An Intemational Joumal
computers \&
mathematics
with applications

Oscillation of Solutions for Second-Order Nonlinear Difference Equations with Nonlinear Neutral Term

Zhenguo Zhang
Department of Mathematics, Hebei Teacher's University
Shijiazhuang, 050016, P.R. China
Jianfeng Chen
The $54^{\text {th }}$ Research Institute (Electronics), Ministry of Industry Information
Shijiazhuang, 050081, P.R. China
Caishun Zhang
Dean's Office, Hebei Teacher's University
Shijiazhuang, 050016, P.R. China

(Received January 2000; revised and accepted October 2000)

Abstract

Some Riccati type difference inequalities are given for the second-order nonlinear difference equations with nonlinear neutral term $$
\Delta\left(a_{n} \Delta\left(x_{n}+\varphi\left(n, x_{\tau_{n}}\right)\right)\right)+q_{n} f\left(x_{g_{n}}\right)=0
$$ and using these inequalities, we obtain some oscillation criteria for the above equation. (c) 2001 Elsevier Science Ltd. All rights reserved.

Keywords-Nonlinear difference equations, Nonlinear neutral term, Oscillation.

1. INTRODUCTION

In this paper, we consider the second-order nonlinear difference equations with nonlinear neutral term

$$
\begin{equation*}
\Delta\left(a_{n} \Delta\left(x_{n}+\varphi\left(n, x_{\tau_{n}}\right)\right)\right)+q_{n} f\left(x_{g_{n}}\right)=0, \tag{1.1}
\end{equation*}
$$

where $n \geq n_{0}, n_{0}$ is a positive integer, $\left\{\tau_{n}\right\}$ and $\left\{g_{n}\right\}$ are sequences of nondecreasing nonnegative integers with $\tau_{n} \leq n, g_{n} \leq n$, and $\lim _{n \rightarrow \infty} \tau_{n}=\infty, \lim _{n \rightarrow \infty} g_{n}=\infty,\left\{a_{n}\right\}$ and $\left\{q_{n}\right\}$ are sequences of nonnegative real numbers and $a_{n}>0, \sum_{n=1}^{\infty}\left(1 / a_{n}\right)=\infty, q_{n} \geq 0, q_{n} \not \equiv 0,0 \leq$ $\varphi(n, u) / u \leq p_{n}<1$ for $u \neq 0, p_{n}$ is a sequence of positive real numbers, $f(u) / u \geq \varepsilon_{0}$, for $u \neq 0$, ε_{0} is a positive real number. Δ is forward difference operator: $\Delta x_{n}=x_{n+1}-x_{n}$.

A solution of (1.1) is called oscillatory if its terms are neither eventually positive nor eventually negative, otherwise, it is nonoscillatory. Equation (1.1) is called oscillatory if and only if all its solutions are oscillatory, otherwise, is nonoscillatory.

[^0]Recently, there has been an increasing interest in the study of oscillation for solutions of secondorder difference equations. The papers $[1-6]$ discuss second-order self-conjugate difference equations, the papers $[7,8]$ discuss second-order neutral difference equations, the paper [9] discusses second-order self-conjugate neutral difference equation. In this paper, we are concerned with the second-order nonlinear delay difference equations with nonlinear neutral term. Some Riccati type difference inequalities are established for these equations, and using these inequalities, we obtain some oscillation criteria. The results obtained here imply and extend those in $[5,9]$.

2. RELATED LEMMAS

To obtain our main results, we need the following lemmas.
Lemma 1. (See [5].) Assume x_{n} is an eventually positive solution of (1.1), let $z_{n}=x_{n}+\varphi\left(n, x_{T_{n}}\right)$. Then $\Delta\left(a_{n} \Delta z_{n}\right) \leq 0, \Delta z_{n}>0, z_{n}>0$ eventually.
Lemma 2. If equation (1.1) is nonoscillatory, for an arbitrary positive sequence $\left\{A_{n}\right\}$, then there exists $n_{1} \geq n_{0}$, such that the Riccati difference inequalities

$$
\begin{equation*}
\Delta u_{n}+Q_{n}+\frac{A_{n} u_{n+1}^{2}}{a_{g_{n}} A_{n+1}^{2}} \leq 0, \quad n \geq n_{1} \tag{2.1}
\end{equation*}
$$

have solution $\left\{u_{n}\right\}$, where

$$
\begin{equation*}
Q_{n}=A_{n}\left\{\varepsilon_{0} q_{n}\left(1-p_{g_{n}}\right)+a_{g_{n}} \frac{\left(\Delta A_{n}\right)^{2}}{4 A_{n}}+\Delta\left(a_{g_{n-1}} \frac{\Delta A_{n-1}}{2 A_{n-1}}\right)\right\} \tag{2.2}
\end{equation*}
$$

