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SUMMARY

Anti-M€ullerian hormone (AMH) and its type II recep-
tor AMHR2, both previously thought to primarily
function in gonadal tissue, were unexpectedly iden-
tified as potent regulators of transforming growth
factor (TGF-b)/bone morphogenetic protein (BMP)
signaling and epithelial-mesenchymal transition
(EMT) in lung cancer. AMH is a TGF-b/BMP super-
family member, and AMHR2 heterodimerizes with
type I receptors (ALK2, ALK3) also used by the
type II receptor for BMP (BMPR2). AMH signaling
regulates expression of BMPR2, ALK2, and ALK3,
supports protein kinase B-nuclear factor kB (AKT-
NF-kB) and SMAD survival signaling, and influences
BMP-dependent signaling in non-small cell lung
cancer (NSCLC). AMH and AMHR2 are selectively
expressed in epithelial versus mesenchymal cells,
and loss of AMH/AMHR2 induces EMT. Indepen-
dent induction of EMT reduces expression of AMH
and AMHR2. Importantly, EMT associated with
depletion of AMH or AMHR2 results in chemoresist-
ance but sensitizes cells to the heat shock protein
90 (HSP90) inhibitor ganetespib. Recognition of
this AMH/AMHR2 axis helps to further elucidate
TGF-b/BMP resistance-associated signaling and
suggests new strategies for therapeutic targeting
of EMT.
This is an open access article under the CC BY-N
INTRODUCTION

Lung cancer is the leading cause of cancer-related mortality

(Stewart and Wild, 2014). In �70% of lung cancer patients, the

malignancy presents with locally advanced or metastatic ele-

ments, requiring systemic therapies (Molina et al., 2008). Treat-

ment of lung and other cancers is increasingly based on consid-

eration of underlying molecular mechanisms identified through

genomic and transcriptomic profiling. Although this approach

has dramatically improved outcomes for some patients, intrinsic

and acquired drug resistance remain major challenges and are

associated with intratumoral clonal heterogeneity, as well as

elevated expression and activity of proteins that contribute to

survival and drug-resistant populations of cancer stemcells (Pat-

tabiraman andWeinberg, 2014). Further, some drug resistance is

conferred by proteins that are either expressed at very low levels,

orwhich are upregulated post-transcriptionally,making it difficult

to discern relation to resistance except through functional

testing. In part because of the subsequent difficulty in identifying

responsive patient populations, drugs broadly targeting the pro-

cesses driving therapeutic resistance have attracted consider-

able interest for clinical evaluation (Proia and Bates, 2014).

In non-small cell lung cancer (NSCLC), the molecular chap-

erone heat shock protein 90 (HSP90) helps counteract the high

rates of protein misfolding and aggregation that characterize

rapidly and abnormally proliferating cells (Kamal et al., 2003).

HSP90 binding supports the activity of numerous client proteins

(including EGFR, ERBB2/HER2, c-MET, RAF, EML4-ALK, and

SRC family kinases) that are critical constituents of oncogenic

and drug resistance pathways (Echeverrı́a et al., 2011; Taipale
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et al., 2012). Elevated expression of HSP90 in NSCLC is linked to

poor prognosis and drug resistance (Biaoxue et al., 2012; Nagar-

aju et al., 2015). Several studies suggested that inhibition of

HSP90 might have therapeutic efficacy in some subtypes of

lung and other cancers (Proia and Bates, 2014; Socinski et al.,

2013). For example, the HSP90 inhibitor ganetespib had potent

activity in NSCLC characterized by the driver oncogene EML4-

ALK (Sang et al., 2013). In contrast, tumors with KRAS muta-

tions, detected in 20%–30% of NSCLC (Cancer Genome Atlas

Research Network, 2014; Imielinski et al., 2012) and associated

with poor prognosis in NSCLC and other tumor types, are

currently not clinically actionable using ganetespib or other tar-

geted approaches.

We were interested in exploring the biological machinery

involved in tumor resistance to HSP90 inhibition versus standard

of care agents. In this study, we used an RNA interference

(RNAi)-based approach to compare the functional requirements

for the resistance of RAS-mutated (RASMUT) and EML4-ALK ex-

pressing NSCLC cell lines to ganetespib. Based on this work, we

report here the identification and characterization of a previously

undefined autocrine signaling axis in a subset of NSCLC tumors,

involving anti-M€ullerian hormone (AMH; also known as M€ullerian

inhibiting substance [MIS]), and its type II receptor, AMHR2, as

important for response both to ganetespib and to the approved

chemotherapeutic cisplatin. AMH is a little-studied member of

the transforming growth factor (TGF-b)/bone morphogenetic

protein (BMP) family of secreted extracellular growth regulators

(Massagué, 2012). TGF-b and BMP are master regulators of

epithelial-mesenchymal transition (EMT), a process occurring

during tumor progression, in which tumor cells undergo transfor-

mative changes to acquire mesenchymal features (Thiery et al.,

2009; Ye and Weinberg, 2015). EMT has been directly linked to

chemoresistance and stem cell identity for many solid tumors

(Fischer et al., 2015; Zheng et al., 2015). TGF-b has a well-docu-

mented activity in promoting EMT during cancer progression,

while BMP typically opposes these activities: the balance be-

tween TGF-b and BMP activity plays a critical role in the regula-

tion of tumor cell plasticity and treatment resistance (Massagué,

2008; Ye and Weinberg, 2015). Nevertheless, in spite of exten-

sive study, the full range of functional crosstalk and feedback

loops connecting members of this family of ligands and their re-

ceptors is not completely understood. Our findings provide

insight into NSCLC biology and TGF-b/BMP signaling and sug-

gest potential approaches to therapeutically target EMT.

