let us considerκ = 〈κ0,

. . . , κn−1〉. Let κ ′ = κ � (n− 1).
By Proposition 2.2(3), there are aκ ′-stationary subsetS, andκn−1-stationary setsTs ,

s ∈ S, so that{s} × Ts ⊂R.
For eachs ∈ S and eachτ ∈ Ts , note that the pointf (s�τ) consists of the firs

(n − 1) coordinatesf1(s
�τ) and the last coordinatef2(s

�τ). We havef1(s
�τ) < s

andf2(s
�τ) < τ . Since|S| � κn−2, the set of allf1(s

�τ) has cardinality< κn−1. By
Proposition 2.3(2) and the Pressing Down Lemma applied toTs , there are a stationar
subsetYs of Ts , g(s) ∈∏

κ ′ andγs ∈ κn−1 such thatf1(s
�τ)= g(s) andf2(s

�τ)= γs ,
that is,f (s�τ)= g(s)�γs for all s ∈ S andτ ∈ Ys .

Apply the induction hypothesis to the regressive functiong to get a stationary subs
Y ′ of S so thatg restricted toY ′ is a stem function. LetY =⋃

s∈Y ′ {s} × Ys . To verify
that f restricted toY is a stem function, letz, z′ ∈ Y . If z � j = z′ � j and j < n − 1,
thenf (z)j = g(z � n− 1)j = g(z′ � n− 1)j = f (z′)j . If z � n− 1= z′ � n− 1= s, then
f (z)n−1= γs = f (z′)n−1 holds. ✷

A consequence of the Pressing Down Lemma is that a real-valued continuous fu
on a stationary subset of a regular uncountable cardinal is constant on its tail= its
intersection with a final segment). We can generalize this result for a non-decreasn-
tuple of regular uncountable cardinals (Theorem 3.7).

We begin with definitions.

Definition 3.3. Let κ = 〈κ0, . . . , κn−1〉 be ann-tuple. Let us say that ann-tuple C =
〈C0, . . . ,Cn−1〉 of cub setsCj of κj is attuned toκ , or simply,κ-attuned, if the following
holds:

(1) Cj ⊂ Lim κj for all j < n,
(2) if κj < κj+1, thenCj+1⊂ (κj , κj+1),
(3) if κj = κj+1, thenCj = Cj+1.

Note that everyn-tuple 〈D0, . . . ,Dn−1〉 of cub sets can be attuned toκ , that is,
there is aκ-attuned tuple〈C0, . . . ,Cn−1〉 such thatCj ⊂ Dj for eachj . In fact, when
κ0−1< κ0 = · · · = κm < κm+1, letC0 = · · · = Cm =⋂

0�j�mDj ∩ (κ0−1, κ0)∩ Lim κ0.

Definition 3.4. We say that ann-tuplex is entwined withanothern-tuplec if

c0< x0< c1< · · ·< cj < xj < cj+1< · · ·< cn−1< xn−1.

Let κ be a non-decreasingn-tuple of uncountable regular cardinals, andC be an attuned
n-tuple of cubs. Then we letE(C) denote the collection of allx ∈ ∇κ which are entwined
with somec ∈∏

C.
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Observe that the set ofx which are entwined with a specificc is an open set. Hence
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E(C) is an open set. Further observe that, ifκ0< · · ·< κn−1, thenx ∈E(C) iff min Cj <
xj for all j , that is,E(C) = (s, κ) is a final segment wheres = min(

∏
C) denotes the

minimum of the set
∏
C in the sense of the order�.

It is easily seen that the setE(C) is never empty. More precisely, by takingDj = LimCj
for eachj , we haveE(C)⊃∇D =∏

D∩∇κ . Thus by Proposition 2.3, for aκ-stationary
setY , Y ∩E(C) is alwaysκ-stationary.

Theorem 3.5. Let κ be ann-tuple andU an openκ-stationary subset of
∏
κ . Then there

is an attunedn-tupleC of cub sets, so thatE(C) is contained inU .

Proof. Let f :U → ∏
κ be regressive so that for eachu ∈ U , the half-open interva

(f (u),u] ⊂U . By our definition and Theorem 3.2, there is a pruned stationary subseY of
U so thatf � Y is a stem function. For eachj < n, letDj be the set ofγ < κj satisfying:
if y ∈ Y andy0, . . . , yj−1< γ , then

(1) f (y)j < γ ,

(2) Lim(πy�jj [Y ]) � γ .

Note that, becausef � Y is a stem function, to knowf (y)j it suffices to knowy � j ; in

particular, we know the constant valuef (y)0 at the start. Also note that each Lim(πy�jj [Y ])
is cub. ThenDj is a cub set ofκj (see, e.g., the proof of [9, II Lemma 6.13]). LetC be
attuned toκ with Dj ⊃ Cj for eachj < n.

To verify the conclusion, letx ∈∏
κ be entwined withc ∈∏

C. By induction onj < n,
we shall defineyj and verify that

f (y)j < cj < xj < yj < cj+1.

Let yj be the least element ofπ
〈y0,...,yj−1〉
j [Y ] greater thanxj . This is possible becaus

π
〈y0,...,yj−1〉
j [Y ] = πz�jj [Y ] for anyz ∈ Y with z � j = 〈y0, . . . , yj−1〉, and isκj -stationary.