Proof. Suppose $\left\{x_{n}\right\}$ is an eventually positive solution of (1.1), let $z_{n}=x_{n}+\varphi\left(n, x_{\tau_{n}}\right)$, by Lemma 1, there exist $n_{1} \geq n_{0}$, such that $\Delta\left(a_{n} \Delta z_{n}\right) \leq 0, \Delta z_{n}>0, z_{n}>0$ for $n \geq n_{1}$. From (1.1), we have

$$
\begin{align*}
& \Delta\left(a_{n} \Delta z_{n}\right)+q_{n} f\left(x_{g_{n}}\right)=0 \\
& \Delta\left(a_{n} \Delta z_{n}\right)+\varepsilon_{0} q_{n} x_{g_{n}} \leq 0 \\
& \Delta\left(a_{n} \Delta z_{n}\right)+\varepsilon_{0} q_{n}\left(z_{g_{n}}-\varphi\left(n, x_{r_{g_{n}}}\right)\right) \leq 0 \tag{2.3}\\
& \Delta\left(a_{n} \Delta z_{n}\right)+\varepsilon_{0} q_{n}\left(z_{g_{n}}-p_{g_{n}} z_{\tau_{g_{n}}}\right) \leq 0 \\
&\left.\Delta\left(a_{n} \Delta z_{n}\right)+\varepsilon_{0} q_{n}\left(1-p_{g_{n}}\right) z_{g_{n}}\right) \leq 0
\end{align*}
$$

and

$$
\begin{equation*}
\Delta\left(\frac{a_{n} \Delta z_{n}}{z_{g_{n}}}\right)=-\varepsilon_{0} q_{n}\left(1-p_{g_{n}}\right)-\frac{a_{n} \Delta z_{n} \Delta z_{g_{n}}}{z_{g_{t n}} z_{g_{n+1}}}<0 \tag{2.4}
\end{equation*}
$$

hence, $\left\{a_{n} \Delta z_{n}\right\},\left\{a_{n} \Delta z_{n} / z_{g_{n}}\right\}$ are all decreasing.
Set

$$
u_{n}=A_{n}\left\{\frac{a_{n} \Delta z_{n}}{z_{g_{n}}}-a_{g_{n-1}} \frac{\Delta A_{n-1}}{2 A n-1}\right\}
$$

Then

$$
\begin{aligned}
\Delta u_{n} & =\frac{\Delta A_{n}}{A_{n+1}} u_{n+1}+A_{n} \frac{z_{g_{n+1}} \Delta\left(a_{n} \Delta z_{n}\right)-\Delta z_{g_{n}} a_{n+1} \Delta z_{n+1}}{z_{g_{n+1}} z_{g_{n}}}-A_{n} \Delta\left(a_{g_{n-1}} \frac{\Delta A_{n-1}}{2 A_{n-1}}\right) \\
& \leq \frac{\Delta A_{n}}{A_{n+1}} u_{n+1}-A_{n} \varepsilon_{0} g_{n}\left(1-p_{g_{n}}\right)-\frac{A_{n} a_{n+1} \Delta z_{n+1} a_{g_{n}} \Delta z_{g_{n}}}{a_{g_{n}} z_{g_{n}} z_{g_{n+1}}}-A_{n} \Delta\left(a_{g_{n-1}} \frac{\Delta A_{n-1}}{2 A_{n-1}}\right) \\
& \leq \frac{\Delta A_{n}}{A_{n+1}} u_{n+1}-A_{n} \varepsilon_{0} q_{n}\left(1-p_{g_{n}}\right)-\frac{A_{n} a_{n} \Delta z_{n} a_{n+1} \Delta z_{n+1}}{a_{g_{n}} z_{g_{n}} z_{g_{n+1}}}-A_{n} \Delta\left(a_{g_{n-1}} \frac{\Delta A_{n-1}}{2 A_{n-1}}\right) \\
& \leq \frac{\Delta A_{n}}{A_{n+1}} u_{n+1}-A_{n} \varepsilon_{0} q_{n}\left(1-p_{g_{n}}\right)-\frac{A_{n}}{a_{g_{n}}}\left(\frac{u_{n+1}}{A_{n+1}}+a_{g_{n}} \frac{\Delta A_{n}}{2 A_{n}}\right)^{2}-A_{n} \Delta\left(a_{g_{n-1}} \frac{\Delta A_{n-1}}{2 A_{n-1}}\right) \\
& \leq-A_{n}\left\{\varepsilon_{0} q_{n}\left(1-p_{g_{n}}\right)+a_{g_{n}} \frac{\left(\Delta A_{n}\right)^{2}}{4 A_{n}}+\Delta\left(a_{g_{n-1}} \frac{\Delta A_{n-1}}{2 A_{n-1}}\right)\right\}-\frac{A_{n} u_{n+1}^{2}}{a_{g_{n}} A_{n+1}^{2}}
\end{aligned}
$$