RESULTS

RNAi Screening Identifies AMH and AMHR2 in NSCLC
We used RNAi to screen for genes conferring resistance to gane-

tespib. Based on the observation that synthetic lethality is most

often identified among genes with linked functions that provide

protective redundancy (Hartwell et al., 1999), we developed a

targeted small interfering RNA (siRNA) library for depletion of

655 proteins defined as relevant to NSCLC survival and EMT

signaling and enriched for druggable kinases and HSP90 clients

(Table S1). Transfection conditions were optimized (Figures

S1A–S1E) and ganetespib response curves were established

(Figure S1F) in NSCLC cell lines. RNAi screening was performed
658 Cell Reports 16, 657–671, July 19, 2016
two times independently in A549 (KRAS mutated, c.34G>A

(G12S), TP53 wild-type), and sensitizing hits were identified

(Figure 1A). All hits were validated by confirmation that at least

two of four independent siRNAs reproduced the sensitization

phenotype. As a separate confirmation, for a number of hits,

we used qRT-PCR to show that individual sensitizing siRNAs

reduced the abundance of the target mRNA (Figures S1G and

S1H; Table S2).

The final group of 152 validated siRNA pools (Table S3) was

screened using two additional RASMUT cell lines, H1299 and

H460, and two cell lines bearing the EML4-ALK translocation

(H3122 and H2228; Figures 1A and S1I). In addition, validated

siRNAs were re-screened in the A549 cell line to determine

which siRNAs sensitized cells to an unrelated cytotoxic agent,

cisplatin, used at an IC20 dose (Figure S1F) and to establish if

sensitization of screened genes was specific to ganetespib (Fig-

ures 1A and S1I). This analysis identified 14 genes associated

with ganetespib resistance in 4/5 cell lines, of which 11were spe-

cific to ganetespib, and an additional 60 genes that were active in

3/5 of the cell lines, or in at least 2/3 of the RASMUT cell lines, of

which 41 were specific for ganetespib. This high value gene set

included a number of genes related to RAS signaling in NSCLC,

including the receptor tyrosine kinases (RTKs) ERBB3, KDR, and

FGFR1, aswell as IRS1, NOTCH, BCAR1, and other proteins that

influence survival signaling.We also identified a number of genes

not previously linked to NSCLC or therapy resistance.

To gain further insight into relevant resistance mechanisms,

protein analysis through evolutionary relationships classification

system (PANTHER) gene function pathway analysis (Mi et al.,

2013) was performed for a top group of 73 validated sensitizing

hits, defined as those active in at least three out of five NSCLC

cell lines, or at least two out of three RAS-mutated NSCLC cell

lines. This analysis identified hits concentrated in pathways

known to be relevant to NSCLC and survival signaling, including

the angiogenesis pathway (p = 9.54E�10) and the VEGF

and EGF receptor signaling pathways (p = 5.83E�09 and

1.17E�07, respectively), as well as cell adhesion-related path-

ways involving integrins and cadherins (Figures 1A and 1B). Un-

expectedly, the gonadotropin releasing hormone (GRH) receptor

pathway was the single most enriched pathway (p = 2.56E�13;

Figures 1B and S2A; Table S4). This focused attention on two

genes identified as among the top sensitizing hits in all three

RASMUT cell lines and previously uncharacterized for a role in

NSCLC: AMH, a member of the TGF-b/BMP superfamily, and

its receptor AMHR2.

AMH has long been thought to be expressed and functional

primarily in embryonic gonad development, to regulate regres-

sion of the M€ullerian ducts, and in the female ovary, to control

oocyte maturation. However, interrogation of The Cancer

Genome Atlas (TCGA) datasets (Table S5) indicated that AMH

and AMHR2 expression is elevated in 5%–8% of lung cancers

(Figure 1C) and in several other cancer types (Figure S2B), and

that overexpression did not correlate to a specific genotype for

RAS or EML4-ALK mutation (Table S5). Analysis of TCGA data-

sets (Table S5) indicated that the mRNAs for AMH and AMHR2

were elevated relative to matched normal lung tissue in a subset

of lung tumors (Figure 1D). Furthermore, TCGA data also indi-

cated that genomic changes for AMH and AMHR2 are limited



Figure 1. RNAi Screening of NSCLC Cell

Lines Identifies AMH and AMHR2

(A) Representation of top hits from RNAi screen of

NSCLC cell lines for sensitization to ganetespib.

Left columns (value): sensitization index (SI) values

((test siRNA)/(negative control siRNA)) for gane-

tespib-treated cells, divided by the (test siRNA)/

(negative control siRNA) for vehicle-treated cells;

sensitizing (S) SI (%0.85), yellow, indicates sensi-

tizing siRNAs; SI = 1, black, indicates no activity;

antagonizing (A) SI (R1.15), blue, indicates siRNAs

conferring resistance. Right columns (cutoff): all

hits (SI %0.85 and FDR %25%) are indicated

by red squares. *Green boxes indicate hits for

A549 cells treated with cisplatin (SI %0.85 and

FDR %25%). See also Figure S1 for complete

listing of screening results.

