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Abstract

For a knot or linkK, L(K) denotes the rope length & andCr(K) denotes the crossing number
of K. An important problem in geometric knot theory concerns the bound @) in terms of
Cr(K). It is well known that there exist positive constanis c» such that for any knot or link,
c1 - (CrKN3/* < L(K) < ¢z - (Cr(K))2. In this paper, we prove that there exists a constant0
such that for any knot or linkk, L(K) < c - (Cr(K))3/2. This is done through the study of regular
projections of knots and links as 4-regular plane graphs. We show that for any knot & timére
exists a knot or linkk” and a regular projectio@ of K’ such thatk” is of the same knot type as that
of K, G has at most 4Cr(K) crossings, and; is a Hamiltonian graph. We then use this result to
develop an embedding algorithm. Using this algorithm, we are able to embed any knot Krifitd
the simple cubic lattice such that the length of the embedded knot is of order at (65t ©))>/2).
This resultin turn establishes the above mentioned upper bouhdionfor smooth knots and links.
Moreover, for many knots and links with special Hamiltonian projections, our embedding algorithm
ensures that the bound @i K) can be of order @Cr(K)). The study of Hamilton cycles in a regular
knot projection plays a very important role and many questions can be raised in this direction.
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1. Introduction

In this paper, we are interested in geometric properties of knots when they are
considered as physical subjects, that is, when the knots are tied with ropes which have
thickness and volumes. This is in sharp contrast with the traditional mathematical treatment
of knots which views knots as volumeless simple closed curves in the 3-dimensional
spaceR3. It is well known that knots play an important role in studying the behavior of
various enzymes known as topoisomerases, see, for example, [14,16,17,27,31,32]. Since
the (effective) diameter of DNA can be measured, it is reasonable to treat it as a rope with
certain physical properties, see, for example, [26,25]. In many cases it is also important to
recognize the geometric shapes and volumes of physical knots [19]. An essential issue here
is to relate the length of a rope (with certain thickness) to those knots that can be tied with
this rope. Such information plays an important role in studying the effect of topological
entanglement in subjects such as circular DNA and long chain polymers, where knots
occur and cannot be treated as volumeless curves.

There are different ways to define the thickness of a knot [7,11,21]. In this paper, we
will be using the so-calledisk thicknesintroduced in [21] and described as follows. Let
K be aC? knot. A numberr > 0 is said to benice if for any distinct pointsx, y on
K, we haveD(x,r) N D(y,r) =@, where D(x,r) and D(y, r) are the discs of radius
r centered ak andy which are normal tak. Thedisk thicknes®f K is defined to be
t(K) =supr: ris nice.

It is shown in [7] that the disk thickness definition can be extended t6%al curves.
Therefore, we will restrict our discussions to such curves in this paper. However, the results
obtained in this paper also hold for other thickness definitions with a suitable change in the
constant coefficient.

1.1. Definition. For any given knok , athick realizationK of K is a knot of unit thickness
which is of the same knot type as that Kf Therope lengthL (K) of K is the infimum
of the length ofK taken over all thick realizations & . The existence of.(K) is shown
in[7].

In this paper, we are interested in finding lower and upper boundg &n in terms of
Cr(K), the minimum crossing number &f.

It is shown in [2,3] that there is a constant- 0 such that for any knok, L(K) >
a - (Cr(K))%* (this is called thehree-fourth power layv The constan is estimated to
be at least 1105 by a result in [3]. This is improved taIB5 in [24].

In [16], it is reported that a linear relation betweé&rK) and Cr(K) is observed.
Consequently, one conjectures that the minimum rope length of anykkisoproportional
to its crossing number. In other words, there exist constantsuO< b such thata <
L(K)/Cr(K) < b for any nontrivial knotK . Half of this conjecture is proven to be false
since the three-fourth power law is also shown to be achievable for some knot families
[6,9]. That is, there exists an infinite fami{¥,,} of knots and a constaap > 0 such that
Cr(K,) — oo asn — oo andL(K,) < ao - (Cr(K,))¥*. However, the other half of the
conjecture is still open. That is, it is still not known if there exists an infinite farfily}
of knots such thal.(K,)/Cr(K,) — oo ask — oo. In fact, for a long time, it was not
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clear whether there exists an infinite famili,,} of prime knots such thatr(K,) — oo

asn — oo andL(K,) is of order more than QCr(K,))¥%). It is shown very recently in
[13] that there indeed exists an infinite famili,,} of prime knots such th&r(K,) — oo

asn — oo andL(K,) = O(Cr(K,)). Let us restate the above unsolved conjecture as the
following problem.

1.2. Problem. Does there exist a constant- 0 such that for any knot or linlk', we have

L(K)<c-Cr(K)?

In the case thaK is a link of two components (of unit thickness) with lengihsand
Lo, it is shown in [12] tha’rLlL;/3 and Li/BLz are both bounded below hy - [£(K)],
wherea; > 0 is a constant and(K) is the linking number between the two components
of K. This result also holds whef(K) is replaced byCr(K), see [10]. For a thick linkk
of m components, it is well known that the length Kfis of the order at least:. So it is
not difficult to construct links whose lengths grow linearly with their crossing numbers.
There is very little in the literature about the upper boundd.0k). It is known that
there is a constant, > 0 such that for any knok, L(K) < a2 - (Cr(K))? (see [15,7]).
The constantiz is estimated to be around 24 [7] and is improved to less than 3 in a
recent report [5]. The main objective of this paper is to establish the following significant
breakthrough on the upper bound of the rope length of knots.

1.3. Theorem. There exists a constant> 0 such that for any knok,

L(K) <c-(Cr(k))¥2.

Due to difficulties of dealing with a thick smooth knot, a physical knot is often modelled
by a polygon in the cubic lattice, calledlattice knot (The cubic lattice consists of all
points in R? with integral coordinates and all unit line segments joining these points.)
We will first prove Theorem 1.3 for lattice knots. Since knots realized in the cubic lattice
can easily be modified into smooh-* knots of thickness 2, Theorem 1.3 can then be
extended to smooth knots as well.

To prove Theorem 1.3 for lattice knots, we will design an algorithm which embeds a
knot into the cubic lattice. This algorithm will make use of a particular projection of a knot
where the projection can be thought of as a 4-regular Hamiltonian graph (to be defined in
Section 3).

This paper is organized as follows. In Section 2, we view regular projections of knots as
graphs and study their connectivity. In Section 3, we show that everyKrwats a regular
projection which is a Hamiltonian graph with at mosiCr(K) vertices. In Section 4, such
a regular projection is embedded into the cubic lattice using at mo&Er(K))%/2 unit
line segments in the cubic lattice. Then in Section 5, the embedding produced in Section 4
is used to prove Theorem 1.3 for lattice knots and finally for smooth thick knots.
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2. Regular projection graphs

In this section, we introduce some basic results in knot theory and graph theory. In
addition, some new terms are defined as they will be needed in our discussions. Most
terms used in this section are well-known definitions in knot theory and graph theory. The
reader is referred to [1,30].

A geometric realizatiorof a graphG is an embedding o6 in R? or R3 such that
the edges ofG are represented by simple arcs that do not intersect each other in their
interior and the vertices af are represented by the end points of these arcs. Of course, if
two edges ofG are adjacent, then the two corresponding arcs in the geometric realization
of G will share a common vertex of the geometric realization. It is convenient to view
the cubic lattice as the geometric realization#a of the infinite graph with vertex set
{(x,v,2): x,y,z€N}and edge sdft(x, y, 2)(x", ', 2): x,y,z,x",y, 2 €N, (x —x)2 +
(y —y)?+ (z — 2)? = 1}. Here,N is the set of all integers and the edges are represented
by the unit line segments between their ends. We say that a @raiplplanar if it has
a geometric realization in a plane. Such a geometric realization is calimha graph
Plane graphs are related to knots through regular projections of knots.

A common measure for the complexity of a knot or lifik is its crossing number
which is the minimum number of crossings in all possible regular projections of knots
having same knot typ& . This is denoted byCr(K). Of course, by this definition, iK
andK’ are of the same knot type, th@m(K) = Cr(K’). We say thatP(K) is aminimum
projectionof K if it is a regular projection witlCr(K) crossings.

Let K be a knot or link and letP(K) be a regular projection oK. If we treat the
crossings inP(K) as vertices and the arcs 8{ K) joining these crossings as edges, then
P(K) can be viewed as a 4-regular plane graph. Thus, from now on, we may view a
regular projectionP (K) as a 4-regular plane grajgh To stress the fact tha&t arises from
a regular projection of a knot or link', we will call it anRP-graphof K. If G arises from
a minimum projection of a knot or link’, we will then call it aminimum RP-grapbf K.