Hence,

$$
\Delta u_{n}+Q_{n}+\frac{A_{n} u_{n+1}^{2}}{a_{g_{n}} A_{n+1}^{2}} \leq 0, \quad n \geq n_{1}
$$

The proof is complete.
Lemma 3. If equation (1.1) is nonoscillatory, and for any positive sequence $\left\{A_{n}\right\}$ with

$$
\begin{equation*}
\sum_{s=n}^{\infty} \frac{A_{s}}{a_{g_{s}} A_{s+1}^{2}}=\infty \tag{2.5}
\end{equation*}
$$

such that

$$
\begin{equation*}
P_{n}=\sum_{s=n}^{\infty} Q_{s}>-\infty \tag{2.6}
\end{equation*}
$$

then there exists $n_{1} \geq n_{0}$, such that the Riccati difference inequality

$$
\begin{equation*}
u_{n} \geq P_{n}+\sum_{s=n}^{\infty} \frac{A_{s} u_{s+1}^{2}}{a_{g_{*}} A_{s+1}^{2}}, \quad n \geq n_{1} \tag{2.7}
\end{equation*}
$$

has a solution $\left\{u_{n}\right\}$ and

$$
\begin{equation*}
P_{n}=\sum_{s=n}^{\infty} Q_{s}<\infty, \quad \sum_{s=n}^{\infty} \frac{A_{s} u_{s+1}^{2}}{a_{g_{x}} A_{s+1}^{2}}<\infty \tag{2.8}
\end{equation*}
$$

Proof. By Lemma 2, for any positive sequence $\left\{A_{n}\right\}$, there exist $n_{1} \geq n_{0}$ and $\left\{u_{n}\right\}$, such that $\Delta u_{n}+Q_{n}+\left(A_{n} u_{n+1}^{2}\right) /\left(a_{g_{n}} A_{n+1}^{2}\right) \leq 0, n \geq n_{1}$. Claim $\sum_{s=n}^{\infty}\left(A_{s} u_{s+1}^{2}\right) /\left(a_{g_{s}} A_{s+1}^{2}\right)$ satisfying (2.8). If not, i.e.,

$$
\begin{equation*}
\sum_{s=n}^{\infty} \frac{A_{s} u_{s+1}^{2}}{a_{g_{r}} A_{s+1}^{2}}=\infty \tag{2.9}
\end{equation*}
$$

In view of (2.6) and (2.9), there exits an $N_{1}>n$ for fixed n, such that for $\xi \geq N_{1}$, we have

$$
u_{\xi+1} \leq u_{n}-\sum_{s=n}^{\xi} Q_{s}-\sum_{s=n}^{N_{1}-1} \frac{A_{s} u_{s+1}^{2}}{a_{g_{s}} A_{s+1}^{2}}-\sum_{s=N_{1}}^{\xi} \frac{A_{s} u_{s+1}^{2}}{a_{g_{k}} A_{s+1}^{2}} \leq-1-\sum_{s=N_{1}}^{\xi} \frac{A_{s} u_{s+1}^{2}}{a_{g_{k}} A_{s+1}^{2}}
$$

which implies

$$
\sum_{s=N_{1}}^{\xi} \frac{A_{s} u_{s+1}}{a_{g_{s}} A_{s+1}^{2}} \leq-\sum_{s=N_{1}}^{\xi} \frac{A_{s}}{a_{g_{s}} A_{s+1}^{2}}-\sum_{s=N_{1}}^{\xi} \frac{A_{s}}{a_{g_{s}} A_{s+1}^{2}} \sum_{i=N_{1}}^{\xi} \frac{A_{i} u_{i+1}^{2}}{a_{g_{i+1}} A_{i+1}^{2}}
$$