(B) Enriched pathways for genes depicted in

(A) as determined using the protein analysis

through evolutionary relationships (PANTHER)

classification system. Genes in pathways demar-

cated with a black diamond are highlighted with

colored squares in (A). See also Figure S2 for non-

overlapping hits in each of the highlighted cate-

gories.

(C) AMH and AMHR2 mRNA expression in lung

adenocarcinoma (ADCA) and squamous cell car-

cinoma (SCC) specimens reported in TCGA, indi-

cating % of cases with Z scores of 1–2 (gray) or >2

(black). See also Figure S2 for AMH and AMHR2

expression in all cancer types reported by the

TCGA.

(D) AMH and AMHR2 expression in patient NSCLC

samples and adjacent normal tissue with a fold

difference of >1.0. Data are presented as mean ±

SEM; one-way ANOVA was used to assess sig-

nificance; *p < 0.05; **p < 0.01.

See also Figure S3 and Tables S1, S2, S3, S4,

and S5.
in lung cancer (Figures S3A and S3B), suggesting an epigenomic

basis for elevated gene expression.

AMH Survival Signaling in NSCLC
Signaling by TGF-b and BMP regulates EMT, invasion, and sur-

vival in NSCLC (Hsu et al., 2011; Nolan et al., 2015). TGF-b and

BMP binding to a heterodimeric receptor complex with type I

and type II components activates downstream signaling, with

direct effectors that include SMAD1, SMAD5, and SMAD8 as

well as multiple additional proteins that support survival

signaling, such as nuclear factor kB (NF-kB), b-catenin, and

others (Figure 2A). In contrast to TGF-b and BMP, few studies

have addressed AMH signaling, with none addressing potential

action in lung cancer. However, based on work in studies of

gonadal development (di Clemente et al., 2003; Rey and Picard,

1998), the type II receptor for AMH, AMHR2, is known to hetero-

dimerize with three type I receptors (variously ALK2, ALK3, or

ALK6) (di Clemente et al., 2003, 2010) also utilized by BMP2
and the BMP type II receptor (BMPR2) in NSCLC (Langenfeld

et al., 2013). Similar close pathway interactions between

TGF-b and BMP often result in context specific and at times un-

predictable signaling outputs (Oshimori and Fuchs, 2012; Scheel

et al., 2011). Thus, our screening results suggested the intriguing

idea that in lung cancer, the much-studied TGF-b/BMP signaling

system might have a hitherto unappreciated input in the form of

AMH/AMHR2 signaling.

As AMH expression in NSCLC was unexpected, we first

characterized its expression. The AMH transcript was of low

abundance in NSCLC cell lines compared to testicular tissue

(a positive control), albeit comparable in expression to that

seen in epithelial ovarian carcinoma cell lines and higher than

that in normal lung tissues (Figure 2B). We confirmed low abun-

dance but detectable proteins corresponding to full-length AMH

and AMHR2 were expressed in RASMUT A549 and H1299 cells

and were depleted by multiple independent siRNAs (Figures

2C, 2D, S4A, and S4B). Interestingly, a recent study of AMHR2
Cell Reports 16, 657–671, July 19, 2016 659



Figure 2. AMH and AMHR2 Regulate Survival Signaling in NSCLC

(A) Schematic of TGF-b, BMP, and AMH signaling.

(B) qRT-PCR for AMH, normalized to total levels of AMH in testis (positive control), for two NSCLC cell lines (A549, H1299), two ovarian cancer cell lines (O5 =

OVCAR5, O8 = OVCAR8), and normal lung tissue.

(C and D) Western blots indicating depletion of AMH (C) or AMHR2 (D) for two independent siRNAs in A549 cells, with quantification of results normalized to

GAPDH loading controls.

(E) FACS using AMHR2-specific antibodies and non-permeabilized (blue; membranous [M]) or permeabilized (green; total [T]) cells after depletion of AMHR2.

Averaged median fluorescence intensity (MFI) values from multiple independent experiments for each condition normalized to membranous AMHR2 (control [C]

siRNA) are show. The percentage of membranous AMHR2 (gray) is the MFI for M divided by the MFI for T.

(F) Representative western blots and quantifications for total and phosphorylated SMAD1/5/8 following siRNA depletion of AMH and AMHR2 in A549 cells.

(G) Representative western blots for total and phosphorylated SMAD1/5/8 following doxycycline (Dox) induced overexpression of AMH in A549 cells.

(legend continued on next page)
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in COS7 cells indicated that a substantial pool of the protein

resided in intracellular compartments, rather than at the cell sur-

face (Hirschhorn et al., 2015). Fluorescence-activated cell sort-

ing (FACS) analysis of permeabilized versus non-permeabilized

A549 and H1299 cells demonstrated a similar distribution, with

�3%–4%of AMHR2 on the cell surface and a substantially larger

intracellular pool (Figure 2E).