We verify the inequalities left to right. First,f (y)j < cj because of (1). Second,cj < xj
becausex is entwined withc. Third,xj < yj by our choice ofyj . Finally,yj < cj+1 is seen
in the following way. It is obvious ifκj < κj+1. If κj = κj+1, then (2) implies this becaus
cj+1 ∈ Cj+1= Cj ⊂Dj . Thus, we have verified thatx ∈ (f (y), y] ⊂U , as required. ✷
Corollary 3.6. Letκ be a strictly increasingn-tuple andU an openκ-stationary subset o∏
κ . Then there is ans ∈ ∇κ so that the final segment(s, κ) is contained inU .

Theorem 3.7. If κ is an n-tuple, andϕ :Y → R is a continuous function defined on
κ-stationary setY , then there is aκ-attunedn-tupleC so thatϕ is constant onE(C)∩ Y .

Proof. For eachi ∈ ω, R is covered by countably many open setsB(i, k), k ∈ ω, of
diameter� 1/(i+1). By Proposition 2.3, for eachi, there is aki such thatϕ←[B(i, ki)] is
κ-stationary. LetU(i) be an open set of

∏
κ in whichϕ←[B(i, ki)] = U(i)∩Y . Obviously,
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U(i) is κ-stationary, and by Theorem 3.5, there is aκ-attunedn-tupleC(i) of cub sets such
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thatE(C(i))⊂U(i).
Define Cj = ⋂

i C(i)j . Then C = 〈C0, . . . ,Cn−1〉 is attuned toκ and E(C) ⊂⋂
i E(C(i))⊂

⋂
i U(i). Thus we haveE(C) ∩ Y ⊂⋂

i ϕ
←[B(i, ki)] = ϕ←[⋂i B(i, ki)].

SinceE(C)∩ Y is κ-stationary and hence non-empty as we have noted above,
⋂
i B(i, ki)

is a singleton. This means thatϕ �E(C)∩ Y is constant. ✷
In case the tupleκ is strictly increasing, we have

Corollary 3.8. If κ is a strictly increasingn-tuple andϕ :Y →R is a continuous function
defined on aκ-stationary setY , then there is ans ∈ ∇κ so thatϕ is constant on the fina
segment(s, κ)∩ Y of Y .

As Proposition 2.3(4) shows, the essential part of aκ-stationary set lies in its intersectio
with ∇κ . The above setE(C) also lies in∇κ . In particular, ifκ is strictly increasing,E(C)
is a final segment itself and its complement is seen to be small (i.e., related to s
cardinals). Ifκi = κi+1 for somei < n, however, the complement is not small enough
we must partition

∏
κ . The partition is suggested by the following two examples. We

develop the idea of partitioning in the next section. (The idea of partitioningωn1 appears in
[8], which also contains the equivalence of “inductively” stationary and∇-type stationary
for κ = 〈ω1, . . . ,ω1〉).

Example 3.9. Let X = A0 × A1, where eachAi is stationary inω1 andA0 ∩ A1 =
{ξ + 1: ξ ∈ ω1}, call it N . Let ϕ̂ :N → R have uncountable range. Defineϕ :X→ R

by cases:ϕ(x0, x1) = 0 if x0 < x1; ϕ(x0, x1) = 1 if x0 > x1; ϕ(x0, x1) = ϕ̂(ξ + 1) if
x0 = x1 = ξ + 1. Now ϕ is continuous, but is not constant on any final segment. T
is, the conclusion of Corollary 3.8 fails forϕ. Theorem 4.2 will give more information o
this; we must be able to discard the diagonal from a final segment and be satisfied
finite range.

Here is a space on which every real-valued continuous function is constant on
segment. The technique of applying the Pressing Down Lemma on a subset of our s
obtain a final segment of the whole space will reappear in Lemma 4.4.

Example 3.10. Let κ = 〈ω1,ω1〉. LetX =∏
κ = ω1× ω1. Let ϕ :X→R be continuous

Defineδ :ω1→X by δ(ξ) = 〈ξ, ξ〉. To prove thatϕ is constant on a final segment ofX,
it suffices (by the proof of Theorem 3.7) to assume thatU is open inX and δ←[U ] is
stationary, and then show thatU contains a final segment(s, κ) of X.

For eachξ such thatδ(ξ) ∈U , definef (ξ) < ξ so that((f (ξ), ξ ]× (f (ξ), ξ ])⊂U . By
the Pressing Down Lemma, there isζ so thatf (ξ)= ζ for a stationary set ofξ ’s. NowU
contains the final segment(δ(ζ ), κ).



W.G. Fleissner et al. / Topology and its Applications 132 (2003) 109–127 117

4. Finite range
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We begin with the promised precise definition of small. It includes not only sets bou
in (at least) one coordinate, but also sets like the diagonal in Example 3.9.

Definition 4.1. LetX⊂∏
α (=∏

i<n αi). We say that a clopen subsetV of X is bounded
if V ⊂∏

β for somen-tupleβ ≺ α (i.e.,β � α but β �= α). MoreoverV is small if V is
represented as the union of a locally finite family of bounded clopen subsets ofX.

Note that whenn = 1, the complement of a small set contains a final segment. S
next theorem is the promised generalization. We devote this section to its proof.