Set

$$
v_{\xi}=\sum_{s=N_{1}}^{\xi} \frac{A_{s} u_{s+1}}{a_{g_{s}} A_{s+1}^{2}}
$$

According to the discrete Cauchy-Schmartz inequality, we have

$$
\begin{gathered}
\sum_{i=N_{1}}^{s} \frac{A_{i} u_{i+1}^{2}}{a_{g_{i}} A_{i+1}^{2}} \geq v_{s}^{2}\left(\sum_{i=N_{1}}^{s} \frac{A_{i}}{a_{g_{i}} A_{i+1}^{2}}\right)^{-1} \\
v_{\xi} \leq-\sum_{i=N_{1}}^{\xi} \frac{A_{i}}{a_{g_{i}} A_{i+1}^{2}}-\sum_{s=N_{1}}^{\xi} \frac{A_{s} v_{s}^{2}}{a_{g_{s}} A_{s+1}^{2}}\left(\sum_{i=N_{1}}^{s} \frac{A_{i}}{a_{g_{1}} A_{i+1}^{2}}\right)^{-1} \equiv H_{\xi},
\end{gathered}
$$

then that $\sum_{s=N_{1}}^{\xi}\left(A_{s}\right) /\left(a_{g_{s}} A_{s+1}^{2}\right) \leq\left|H_{\xi}\right| \leq\left|v_{\xi}\right|, H_{\xi}<0$, and $H_{\xi} \rightarrow-\infty$, as $\xi \rightarrow \infty$.

$$
\Delta H_{\xi}=-\frac{A_{\xi+1}}{a_{g_{\xi+1}} A_{\xi+2}^{2}}-\frac{A_{\xi+1} v_{\xi+1}^{2}}{a_{g_{\xi+1}} A_{\xi+2}^{2}}\left(\sum_{s=N_{1}}^{\xi+1} \frac{A_{s}}{a_{g_{s}} A_{s+1}^{2}}\right)^{-1}<0
$$

hence, is decreasing, which implies

$$
\begin{equation*}
\frac{\Delta H_{\xi}}{H_{\xi} H_{\xi+1}} \leq \frac{\Delta H_{\xi}}{H_{\xi+1}^{2}} \leq \frac{\Delta H_{\xi}}{v_{\xi+1}^{2}} \leq-\frac{A_{\xi+1}}{a_{g_{\xi+1}} A_{\xi+2}^{2}}\left(\sum_{i=N_{1}}^{\xi+1} \frac{A_{i}}{a_{g_{i}} \dot{A}_{i+1}^{2}}\right)^{-1} \tag{2.10}
\end{equation*}
$$

Summing of (2.10) from $N-1$ to ξ,
$\frac{1}{H_{N-1}}-\frac{1}{H_{\xi}} \leq-\sum_{s=N}^{\xi+1} \frac{A_{s}}{a_{g_{s}} A_{s+1}^{2}}\left(\sum_{i=N_{1}}^{s} \frac{A_{i}}{a_{g_{i}} A_{i+1}^{2}}\right)^{-1} \leq-\sum_{s=N}^{\xi+1} \frac{A_{s}}{a_{g_{s}} A_{s+1}^{2}}\left(\sum_{i=N_{1}}^{\xi+1} \frac{A_{i}}{a_{g_{i}} A_{i+1}^{2}}\right)^{-1} \equiv B_{\xi}$.
In view of (2.5), $B_{\xi} \rightarrow-1$, as $\xi \rightarrow \infty$. Hence,

$$
\frac{1}{H_{N-1}} \leq-\frac{1}{2}
$$

which contradicts that $H_{n} \rightarrow-\infty$, as $n \rightarrow \infty$. Hence, (2.8) holds. Therefore,

$$
u_{n} \geq \lim _{\xi \rightarrow \infty} \operatorname{Sup} u_{\xi}+P_{n}+\sum_{s=n}^{\infty} \frac{A_{s} u_{s+1}^{2}}{a_{g_{N}} A_{s+1}^{2}}
$$