We then evaluated the role of AMH and AMHR2 in influencing

the basal activity of canonical TGF-b/BMP effectors. SiRNA

depletion of either AMH or AMHR2 reduced basal phosphoryla-

tion of the proximal BMP effector SMAD1/5/8 (Figures 2F, S4C,

and S4D). Reciprocally, exogenous Tet-inducible overexpres-

sion of AMH increased the pool of active SMAD1/5/8 (Figures

2G and S4E). In addition, confirming activity of membrane-asso-

ciated AMHR2, treatment with exogenous AMH induced

SMAD1/5/8 phosphorylation, albeit at a lower level than the level

detected with overexpression (Figures 2H and S4F).

Depletion of AMH and AMHR2 also reduced the basal activity

of multiple core survival signaling effectors of BMP and TGF-b

(Feng and Derynck, 2005; Massagué, 2012; Zhang, 2009),

including AKT and its activator PDK1 (pThr308AKT and pSer241

PDK1), as well as pSer176/180IKKab and pSer235/236S6 (typically

activated by AKT) and the IKK downstream signaling proteins

pSer32/36IkB and pSer536NFkB (Figures 2I and S4G). In contrast,

activity of the proliferation-associated protein ERK1/2 and

expression of the death effector proteins PUMA and BIM were

not affected by depletion of AMH or AMHR2 (Figure S4H).

AMH and AMHR2 Directly Influence TGF-b/BMP-
Dependent Signaling through SMAD3 and BMPR2
We next asked if modulation of AMH signaling influenced

expression or activity of receptors specifically related to BMP

or TGF-b. For this, we transiently depleted AMH or AMHR2

and stimulated cells with BMP2 or TGF-b for 0, 15, or 45minutes.

While depletion of these proteins did not affect BMP2 induction

of phospho-SMAD1/5/8, BMP2 stimulation in the context of

depleted AMH or AMHR2 caused a significant increase in phos-

phorylation of SMAD3 (Figures 3A, 3B, S5A, and S5B). In

contrast, depletion of AMH or AMHR2 reduced TGF-b1-depen-

dent phosphorylation of SMAD3 (Figures S5C and S5D). For

neither BMP2 nor TGF-b1 did AMH/AMHR2 status impact tran-

sient induced phosphorylation of SMAD1/5/8 or SMAD2. One

possible mechanism for these altered response patterns would

be if depression of AMH signaling caused reactive changes in

expression of the type I or type II receptors for BMP or TGF-b li-

gands. Indeed, we found that depletion of AMH specifically

increased expression of the type II receptor BMPR2, and the

type I receptors ALK2 and ALK3, while expression of TGFBR2

or ALK6 was not impacted (Figures 3C, S5E, and S5F). In further

support of this observation, Tet-inducible overexpression of

AMH significantly decreased detectable levels of BMPR2, but

not of TGFBR2 (Figure 3D).
(H) Representative western blots for total and phosphorylated SMAD1/5/8 follow

(positive signaling control).

(I) Representative western blots for indicated total and phosphorylated survival-si

shown in Figure S4. *p < 0.05; **p < 0.01; ***p < 0.001. Data are presented as m

See also Figure S4.
Depletion of AMH or AMHR2 Induces EMT and
Increasing Sensitivity to HSP90 Inhibition and
Resistance to Cisplatin
As TGF-b and BMP dynamically interact to regulate epithelial

versus mesenchymal cell identity (Oshimori and Fuchs, 2012;

Scheel et al., 2011), the fact that AMH influenced signaling in a

manner that enhanced BMP responsiveness suggested that

AMH/AMHR2 might also influence cell identity. Indeed, siRNA

depletion of AMH or AMHR2 reduced the epithelial phenotype

in A549 and H1299 cells, as reflected by downregulation of cad-

herins (CDH1 andCDH3) and the tight junction protein ZO1/TJP1

(Figure 4A) (Beck et al., 2014; Thiery et al., 2009). AMH or AMHR2

knockdown also elevated expression of the mesenchymal

markers ACTA2/aSMA, ZEB1, vimentin (VIM), and b-catenin

(CTNNB1) (Figures 4A and 4B) (Thiery et al., 2009; Ye and Wein-

berg, 2015) and caused cells to assume a more mesenchymal

phenotype, characterized by larger, spindle-shaped cells that

formed fewer cell-cell contacts and lacked cadherin staining at

cell junctions (Figures 4C and S5G). Stable AMH depletion (Fig-

ures 5A and S5H) also significantly increased invasion into

Matrigel (Figures 5B and S5I), compatible with a mesenchymal

transition, and increased resistance to anoikis (Figure 5C) (Frisch

et al., 2013). Importantly, AMH-depletion increased the propor-

tion of cells expressing high levels of CD133 and CD44, associ-

ated with mesenchymal and stem cell-like characteristics

(Figures 5D and 5E) (Leung et al., 2010; Pattabiraman and Wein-

berg, 2014). Conversely, cells overexpressing AMH had

decreased expression of VIM and increased expression of

CDH1/3 (Figures 5F and S5J), were less invasive (Figures 5G

and S5K), and were sensitized to anoikis (Figure 5H). However,

treatment of cells for 24–36 hr with exogenous AMH or

BMP used at concentrations that induced SMAD1/5/8 phos-

phorylation did not significantly reduce expression of VIM,

although TGF-b1 treatment induced VIM, suggesting higher

doses or a longer time of exposure were required to reduce

EMT (Figure S5L).