Theorem 4.2. Let X = ∏
i<n Ai , where eachAi is stationary. Letϕ :X → R be

continuous. Then there is a small clopen subsetV of X such thatϕ � (X \ V ) has finite
range.

The strategy of the proof is as follows. After more notation, we partition the s
X into a small clopen subsetV ∗ and finitely many subspacesXθ , θ ∈ Θ, and classify
these subspaces. A first approximation to the desired small setV is V ∗ together with the
subspaces of Type 1. We prove thatϕ is constant on “almost all” of each subspace
Type 2. Finally, we defineV and verify the conclusion of our theorem.

Throughout this section, we fixα, ann-tuple of ordinals of uncountable cofinality. F
eachi < n, letAi be a stationary subset ofαi , and define then-tupleκ via κi = cfαi . We
fix the spaceX=∏

i<n Ai .
For eachi, letMi : cfαi = κi → αi be a strictly increasing continuous function who

range is cofinal inαi . We callMi normal functions. For eachi < n, let µi :αi → κi
be the function defined byµi(γ ) = min{β < κi : γ � Mi(β)}. Observe thatµi almost
is an inverse toMi . In particular,µi(Mi(ξ)) = ξ and γ � Mi(µi(γ )) always hold,
and γ = Mi(µi(γ )) holds wheneverµi(γ ) ∈ ranMi. Note that eachµi is continuous.
Therefore the product mapµ :

∏
α→∏

κ defined byµ(x)i = µi(xi) is continuous.
For eachi < n, setκ−i = sup{κi′ : κi′ < κi} (by convention, sup∅ = 0). ThenV ∗ = {x ∈

X: (∃i < n)(µ(x)i � κ−i )} is a small clopen set. BecauseV ∗ will be part of the small
clopen setV discarded in the conclusion of Theorem 4.2, from now on we assume
µ(x)i > κ

−
i for all i andx.

LetΘ be the family of functionsθ from n onto somemθ , (necessarilymθ � n), which
additionally satisfy

if κi < κi′ , thenθ(i) < θ(i ′).
We say thatθ is coarser than θ ′, or θ ′ is finer than θ , if θ(i) < θ(i ′) implies that
θ ′(i) < θ ′(i ′).

For example, when all theκ ’s are equal, then the constant 0 function is the coarseθ ,
the permutations are the finestθ ’s. At the other extreme, if theκi ’s are distinct, thenΘ has
only one element: the permutation ofn which arranges theκi ’s in increasing order.

Now we can define the partition. Forθ ∈Θ, let

Xθ =
{
x ∈X: θ(i) < θ(i ′)⇐⇒ µ(x)i < µ(x)i′

}
.
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Observe thatX =⋃{Xθ : θ ∈Θ}.
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Next, we define themθ -tuple κθ by κθ
θ(i)
= κi . (So κθ is formed fromκ by possibly

identifying some equal coordinates.) And we define, forx ∈X andj <mθ ,

µ−θ (x)j =min
{
µ(x)i: θ(i)= j

}
and µ+θ (x)j =max

{
µ(x)i: θ(i)= j

}
.

Then the mapsµ−θ ,µ
+
θ :X→∏

κθ are continuous. By the definition, these maps coinc
onXθ and give us a mapµθ :Xθ→∇κθ .

The next lemma basically repeats Theorem 3.5 with more notation and a str
conclusion. The prototype is Example 3.10 above. Note that it is true for allX ⊂∏

α,
not just those of the form

∏
A. We need the following notation to express this stron

conclusion in a general setting.

Definition 4.3. ForC, amθ -tuple of cub sets attuned toκθ , letEθ(C) be the set ofx ∈X
such that there isc ∈∏

C satisfying

c0<µ
−
θ (x)0 � µ+θ (x)0< c1< · · ·< cmθ−1<µ

−
θ (x)mθ−1.

In this case we say thatx is θ -entwined withc. Notice thatEθ(C)⊂Σ ∩X becauseC
is attuned. Observe thatEθ(D) ⊂ Eθ(C) if Dj ⊂ Cj for all j < mθ . Note that the set o
x ∈X which areθ -entwined with a specificc ∈∏

C is an open subset ofX; henceEθ(C)
is open inX.

Lemma 4.4. LetU be an open subset ofX such thatµθ [U ∩Xθ ] is aκθ -stationary subse
of∇κθ . Then there is an attunedmθ -tupleC of cub sets so thatEθ(C) is contained inU .

Proof. Let Y be the set of elementsy of µθ [U ∩Xθ ] such that every coordinateyj is a
limit ordinal. By Proposition 2.3,Y is κθ -stationary. Because eachyj is limit, there is a
uniqueỹ ∈Xθ such thatµθ(ỹ) = y. Chooseb(ỹ) < ỹ so that(b(ỹ), ỹ] ∩X ⊂ U . Define
f (y) ∈ ∇κθ via f (y)j = µ+θ (b(ỹ))j . Because eachyj is a limit, f (y)j < yj . In other
words,f (y) < y andf is regressive.

