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Abstract—=Socme Riccati type difference inequalities are given for the second-order nonlinear dif-
ference equations with nonlinear neutral term

AlanA(zn + ¢(n, e, ))) + gnflig, ) =0

and using these inequalities, we obtain some oscillation criteria for the above equation. (€ 2001
Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

In this paper, we consider the second-order nonlinear difference equations with nonlinear neutral
term
AlanA(Zn + ¢(n, T, ))) + @ f(zy,) =0, (L.1)

where n > ng, ng is a positive integer, {m,} and {g,} are sequences of nondecreasing nonnegative
integers with 7, € n, g, < n, and im0 7 = 00, liMpec 9n = 00, {an} and {g,} are
sequences of nonnegative real numbers and a, > 0, 35,2, (1/ap) = 00, ¢ > 0, g, 0, 0 <
w(n,u)/u € p, <1 for u # 0, py, is a sequence of positive real numbers, f(u)/u > &, for u # 0,
€p is a positive real number. A is forward difference operator: Az, = 1,41 — zn.

A solution of (1.1) is called oscillatory if its terms are neither eventually positive nor eventually
negative, otherwise, it is nonoscillatory. Equation (1.1) is called oscillatory if and only if all its
solutions are oscillatory, otherwise, is nonoscillatory.
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Recently, there has been an increasing interest in the study of oscillation for solutions of second-
order difference equations. The papers [1-6] discuss second-order self-conjugate difference equa-
tions, the ‘papers [7.8] discuss second-order neutral difference equations, the paper [9] discusses
second-arder self-conjugate neutral difference equation. In this paper, we are concerned with the
second-order nonlinear delay difference equations with nonlinear neutral term. Some Riccati type
difference inequalities are established for these equations, and using these inequalities, we obtain
some oscillation criteria, The results obtained here imply and extend those in [5,9].

2. RELATED LEMMAS

To obtain our main results, we need the following lemmas.

LEMMA 1. (See [5].) Assume x,, is an eventually positive solution of (1.1), let z,, = z,+@(n, 25, ).
Then AlanAz,) <0, Azy > 0, z, > 0 eventually.

LEMMA 2. If equation (1.1) is nonoscillatory, for an arbitrary positive sequence { A, }, then there
exists ny > nyg, such that the Riccati difference inequalities

An”?g-ﬂ
Atp +Qn + ——5— <0, n>ny, (2.1)
ag, An i1

have solution {u,}, where

(AA)? AA,_
Qn = Ay {soqn(l ~ Pg.) + Gy, 4A: +Atag, ., 2-‘1n—1l . (2.2)

Proor. Suppose {z,} is an eventually positive solution of (1.1}, let 2, = T, + ¢{n,x.,), by
Lemma 1, there exist n1 2 ng, such that A(anAz,) <0, Az, > 0, 2, > 0 for n > ny. From (1.1},

we have
AlapAzy) + g flwy,) =0,

AlanAzy) + epgnty, <0,

Alandzn) + cognlzg, — @in, 2., )) <0, (2.3)
AlanAzn) + coqn(zg, — Py, 2r,,) <0,
AlanAzy) + eogn({l — pg, )75,) <0,

and A Az, A
Az, anAz Az,
A (——-) = —eogn(l = pg,) — BB (2.4)
zgu zyu. zgu+1
hence, {a, 0z}, {an Az, /z,, } are all decreasing.
Set
w. = A a, Az, —a Ad,—y
A 7 1 9An -1
Then
Ad,. Zg, 1 O(0nDzy) — Azg Gy 1 AZpyy Z,},An_l)
L - -+ A S = - AnA
At Apgy ot A ZgnssZgn fon-1 94,
AA, Aptni1Dznyi164, A2y AA,_1
& —_— —_— = —— —_ n o =Mn—-1
= Apsa Unt1 = Anfodn(l = 2y.) QgnZg, Zgnit And | B9y 24,1
AA, AnanAznan 18z0 4 ( AA, | )
< nil — Ancogn(l — — — A A _
= Ana Un+l odn Pan) Og. g, Zg0 11 7 Qg1 24, .
AA, ) Ay {1 AAN? Adp
< _—An+1 Unt1 — AnZogn(l _pgn) - E A + g, 24, ApA Gg, ., 24,
(AAn)2 Adp_y An'“"?z+1
< — - A SAnz1 )L Felngd
= An {EUQTL(I pgn) + g, 4An + Qg, 1 2An—l ag, A%+1
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Hence,

Anu?
Auyn + CQn + ”'An-o—l <0, n>=ni.
n+1

The proof is complete.

Lemma 3. If equation (1.1) is nonoscillatory, and for any positive sequence {A,,} with

[s ]
A
s o, 2.5
2 (2.5)
such that e
Pa=3"0Q,> 0, (2.6)
s=n

then there exists ny > ng, such that the Riccati difference inequality

tn > By + Z “‘3“ . n2n, (2.7)
-s-+l
has a solution {uy,} and
=2 Q<o ) <o (28)
— — A.s+1
a=n B3=Ti

ProoF. By Lemma 2, for any positive sequence {A,}, there exist ny > ng and {u,}, such that

Atp+Qn+(Anul 1)/ (ag,A2 1) < 0,1 > ny. Claim Yoomn (Asul, 1)/ (ag, A2, ) satisfying (2.8).