Note that any 4-regular plane graph is an RP-graph of some knot or link. Thus, a graph is
an RP-graph if, and only if, it is a 4-regular plane graph.

If an RP-graphG of a knot (or link) K contains a loop edgeincident with a vertexw,
thenK can be isotoped to some knot (or linkK) through a Reidemeister move such that
K’ has an RP-grapty’ which can be obtained fro& by replacinge, w, and the other
two edges incident witlw by a single edge. See Fig. 1. For the definition and properties
of Reidemeister moves, see [1] or [4]. It follows that we only need to consider RP-graphs
without loop edges.

Therefore, for RP-graphs in the rest of this paper, we will assume that no loop edges
are present. It follows that every vertex is incident with four distinct edges. In order to

e L

Fig. 1. Loop edges in RP-graphs are removable.
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Fig. 2. Pairs of opposite edge®s, e3}, {e2, ea}.
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Fig. 3. The connected suii; # K5 of K1 andK».

recover a knot from an RP-graph, it is important to keep track of the over-strands and
under-strands at crossings. Therefore, we introduce the concepts of adjacent and opposite
edges in RP-graphs.

2.1. Definition. Let G be an RP-graph, lat be a vertex ofG, and leteq, e, e3, e4 be the
edges ofG incident withv. Suppose thati, e2, e3, andes occur around in this cyclic
order. See Fig. 2. Then we say thatis oppositeto e; if |j —i| =2, ande; ande; are
adjacentotherwise.

Recall that a composite knéf can be constructed from two nontrivial knatg and
K> as shown in Fig. 3 by cutting the arcs marked with X and then adding the dashed arcs.
We say thalk is aconnected surof K1 andK> in this case and also denakeby K1 # K.
One can similarly define the connected sum of more than two knots.

The following theorems are classical results in knot theory [4] or [20].

2.2. Theorem. Any nontrivial knotk can be decomposed as the connected sum of prime
knots. That is, for any nontrivial kndt, there exist prime knot&y, K, ..., K; (j > 1)
such thatk = K1 #Ky#--- #K ;.

2.3. Theorem [18,23,28].For any knotsK1 and K7, we have C(K1#K>) < Cr(Kj) +
Cr(K»). If K1 and K> are alternating knots, then we have @ #K>) = Cr(K1) +
Cr(K»y).

Itis still an open problem wheth@r (K1 # K2) = Cr(K1) + Cr(K>) is true for any two
knots K1 and K>, although it has recently been proven by one of the authors that this is
also true for all torus knots [8]. Since we are not sur€ri€K1# K) = Cr(K1) + Cr(K>)
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in general, the upper bounds @{K1) and L(K>) (in terms ofCr(K1) andCr(K2)) do
not automatically provide us an upper boundiaiK 1 # K») in terms ofCr(K1#K>).

We devote the rest of this section to the study of connectivity of RP-graphs.

A graphG is said to beconnectedf for any u, v € V(G), there is a path itG from u
to v. A componendf G is a maximal subgraph @F that is connected. It can be shown that
G is connectedf, and only if, for any partitionV, and V, of V(G), G has an edge with
one end inV7 and the other /5.

For anyX C V(G), let G — X denote the subgraph &f obtained fromG by deleting
vertices ofG in X and edges of; with at least one end iX. Similarly, foranyY C E(G),
we useG — Y to denote the subgraph ¢6f obtained fromG by deleting the edges ik
(but keeping all vertices afr). We say thatG is k-connectegwherek is a positive integer,
if |V(G)| >k + 1 and, for any subset c V(G) with | X| < k, G — X is connected. We
say thatG is k-edge-connectef, for any Y C E(G) with |Y| < k, G — Y is connected.
Theconnectivity(respectivelyedge-connectivijyof G is the largest integér such thatG
is k-connected.

An easy observation is that an RP-graph is at most 4-connected and at most 4-edge-
connected. For a minimum RP-graph of a knot, we can say more.

2.4. Lemma. If G is a minimum RP-graph of a nontrivial knot or lirk, then

(a) G is 2-connected,
(b) the edge connectivity @ is 2 or 4, and
(c) if K is a prime knot or link, thei@ is 4-edge-connected.

Proof. SupposeG is not 2-connected. The@ has a single vertex such thatG — {v}
is disconnected. See Fig. 4. By twisting part of the corresponding projeftigh as
shown in Fig. 4, we obtain a new projection &f with crossing numbe€r(K) — 1, a
contradiction. So (a) holds.

Assume that there is a s&t C E(G) of size at most four such thar — Y is not
connected. Then there exists a simple closed curwehich intersectsG exactly once
at each edge ify. Since there must be an even number of intersections between any two
simple closed curves in general position in a plane, we héje- 2 or 4. So (b) holds.

Now assume that is not 4-edge-connected. Théhis 2-edge-connected. So there is
a setY C E(G) such thatlY| =2 andG — Y is not connected. In fact; — Y has two
components, sag1 andG». Moreover, there is a topological 2-sphe®intersectingk
exactly twice such that the part &f corresponding td@ is insideS? and the part ok
corresponding t@ is outsides?. If one of these two parts df corresponding t@; and
G forms a trivial knot with an arc 082 connecting the points ik N $2, thenG is not a

’

RN PN
\ \ . N .
/ ’U/ ) ! / N /; / Y
\ \ \ \ \ \
! i
. A T I—= AN T —! ! L 1
/ ! 1 \ \ \
\ ! \ / / /
N 4 N 7 \ \ ,
, N N
N - N

~ ~

Fig. 4. 1-Connected RP-graph is not minimum.
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minimum RP-graph. If both parts form nontrivial knots with an arcS8rconnecting the
points inK N §2, thenk is not a prime knot by definition. So we have (c)o

3. Hamiltonian knotsand graphs

Let G be a graph. AHamilton cyclein G is a cycle that contains all vertices 6f.
A graph with a Hamilton cycle is said to ddamiltonian In this section, we first study
the following question: given a kndt, doesK always have a minimum RP-graph which
is Hamiltonian? After obtaining a negative answer to this question, we then ask a weaker
guestion: given a kndk', doesk have an RP-graph that is Hamiltonian? Furthermor¥, if
does have a Hamiltonian RP-graph, how many crossings does this Hamiltonian RP-graph
have?
We show that any knak has a Hamiltonian RP-graph with at most@r(K) vertices.
This result will be used in the subsequent sections to establish a thick realizakowidt
length at most QCr(K))%/2). For convenience, let us introduce the following concepts.

3.1. Definition. A knot K is said to beHamiltonianif there exists some kndt’ such that
K’ andK have the same knot type akdl has a Hamiltonian RP-graph (not necessarily
minimum). A knotX is said to beminimally Hamiltoniarif there exists some knd’ such
thatK’ andK have the same knot type akd has a Hamiltonian minimum RP-graph.

Almost all minimum RP-graphs of small prime knots as listed in the knot tables are
Hamiltonian. Notice that the knog®has a non-Hamiltonian minimum RP-graph as shown
in the left portion of Fig. 5. However, it is minimally Hamiltonian since it does have a
minimum RP-graph that is Hamiltonian as shown in the right portion of Fig. 5.

So is it true that all prime knots are minimally Hamiltonian? The following theorem
gives a negative answer to this question.

98 &3

5

Fig. 5. Non-Hamiltonian and Hamiltonian minimum RP-graphs 4.9
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3.2. Theorem. Not all prime knots are minimally Hamiltonian.

Proof. It suffices to show an example. We claim thgt & a prime knot such that none of
its minimum RP-graphs is Hamiltonian.

Notice that Qs is an alternating knot that can be obtained from the kngts@own in
the left portion of Fig. 5 by taking the mirror image of the three crossings on the left. So
an RP-graph of & is identical to the RP-graph of4§ shown in the left portion of Fig. 5,
which is not Hamiltonian.

Therefore, it suffices to show that any minimum projection gfl@ads to an RP-graph
that is isomorphic to the one shown flfpeis the modification of a knot diagram as shown
in Fig. 6.

Clearly a flype does not alter the number of crossings in the knot diagram nor does it
change the knot type. In [22] it is shown that for an alternating kkipany minimum
regular projection oK can be obtained from any given minimum regular projectioi of
through a finite sequence of flypes.