Claim $\lim _{\xi \rightarrow \infty}$ Sup $u_{\xi} \geq 0$. If not, $\lim _{\xi \rightarrow \infty} \operatorname{Sup} u_{\xi}<0$, then there exists an $l>0$ and an $N_{2} \geq N_{1}$, such that $u_{\xi} \leq-l$, as $\xi \geq N_{2}$, which implies

$$
\sum_{s=n}^{\infty} \frac{A_{s} u_{s+1}^{2}}{a_{g_{s}} A_{s+1}^{2}} \geq l^{2} \sum_{s=n}^{\infty} \frac{A_{s}}{a_{g_{s}} A_{s+1}^{2}} \rightarrow \infty
$$

which contradicts (2.8), hence, $\lim _{\xi \rightarrow \infty} \operatorname{Sup} u_{\xi} \geq 0$. Thus, the proof is complete.
Lemma 4. In the assumptions of Lemma 3, further assume $P_{n} \geq 0$ eventually.
Then there exist an $n_{2} \geq n_{1}$ and a sequence $\left\{v_{n}\right\}$, such that

$$
\begin{equation*}
v_{n} \geq P_{n}^{(1)}+\sum_{s=n}^{\infty} \frac{A_{s} v_{s+1}^{2}}{a_{g_{s}} A_{s+1}^{2}} R_{s, n}^{(1)}, \quad \text { as } n \geq n_{2} \tag{2.11}
\end{equation*}
$$

where

$$
P_{n}^{(1)}=\sum_{s=n}^{\infty} \frac{A_{s} P_{s+1}^{2}}{a_{g_{s}} A_{s+1}^{2}} R_{s, n}^{(1)}, \quad R_{s, n}^{(1)}=\prod_{i=n}^{s-1}\left(1+\frac{2 A_{i} P_{i+1}}{a_{g_{i}} A_{i+1}^{2}}\right), \quad \prod_{n}^{n-1}=1
$$

Proof. By Lemma 3, there exists an n_{1}, such that (2.7) and (2.8) hold.
Define $v_{n}=\sum_{s=n}^{\infty}\left(A_{s} u_{s+1}^{2}\right) /\left(a_{g_{s}} A_{s+1}^{2}\right)$, then $\Delta v_{n}=-\left(A_{n} u_{n+1}^{2}\right) /\left(a_{g_{n}} A_{n+1}^{2}\right)$,

$$
\begin{equation*}
\Delta v_{s} R_{s, n}^{(1)}=-\frac{A_{s} u_{s+1}^{2}}{a_{g_{s}} A_{s+1}^{2}} R_{s, n}^{(1)} \tag{2.12}
\end{equation*}
$$

Summing of (2.12) from n to $N-1$, we have

$$
\sum_{s=n}^{N-1} \Delta v_{s} R_{s, n}^{(1)}=-\sum_{s=n}^{N-1} \frac{A_{s} u_{s+1}^{2}}{a_{g_{s}} A_{s+1}^{2}} R_{s, n}^{(1)}
$$

$$
\begin{gathered}
v_{N} R_{N-1, n}^{(1)}-v_{n}-\sum_{s=n}^{N-1} 2 v_{s+1} \frac{A_{s} P_{s+1}}{a_{g_{s}} A_{s+1}^{2}} R_{s, n}^{(1)}=-\sum_{s=n}^{N-1} \frac{A_{s} u_{s+1}^{2}}{a_{g_{⿱}} A_{s+1}^{2}} R_{s, n}^{(1)} \\
v_{n} \geq \sum_{s=n}^{N-1} \frac{A_{s}}{a_{g_{s}} A_{s+1}^{2}} R_{s, n}^{(1)}\left(u_{s+1}^{2}-2 v_{s+1} P_{s+1}\right)
\end{gathered}
$$

From Lemma 3, $u_{s+1} \geq P_{s+1}+v_{s+1} \geq 0$, hence, $u_{s+1}^{2} \geq P_{s+1}^{2}+v_{s+1}^{2}+2 P_{s+1} v_{s+1}$,

$$
\begin{aligned}
& v_{n} \geq \sum_{s=n}^{N-1} \frac{A_{s}}{a_{g_{s}} A_{s+1}^{2}} R_{s, n}^{(1)}\left(P_{s+1}^{2}+v_{s+1}^{2}\right), \\
& v_{n} \geq \sum_{s=n}^{\infty} \frac{A_{s}}{a_{g_{s}} A_{s+1}^{2}} R_{s, n}^{(1)}\left(P_{s+1}^{2}+v_{s+1}^{2}\right)
\end{aligned}
$$