If not, i.e.,
o0

Al
— Y =00, 2.9)
Z ag,AEH (

8=n

In view of (2.6) and (2.9), there exits an Ny > n for fixed n, such that for £ > N|, we have

§ Nl 2 g 2 g 2
<u _Z Q. — Z A stapt Z A5ty <1 Z Asugyy
Ue+L = tn : ag, A2 ag A2 = ag A2
s=n P G 8+1 s=Ny g Te+1 s=N; Guttg4+1

which implies

: A-‘? : As 'E A < Ailz
Z%S—ZW“Z@#Z—%

s=Ny a'gn 3+1 s=N; gs*"s+1 s=N; s+1 i=Ny a’!]i+1 i+1

Sat
£

As”s{-l
Ve = Z -

s=N, ag, A5

According to the discrete Cauchy-Schmartz inequality, we have

8

An? s A
E -‘uz—z’qEUf(Z %—)
gi +1

Py ag; AiLy o, %9

£ A oA [ A N
e 3 L (3 whe) =

t=N1 @g: it1 3= i=N1
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then that 2§=N1 (As)/(ag, A2, 1) < |He| < |vg|, He < 0, and He — —o0, as £ — o0.

-1

£+1
Ac1 Agvi, A,
AHE:“LL Az, o, A2 Z a, A? <0,
Fe+1 HE42 Ge+1 TTEHZ N\g= Ny 9Tl
hence, is decreasing, which implies

£+1 -1

ﬁHﬁ AHf < A.Hf A€+1 A; (2 10)

HeHeyr — Hg2+1 B U£+1 B “‘954—1 Ag+2 =N, ag A .

Summing of (2.10) from N —1 to £,

1 §+1 s A4 A\ &1, G
—_— —_ 72 < - e -t = B,.
Hpy_y Z ag, A (Z agtAi+1) - Z ag~A§+1 (Z ag-;A?-«—l) ¢

=N =N =Ny

In view of (2.5), B¢ — —1, as £ — occ. Hence,

1 1
< 1
Hy_1 — 2

which contradicts that H,, — —co, as n — co. Hence, (2.8) holds. Therefore,

Up = hm Supug + Py -I—Z &

s=n "'H-

Claim limg_,oc Suptig > 0. If not, limg—0o Supug < 0, then there exists anl > 0 and an Ny > Nj,
such that ug < I, as £ > Ny, which implies

cc 2 00

AS“‘s+l 2 As
et i
= 2gs541 a=n 293541

which contradicts (2.8), hence, limg_,, Supug > 0. Thus, the proof is complete.

LEMMa 4. In the assurnptions of Lemma 3, further assume P, > 0 eventually.
Then there exist an ny > n; and a sequence {v,}, such that

Agv?
vy > P(l) + Z Seletl pl) asmn > na, (2.11)
= gaA.i-I-l

where

A,P? pa 2A; n-t
O SE T T 1 (L oy B 1
J n

L FEL AR ien

Proor. By Lemma 3, there exists an ny, such that (2.7} and (2.8} hold.
Define v, = 3> o, (Asu§+1)/(agnA§+1)a then Av, = _(Anui+l)/(a'9-rl‘4?2‘b+l)’

A 2
AR = ~ Z<tatl g1y (2.12)
' Qg A4
Summing of (2.12) from n to N — 1, we have
N-1 N-1

Agu?
Z Av R = — Z -T"*:l- RY,
&

§=n s=n
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N-1

R 9 AsPoyy R — A ”s+1 R

UNfiy_1p — ¥ Z Vs +1 A2+ sn — Z agA+1 5,13
8 8

=T

N-1 A
Un, 2 Z _A‘— R(l) (u3+1 - 2'U3+1P3+1)
s=n a’gs s+1

From Lemma 3, #a1 > Pag1 + ¥s41 = 0, hence, u2 , > P2, +v2 ) + 2P g1,

Nolo
8
Up = ; m (P i),

s o]
A
Un = Z a_g_.fij Rg'r)z (P21 +v34) -

s=n

This completes our proof.
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LEMMA 5. In the assumptions of Lemma 4, then for every positive integer m there exist an N >

ny and a sequence for {w,}, such that

= 2
w >p(m)_2%l}3(m) asm > N
n n As+1 ¥ = k)

s=n Gy

where
P(m 1)

2
AH—I

-3 3( ) R, Rgtz>=sfll(““—m('ﬂ_”>'

i=n

The proof is similar to Lemma 4.