Note that Qs is an alternating knot, and one can easily check that any flype on the
minimum projection of 95 shown in Fig. 5 produces a minimum RP-graph isomorphic to
the original one. Therefore;®is not minimally Hamiltonian. O

Note that the above proof cannot be applied to the kngsBce Q¢ is nonalternating
and the modification of its diagram shown in Fig. 5 is not a sequence of flypes.
Our next result shows that Hamiltonicity is preserved under connected sum.

3.3. Theorem. Suppose for eache {1,..., j}, K; is knot which admits a Hamiltonian
RP-graph withn; vertices. TherK = K1# K, # - - - #K; admits a Hamiltonian RP-graph
withni +--- 4 n;j vertices.

Proof. Fori =1, 2, let G; be a Hamiltonian RP-graph &; contained in some plane
P;, and letH; be a Hamilton cycle irG;. Notice thatG; divides the plane’; into closed
regions. Choose a point;@ one of these regions whose boundary contains an gdge
of H;, and choose a circl€; contained inP; centered at Qthat does not interse¢t; .

An inversion of the plan&; aboutC; mapsG; to a graphG; isomorphic toG;, maps
H; to a Hamilton cycleH/ in G, and maps;v; to an edge:;v; of H/. This inversion
in the planeP; aboutC; can be extended to an inversionii aboutSl?, whereSl.2 is the
2-sphere withC; as a great circle. We can assume that the Kfois very close to the
plane P; and, for a suitably chosed;, we can assume théf}2 does not intersect the knot
K;. Then, this inversion mapk; to a knotK? that is of the same knot type as that of the
mirror image ofK;. Furthermore, sinc&; is close toP;, we can assume that (after a small

@

Fig. 6. A flype in a knot diagram.
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Fig. 7. Connecting two Hamilton cycles.

isotopy ofK;) G/ is the RP-graph oK/ in P;. So the mirror image&;’ of K/ through the
planeP; is of the same knot type as that &f. Also, G is the RP-graph oK in P;. So
G| is still an RP-graph oK;. Notice thatH] is a Hamilton cycle inG} andu;v; is on the
boundary of the unbounded regionBf— G;. See Fig. 7 for an example.

We can now obtain a new graghfrom the disjoint union oG} andG?, (as illustrated
in Fig. 7) by deleting edges; v; andu,v, and by adding edges,u’, andv)v,. We also
obtain a Hamilton cycle? of G from the disjoint union of/; and H, by deleting edges
ujvy andusv, and by adding edges u’, andv;v5. Clearly,G is a Hamiltonian RP-graph
of K/ #K7 and|V(G)| = |V (G| + V(G| =n1+n2.

The same argument can be repeatedk¢# K, and K3, and so on. So the statement
of the theorem holds by induction on the number of summands.

As mentioned before, our main objective in this section is to show that every knot or
link is Hamiltonian. Notice that RP-graphs are plane graphs. Whitney [33] showed in 1931
that every 4-connected plane triangulation contains a Hamilton cycle. In 1956, Tutte [29]
generalized Whitney’s result to all plane graphs.

3.4. Theorem. If G is a4-connected plane graph, th&nhas a Hamilton cycle.
Using Theorem 3.4, we are able to prove the following theorem.

3.5. Theorem. If K is a prime knot or link, therk admits a Hamiltonian RP-graph with
at most4 - Cr(K) vertices.

Proof. Let K be a prime knot (or link) and leG be a minimum RP-graph ok in a
planeP. By Lemma 2.4G is 2-connected and 4-edge-connected. The proof proceeds as
follows. First, we construct a plane graphfrom G such thatH is 4-connected and thus
has a Hamilton cycl€. We then use” and H to construct a knoK’ such thatk’ and

K have the same knot type adl has a Hamiltonian RP-graph with at most@r(K)
vertices.

(I) The construction of a plane gragh from G.

For each vertex of G, let D, be a disk inP centered ab with a small radius such
that D, contains no other vertex @ and the boundary, of D, intersectsG at exactly
four pointsvy, vz, v3 andvg. Let I, = {v, v1, v2, v3, v4} and call it thevertex cluster ab
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\\ %>< %}XX

Fig. 8. The graptH around a vertex clustdr, .

to stress the fact that the points, v2, v3 andv, are created aroundand will be vertices
of H. These points inJ,.y ) I'v divide each edge ofs into 3 arcs and divide each,
into 4 arcs. Letd denote the graph whose vertex setis.y g, I'» and whose edge set
consists of all these arcs i@l andy, created by the points i),y s, /- ThenH is a
4-regular plane graph. A local picture &f around a vertex clustdr, is shown in Fig. 8.

(1) The proof thatH is 4-connected.

Assume to the contrary théf is not 4-connected. Then there exists aXet V(H)
suchthatX| < 3 andH — X is not connected. Choosésuch thatX| is minimum. Hence,
there exists a partitiof1 and X, of V(H) — X such thatH has no edge with one end in
X1 and the other inX». Since| X| is minimum, each vertex iX is adjacent to a vertex in
X, and also to a vertex iX».

(1) We claim that for any € V(G), v ¢ X.

Suppose (1) does not hold. Let V(G) such thab € X. Thenv is adjacent to a vertex
in X1 and a vertex inX,. SinceH has no edge fronX; to X2 and by the local structure
of Honrly, |X|=3andX c I,. Fori =1,2,letV; ={u € V(G): I, C X;}. SinceH
is 4-regular andX| =3, | X;| > 2fori =1,2. SinceX C I, V; #@ fori =1, 2. Clearly,
V1, V2 form a partition ofV (G) — {v} such thaiG has no edge fronr; to V». This means
thatG — {v} is not connected, a contradiction (sinGds 2-connected). So we have (1).

By (1) and by the local structure @&f on I, we have

(2) Foranyv € V(G), eitherl’y c X U X1 0r I, € X U Xo.
Fori=1,2,letU; ={u e V(G): I, C XU X;}. ThenU; andU; form a partition of
V(G). We claim that

(3) G has at mostX| edges fron/; to Us.

For any edge of G connectingU; to U, it contains two vertices oV (H)\V (G) by
the construction o . At least one of them is itX, since otherwise there is any edge in
E(H) connectingX1 to X». This shows (3).

Since|X| < 3, (3) contradicts Theorem 2.4 which asserts tids 4-edge-connected.
ThusX cannot disconnedt, and so H is 4-connected.

(1) The construction of a knoK’ such thatk’ andK have the same knot type akd
has a Hamiltonian RP-graph with at mostd@r(K) vertices.

By Theorem 3.4H has a Hamilton cycle, sa¢. Since a Hamilton cycle passes each
vertex ofH exactly once, for any vertex clust&y, either (a)C enters and leavels, exactly
once or (b)C enters and leaveE, exactly twice. We will make changes to the projection
of K corresponding t@ by applying a sequence of Reidemeister moves according to (a)
or (b). The result will be a knaK” isotopic toK such thatk” has a Hamiltonian RP-graph
with at most 4 Cr(K) vertices.
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Fig. 9. No change to a crossingwatwhen I, is of type (a).

The middle portion of Fig. 9 shows all possibilities whep is of type (a), where the
thickened edges are ifi. For each vertex clustdr, of type (a), we leave unchanged the
crossing ab in the projection ofK corresponding t@;. See bottom portion of Fig. 9.

The top portion of Fig. 10 shows all possibilities whEriv) is of type (b), where the
thickened edges are ifi. For each vertex cluster, of type (b), we first make the changes
locally as shown in the middle section of Fig. 10. Notice that these changes do not affect
the Hamilton cycleC, so C is still a Hamilton cycle in the resulting new grapgh'. We
then modifyK to a new knotk’ through some suitable Reidemeister moves as shown in
the bottom portion of Fig. 11 such that the RP-graplkois H'.

Therefore we have constructed a kot such that: (1)K’ is obtained fromK by a
sequence of Reidemeister moves (andkSois isotopic toK); (2) K’ has a projectiori’
with at most 4 Cr(K) crossings; and (37 is a Hamilton cycle inH’. O
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Fig. 10. The changes to a crossingatvhen I, is of type (b).
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The following theorem is the main result of this section.

3.6. Theorem. Every knot or linkk admits a Hamiltonian RP-graph with at ma@stCr(K)
vertices.

Proof. Suppose Theorem 3.6 is false. LEt be a counter-example with the smallest
minimum crossing number. That is, Theorem 3.6 holds for any knot with crossing number
less thanCr(K). Let G be a minimum projection oK. By Lemma 2.4,G has edge-
connectivity either 2 or 4. In facG has edge-connectivity 2, for otherwise, the same proof
of Theorem 3.5 shows th&t has a Hamiltonian RP-graph with at most@r(K) vertices,
contradicting the assumption thitis a counter-example to Theorem 3.6.