This completes our proof.
Lemma 5. In the assumptions of Lemma 4, then for every positive integer m there exist an $N \geq$ n_{1} and a sequence for $\left\{w_{n}\right\}$, such that

$$
\begin{equation*}
w_{n} \geq P_{n}^{(m)}=\sum_{s=n}^{\infty} \frac{A_{s} w_{s+1}^{2}}{a_{g_{s}} A_{s+1}^{2}} R_{s, n}^{(m)}, \quad \text { as } n \geq N, \tag{2.13}
\end{equation*}
$$

where

$$
P_{n}^{(m)}=\sum_{s=n}^{\infty} \frac{A_{s}\left(P_{s+1}^{(m-1)}\right)^{2}}{a_{g_{*}} A_{s+1}^{2}} R_{s, n}^{(m)}, \quad R_{s, n}^{(m)}=\prod_{i=n}^{s-1}\left(1+\frac{2 A_{i} P_{i+1}^{(m-1)}}{a_{g_{i}} A_{i+1}^{2}}\right) .
$$

The proof is similar to Lemma 4.
Lemma 6. In the assumptions of Lemma 4, then for every positive integer m,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Sup} P_{n}^{(m)} \prod_{s=n_{0}}^{n-1}\left(1+\frac{4 A_{s} P_{s+1}^{(m-1)}}{a_{g_{s}} A_{s+1}^{2}}\right)<\infty . \tag{2.14}
\end{equation*}
$$

Proof. By Lemma 5, there exists a sequence $\left\{w_{n}\right\}$ for $m=1,2, \ldots$, such that

$$
w_{n} \geq P_{n}^{(m)}+\sum_{s=n}^{\infty} \frac{A_{s} w_{s+1}^{2}}{a_{g_{s}} A_{s+1}^{2}} R_{s, n}^{(m)}
$$

Set $u_{n}=\sum_{s=n}^{\infty}\left(A_{s} w_{s+1}^{2}\right) /\left(a_{g_{s}} A_{s+1}^{2}\right) R_{s, n}^{(m)}$, then $w_{n} \geq P_{n}^{(m)}+u_{n}$,

$$
\begin{array}{r}
-\Delta u_{n}=\frac{A_{n} w_{n+1}^{2}}{a_{g_{n}} A_{n+1}^{2}} \geq \frac{4 A_{n} P_{n+1}^{(m)} u_{n+1}}{a_{g_{n}} A_{n+1}^{2}} \\
u_{n}-u_{n+1} \geq \frac{4 A_{n} P_{n+1}^{(m)} u_{n+1}}{a_{g_{n}} A_{n+1}^{2}},
\end{array}
$$

hence,

$$
u_{n+1} \leq u_{n}\left(1+\frac{4 A_{n} P_{n+1}^{(m)}}{a_{g_{n}} A_{n+1}^{2}}\right)^{-1} \leq u_{n_{0}} \prod_{s=n_{0}}^{n}\left(1+\frac{4 A_{s} P_{s+1}^{(m)}}{a_{g_{凶}} A_{s+1}^{2}}\right)^{-1}
$$

From the proof of Lemma 5, $u_{n} \geq P_{n}^{(m+1)}$. Hence,

$$
P_{n}^{(m+1)} \leq u_{n 0} \prod_{s=n_{0}}^{n-1}\left(1+\frac{4 A_{s} P_{s+1}^{(m)}}{a_{g_{s}} A_{s+1}^{2}}\right)^{-1}
$$

$$
P_{n}^{(m)} \prod_{s=n_{0}}^{n-1}\left(1+\frac{4 A_{s} P_{s+1}^{(m-1)}}{a_{g_{s}} A_{s+1}^{2}}\right)^{-1} \leq u_{n_{0}}
$$

Therefore, for every positive integer m,

$$
\lim _{n \rightarrow \infty} \operatorname{Sup} P_{n}^{(m)} \prod_{s=n_{0}}^{n-1}\left(1+\frac{4 A_{s} P_{s+1}^{(m-1)}}{a_{g_{s}} A_{s+1}^{2}}\right)<\infty
$$

This completes our proof.

3. MAIN RESULTS

Using Lemmas 3-6 above, we can easily obtain the following Theorems 1-4, respectively. Theorem 1. Assume for (1.1), there exists a positive sequence $\left\{A_{n}\right\}$, such that

$$
\begin{equation*}
\sum_{s=n}^{\infty} \frac{A_{s}}{a_{g_{n}} A_{s+1}^{2}}=\infty \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{s=n}^{\infty} Q_{s}=\infty \tag{3.2}
\end{equation*}
$$