Now we follow the proof of Theorem 3.5 closely. We point out only differences. T
is a pruned stationary subsetY ′ of Y so thatf restricted toY ′ is a stem function. Find a
attunedC to satisfy (1) and (2). Letx be an arbitrary element ofEθ(C). Defineyj to be

the least element ofπ
〈y0,...,yj−1〉
j [Y ′] greater thanµ+θ (x)j . Verify thatf (y)j < µ

−
θ (x)j �

µ+θ (x)j < yj for eachj <mθ , which yieldsb(ỹ) < xi < ỹi for all i < n. We have verified
thatx ∈ (b(ỹ), ỹ] ⊂U , as required. ✷

And this implies, as before (see Theorem 3.7),

Lemma 4.5. Let θ ∈Θ satisfyµθ [Xθ ] is κθ -stationary, and letψ :X→R be continuous
Thenψ is constant onEθ(C) for some attunedmθ -tupleC of cub sets.

Now we return to the proof of Theorem 4.2.
For a carefully chosenC, ϕ will be constant onEθ(C). However, we cannot ensure th

Xθ \Eθ(C) is small. So we introduce a slightly larger set.
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Definition 4.6. LetEθ(C) be the set ofx ∈X such that there isc ∈∏
C satisfying

h

.

c0<µ
−
θ (x)0 � µ+θ (x)0 � c1< · · ·� cmθ−1<µ

−
θ (x)mθ−1.

We say thatx is weaklyθ -entwined withc.

Observe thatEθ(D) ⊂ Eθ(C) if Dj ⊂ Cj for all j < mθ . Note that the set ofx ∈ X
which areθ -entwined with a specificc ∈∏

C is an open subset ofX; henceEθ(C) is open
in X.

Let ζ be the coarsest element ofΘ; in other words,κζ lists the coordinates ofκ in
strictly increasing order. For example, when all theκi ’s are equal, thenζ is constant 0
function andκζ is a 1-tuple. At the other extreme, if theκi ’s are distinct, thenζ is the
unique element ofΘ.

For 0 < mζ , let S0 be the collection ofs ⊂ ζ←[{0}] such that
⋂
i∈s µi [Ai] is not

stationary inκζ0 . Let S =⋃
0 S0. We now classify the elements of the partition.

Definition 4.7. We say thatθ is Type 1if θ←[{j }] ∈ S for somej < mθ . We say thatθ is
Type 2otherwise.

Sinceθ corresponds to subspaceXθ in a unique way, we can sayXθ is Type 1 or 2
whenθ is Type 1 or 2, respectively.

Note that by Corollary 2.5,µθ [Xθ ] is κθ -stationary iffθ is Type 2. Ifθ ′ is coarser than
θ andθ is Type 1, thenθ ′ is Type 1.

The next lemma is where we use thatX has the form
∏
i<n Ai .

Lemma 4.8. Let D = 〈D0, . . . ,Dmθ−1〉 be a κθ -attuned tuple of cub sets whic
additionally satisfies: for alli < n, Dθ(i) ⊂M←i [LimAi]. Then

Eθ(D)⊂ClX
(
Eθ(D)

)
.

Proof. Takey ∈Eθ(D) arbitrarily and suppose thaty is weaklyθ -entwined withc. Let

H = {
i < n: θ(i) < mθ − 1 andµi(yi)= cθ(i)+1

}
.

We claim that if i ∈ H , thenκθθ(i) = κθθ(i)+1. Indeed, if i ∈ H andκθθ(i) < κθθ(i)+1, then

cθ(i)+1 ∈Dθ(i)+1 ⊂ (κθθ(i), κθθ(i)+1) andcθ(i)+1= µi(yi) < κθθ(i), which is a contradiction

Thus we haveκθθ(i) = κθθ(i)+1. Sinceµi(yi) = cθ(i)+1 ∈ Dθ(i)+1 = Dθ(i) ⊂M←i [LimAi],
we haveyi = Mi(µi(yi)) ∈ LimAi . Let (z, y] be an arbitrary neighborhood ofy. We
seek x ∈ (z, y] ∩ Eθ(D). If i /∈ H , let xi = yi . If i ∈ H , choosexi ∈ Ai so that
max{zi,Mi(cθ(i))} < xi < yi . It is possible becauseMi(cθ(i)) < Mi(µi(yi)) = yi . Now
it is clear thatx ∈ (z, y] ∩X, and routine to verify thatx ∈Eθ(D). ✷

By Lemmas 4.5 and 4.8, we have

Lemma 4.9. Let θ be Type2, andϕ :X→R be continuous. Thenϕ is constant onEθ(C)
for someC.



120 W.G. Fleissner et al. / Topology and its Applications 132 (2003) 109–127

For eachθ of Type 2, let us fixCθ so thatϕ is constant onEθ(Cθ). Let E =

d

we

ot

f

o

⋃{Eθ(Cθ): θ is Type 2}. Then ϕ � E has finite range. We must show thatX \ E is
contained in a small clopen set.

Fix aκζ -attuned tuple〈G0, . . . ,Gmζ−1〉 of cub sets satisfying

(1) if θ is Type 2 andκθj = κζ0 , thenG0 ⊂ Cθj ,
(2) if s ∈ S0, thenG0 ∩⋂

i∈s µi[Ai] = ∅.

Let V † = {x ∈ X: (∃i < n)(µ(x)i � minGζ(i))}. Then V † is a small clopen set an
V ∗ ⊂ V †.