So Ietuluz, vlv2 be the edges of; such thatG — {uju), vivs} has two components
G andG5, uj,vj € V(G)), anduj, v, € V(G,). See Fig. 7 for an example. Therefore,
there eX|sts a topological 2-sphes intersectingk exactly twice such that the part of
K corresponding t@ is insides? and the part ok corresponding t@), is outsides?.
Fori =1,2, let G; be the graph obtained froi@; by adding the edge;v.. ThenGy
(respectivelyGo) is an RP-graph of the knd1 (respectivelyK2) formed by the part of
K inside (respectively, outsidef and an arc or$? connecting the points i N S2.

BecauseCr(K1) + Cr(K2) > Cr(K) = |V(G1)| + |V(G2)| and|V (G;)| = Cr(K;) for
i =1,2, we haveCr(K;) = |V(G;)| fori = 1,2. So fori =1, 2, G; is a minimum RP-
graph ofK;. SinceCr(K1) < Cr(K) andCr(K2) < Cr(K), Theorem 3.6 holds fok'; and
K> by the choice oK. That is,K; has a Hamiltonian RP-graph with at most 4Cr(K;)
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vertices. So by Theorem 3.3 and the fact tGatK) = Cr(K1) + Cr(K>2), K = K1#K>
also has a Hamiltonian RP-graph with at mostC4(K) vertices, a contradiction.

4. The embedding of RP-graphs

In this section, we will show a way to embed a Hamiltonian RP-graph of a Kniato
the cubic lattice, and such an embedding will then be modified in the next section to give a
thick realization ofK .

Recall that the cubic lattice is the infinite graph&¥ whose vertices are points with
integer coordinates and whose edges are unit length line segments connecting these points.
Hence, there are three types of edges in the cubic lattice: those parallekt@iie those
parallel to they-axis, and those parallel to theaxis. An edge of the cubic lattice that
is parallel to thex-axis is called arnx-step If an orientedx-step increases (respectively,
decreases) the-coordinate, then it is called an™-step(respectivelyx ~-step. The terms
y-step y*-step y~-step z-step z"-step andz~-stepare similarly defined. For the sake
of clarity, the vertices and edges of the cubic lattice are cddltite verticesandlattice
edgesrespectively. Aattice pathis a simple curve in the cubic lattice between two distinct
lattice vertices, and the ends of curve are callecktigsof the lattice path. Aattice graph
is a graph whose vertices are lattice vertices and whose edges are lattice paths that are
pairwise disjoint except possibly at their ends.

4.1. Definition. We say that a graply in R® can beembeddednto the cubic lattice if
there is an ambient isotoplf : I x R® — I x R® such thatH (0, x) is the identity map
andH (1, x) mapsG onto a lattice grapl¥. Thelengthof the lattice graphF, denoted by
L(F), is the total number of lattice edges#h

Throughout the rest of this section, we fix the following notation.

4.2. Notation. Let G be a Hamiltonian RP-graph of a kng&t in a planez = 0 and letC

be a Hamilton cycle irG. Letn = |V (G)|. Letvs, ..., v, denote the vertices aF which
occur onC in the cyclic order listed. Let = [/n]. For any pointp in R3, we usey(p)

to denote they-coordinate ofp. Observe that as a simple closed curve in the plagd,

C divides the plane = 0 into two closed regions, one bounded and one unbounded. The
edges in the seE(G) — E(C) are then divided into two groups: those in the bounded
region, called-edgesand those in the unbounded region, callkddges

Before we describe our algorithm, let us first look at an example.
4.3. Example. An embedding of 9.

The top portion of Fig. 11 shows a minimum RP-graph ¢f 8nd a Hamilton cycle
represented by the thickened curve. The bottom portion of Fig. 11 shows an embedding of

the given RP-graph in the cubic lattice where again the embedding of the Hamilton cycle
is marked as the thickened lattice polygon.
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Fig. 11. A Hamiltonian RP-graph o9 and its realization in the cubic lattice.

The thickened Hamilton cycle allows us to embed the RP-graph into the cubic lattice
in a systematic way. First, we embed the vertices alongytlagis following the order
inherited from the Hamilton cycle so that any two consecutive vertices are ths&ps
apart. The edges of the Hamilton cycle are then embedded in the pltar@ (with the
exception of one edge) and between the planed andz = —1. The remaining edges of
G are then embedded according to their relations with the Hamilton cycle. The U-edges
are embedded in the plare= 0 abovey-axis, and the B-edges are embedded in the plane
x =0 belowy-axis. Fig. 11 outlines this idea. Note that the lattice graph shown in Fig. 11
is essentially contained in a single square lattice.

The above example gives an intuitive idea how an algorithm may be designed to embed
an RP-graph into the cubic lattice using(Or (K ))?) lattice edges. Since we aim to achieve
an upper bound better than(@r(K))?), we leave out a detailed description of such an
algorithm. An interested reader can easily work this out.

To achieve the upper bound @r(K))3/?), we need to embed a Hamiltonian RP-graph
into the cubic lattice in a more compact and subtle way. In particular, we need to construct
an embedding that fills up a part of the lattice by making use of all 6 directions available
in the cubic lattice. Similar to the embedding scheme sketched in Example 4.3, we will
embedG into the cubic lattice in four steps. First, we embed the vertice§ a@ifito the
planez = 0. We then embed the edgest®between the planes= 1 andz = —1. Next we
embed the U-edges in the half-space 0. Finally, the B-edges are embedded in a similar
way into the half-space < 0.

4.4. The embedding df (G) in the planez = 0.
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Fig. 12. The embedding of vertices 6ffor n = 14 andn = 23.

We will embedV (G) into the set of point$(3i, 3j,0}: 0<i <k,1<j <k}. Recall
the notations defined in Notation 4.2.

Intuitively, we embedvy, ..., v in the order listed on the-axis by starting withv; at
(0, 3, 0), increasing they-coordinate by 3 at a time, ending with at (0, 3k, 0). We then
embedvi1, ..., v on the line determined hy = 3 andz = 0, by starting withv,,1 at
(3, 3k, 0), decreasing the-coordinate by 3 at a time, ending with, at (3, 3, 0). We then
continue in this way by embedding1, . .., vi+1k on the line determined by = 3; and
z=0inthe order from3i, 3, 0) to (3i, 3k, 0) wheni is even or from(3i, 3k, 0) to (3, 3, 0)
wheni is odd, withy-coordinates differing by 3 at a time. Fig. 12(a) and (b) illustrate the
embedding with: = 14 andn = 23, respectively.

To precisely state this embedding, l&t; = (3i,3/,0) for 0<i <k and 1< j < k.

For each K ¢ < n, there exist unique integefrsj suchthatG{i <k —1, 1< j <k, and
¢=ik+ j.If i is eventhen embeg to p; ;, otherwise embed, to p; —;11.

One may view the pointp; 1, pi2, ..., pix as incolumni, and there ar& such
columns. However, it is possible that colurhi- 1 contains no vertices af at all (for
example, whem = 12 orn = 20). This completes the description of the embedding of
V(G).

For convenience, we will not distinguish betwagrandp; ; if v, is embedded tg; ;,
and we sometimes writey = p; ;. Also we letvg = v, so thatv,_;v, makes sense for all
=1, ...,n.

4.5. The embedding af as a lattice polygon between the plares —1 andz = 1.

The embedding of edges 6fdepends on the edges#{G) — E(C). Letv, be a vertex
of G. SinceG is 4-regular and is free of loop edges, there are exactly two distinct edges
of G incident withv, which are not orC, and these two edges can be both U-edges, both
B-edges, or one U-edge and one B-edge. We saythiatof type(a) if one of these two
edges is a U-edge and the other one is a B-edge. We say;ttsanf type (b) if these two
edges are both U-edges. Finally, we say thais of type(c) if these two edges are both
B-edges.
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Fig. 13. The local embedding @f.

We now embed” onto a lattice polygon between the planes —1 andz = 1. As we
will see later that a reason to embed the edges between the planésandz = —1 is
to make room for embedding the U-edges in the half spaeé® and the B-edges in the
half spacez < 0. The lattice paths correspondinguQ@uix+1,i =1,...,k — 1, andv,v;
will require x-steps, while the lattice paths corresponding to the other edges will not use
x-steps.

First, we embed,_qv, forall £ e {1,...,n —1}. Let{ =ik + j, where 0<i <k —1
and 1< j <k.