Then equation (1.1) is oscillatory.
Theorem 2. Assume for (1.1), there exists a positive sequence $\left\{A_{n}\right\}$, such that $P_{n} \geq 0$ eventually, $\sum_{s=n}^{\infty}\left(A_{s}\right) /\left(a_{g_{n}} A_{s+1}^{2}\right)=\infty$,

$$
\begin{equation*}
P_{n} \sum_{s=n}^{\infty} Q_{s}<\infty, \tag{3.3}
\end{equation*}
$$

but

$$
\begin{equation*}
\sum_{s=n}^{\infty} \frac{A_{s} P_{s+1}^{2}}{a_{g_{s}} A_{s+1}^{2}} \prod_{i=n}^{s-1}\left(1+\frac{2 A_{i} P_{i+1}}{a_{g_{i}} A_{i+1}^{2}}\right)=\infty . \tag{3.4}
\end{equation*}
$$

Then equation (1.1) is oscillatory.
Example 1. Consider the following second-order neutral delay difference equation:

$$
\begin{equation*}
\Delta\left(\frac{1}{(n+2)^{2}} \Delta\left(x_{n}+\frac{n^{2}+n-1}{(n+1)(n+2)} x_{n-1}\right)\right)+\frac{x_{n-1}}{n(n+1)}=0 . \tag{3.5}
\end{equation*}
$$

Let $A_{n} \equiv 1$, then

$$
\begin{gathered}
Q_{n}=\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}, \quad P_{n}=\sum_{s=n}^{\infty} Q_{s}=\frac{1}{n^{2}}<\infty, \quad \sum_{n}^{\infty} \frac{1}{a_{n-1}}=\infty, \\
\sum_{s=n}^{\infty} \frac{A_{s} P_{s+1}^{2}}{a_{g_{x}} A_{s+1}^{2}} \prod_{i=n}^{s-1}\left(1+\frac{2 A_{i} P_{i+1}}{a_{g_{i}} A_{i+1}^{2}}\right)=\sum_{s=n}^{\infty} \frac{3^{s-n}}{(s+1)^{2}}=\infty
\end{gathered}
$$

By Theorem 2, equation (3.5) is oscillatory.
Theorem 3. Assume for (1.1), there exists a positive sequence $\left\{A_{n}\right\}$, such that $P_{n} \geq 0$ eventually, $\sum_{s=n}^{\infty}\left(A_{s}\right) /\left(a_{g_{s}} A_{s+1}^{2}\right)=\infty$, and for some positive integer k have $P_{n}^{(j)}<\infty, j=0,1,2, \ldots$, $k-1$, but

$$
\begin{equation*}
P_{n}^{(k)}=\infty . \tag{3.6}
\end{equation*}
$$

Then equation (1.1) is oscillatory.

Theorem 4. Assume for (1.1), there exists a positive sequence $\left\{A_{n}\right\}$, such that $P_{n} \geq 0$ eventually, $\sum_{s=n}^{\infty}\left(A_{s}\right) /\left(a_{g_{s}} A_{s+1}^{2}\right)=\infty$, there exists a positive integer m_{0}, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Sup} P_{n}^{\left(m_{0}\right)} \prod_{s=n_{0}}^{n-1}\left(1+\frac{4 A_{s} P_{s+1}^{\left(m_{0}-1\right)}}{a_{g_{s}} A_{s+1}^{2}}\right)=\infty . \tag{3.7}
\end{equation*}
$$

Then equation (1.1) is oscillatory.
Example 2. Consider the following second-order neutral delay difference equation:

$$
\begin{equation*}
\Delta\left(\frac{1}{(n+1)(n+2)} \Delta\left(x_{n}+\frac{1}{n+1} x_{n-1}\right)\right)+\frac{\lambda x_{n-1}}{(n-1)^{2}(n+1)(n+2)}=0 \tag{3.8}
\end{equation*}
$$

where λ is a nonnegative number.
Let $A_{n} \equiv 1$, then

$$
\begin{aligned}
Q_{n} & =\lambda\left(1-\frac{1}{n}\right) \frac{1}{(n-1)^{2}(n+1)(n+2)} \\
& =\frac{\lambda}{(n-1) n(n+1)(n+2)}, \\
P_{n} & =\lambda \sum_{s=n}^{\infty} \frac{1}{(s-1) s(s+1)(s+2)}=\frac{\lambda}{3(n-1) n(n+1)}, \\
P_{n}^{(1)} & =\frac{\lambda^{2}}{9} \sum_{s=n}^{\infty} \frac{1}{s(s+1)(s+2)^{2}} \prod_{i=n}^{s-1}\left(1+\frac{2 \lambda}{3(s+2)}\right) \\
& \geq \frac{\lambda^{2}}{9} \sum_{s=n}^{\infty} \frac{1}{s(s+1)(s+2)(s+3)} \\
& =\frac{\lambda^{2}}{27 n(n+1)(n+2)}, \\
S_{n} & =P_{n}^{(1)} \prod_{s=n_{0}}^{n-1}\left(1+\frac{4 A_{s} P_{s+1}}{a_{g_{n}} A_{s+1}^{2}}\right) \\
& \geq \frac{\lambda^{2}}{27 n(n+1)(n+2)} \prod_{s=n_{0}}^{n-1}\left(1+\frac{4 \lambda}{3(s+2)}\right) \\
& =\frac{\lambda^{2}}{27 n(n+1)(n+2)} \prod_{s=n_{0}+2}^{n+1}\left(1+\frac{4 \lambda}{3 s}\right) \\
& \geq \frac{\alpha \lambda^{2}(n+1)^{(4 \lambda) / 3}}{27 n(n+1)(n+2)}, \quad(\text { see }[10]),
\end{aligned}
$$