For eachs ∈ S, we will define a small clopen setVs . Let s ∈ S0. For γ ∈ G0, let γ+
be the least element ofG0 greater thanγ . If ξ /∈ G0, then eitherξ < minG0, or there is
γ ∈G0 such thatγ < ξ < γ+. Let

Vγ =
{
x ∈X: γ < µ(x)i � γ+ for all i ∈ s},

Vs =
⋃
{Vγ : γ ∈G0}.

Lemma 4.10. For eachs ∈ S, Vs is a small clopen set.

Proof. Fix s ∈ S0. Observe that eachVγ is clopen. We must show that{Vγ : γ ∈G0} is
discrete. Towards that end, letx ∈ X be arbitrary. First consider the case thatµ(x)i /∈G0
for somei ∈ s. If µ(x)i < minG0, then the clopen setV † � x missesVs . Otherwise, for
someγ ∈G0, the clopen set{y ∈X: γ < µ(y)i � γ+} � x meets onlyVγ .

Next consider the case thatµ(x)i ∈G0 for all i ∈ s. If µ(x)i = µ(x)i′ for all i, i ′ ∈ s,
thenµ(x)i ∈ G0 ∩⋂

i∈s µi[Ai] = ∅. So letµ(x)i < µ(x)i′ for somei, i ′ ∈ s. Then the
clopen set{y ∈X: µ(x)i < µ(y)i′ andµ(y)i � µ(x)i} containsx and missesVs . ✷

SetV = V †∪⋃
s∈S Vs . We claim thatV satisfies the conclusion of Theorem 4.2. So

fix an arbitraryx ∈X and prove thatx ∈ V ∪E. We assume thatx /∈ V ∗. Defineη ∈Θ so
that (informally)η(i) < η(i ′) iff G separatesµ(x)i andµ(x)i′ . Formally,η(i) < η(i ′) iff
µ(x)i � γ < µ(x)i′ for someγ ∈Gζ(i). If x ∈Xθ , thenη is coarser than (possibly, but n
necessarily, equal to)θ .

Lemma 4.11. If η is Type1, thenx ∈ V . If η is Type2 andx /∈ V †, thenx ∈E.

Proof. Assume thatη is Type 1. By Definition 4.7, there arej , s, and0 so thatη←[{j }] =
s ∈ S0. From the definition ofη, there isγ ′ ∈G0 so that min{γ ∈G0: µ(x)i � γ } are equal
to γ ′ for all i ∈ s. The assumption thatγ ′ ∈ LimG0 together with (2) of the definition o
G0 leads to a contradiction, soγ ′ = γ+ for someγ ∈G0. Thenx ∈ Vγ ⊂ Vs ⊂ V .

Assume thatη is Type 2 andx /∈ V †. We will show thatx ∈ Eη(Cη). We definec ∈∏
Cη by cases. Ifj = 0 or if κηj−1 < κ

η
j , then setcj =minCηj . In this case,cj < µ−η (x)j

becausex /∈ V †. If κηj−1 = κηj , let cj be the least element ofCηj greater than or equal t
µ+η (x)j−1. In this case,cj < µ−η (x)j , because by definition ofη, there isγ ∈G0 such that
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µ+η (x)j−1 � γ < µ−η (x)j , andG0 ⊂ Cη. In both cases,µ+η (x)j−1 � cj is obvious. Sox is

r

s
n

a

j

weaklyη-entwined withc, andx ∈Eη(Cη)⊂E. ✷
Thus ends our proof of Theorem 4.2.
To end this section, we calculate the upper bound of

∣∣ϕ � (X \ V )∣∣ in Theorem 4.2. Fo
that we need to find a standard form of setsEη(C

η) on whichϕ � (X \ V ) is constant.
Take anyθ ∈Θ. Sinceζ is coarser thanθ , there is, for eachj < mθ , a unique0 < mζ

such thatκθj = κζ0 and hence, we can define aκθ -attuned tupleDθ byDθ
j =G0.

Lemma 4.12. If η is coarser thanθ , thenEθ(Dθ )⊂Eη(Cη).

Proof. For eachk <mη, let j (k)=minθ [η←[{k}]]. Note thatκθj (k) = κηk .

Let x be weaklyθ -entwined withd ∈∏
Dθ and defineck = dj (k) for k < mη. Sinceζ

is coarser thanη, there is a unique0 <mζ so thatκζ0 = κηk . This implies

ck = dj (k) ∈Dθ
j(k) =G0 ⊂ Cηk ,

and

c= 〈c0, . . . , cmη−1〉 ∈
∏

Cη.

Let us see thatx is weaklyη-entwined withc. Let k < mη, η(i) = k and θ(i) = j .
Thenj ∈ θ [η←[{k}]] impliesj � j (k), which further impliesck = dj (k) � dj < µ

−
θ (x)j �

µ(x)i , and henceck < µ−η (x)k . When k < mη − 1, observe thatj + 1 � j (k + 1)
becauseη is coarser thanθ . Thenµ(x)i � µ+θ (x)j � dj+1 � dj (k+1) = ck+1, and hence
µ+η (x)k � ck+1. This showsx ∈Eη(Cη). ✷
Corollary 4.13. Under the assumptions of Theorem4.2, there is a small clopen setV ofX
such that

∣∣ϕ � (X \ V )∣∣ �
∏
0<mζ

(∣∣ζ←[{0}]∣∣!) � n!.