Assume thaty, is of type (a). See Fig. 13(a) for an illustration of the embedding process
described below. Ij # k andi is even, then we embed the edge,1 onto the lattice path
from v, to v, 1 obtained by taking threg*-steps. Ifj £ k andi is odd, then we embed
the edgev,ve+1 ONto the lattice path from, to vy41 obtained by taking three™-steps. If
j =k andi is even, then we embed the edge,1 onto the lattice path from, to vy11
obtained by taking two*-step, then three ™ -steps, and then twp~-steps. Ifj = k and
i is odd, then we embed the edge,1 onto the lattice path from, to v,+1 obtained by
taking twoy~-steps, then three™-steps, and then twg™-step.

If ve is of type (b) or of type (c), the embedding process is illustrated in Fig. 13(b)
and (c) and one can write down the corresponding lattice paths in a similar way to the
above. The details are left to the reader.

It remains to embed the edggu1 into the cubic lattice. See Fig. 12 for an example when
v, is of type (a). When, is of type (b) or (c), make adjustments as in Fig. 13(b) and (c).
By the definition ofk, we haven = ik + j for somek — 2 <i <k —1and 1< j <k.
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First, assume is odd. Therw, = (3i, 3k — 3j + 3, 0). If v, is of type (a), we embed the
edgev, vy onto the lattice path from,, to v1 obtained by takingB8— 3 + 2 y~-steps, 3
x~-steps, and two T-steps. Ifv, is of type (b) (respectively, (c)), then we embed the edge
v,v1 ONto a lattice path from,, to v1 obtained by taking a~-step (respectively,*-step),
two y~-steps, a-step (respectively;~-step), & — 3 y~-steps, 3 x~-steps, and two
yt-steps. Now assume thais even. Then, = (3i, 3/, 0). If v, is of type (a), then we
embed the edge,v; onto the lattice path from, to v; obtained by taking two*-steps,
two xt-steps, 3 + 4 y~-steps, 3+ 2 x~-steps, and two T -steps. Ifv, is of type (b)
(respectively, (c)), then we embed the edge; onto a lattice path frona, to v1 obtained
by taking az™ (respectivelyz ~-step), twoy T -steps, &~ (respectively; *-step), twox -
steps, 3 + 4 y~-steps, 3+ 2 x~-steps, and twe*-steps. This concludes the embedding
of C.

Remark. It is clear from the embedding scheme in 4.5 that the embeddiGg® lattice
polygon between the planes= —1 andz = 1. Itis also easy to see that the process in 4.5
can be realized by an ambient isotopy that keeps the edge&in — E(C) on the plane

z =0, and map< to the lattice polygon described above. Note that the lattice path from

v, 10 v1 uses at mosti6+ 10 lattice edges, the lattice path fram to vjx+1 use either

seven or nine lattice edges, and the lattice path connecting other consecutive vertices of
C uses either three or five lattice edges. Thus the total length of the embeddifiggor
bounded above byk6+ 10+ 9(k — 1) + 5(n — k) < 5n + 11k.

Let F denote the lattice polygon constructed so far (which is the embeddifiyy ¥hen
F is a lattice graph witlV (F) = V(G). We will updateF by adding lattice paths té as
we embed U-edges and B-edgegafDuring this process we will keep the symhbifor
the up-to-date embedding untilbecomes an embedding 6f

4.6. Preparations for the embedding bf-edges.

We want to embed the U-edges Gfinto the half space > 0. More specifically, we
need to connect the ends of every U-edge using a lattice path in the halfzspatsuch
that all lattice paths corresponding to U-edges or edges afe disjoint (except at their
ends) and can be isotoped backian the half-space > 0.

The embedding of a U-edge is based partially on which columns it connectsbleet
U-edge which has one end in columand the other in columij, and letJ(e) = |i — j|.
We call J (e) thejump numbepof e. Clearly 0< J(e) < k — 1. Furthermore, we say that
jumpsfrom columni to column; or from columnj to columni. If i < j then we say that
e starts in column andends in columry. If J(e) =0 then both ends of are in the same
column and the embedding efneeds not use any-steps. IfJ(¢) > 0, thenx-steps are
needed to embed

We will embed the U-edges in three stages: the U-edges with jump number O will be
embedded first, then the U-edges with jump number 1, and the U-edges with jump number
at least 2 will be embedded last.

The edges of; will be embedded so that at each vertexdggfedges which are opposite
in G will use “opposite” lattice edges at that vertex. To keep track of opposite edges, we
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define a regiomR, for each U-edge. Let e = v, vy be a U-edge of5, and assume that
r <s. LetC, denote the simple closed curve in the plare0 corresponding to the union
of e and the path,v,41...v; onC. ThenC, divides the plané into two closed regions
with boundaryC,, and we useR, to denote the region that does not cont@in C,.

Let v, be a vertex in columr and letv; be the lattice vertex such thatvj; is the
lattice edge corresponding to the -step (respectivelyy ~-step) fromv, wheni is even
(respectively, odd).

We are now ready to embed the U-edges with jump number O.

4.7. The embedding ot/-edges with jump numbed between the planes = 0 and
z=k+ 1.

To each U-edge of jump number O, we associate a number, calléz/tief that edge,
defined recursively. A U-edgewith jump number/ (e) = 0 is called aredge of level if
there are no other U-edges Gfinside R.. Suppose that we have defined edges of level
for some integer > 1. We say that a U-edgewith J(e) = 0 is an edge ofeveli + 1 if
all U-edges ofG contained inR, (which are necessarily of jump number 0) are of level
at mosti and at least one of them is of levielThe level of an edge is denoted by (e).
Fig. 14 shows examples of edges of levels 1, 2 and 3.

We can now describe the embedding scheme of U-edges with jump number O. Let
e = v,vy; be a U-edge withy (¢) = 0 and of levek (e), that is,v, andv, are both in column
i forsome 0<i <k —1.

If e is adjacent to both edges_1v, andvs_1v; in G, then we embed onto the lattice
path fromu, to vy obtained by taking the following steps:

(1) t(e) + 1 z*-steps fromy,,

(2) the minimum number of-steps to reach the point withrcoordinate equal te (vy),
and

(3) t(e) + 1z~ -steps tovy.

This process is illustrated by the edggeses, ande4 in Fig. 15.

If e is adjacent tw,_1v, and opposite to,_1v, in G, then we embed onto the lattice
path fromu, to v, obtained by taking the following steps: (1), (2), and (3) above wjth
replacinguy, and (4) ay-step to reachy. This is illustrated bys in Fig. 15.

If e is opposite taw,_1v, and adjacent te;_1v, in G, then we embed the edgeonto
the lattice path from, to vs obtained by taking the following steps: (O)astep fromu,
tov’, (1), (2), and (3) above with replacingv,. This is illustrated by, in Fig. 15.

If e is opposite to both,_1v, andvs,_1vs in G, then we embed the edgeonto the
lattice path fromw, to v, obtained by taking the following steps: (O)yastep fromv, to

C C e level 3 C

e level 1 e level 2 w
a Vs Up a’ Us

Uy Vs

Fig. 14. Examples of edges of different levels.
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Fig. 15. The embedding of jump O edges.

vY, (1), (2), (3) above with¥, v} replacingv,, vy, respectively, and (4) a-step to reach
vs. This is illustrated bysg in Fig. 15.

Next, we observe that the jump O edges are embedded between the; ptabend
z =k + 1. This is because(e) < k for all jump O edges. To see this, note that in
each column there are at mdstU-edges with jump number O (since each column has
k vertices, each vertex in a column is incident to at most 2 U-edges, and each U-edge
with jump number O connects to exactly two vertices in the same column). It follows
that each such lattice path onto which a jump 0 U-edge is embedded contains at most
2(k+1) 4+ (3k — 1) = 5k + 1 lattice edges. This completes the embedding of U-edges with
jump number 0.

Remark. At this stage,F consists of the embedding ¢f and the embedding of all U-
edges with jump number 0. Next we show thais a lattice graph withV (F) = V(G).

To see that we need to show that all lattice paths used in 4.5 and 4.7 are disjoint except
possibly at their ends. This is easy to see if one lattice path represents an etigadthe

other represents a jump 0 U-edge. Now suppasande; are U-edges with jump number

0 such thatr,., containsk,,. Thent(ez) > t(e1) by planarity, and hence, the embedding

of e is on top of the embedding @fi. Moreover, ife; = v, vy andez = v, vy such that
r<s,r’ <s’, R,, does not contaitk,,, andR,, does not contair,,, then eithes < r’ or

s" < r (by planarity). In other words, the lattice paths constructed in 4.7 are disjoint except
possibly at their ends. Furthermore, this embedding algorithm allows us to isBtpine
planez = 0 one lattice path at a time (starting with the edges with level one, then the edges
with level two and so on).