where α is some positive number.
When $\lambda>9 / 4, S_{n} \rightarrow \infty$, as $n \rightarrow \infty$. By Theorem 4, equation (3.8) is oscillatory.
Theorem 5. Assume for (1.1), there exists a positive sequence $\left\{A_{n}\right\}$, such that $P_{n} \geq 0$ eventually, $\sum_{s=n}^{\infty}\left(A_{s}\right) /\left(a_{g_{s}} A_{s+1}^{2}\right)=\infty$, there exists a positive integer m_{0}, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{s=n_{0}}^{n} \prod_{i=n_{0}}^{s-1}\left(1+\frac{4 A_{i} P_{i+1}^{\left(m_{0}-1\right)}}{a_{g_{i}} A_{i+1}^{2}}\right)^{-1}<\infty \tag{3.9}
\end{equation*}
$$

but

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{s=n_{0}}^{n} P_{s}^{\left(m_{0}\right)}=\infty \tag{3.10}
\end{equation*}
$$

Then equation (1.1) is oscillatory.

Proof. By the proof of Lemma 6, we have

$$
\sum_{s=n_{0}}^{n} P_{s}^{\left(m_{0}\right)} \leq u_{n_{0}} \sum_{s=n_{0}}^{n} \prod_{i=n_{0}}^{s-1}\left(1+\frac{4 A_{i} P_{i+1}^{\left(m_{0}-1\right)}}{a_{g_{i}} A_{i+1}^{2}}\right)^{-1},
$$

which contradicts (3.9) and (3.10).
Remark. Theorems 1-3 all include and extend those in $[5,9]$. In fact, when $p_{n} \equiv 0$, letting $A_{n} \equiv 1$ can obtain their corresponding results.

REFERENCES

1. S.Z. Chen and L. Erbe, Oscillation results for second-order scalar and matrix difference equations, Computers Math. Applic. 28 (1-3), 55-70, (1994).
2. P.J.Y. Wong and R.P. Agarwal, Oscillation theorems and existence of positive monotone solutions for secondorder nonlinear difference equations, Mathl. Comput. Modelling 21 (3), 63-84, (1995).
3. Z. Szafranski and B. Szmanda, Oscillation theorems for some nonlinear difference equations, Appl. Math. Comput. 83, 43-52, (1997).
4. Z. Zhang and Q. Li, Oscillation theorems for second-order advanced functional difference equation, Computers Math. Applic. 36 (6), 11-18, (1998).
5. Z. Zhang and J. Zhang, Oscillation criteria for second-order functional difference equations with "summation small" coefficient, Computers Math. Applic. 38 (1), 25-31, (1999).
6. Z. Zhang and Y. Yu, Oscillation of solutions for a class second nonlinear difference equations, Journal of Mathematical Research and Exposition 19 (4), (1999).
7. E. Thandapani and P. Sanadarani, On the asymptotic and oscillatory behavior of second-order nonlinear neutral difference equations, Indian J. Pure. Appl. Math. 26 (19), (1995).
8. E. Thandapani and R. Arul, Oscillation properties of second-order nonlinear neutral delay difference equations, Indian J. Pure. Appl. Math. 28 (12), (1997).
9. R.P. Agarwal, M.M.S. Manuel and E. Thandapani, Oscillatory and nonoscillatory behavior of second-order neutral delay difference equations II, Appl. Math. Lett. 10 (2), 103-109, (1997).
10. J. Dteudorme, Foundations of Modern Analysis, Vol. 1, Academic Press, (1969); Vol. 2, Academic Press, (1972).

[^0]: Research was supported by the National Natural Science Foundation of China and the National Natural Science Foundation of Hebei province.