LEMMA 6. In the assumptions of Lemina 4, then for every positive integer m,

n—1 m 1)
4A P
lim Sup P{™ H —2stl ) <.
n—oo o—rin ag. As+1

Proor. By Lemma 5, there exists a sequence {w,} for m = 1,2,..., such that

Aw?
wy, > P{™ +Z ——"““Rgt‘;‘)‘
gx 3+1

Set up = 7% (A2, ) /{ag, AL 1) RS, then wn, > P + uy,

Anwﬁ+1 > 4A P +11_l,n+1

—Au, =

agnAO?l-i-l B a‘gvrAn+1 ,

4A P U1

Up — Unt1 2 —"“j_l“"it“,

agn. n+1
hence,

44, P | 44, Py
Up+l S Un | 1+ — 2 ntl —f s#1
( g, A% ,,1:,!0 ag, A%,

From the proof of Lemma 5, u,, > P™) | Hence,

n—1 myy ~1
4A, P,
At s, T (10 82585)

s=no s+1

(2.13)

(2.14)
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n-—1 {m—1) -1
44,P,
P T (———)

s=no a5, A% 11

Therefore, for every positive integer m,
44,P0 Y
lim Sup P(m) H ( —— < 00
T OO
s=ng s+1
This completes our proof.

3. MAIN RESULTS

Using Lemmas 3-6 above, we can easily obtain the following Theorems 1-4, respectively.

THEOREM 1. Assume for (1.1), there exists & positive sequence {Ap}, such that

i A o0 (3.1
—n “g,.AEH : '
and .
Y Qe =co. (3.2)

Then eguation (1.1) is oscillatory.

THEOREM 2. Assume for (1.1), there exists & positive sequence {A}, such that P, > 0 eventu-
a‘uy! Zs—'n ( 9)/(a'guA3+1) = m’

oo
Py Q<o (3.3)
s=n
but
A P? 2A, P4
Z G._-A%t]:— (1 + 2 A2+ ) = 00, (34)
g=n Galatl . gif il

Then equation (1.1) is ascillatory.
ExaMPLE 1. Consider the following second-order neutral delay difference equation:

Let A, =1, then

1 1 = 1 = 1
T e o —rrr— P 3 = —— —
Qn nt (n n 1)2, I3 s;n Qs 2 < 00, ; an_1 o0,
o0 s~1
A3P5+1 ( z z+1)
—— 1+ = Q.
,Zz,:, ag, ALy, L1t ag, A% Z (3 +1)?

By Theorem 2, equation (3.5) is oscillatory.
THEOREM 3. Assume for (1.1), there exists a positive sequence {A,}, such that P, > 0 eventu-
ally, ¥°° (A,)/(ag, A2,,) = 0o, and for some positive integer k have PY’ < 00, j = 0,1,2,...,
k—1, but

P = o0, (3.6)

Then equation (1.1) is oscillatory.
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THEOREM 4. Assume for (1.1), there exists a positive sequence {A,}, such that P, > 0 eventu-
ally, ¥, (A,)/(ag. A2 1) = oo, there exists a positive integer my, such that

n-1 (rmp—1)
4A,P,
lim Sup P{™) ” ( _ZLT) = 0o0. (3.7)
noree 9+ 415+1

=10

Then equation (1.1) is oscillatory.
ExAMPLE 2. Consider the following second-order neutral delay difference equation:

—-—1 1 AT -1
* ((” S (m" Tnel mH)) RTEy e e R

where A is a nonnegative number.
Let A, =1, then

Qn = A (1 - —:;) (n— 1)2(71::. 1){n+2)

A
_(n—l) (n+1){n+2)
3 1 A
- Z(s—l)s(s—!—l +2) B(nﬁl) n(n+1)’
A2 ph
PT(LI)_E;; (s+1(s+2 1:_[( +2)>

P 1
-5 3
9 £ s(s+1)(s+2)(s+3)
)\2
T 27n(n + 1)(n Ty
44, P,
S, = P(l) ( s+1)
0 (1o i

S=ng

A2 jont 4)
2 Fntnt Din+ 2) 1:_! (1 HETrET 2))

)\2 n+l 4\
2Tn{n + 1){(n +2) smmotd 3s
aA(n + 1)14N/3
T 2in{n+ 1)(n+2)’

(see [10]),

where a is some positive number.
When X > 9/4, 5, — o¢, as n — oo. By Theorem 4, equation (3.8) is oscillatory.

THEOREM 5. Assume for (1.1), there exists a positive sequence {A,}, such that P, > 0 eventu-
ally, 300 (A,)/(ag, A%, ) = oo, there exists a positive integer my, such that

n s-1 4A (n";-o—l) -1
ik o
Ji, 2 11 ( —) <o (39

s=ng i=ng "+1
but
n
i (mo) _
nlLrlgo Z P 0. (3.10)
S=T0

Then equation {1.1) is oscillatory.
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PROOF. By the proof of Lemma 6, we have

n n  s-1 (mo—1)Y ™1
4A;P.
>~ plmo) S 11 skl 2 S
Psm" < Ung | 1+ ﬂ-g,-A.?+1 ) \
8=ng S=10 1=Np

which contradicts (3.9) and (3.10).
REMARK. Theorems 1-3 all include and extend those in [5,9]. In fact, when p, = 0, letting

An

1

2.

10,

= 1 can obtain their corresponding results.
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