To describe the embedding of U-edges with jump number at least 1, we need additional
notation. For each colump let E;r (respectively,Ej_) denote the set of U-edges starting

(respectively, ending) in columi Note that these sets may be empty. For any ecth}“
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(respectivelye € Ej‘), we definet;r(e) (respectively;j‘ (e)) to be the number of edges in
E;r (respectiverEj‘) which are contained iR,.
The following observations will be useful. Fir$E}r| <2k and|Ej‘| < 2k, and hence,
t;'(e) < 2k andtj‘(e) < 2k. Secondly, ife jumps from column; to columnj + 1, then
t;'(e) =17, 4(e). Finally, for any two distinct edges, e E;r (respectivelygy, ez € E7),
either R,, containsR,, or R., containsr,,, and hencezj*(el) + tf(ez) (respectively,
1 (e1) # 1 (e2)). The second and third observations make it possible to embed all edges

with jump number at least 1 with two embedding schemes (and also, to isotope the lattice
paths back onto the edges@fin the plane; = 0).

4.8. The embedding df -edges with jump numbdrbetween the planes= 0 andz = 2%.

Let e = v,v; be a U-edge withw, in column j and vy in column j + 1. That is,
ecETNE7, ,and henca,;.“ (e) =1, 4(e). First, assume thatis adjacent to both, _1v,
andv;_1vs In G. Then we embed the edgeonto the lattice path froma, to v, obtained
by taking the following steps in the order listed:

(1) 1] (e) z*-steps starting froma,

(2) onex™-steps,

(3) minimum number of-steps to reach a point witfrcoordinate equal te (vy),
(4) twox*-step,

(5) t;'(e) =1;,4(e) z7-steps tov.

For an illustration of this embedding, see Fig. 16(a).

If e is adjacent ta,_1v, and opposite ta;_1v, in G, then we embed the edgeonto
the lattice path from, to vy obtained by taking the following steps in the order listed:
(1)—(5) as above with; replacingv,, and (6) oney-step fromv; to vs. For an illustration,
see Fig. 16(b).

If e is opposite tav,_1v, and adjacent te;_1vs in G, then we embed the edgeonto
the lattice path fromy, to vy obtained by taking the following steps in the order listed:
(0) oney-step fromw, to v}, and (1)—(5) as above witlj replacingv,. For an illustration,
see Fig. 16(c).

If e is opposite to both,_1v, andv;_1vs in G, then we embed the edgeonto the
lattice path fromw, to v; obtained by taking the following steps in the order listed: (0) one
y-step fromw, to v}, (1)—(5) as above with, v} replacingy,, vy, respectively, and (6) a
y-step fromv to v,. For an illustration, see Fig. 16(d).

Sincet;r(e) < 2k, the embedding is between the planes 0 andz = 2k. By a simple
counting, we see that the lattice path representih@s at most 3 -steps, at mostiz-
steps, and at mosk3- 1 y-steps. Hence the lattice path representinges at mosti/+ 2
lattice edges. This completes the description of the embedding of jump 1 U-edges.

Remark. The up-to-dateF consists of the embedding 6f and the embedding of all U-
edges with jump number 0 or 1. Next we show tliats a lattice graph with vertex set
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Fig. 16. The embedding of edges with jump number 1.

V(F)=V(G). Thatis, for any two edges ande, which are onC or with jump number
0 or 1, the corresponding lattice patPsand P, onto which they are embedded are disjoint
except at their ends. By the remark following 4.7, we may assumeiiab, v, has jump
number 1 withv, in columnj andvg in columnj 4+ 1, as shown in Fig. 16. I, is on
C, then it is easy to see th&y and P, are disjoint except possibly at their ends. &0
is a U-edge. If the ends @k are not in columnj or columnj + 1, then obviouslyP;
and P, are disjoint. Ifex has jump number 0 and its ends are both in colynam both in
columnj + 1, then again it is easy to see tht and P, are disjoint except possibly at
their ends. So we may assume thahas jump number 1 and has an end in colupor

j + 1. Then either (i)R., containsR,, or (i) R(e2) containsR(e1) or (iii) the interiors
of R., andR,, are disjoint. In case (i)P> also jumps from columry to column; + 1.
Moreovertf(el) =1, q(e1) > t;.r(ez) = tj_+l(e2) guarantees thaP; and P, are disjoint
except possibly at tf1eir ends. A similar argument works when (ii) occurs. In casefiii),
connects colump — 1 to columnj or connects columti + 1 to columnj + 2. In neither
case there is an intersection Bf and P> (except possibly at their ends).

When embedding U-edges with jump number at least 1, we need ta-88ps to
construct a lattice path connecting these columns. The following concept is useful for
making sure that these-steps do not cause intersections among these lattice paths. To
each U-edge of G, we assign an integéf(e) between 0 and/4— 1, called theentrance
indexof e such thatt’ (e1) # Y (ep) if e1 ande; start in the same column or end in the same
column. We point out here that moststeps that we will use in the embeddingeokill be
in the planey =Y (e).
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The following lemma assures the existence of such a funétion

4.9. Lemma. There exists a functiory from the set of allU-edges ofG to the set
W ={0,1,2,...,4k — 1} such thatY (e1) # Y (e2) for any distinct U-edgeg; and ez
which start or end in the same column.

Proof. We defineY in a doubly recursive way.

First, we defineY’ for the U-edges connecting column 0 and column 1.d etv,v,
wherev, is in column 0 andv, is in column 1. Then we defin&(e) = y(v,) if e is
adjacent tov;—1v4 in G, and letY (e) = y(vy) if e is opposite tovy—1v, in G. (Recall
that y(v,) is the y-coordinate ofy,.) It is easy to see that for distinct U-edggsande;
jumping from column 0 to column I (e1) # Y (e2).

Assume that for somg¢e {1, ..., k — 2}, Y has been defined for all U-edges connecting
two distinct columns lower thap+ 1 such that’ (e1) # Y (e2) for any distinct U-edges;
ande2 which start or end in the same column. We need to extend the definitibricoll
edges ending in column+ 1 so that the condition in the lemma still holds.

This is done recursively. For eaehe {0, ..., j}, let J,, be the set of entrance indices
already used by edges that start in column

For edges starting in column 1 and ending in coluimn 1, assign different values to
them from the seW\ Jp (in a rather arbitrary way). Sinc& has at most 2 elements and
W has 4 elements, this can be done without a problem. Call the collection of these newly
assigned indicefp ;1.

Now assume that for sonie= {0, ..., j — 1}, Y has been defined for all U-edges starting
in columns lower tham + 1 and ending in columri + 1 such that (e1) # Y (e2) for any
two distinct U-edgeg; and ez that connect distinct columns lower thgri- 1 or that
connect some column lower thars- 1 to columnj 4+ 1. Fors =1, ...,i, let I ;11 denote
the set of indices assigned to edges connecting coluamd columnj + 1. Since there are
at most 2 edges ofG jumping to columnj + 1, "\ _; |1 j+1] < 2.

Next we definer’ for edges connecting colunint+ 1 to columnj 4+ 1. Note that J; ;1]
is the number of U-edges that start in coluim 1 and end in some column lower than
j + 1. Since there are at most 2dges jumping from columh+ 1, there are at most
2k — |Ji+1| edges connecting colunin- 1 to columnj + 1. On the other hand, the indices
available are iW — (| _;_1 I, j+1) Whose size i$W| — > "1 |1y jy1l > 2k > 2k — | Ji4al.
Therefore, we can defingE for U-edges connecting column+ 1 to columnj + 1 by
arbitrarily assigning distinct numbers Wi — (U"'Y=l I, j+1) to them.

Continuing this process in the ordee= 0, ..., j — 1, we can defing for all edges
ending in columnj + 1.

Now continuing the whole process in the ordee 1, ...,k — 1, we can defing for
all U-edges. O

4.10. The embedding of U-edges with jump number at |2dstween the planes= 0 and
7=3k— 1.
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Let e = v, vy be a U-edge withy, in columni andv, in columnj such thatj > i + 2.
First, assume thatis adjacent to both,_;v, andv;_1v, in G. Then we embed the edge
onto the lattice path from, to vy obtained by taking the following steps in the order listed:

(1) ;" (e) zT-steps starting from,,

(2) onex™-steps,

(3) minimum number of-steps to reach a point with-coordinate equal t& (e),

(4) onex™-step,

(5) 2+ J(e) —t; (e) z"-steps,

(6) 3J(e) — 4 xT-steps,

(7) 2+ J(e) — tj_ (e) z~ -steps,

(8) onex™-step,

(9) minimum number of-steps to reach a point with-coordinate equal te (v;),
(10) onex™*-step, and
(1) 1 (e) z~-steps tov;.