We further tested the hypothesis that AMH signaling is linked

to the epithelial state by inducing EMT through direct depletion

of cadherin (CDH1 or CHD3) and assessing AMH and AMHR2

expression. Expression of AMH and AMHR2 decreased with

transition to a more mesenchymal phenotype (Figures 5I and

S6A–S6E), supporting this idea. The PANTHER analysis of gane-

tespib hits from the initial siRNA screen had indicated enrich-

ment for cell adhesion-related pathways (Figures 1A, 1B, and

S2A), with siCDH3 sensitizing multiple NSCLC cell lines to gane-

tespib. This result raised the possibility that the mesenchymal

state per se might contribute to sensitization to ganetespib, in

spite of the normal association of EMT with drug resistance

(Shintani et al., 2011; Thiery et al., 2009). Indeed, depletion of

CDH1 or CDH3 significantly sensitized A549 and H1299 cells

to ganetespib (Figure 5J). Conversely, AMH-, AMHR2-, CDH1-,

or CDH3-depleted mesenchymal cells were resistant to cisplatin
ing 1 hr stimulation of A549 and SMAT1 cells with recombinant AMH or BMP2

gnaling proteins, following siRNA depletion of AMH or AMHR2; quantification is

ean ± SEM.
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Figure 3. AMH and AMHR2 Impact BMP Signaling

(A and B) Representative western blots for siRNA-depleted and BMP2-stimulated A549 cells (A) and quantification of signals normalized to GAPDH loading

controls (B).

(C) Western blots for the indicated proteins following stable depletion of AMH using two independent shRNAs (1 and 2) and quantification thereof.

(D) Western blots for BMPR2 and TGFBR2 following Dox induced overexpression of AMH in A549 and H1299 cells. *p < 0.05; **p < 0.01; ***p < 0.001. Data are

presented as mean ± SEM.

See also Figure S5.
(Figures 5K and 5L), a drug commonly used in the neoadjuvant

and adjuvant setting for NSCLC and previously reported to be

less effective against mesenchymal NSCLC cells (Shintani

et al., 2011). Interestingly, Tet-induced overexpression of AMH

strongly sensitized cells to cisplatin (Figure 5M), but did not

impact response to ganetespib (Figure S6F).

Inhibition of HSP90 Opposes EMT and Induces AMH and
AMHR2 Expression
Previous studies suggested HSP90 supports EMT in some cell

types (Nagaraju et al., 2015; Nolan et al., 2015). We found that

depletion of cadherins, AMH, or AMHR2 induced expression of

HSP90 in parallel with inducing EMT (Figures S5C and S6G),

compatible with this idea. To explore this relationship in NSCLC,

we treated cells with ganetespib for up to 72 hr. Inhibition of

HSP90 triggered mesenchymal-epithelial transition (MET) as

shown by reduced expression of ZEB1, CNNB1, VIM, and

ACTA2 and by induction of ZO1 and CDH1 or CDH3 expression

(Figure 6A). Furthermore, ganetespib significantly reduced inva-

sion into Matrigel (Figures 6B and S6H), especially for cells with

depleted AMH (Figures 6C and S6H). Compatible with this MET,

inhibitionofHSP90 inducedexpressionofAMHmRNA(Figure6D)

and protein within 24 hr of treatment (Figure 6E). HSP90 inhibition

also significantly induced AMHR2 expression after 24–48 hr (Fig-
662 Cell Reports 16, 657–671, July 19, 2016
ure 6E). In contrast to changes in expression, HSP90 inhibition

had a limited effect on AMHR2 localization, with the slight

decrease in percent of the cellular pool at the surface due to the

greater magnitude of the ganetespib-induced increase in cyto-

plasmic AMHR2 (Figures 6F and 6G). Among the type I receptors,

ALK2 and ALK3 were abundant both intracellularly and at the

plasma membrane, while ALK6 was strictly associated with the

plasmamembrane (Figures 6H, 6I, S6I, and S6J); findings similar

to previous reports in non-lung cancer cell lines (Lee et al., 2009;

Song et al., 2010). Interestingly, expression of ALK3 significantly

increasedafter treatmentwithganetespib for 24–48hr, potentially

reflecting co-regulation with AMHR2 (Figures 6H, 6I, S6I, and

S6J). Together, these results indicated that inhibitionofHSP90 in-

duces a MET process characterized in part by elevated AMH,

AMHR2, and ALK3 expression in NSCLC models.

AMH Provides a Proliferative Advantage In Vivo
To assess the in vivo relevance of AMH signaling in NSCLC

tumorigenesis and ganetespib response, A549 and H1299 cells

with small hairpin RNA (shRNA)-depleted AMHor vector controls

(Figures 5A and S5H) were used for xenograft analysis. Although

in vitro siRNA depletion of AMH or AMHR2 had limited impact on

cell proliferation (Figure S7A), AMH-depleted cells grew signifi-

cantly slower than vector controls in vivo (Figure 7A), resulting



Figure 4. AMH and AMHR2 Promote Epithelial Identity in NSCLC Cells

(A and B) Representative western blots (A) and quantification (B) normalized to GAPDH loading controls indicating expression of proteins associated with an

epithelial (ZO1 and CDH1) or a mesenchymal (ZEB1, CTNNB1, VIM, and ACTA2) state, 48 hr after siRNA depletion of AMH and AMHR2.