Proof. By the proof of Lemma 4.11, the values ofϕ � (X \V ) are given by constant value
ϕ[Eη(Cη)], whereη is determined byx /∈ V †. Let θ(η) ∈ Θ be a permutation finer tha
suchη. Then, by Lemma 4.12,

ϕ
[
Eη

(
Cη

)]= ϕ[
Eθ(η)

(
Dθ(η)

)]
.

Since there are at most
∏
0<mζ

(|ζ←[{0}]|!)-many permutations inΘ, we have|ϕ � (X \
V )|� ∏

0<mζ
(|ζ←[{0}]|!)� n!. ✷

Let {Ai: i < n} be a pairwise disjoint collection of stationary sets inω1. ThenX =∏
i<n Ai is the free union ofXθ ’s, whereθ is a permutation onn. So we can define

continuous mapϕ onX such that|ϕ � (X \ V )| = n! for each small clopen setV .
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In this section, we state and prove

Theorem 5.1 (Main). The product of finitely many subspaces of ordinals is strongly z
dimensional. In other words, ifAi ⊂ αi for all i < n, thenX =∏

i<n Ai is strongly zero-
dimensional.

Proof. Here is our induction hypothesis. For a tupleα = 〈α0, . . . , αn−1〉 of ordinals,
let SZD(α) abbreviate “ifAi ⊂ αi for all i < n, thenX = ∏

i<n Ai is strongly zero-
dimensional”.

We will proveSZD(α) for all finite-tuples of ordinals by induction on the order≺.
AssumingSZD(β) for all β ≺ α, we will showSZD(α). LetZ0 andZ1 be disjoint zero-

sets ofX. By [5, 1.15], we may assume thatZ0 = h←[{0}] andZ1 = h←[{1}] for some
continuous functionh :X→[0,1].

Case 1. For somei < n, αi has the formβ + 2, or cfαi = ω, or cfαi > ω andAi is not
stationary inαi .

We shall show thatX is the free sum of spaces known to be strongly zero-dimens
by induction hypothesis, and hence is itself strongly zero-dimensional.

Indeed, for notational convenience, we may assumei = 0. LetY =∏
1�i<n Ai .

The first case (α0 = β + 2): We haveX = (A0 ∩ (β + 1))× Y ⊕
(A0 ∩ {β + 1})× Y

and(A0 ∩ {β + 1})× Y is homeomorphic to{0} × Y if β + 1∈A0.
The second case (cfα0 = ω): Fix a normal functionM :ω → α0. Then we have

X =⊕
n∈ω(A0∩ (M(n− 1),M(n)])× Y , whereM(−1) is considered as−1.

The third case (cfα0 > ω andA is not stationary inα0): SinceA0 is not stationary in
α0 and cfα0 >ω, one can fix a normal functionM : cfα0→ α0 such that ranM ∩A0= ∅.
ThenX =⊕

γ<cfα0
(A0 ∩ (M(γ − 1),M(γ )])× Y .

Case 2. For somei < n, αi has the formλ+ 1, whereλ is a limit ordinal.

For notational convenience, we may assume thati = 0. Moreover by induction
hypothesis, we may assume thatλ ∈ A0. Set Y = ∏

1�i<n Ai andX1 = {λ} × Y . Set
h1= h �X1.

By the induction hypothesis, there is a clopen setW of Y so thath←1 [[0,1/3]] ⊆{λ} ×W andh←1 [[2/3,1]] ⊂ {λ} × (Y \W).
Let X2 = (A0 \ {λ})×W andh2 = h � X2. By induction hypothesis, there is a clop

subsetV2 of X2 such thath←2 [[0,5/6]] ⊂ V2 andh←2 [{1}] ⊂ X2 \ V2. Analogously, by
lettingX3 = (A0 \ {λ})× (Y \W) andh3 = h � X3, one can find a clopen setV3 of X3
such thath←3 [{0}] ⊂ V3 andh←3 [{1}] ⊂X3 \V3. ThenV = ({λ}×W)∪V2∪V3 obviously
containsZ0 and is disjoint fromZ1.

To show thatV is open, letx ∈ V . SinceV2 andV3 are open inX, it suffices to conside
the case thatx = 〈λ,y〉 ∈ {λ} ×W . It follows fromh(x) < 2/3< 5/6 that there areα < λ
and a neighborhoodU of y such thatU ⊂W and((α,λ] ∩A0)×U ⊂ h←[[0,2/3)]. Then
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it is straightforward to show that((α,λ] ∩ A0)× U ⊂ V , thusV is open inX. Similarly
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we can show thatX \ V is open inX, and henceV is clopen.

Case 3. For all i < n, cfαi > ω andAi is stationary inαi .

We apply Theorem 4.2 to the functionh and obtain a small clopen setV so that
h � (X \ V ) has finite range. Note thatW∗ =Z0∩ (X \ V ) is clopen inX.