This embedding processis illustrated in Fig. 17(a). Note that the steps (4)—(8) are carried
outin the planey =Y (e).

Y : Y(e) e
@ '___,KP), __________________________
=Y (e
y= Y(e) / (>
() ) @

Fig. 17. The embedding of edges with jump numbe2.
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If e is adjacent ta,_1v, and opposite ta;_1v, in G, then we embed the edgeonto
the lattice path fromy, to vy obtained by taking the following steps in the order listed:
(1)—(11) as above with} replacingvy, and (12) oney-step fromu; to vs. See Fig. 17(b).

If e is opposite tav,_1v, and adjacent te;_1vs in G, then we embed the edgeonto
the lattice path from, to vy obtained by taking the following steps in the order listed: (0)
oney-step fromw, to v}, and (1)—(11) as above witlj replacingv,. See Fig. 17(c).

If e is opposite to both,_1v, andvs,_1vs in G, then we embed the edgeonto the
lattice path fronw, to vy obtained by taking the following steps in the order listed: (0) a
y-step fromw, to v}, (1)—-(11) as above with}, v} replacingv,, vy, respectively, and (12)
ay-step fromwv; to v,. See Fig. 17(d).

Sincet}“ (e) <2k andtj‘ (e) < 2k and becausd (¢) < k — 1, the embedding is between
the planeg = 0 andz = 3k — 1. Moreover, edges from colunirto column; are embedded
between the planes= 3i andx = 3;. Also note that the lattice path representingses
at most

6 lattice edges for steps (0), (2), (4), (8), (10) and (12) of the construction,
3k — 1 lattice edges for steps (1) and (5) of the construction,

3k — 1 lattice edges for steps (7) and (11) of the construction,

8k lattice edges for steps (3) and (9) of the construction,

3k — 7 lattice edges for step (6) of the construction.

Thus the lattice path representiagontains at most %k7— 3 lattice edges. This completes
the embedding of U-edges.

Remark. The up-to-dateF consists of the embedding of and all lattice paths
representing all U-edges. We claim tifats a lattice graph with vertex s&t(F) = V(G).
We need to show that any two lattice paths representing distinct edgesaod disjoint
except possibly at their ends. This is done in the following lemma.

4.11. Lemma. Lete1 andey be distinct edges which are not B-edges, andPletP, be the
lattice paths onto whicla1, e2 are embedded respectively as constructed above. Phen
and P do not intersect except possibly at their ends.

Proof. By the remark following 4.8, we may assume thais a U-edge with/ (e1) > 2.
Let e1 = v, vy andez = v,7vy, and assume that. is in columni, v, is in columnj, and
j—ix=2.

Casel. ey is an edge of.

Then P; is betweery = —1 andz = 0 or betweer; = 1 andz = 0O; all x-steps ofP, are
in the planez = 0; and every-step of P, uses a constant-coordinate which is a multiple
of 3. Note thatP; is in the half-space > 0 and allx-steps are taken in the half-space
z > 1. Any y-step of P; uses a constant-coordinator which is not a multiple of 3, except
it corresponds to som&v;. Hence,P; and P; are disjoint except possibly at their ends.

Case2. ey is a U-edge with/ (ez) = 0.
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By the planarity ofG, either ()R., C R, or (ii) the interiors ofR,, andR,, are disjoint.
Since thatP, does not use any-step, P, lies entirely in a plane = xg. First, assume that
(i) occurs. Then B< xg < 3j. If 3i < xg < 3j then because(ep) < k + 1, steps (5)—(7)
in the construction ofP; guarantee thaP; does not intersecP, (P1 jumps overpPs). If
xo = 3i orxg = 3j then P, is contained entirely in the one side of the plane xg divided
by the line containing the intersection &f with the planex = xg (which is a single line
segment). S@; and P, do not intersect except possibly at their ends. Now assume that (ii)
occurs. Then eitherg < 3i orxg > 3j. If xg = 3i or xg = 3, then the same argument as
for (i) applies. Ifxg < 3i orxg > 3j, thenP; and P, can be separated by a plane- 3i — ¢
orx = 3j + ¢ for some smalk > 0, and henceP; and P, are disjoint.

Case3. e2 a U-edge with/ (e2) = 1.

As before we have either (&., C R,, or (ii) the interiors ofR., and R,, are disjoint.
Note that by 4.8 P, is contained entirely between the two planes 3¢ andx = 3(g + 1)
for some integeg > 0. Also note that (i) implies 3< 3¢ and 3¢ + 1) < 3/, and (ii)
implies 3j < 3¢ or 3(¢ + 1) < 3i. Now a similar argument as used in Case 2 can be
applied to show thaP; and P, are disjoint except possibly at their ends.

Cased. ez is a U-edge with/ (e2) > 2.

We may assume thag jumps from columri’ to columnj’ with j'—i’ > 2. By planarity
and by symmetry, we have the following possibilitiest i’ andj # j'; i =i’ andj = j;
i=i"andj < j;ori’ <iandj=j'.

Subcasd(a).i #i’ andj # j'.

By symmetry, letj < j’. If j <i’, thenP; and P, are separated by the plane- 3 + 1,
and so,P1 and P, are disjoint.

Now assume thaj = i’. Then P; lies in the half space < 3i" and P; lies in the
half spacer > 3i’. The only part ofP; that intersects the plane= 3i’ is a line segment
consisting of only;-steps on top of some, (or they-stepv,v; andz-steps on top of;),
and is not used P, (exceptvy). So P; and P, are disjoint except possibly at their ends.

We may therefore assume thak j < j’. By planarity ofG, i’ <i < j < j. If i’ <i
thenP1 and P, are separated by the surfate- S1U S, U S3 defined byS1 = {(x, y, 2): z=
2k + J(e2) —05,3i —05< x <3j +0.5}, S2={(x,y,2): z<2k+ J(e2) — 0.5,
x=3i — 0.5}, S3={(x,y,2): 2<2k+ J(e2) — 0.5, x =3j + 0.5}. So P, and P, are
disjoint.

Subcasd(b).i’=i andj = j'.

Thereforee1, e2 € E;F N E7 . So by planarity, we may assumg(ez) > ;" (e1) and
tj_ (e2) > tj_ (e1). Furthermore, assume that= v, vy, andez = v, vy.

Let us follow the pathP; as defined in 4.10 and show that none of the embedding steps
leads to an intersection witR,. We only state the argument for the 11 steps whgis
adjacent to both,_1v, andvg_1vs in G andez is adjacent to bothy, _;v,» andvy_1vy
in G. The other cases are the same withor v} replacingv, or vy, respectively, and
adding steps (0) or (12) which will not cause intersections because, y(v)), y(vr),
andy(v¥) are all distinct.
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(1) P moves from(3i, y(v,), 0) to (3i,y(vr),t;r(e1)) using onlyz-steps. The only
piece of P, in the planex = 3i is the line segment fror8i, y (v,/), 0) to (3i, y(v;/), tl-+ (e2))
using onlyz-steps. Since (v,) andy(v,/) are distinct, there is no intersection.

(2)-(4) PL moves from(3i, y(v,), £.F (e1)) t0 (3i + 1, y(v,), £, (e1)) using onex*-
step, then ta3i + 1, Y(e1), #;" (e1)) using y-steps, and then t63i + 2, Y (e1), £, (e1))
using a singlec*-step. All these steps occur in the space defined by {(x, v, 7): 3i <
x < 3i 4+ 2} (with the exception of the endpoints). The only piecesPpfin A are also
the three line segments generated by steps (2)—(4) moving Gﬁi),ny(vr/),t;_(ez)) to
(3i +2,Y(e2), 1, (e2)). Sincer; (e1) # 1. (e2) there is no intersection.

(5)-(7) P1 moves from(3i + 2, Y (e1), ;" (1)) to (3i + 2, Y(e1), 2k + J(e1)) using
zt-steps, then to(3j — 2,Y(e1),2k + J(e1)) using x*-steps, and then tq3; —
2, Y(e1),1; (e1)) using z~-steps. All these steps occur in the space definedAby
{(x,y,2): 3i+2< x < 3j—2}. The only pieces oP; in A are also the three line segments
generated by steps (5)—(7) moving fr@Bi + 2, Y (e2), tl.+ (e2))t0 (3j — 2, Y (e2), tj_ (e2)).
SinceY (e1) # Y (e2) there is no intersection.