(C) Immunofluorescence visualization of expression of E-cadherin (CDH1), vimentin (VIM), or DNA (DAPI) 48 hr after siRNA depletion of AMH or AMHR2, or GL2

control (siCtrl). Scale bar, 30 mm. *p < 0.05; **p < 0.01; ***p < 0.001. Data are presented as mean ± SEM.

See also Figure S5.
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Figure 5. EMT Reduces AMH/AMHR2 Expression, Sensitizes Cells to HSP90 Inhibition, and Contributes to Chemoresistance

(A) Western analysis of A549-derivative cell lines constructed with two independent AMH-depleting shRNAs or vector control (Ctrl).

(B) Representative images for invasion assays using A549 cells following shRNA depletion of AMH, with quantification of relative invasion through Matrigel

following depletion of AMH or negative control. Scale bar, 100 mm.

(C) Relative caspase 3/7 activity in cells plated on ultra-low attachment plates to induce anoikis; values normalized to control shRNA.

(D and E) Representative FACS spectra for CD44-specific (D) and CD133-specific (E) antibodies using shCtrl and shAMH1 A549-derivatives; quantification of

multiple independent experiments for A549 and H1299 cells is also shown.

(F) Western blots for CDH1 and VIM for two clones with or without Dox induced AMH overexpression.

(G) Representative images for invasion assays using A549 cells with or without Dox induced overexpression of AMH, with quantification of relative invasion

through Matrigel for A549 and H1299 cells. Scale bar, 100 mm.

(legend continued on next page)
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in smaller tumors after 5 weeks of treatment (Figures 7B and

S7B), with reduced Ki-67 staining (Figures 7C and S7C). Gane-

tespib treatment significantly reduced tumor volume, particularly

in AMH-depleted tumors (Figures 7B and S7B). Ganetespib

treatment did not further reduce Ki-67 staining, likely reflecting

the fact that specimens were analyzed 1 week after the last

dose (Figures 7C and S7C). Tumors with depleted AMH ex-

pressed significantly less CDH1 than parental tumors, suggest-

ing a more mesenchymal identity (Figures 7D and S7D), as

predicted by the in vitro data. Also paralleling in vitro results,

ganetespib treatment partially reverted AMH-depleted tumors

to a more epithelial-like state (Figures 7D and S7D). In contrast,

AMH overexpression accelerated the growth of tumors in vivo

and caused ganetespib resistance (Figure 7E); moreover,

AMH-overexpressing tumors had elevated levels of Ki-67 and

CDH1, indicating a more proliferative and epithelial phenotype

(Figures 7F, 7G, S7E, and S7F).

Intriguingly, in further analysis of TCGA data, high expression

of AMH and/or AMHR2 in 517 NSCLC samples predicted signif-

icantly increased disease free survival (p = 1.2E�02; Figure 7H).

Because of the many links between AMH and epithelial identity,

we asked if AMH and/or AMHR2 expression correlated with

postoperative residual tumor or distal metastasis in the 517

NSCLC cases. TCGA included data on metastatic status and re-

sidual tumor detection for 344 and 340 of the 517 cases, respec-

tively (Figure 7H; Table S6). Twenty-three of 344 patients (6.7%)

had a validated distal metastasis (M1) and 16 out of 340 (4.7%)

had positive surgical margins (R1/2). We detected a trend

compatible with the interpretation that high AMH/AMHR2 levels

are associated with reduced metastatic disease and positive tu-

mor margins, as only 9% of metastatic cases and 6% of cases

with positive tumormargins had high levels ofAMH/AMHR2 (Fig-

ure 7I; Table S6), in contrast to expected values of 14.5%, based

on the representation of high AMH/AMHR2 specimens in the

analyzed set of tumors.

DISCUSSION

In this study, we identify AMH signaling as an important contrib-

utor to epithelial plasticity, survival signaling, and selective drug

resistance in NSCLC. Signaling by TGF-b/BMP family proteins is

strongly associated with, and is a determinant of prognosis for,

lung malignancies (Borczuk et al., 2011; Kretzschmar et al.,

1999). Importantly, this signaling is significantly influenced by

context, with TGF-b signaling altering from tumor-suppressive

to metastasis-promoting in response to the contributions of

diverse cell intrinsic and cell extrinsic factors (Massagué,
(H) Relative caspase 3/7 activity for cells with or without Dox induced overexpre

(I) Representative western blots and quantifications normalized to GAPDH loadin

with two independent siRNAs (1 and 2). *p < 0.05; **p < 0.01; ***p < 0.001.

(J) A549 and H1299 cells transfected with siCDH1 or siCDH3 and treated with

synergy (SI < 0.85; p < 0.001).