By the definition of small,V =⋃{Vλ: λ ∈Λ}, where the induction hypothesis appli
to eachVλ. That is, for eachλ, there isW0

λ , clopen inVλ (hence clopen inX) such that
Z0∩Vλ ⊂W0

λ ⊂ Vλ \Z1. Because{Vλ: λ ∈Λ} is locally finite inX,W0=⋃{W0
λ : λ ∈Λ}

is clopen inX. ThenW∗ ∪W0 is the desired clopen set separatingZ0 andZ1. ✷

6. Subspaces of the product space (ω + 1) × c which are not strongly
zero-dimensional

We begin by considering a MAD familyR of subsets ofω. HereR is called MAD
(=maximal almost disjoint) if it is almost-disjoint (|s ∩ s′|<ω for distincts, s′ ∈R), and
not contained properly in any other almost-disjoint family. For suchR, let Ψ (R) denote
the space which is defined on the setω ∪R and has the so-calledΨ -space topology, [5
5.I], [3, 3.6.I]. That is, a subsetU of Ψ (R) is open iff

∀s ∈R (
s ∈U %⇒ |s \U |<ω)

.

LetL= {λ ∈ c: λ is a limit}, and letS = c\L. Note that|L| = |S| = c. Since|R|×c≈ c,
the unindexed family can be indexedR= {sα : α ∈ S} in such a way that, for eachs ∈R,
|{α ∈ S: s = sα}| = c. With R thus indexed, we consider the subspace

K(R)= ω×L∪
⋃
α∈S

((
sα × {α}

)∪ {〈ω,α〉})

of the product space(ω+ 1)× c.

Theorem 6.1. For every MAD familyR, βΨ (R) is embedded inK(R)∗ = βK(R)\K(R).

As noted in [10, Concluding remarks], where the symbolN ∪ R denotes our spac
Ψ (R), every first-countable separable compact space as well as the spaceω1 + 1 is
homeomorphic toΨ (R)∗ for someR.

(Let us take this opportunity to point out that extensions of this result, which
subsequently obtained by a few authors, remain mostly unpublished, and that so
their zero-dimensional versions are found in [1]. However, [1] is written in Boo
algebra terms, and, by Stone’s duality, concerned with Banaschewski compactificatio
maximal zero-dimensional compactification) ofΨ (R) instead of [10]’s Stone–̌Cech one.
Hence results of [1] and [10] overlap only in the case thatΨ (R) is strongly zero-dimen
sional, or, equivalently,Ψ (R)∗ is zero-dimensional, see [10, Lemma 1.1]. Or, more clea
[10] contains a higher-dimensional version of some results of [1]. See also the inter
paper [2].)
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Therefore

own
Corollary 6.2. Every first-countable, separable, compact space is embedded inK(R)∗ for
someR.

Corollary 6.3. The spaceω1+ 1 is embedded inK(R)∗ for someR.

Throughout the rest of this section we will fixR a MAD family indexed byS in the
special way described above. We will often writeK or Ψ in place ofK(R) or Ψ (R),
respectively, for simplicity’s sake.

For the proof of Theorem 6.1, we define in the spaceK =K(R)
Hα = (ω+ 1)× (α, c)∩K, α < c,

and in the spaceβK

Y =
⋂
α<c

ClβK Hα, Y ′ = Y ∩ClβK
[{ω} × S]

.

Obviously eachHα is a clopen subset ofK. Being the intersection of compact sets,Y and
Y ′ are compact subspaces ofK∗.

The following well-known lemma, which is a consequence of the Pressing D
Lemma, and its corollaries are central to our argument.

Lemma 6.4. Let L ⊂ A ⊂ c. Then every continuous mapf ∈ C(A) is constant on
A∩ (λ, c) for someλ < c.

Corollary 6.5. For every continuous functionf :K→ R, there is aλ < c such thatf is
constant on the sets{n}× (λ, c)∩K and{〈ω,α〉: α > λ ands = sα}∩K for all n < ω and
s ∈R.

Proof. By Lemma 6.4, for eachn, there is an ordinalλn < c in whichf � ({n} × (λn, c)∩
K) is constant. Letλ= sup{λn: n}. Then we have thatf � ({n} × (λ, c) ∩K) is constant
for eachn < ω. Further let s ∈ R, s = sα = sβ and α,β > λ. Then it follows that
f (〈k,α〉) = f (〈k,β〉) for eachk ∈ s. Since{〈k,α〉: k ∈ s} and{〈k,β〉: k ∈ s} converge
to 〈ω,α〉 and〈ω,β〉 respectively, we havef (〈ω,α〉) = f (〈ω,β〉). ✷
Corollary 6.6. For every zero setZ ofK, there is aλ such that

L ∩Hλ ∩Z �= ∅ iff L ∩Hλ ⊂Z
whereL= {n} × c or L= {〈ω,α〉: s = sα} for n < ω or s ∈R, respectively.

Now Theorem 6.1 follows from

Proposition 6.7. Y andβΨ are homeomorphic.
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Proof. In the sequel, we will identify points ofβK with z-ultrafilters onK. Thus, for

s
ts

a

n

t

a zero-setZ of K and p ∈ βK, Z ∈ p is equivalent top ∈ ClβK Z, that is, {p} =⋂
Z∈pClβK Z (cf. [5, 6.5(c)]). Note thatHα ∈ p for everyα < c andp ∈ Y , and hence

thatZ ∩Hα ∈ p for everyZ ∈ p, p ∈ Y andα.
It suffices to show thatY contains aC∗-embedded dense copy ofΨ .
First note that ClβK [{n} × c ∩K] ∩ Y is a singleton for eachn < ω, and determine

a pointpn. In fact, if the set contains two pointsq0, q1, then there are disjoint zero se
Zi ∈ qi so thatZi ⊂ {n}× c∩K. Letλ be as in Corollary 6.6 forZ0 andZ1. Then bothZi
contain{n} × (λ, c) ∩K, which is impossible.