(8)—(10) The argument is similar to the one given for steps (2)—(4).

(11) The argument is similar to the one given for (1).

Hence,P; and P, are disjoint except possibly at their ends.

We have two cases remaining= i’ and;j < j/, andi’ <i andj = j’. These two cases
can be taken care of in the same way as for Subcase 2. We omit the details.

4.12. The embedding of B-edges in the half spa&e0.

The embedding of B-edges can be done in the same way as for U-edges: We repeat 4.6—
4.10 with B-edges replacing U-edges, andstep (respectively; ~-step) replacing;™-
step (respectively, ™ -step).

Remark. By using similar arguments for U-edges as we used for the B-edges, we can show
that the lattice paths representing B-edges and edg€sava disjoint except at their ends.
Now assume thad; is a U-edge and; is a B-edge. By our embedding schenig,is in

the half space > 0 and allx-steps are taken in> 1, andP» is in z < 0 and allx-steps

are taken iy < —1. Moreover the only-steps ofP; and P» in the plane; = 0 correspond

to the singley-steps of typev,v;. Hence,P1 and P, are disjoint except possibly at their
ends.

Thus, the output of this algorithm is a lattice graphwhich is an embedding of in
the cubic lattice. The following theorem asserts thds ambient isotopic t@.

4.13. Theorem. The lattice graphF is ambient isotopic t@.

Proof. Itis easy to see that we can isotope the lattice paths representing the edptes of
the planez = 0 by their projection in the-direction.

Next we need to deform the lattice paths representing U-edgésoofe at a time until
it coincides with the corresponding U-edgesofFirst, we deform the lattice paths onto
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which the jump 0 U-edges are embedded: starting with the U-edges of the lowest level, and
increasing the level by one at a time. If two U-edges are of the same level, then it does not
matter which corresponding lattice path will be deformed first into the ptan®. Then
we deform the lattice paths representing U-edgeE)‘nin the orderj =2,...,k — 1:

starting with the U-edges of the Iowe§1—value. For each lattice path to deform ﬁ)‘e
value of the corresponding U-edge increases by one ﬂmilis exhausted. When that

happens we move t&_ ;. The critical observation is that this can be done at any stage,
since if we are looking at a lattice pathwhose corresponding edge has the lowest level-
value orz; -value in the remaining lattice paths that have not been isotoped batkhben
there are no lattice paths #f“between”P and the plane = 0. That is, the deformation of
the lattice path into the edge of will encounter no obstruction from another lattice path
of F that has not already been isotoped back in the plagd. The isotopy of U-edges
can be done entirely in the half-space: 0.

Finally we deform the B-edges in a similar way, entirely in the half-spa€®. O

By 4.5, 4.7, 4.8, and 4.10, the length of each lattice path so constructed is bounded
above by 1% — 3. Since there are a total efU-edges and B-edges, the total number of
lattice edges to embed the U-edges and B-edges is bounded ab@v& by3)x. It follows
that the length of is bounded above by

17nk +2n + 1%k =17n[/n | + 20 +11[/n | < 17%? + 19 + 11/n + 11.

Or, if one prefers a simpler form, we may bound this by*8 + 13x for n > 50. Thus,
we have the following theorem.

4.14. Theorem. Let G be a Hamiltonian RP-graph witlx vertices, thenG can be
embedded onto a lattice graghsuch thatL (F) < 17232 4+ 1% + 11/n + 11.

5. Ropelength of knotsand links

We can now use the embedding of Hamiltonian RP-graphs to prove results about the
rope length of knot. First we start with lattice knots.

5.1. Theorem. Let K be a knot or a link, and assume th&thas a Hamiltonian RP-graph
G with n vertices. Then we can emb&dinto the cubic lattice with a total length at most
17032 4+ 21n + 11/n + 11

Proof. By applying Theorem 4.13, we can emh@&anto a lattice grapli. For a vertexg

of G letv be the corresponding vertex 6f The opposite edges 6f atvg are represented
by lattice paths using opposite lattice edgesy awvhich correspond toy-steps and:-
steps. Letvvy, vuz, vuz, vvg denote the lattice edges containedAnat v such thatvvy
corresponds to a~-step fromw, vv, corresponds to at-step fromw, vvs corresponds to
ayT-step fromw, vvg corresponds to a—-step fromv. See Fig. 18(a). Then the following
lattice paths are not used Wyexcept for their ends: lattice path, from v1 to vz obtained
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(a) (b) (©)

Fig. 18. Changingr into the embedding of a knot or link.

by taking onex—-step, twoy*-steps, and one™-step (see Fig. 18(b); and lattice path
R, from v; to v3 obtained by taking one*-step, twoy™*-steps, and one~-step, see
Fig. 18(c).

We fix an orientation in the projection to keep track of the under and over crossings. At
each vertew of F that corresponds to a vertex 6f we replace the lattice pathvvs by
L, or by R, depending on whether vz is an under-strand or over-strand in the projection
of the knotK as shown in Fig. 18.

Therefore, at each crossing two additionasteps are needed and the total length of
the lattice embedding increases by ®&hen the lattice grapl# is changed into a lattice
embedding of the knotor link. O

By Theorem 5.1, we get the following theorem by simply substitutin@# K) for n.

5.2. Theorem. Let K be a knot or link. IfK is minimally Hamiltonian then we can embed
K into the cubic lattice with a length at masT(Cr(K ))¥/2 +21Cr(K) +11/Cr(K) + 11.

By Theorems 5.1 and 3.6, we have the following theorem.

5.3. Theorem. Let K be aknot or link. Thelk can be embedded into the cubic lattice with
length at mostL36(Cr(K))¥2 + 84Cr(K) + 22,/Cr(K) + 11

Since a lattice knot or link can be changed int@h! knot or link of thickness 12
(by replacing the corners where the knot makes turns with suitable quarter circles of radius
1/2), we have the following:

5.4. Theorem. Let K be a knot or a link. Then the rope length &fis bounded above by
34(Cr(K))%/? + 42Cr(K) + 22/Cr(K) + 22if K is minimally Hamiltonian. Otherwise
the rope length oK is bounded above B72(Cr(K))%/2+ 168Cr(K) + 44./Cr(K) + 22.

6. Further discussions and questions

The main result in this paper is that the rope-length of a kiios bounded above
by ¢ - (Cr(K))%? for some constant > 0. There is apparently ample room left for the
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improvement of the constant we obtained here. However, a more importantissue is whether
one can improve the powey3. We know that there exist a constant 0 and an infinite

family of knots such that the rope-length of each kioin that family is bounded below

by aCr(K) for some constant > 0. What happens between the power 1 ap@d?3lt is
apparent from our embedding algorithm that the length of the embedded knot depends on
the levels of the edges iG\C whereG is a Hamiltonian projection ok (with at most
4.Cr(K) vertices) andC is a Hamilton cycle inG. In fact, we have the following

6.1. Theorem. Let {K,} be a family of knotgor links). If there exists a constamt > 0
such that eachk, in this family admits a Hamiltonian projectio, with at most
m - Cr(K,) vertices and a Hamilton cycl€,, such that every edge ii,\C,, has a level
number at most: with at mostm exceptions, then there exists a constant0 such that
L(K,) < c-Cr(K,) for everyK,, in this family.

If the answer to Problem 1.2 is negative, then there must exist an infinite family of
knots{K,} such that the condition in the above theorem fails to hold. Since the nature of
Problem 1.2 calls for explicit construction of thick knots, we do not have many options
other than designing efficient embedding algorithms on the cubic lattice. To this extent,
the study of Hamilton cycles i lends us a rather powerful tool. Many questions can be
raised in this regard. For instance, one may ask what kind of knots have projections that
would satisfy the condition in the above theorem. One may also explore the possibility of
changing the known projections of a family of knots so the new projections would then
satisfy the condition of the theorem.

We conclude this paper with the following open questions.

6.2. Question. Is it true thatsupL(K)/Cr(K)} = oo (where the supremum is taken over
all knots and linky?

6.3. Question. For any 1 < p < 3/2, are there a constant > 0 and an infinite family of
knots and links such that for any membéiin the family,L(K) > a - (Cr(K))??

6.4. Question. Is it possible to improve the embedding algorithm in Secfido give an
upper boundd((Cr(K))?) for some constart < p < 3/27?

None of the questions seems easy to solve, but the authors feel that improvements
over the embedding algorithm are most promising and Question 3 above may have an
affirmative answer.
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