(K) Same as (J) except cells were treated with cisplatin instead of ganetespib. *In

(L) Same as (K) except cells were transfected with siAMH or siAMHR2. *Indicate

(M) Normalized viability of cells following 72 hr of treatmentwith increasing concen

overexpression. Data are presented as mean ± SEM; Student’s t test was used

See also Figures S5 and S6.
2012). By identifying a previously undetected input that is inter-

twined with central TGF-b/BMP effector cascades to support

the epithelial state, this work offers insights into mechanisms

of NSCLC pathogenesis, which have direct possible implications

for the therapeutic management of lung cancers.

Studies of AMH during gonadal development have docu-

mented production by Sertoli cells in males and granulosa cells

in females (Josso and Clemente, 2003; Takahashi et al., 1986;

Tran et al., 1977). Catlin et al. (1990, 1997) first determined that

fetal lung tissue was also responsive to recombinant AMH,

suggesting an intact receptor system: fetal signaling proteins

relevant to control of tissue differentiation are frequently re-ex-

pressed and utilized in cancers (Naxerova et al., 2008). AMH

and AMHR2 have been investigated as potential therapeutic tar-

gets in epithelial ovarian cancer (EOC) and granulosa cell tumors

(GCT) (Kim et al., 2014), since reflecting their lineage of origin,

some of these tumors continue to express AMHR2 (Anttonen

et al., 2011; La Marca and Volpe, 2007). In EOC, exogenously

administered AMH significantly inhibits proliferation and induces

cell-cycle arrest, mimicking the anti-proliferative activity of AMH

in the reproductive cycle (Kim et al., 2014; Molina et al., 2008),

and inhibits cell invasion (Chang et al., 2011). AMH-dependent

inhibitory signaling proceeds through activation of SMAD1/5/8

(Alarcón et al., 2009; Meirelles et al., 2012), and depletion of

SMAD1 or SMAD5 in the ovary or testes caused metastatic

gonadal tumor development in mouse models (Pangas et al.,

2008). Beyond this proximal effector, there has been relatively lit-

tle study of AMH-dependent cancer signaling, and no report of a

role of AMH in influencing TGF-b, BMP, or NF-kB in NSCLC.

The previously unsuspected signaling role we describe here

for AMH in NSCLC differs significantly from that reported in

EOC, with AMH sustaining epithelial identity and preventing in-

vasion in part by regulating activity of ALK2, ALK3, BMPR2,

and SMAD3. For canonical TGF-b signaling, SMAD2 and

SMAD3 are typically thought to be the dominant signal propaga-

tors (Massagué, 2012). For BMP, SMAD1, SMAD5, and SMAD8

usually take on this role (Figure 2A) (Shi and Massagué, 2003).

We, in this study, and many others previously (Feng and Der-

ynck, 2005; Massagué, 2012; Oshimori and Fuchs, 2012; Pickup

et al., 2013; Scheel et al., 2011), have shown that context

strongly influences crosstalk between TGF-b andBMP signaling,

and although generally associated with TGF-b signaling (Mas-

sagué, 2012), BMP induces SMAD3 phosphorylation in some

settings (Holtzhausen et al., 2014). Mechanistically, our data

indicate that depletion of AMH and AMHR2 contributes to the

selective activation of SMAD3 by BMP ligands, likely at least in

part due to selective upregulation of BMPR2, ALK2, and ALK3
ssion of AMH; cells were plated on ultra-low attachment plates.

g controls for A549 cells 24–48 hr after siRNA depletion of E-cadherin (CDH1)

vehicle (V) or two different concentrations of ganetespib for 72 hr. #Indicates

dicates antagonism (SI >1.15; p < 0.001).

s antagonism (SI >1.15; p < 0.001).

trations of cisplatin, with (red; +Dox) or without (black;�Dox) Dox induced AMH

to assess significance.
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(Figure 3). Interestingly, overexpression of ALK2, most promis-

cuously used by TGF-b, BMP, and AMH, has also been shown

to induce non-canonical crosstalk between pathways (Renlund

et al., 2007), suggesting AMH/AMHR2 expression may, through

competition, similarly affect available pools of subunits for multi-

ple competing heterodimeric signaling systems. The predomi-

nantly intracellular localization of AMHR2, paralleling a recent

report in COS7 cells (Hirschhorn et al., 2015), suggests that

some activity of the AMH/AMHR2 complex may be exerted at

the level of expression and trafficking control for the ALK2,3

and BMPR2 receptors and suggests a potential intracrine role

(Re, 2014) for AMH/AMHR2 that was previously unknown. Future

work is needed to fully elucidate the functional role of intracellular

AMHR2. Nevertheless, these findings strongly suggest that eval-

uation of AMH and AMHR2 expression may be necessary in

some cases to fully appreciate the signaling regulation, cross-

talk, and impact on EMT of TGF-b and BMP.

Intriguingly, the pro-survival and proliferative activity of AMH

alone is not adequate to cause sensitization to non-specific cyto-

toxic agents; rather, the sensitizing effect unmasked for ganetes-

pib is linked to the balance between epithelial and mesenchymal

status. This is compatible with recent studies that have shown a

specific role of EMT transitions in protecting cells growing under

abnormally detached conditions from anoikis (Cieply et al.,

2015). Particularly in light of recent findings suggesting EMT is

more important for chemoresistance than metastasis in NSCLC

and other cancer (Fischer et al., 2015; Zheng et al., 2015), it is

conceivable that patient tumors with low AMH/AMHR2 define

a class of particularly chemoresistant cases that may signifi-

cantly benefit from combination therapy that includes an

HSP90 inhibitor.