Obviouslypn is isolated inY .
Likewise, for eachs ∈R, ClβK [{〈ω,α〉: s = sα}] ∩ Y is a singleton and determines

pointps of Y . Note that{〈ω,α〉: s = sα} is also a zero set ofK.
We claim that the subspaceT = {pn: n < ω} ∪ {ps : s ∈R} is homeomorphic toΨ , and

isC∗-embedded and dense inY .
For s ∈ R, let B = (s × c ∩ K) ∪ {〈ω,α〉: sα = s}. Then B is clopen inK. If

q ∈ Y ∩ClβK B \ {ps}, then there is a zero setZ ∈ q such thatZ ⊂ B \ {〈ω,α〉: sα = s}.
Let λ be as in Corollary 6.6. Then, obviously,Z ∩ Hλ meets{n} × c for only finitely
manyn ∈ s. Thusq = pn for somen, andY ∩ ClβK B = {ps} ∪ {pn: n ∈ s}. HenceT is
homeomorphic toΨ .

To see thatT isC∗-embedded inY , take anyf :T →[0, 1]. Then a continuous functio
F onK∪T is defined byF(〈n,α〉)= f (pn) andF(〈ω,α〉) = f (ps) wheres = sα . Extend
F �K to F̃ :βK→[0, 1]. F̃ � Y is the extension off .

Let f :βK→ R be a continuous function which sends allpn to 0, and chooseλ as in
Corollary 6.5 forf �K. Thenf (〈n,α〉) = 0 for eachn < ω andα > λ. This implies that
f (〈ω,α〉) = 0 for eachα > λ, that is,f [Hλ] = {0}. Thus we have thatf [Y ] = {0}, that
{pn: n < ω} is dense inY , all our spaces being Tychonoff, and finally thatT is dense in
Y . ✷

The above proof also shows

Corollary 6.8. Y ′ is homeomorphic toβΨ \ω.

It appears thatY ′ is the main part of the spaceβK. That is,

Proposition 6.9. Any compact subspace ofβK is strongly zero-dimensional if it is disjoin
fromY ′.

Proof. First let Γ = (ω + 1) × (c + 1), and consider the extensionθ :βK → Γ of the
embeddingK→ Γ . Note that{θ(p)} =⋂

Z∈p ClΓ Z for eachp ∈ βK.
Then we haveY ′ = θ←[{〈ω, c〉}].
For this, only the inclusionY ′ ⊃ θ←[{〈ω, c〉}] needs to be verified. Ifθ(p)= 〈ω, c〉 and

p /∈ClβK [{ω}× S], then there is aZ ∈ p so thatZ ∩ {ω}× S = ∅. Letλ be as in Corollary
6.6. Since ClΓ Z � 〈ω, c〉, Z meets, and hence contains{n}× (λ, c)∩K for infinitely many
n. LetA= {n: Z ⊃ {n} × (λ, c) ∩K}. Then, by the MAD-ness ofR, A∩ s is infinite for
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somes ∈R. Further, by the special indexing ofR, s = sα for someα > λ. This implies

of
f

n

., [3,

ce of

fs of

c. 274

9.

und.
that〈ω,α〉 ∈Z ∩ {ω} × S, which is a contradiction.
Now take any compact spaceE ⊂ βK \ Y ′. Sinceθ [E] �� 〈ω, c〉, there areN < ω and

λ < c so thatθ [E] ∩ ((N,ω] × (λ, c]) = ∅. ThenE is contained in theβK-closure of
the union of(ω + 1)× [0, λ] and

⋃
n�N {n} × [0, c). LetU = (ω + 1)× [0, λ] ∩K and

Gn = {n} × [0, c) ∩K. These are clopen sets ofK andC∗-embedded in it. Thus each
ClβK U and ClβK Gn is equivalent, as an extension, to the Stone–Čech compactification o
U andGn, respectively.

SinceU consists of less-than-c many points, it has no continuous map onto[0, 1]. This
means that 0= dimU = dimβU = dimClβK U . And, on the other hand, it is well-know
that eachGn is normal and strongly zero-dimensional, and hence that dimClβK Gn = 0.
ThereforeE ⊂ClβK U ∪⋃

n�N ClβK Gn is strongly zero-dimensional.✷
We note the following Dowker–Morita’s Generalized Sum Theorem (see, e.g

Problem 7.4.11]): “LetX be a normal space andM its closed subspace such that dimM �
n. If every closed setF ⊂X disjoint fromM satisfies dimF � n, then dimX � n.” Then
Corollary 6.8 and Proposition 6.9 assure us (note thatβΨ \ω consists of a compact setΨ ∗
and a discrete setR)

Proposition 6.10. dimY ′ = dimβK = dimΨ ∗.

Now here is what we have intended in this section.

Theorem 6.11. For every non-negative integern, we can chooseR so thatdimβK(R)=
n.

As we have pointed out in the last part of the proof of Proposition 6.9, every spa
cardinality< c is strongly zero-dimensional. Hence

Theorem 6.12. c is the minimum cardinal such that(ω+1)× c is not hereditarily strongly
zero-dimensional.

We are grateful to the referee for suggesting the improvement of the proo
Propositions 6.7 and 6.9.
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