Overall, this study emphasizes the importance of context and

tissue type for accurate determination of protein activity (Bissell

and Labarge, 2005; Massagué, 2012). This may be particularly

relevant considering the continued clinical development of ther-

apeutics to target TGF-b superfamily members and the associa-

tion of EMT with chemoresistance (Akhurst and Hata, 2012;

Fischer et al., 2015; Thiery et al., 2009; Zheng et al., 2015). Tar-

geting AMH signaling has been proposed as a potential treat-

ment for EOC, either through administration of exogenous

AMH (Kim et al., 2014), adeno-associated virus (AAV)-delivery
Figure 6. HSP90 Inhibition Induces MET and Increases AMH/AMHR2 E

(A) Quantification (normalized to b-actin loading controls) of western analysis of ind

ganetespib.

(B and C) Quantification of relative cell invasion through Matrigel for A549 cells (B

AMH; see also Figure S6.

(D) Relative mRNA expression (normalized to the POLR2F housekeeping gene) fo

with vehicle (V) or 100 nM ganetespib (G).

(E) Representative western blots and quantification for AMH and AMHR2 expre

Increased HSP70 expression indicates response to HSP90 inhibition.

(F and G) FACS of non-permeabilized (blue; membranous [M]) or permeabilized

150 nM ganetespib. Averaged median fluorescence intensity (MFI) values fromm

AMHR2 for control (Gan. 0) are shown.

(H) Representative images of western blots following treatment with 150 nM gan

plasma membrane (M) fractions.

(I) Quantifications for (H): protein expression for M was normalized to a CAV1 lo

treated cells; normalized results for M and C were used to calculate % plasma me

are presented as mean ± SEM; Student’s t test was used to assess significance
of AMH (Pépin et al., 2015), or use of AMHR2-targeting anti-

bodies (Kersual et al., 2014). The present study suggests that

modulating AMH homeostasis may also have effect in non-

gynecological tumors. The findings in this study are broadly

informative for ongoing efforts to target the TGF-b/BMP/AMH

superfamily, for HSP90 inhibitors, and in targeting tumors che-

moresistant due to EMT.

EXPERIMENTAL PROCEDURES

Please also refer to the Supplemental Experimental Procedures section. The

Institutional Animal Care and Use Committee of Fox Chase Cancer Center

(FCCC) approved all experiments involving mice.

High-Throughput RNAi Screening and Validation

Methods were modified from previously published work (Astsaturov et al.,

2010). PLK1 (positive control) and GL2 (negative control) siRNAs (Thermo

Fisher Scientific) were used to optimize transfection conditions and achieve

Z’ values of 0.5 or greater (Zhang et al., 1999), using a standard reverse trans-

fection procedure for Dharmafect 1 (Thermo Fisher Scientific); in the siRNA

library used for screening, two independent siRNA duplexes (QIAGEN) arrayed

in 96-well plates targeted each gene of interest with systematically placed

PLK1 and GL2 controls.

Pathway Enrichment, TCGA Data, and Survival Data

The PANTHER classification system was used to identify enriched pathways,

using the statistical overrepresentation test and PANTHER pathway cate-

gories (Table S4; http://www.pantherdb.org/) (Mi et al., 2013). The TCGA re-

sults shown in this study are based on data generated by the TCGA Research

Network (http://cancergenome.nih.gov/). TCGA datasets were downloaded

from cBioPortal and are listed in Table S5 or published (Cancer Genome Atlas

Research Network, 2014).

Statistical Analysis

In analysis of RNAi screening data, viability for each target gene was normal-

ized to the average control siRNA (GL2) viability per plate. Sensitization index

(SI) was calculated for each siRNA as SI = (Vdrug/GL2drug)/(Vvehicle/GL2vehicle),

where V was the viability in wells transfected with targeting duplexes and

GL2 was the average viability of cells transfected with negative control siRNA

on the same plate. Hits were identified based on statistically significant

p values and SI values below 0.85. P values controlled for the false discovery

rate (FDR) with Benjamini-Hochberg step-up method. All hits with FDR values

of %25% were considered significant. Only hits statistically (FDR %25%) and

biologically significant (SI%0.85) were further validated. p values were calcu-

lated using one-way ANOVA (GraphPad Prism version 6.00 for Mac; GraphPad

Software) or Student’s t test as indicated for each specific experiment.
xpression

icated proteins for A549 andH1299 cells 0–72 hr after treatment with 100 nMof

) and H1299 (C) treated with vehicle or 100 nM of ganetespib, +/� depletion of

r AMH,HSP90, HSP70, and TRAP1 (unaffected control) after 24 hr of treatment

ssion in A549 and H1299 cells treated with 100 nM ganetespib for 0–72 hr.

(green; total [T]) cells using AMHR2-specific antibodies after treatment with

ultiple independent experiments for each condition normalized to membranous

etespib; different cellular components are shown: total (T), cytosolic (C), and

ading control, and for C to GAPDH and total T protein expression for vehicle-

mbrane localization (M/C3 100; gray). *p < 0.05; **p < 0.01; ***p < 0.001. Data

.
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