Available at

Hamiltonian knot projections and lengths of thick knots ${ }^{\text {N }}$

Yuanan Diao ${ }^{\text {a,* }}$, Claus Ernst ${ }^{\text {b }}$, Xingxing Yu ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
${ }^{\text {b }}$ Department of Mathematics, Western Kentucky University, Bowling Green, KY 42101, USA
${ }^{\text {c }}$ School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA

Received 13 December 2002; received in revised form 27 May 2003

Abstract

For a knot or link $K, L(K)$ denotes the rope length of K and $C r(K)$ denotes the crossing number of K. An important problem in geometric knot theory concerns the bound on $L(K)$ in terms of $\operatorname{Cr}(K)$. It is well known that there exist positive constants c_{1}, c_{2} such that for any knot or link K, $c_{1} \cdot(C r(K))^{3 / 4} \leqslant L(K) \leqslant c_{2} \cdot(C r(K))^{2}$. In this paper, we prove that there exists a constant $c>0$ such that for any knot or link $K, L(K) \leqslant c \cdot(C r(K))^{3 / 2}$. This is done through the study of regular projections of knots and links as 4-regular plane graphs. We show that for any knot or link K there exists a knot or link K^{\prime} and a regular projection G of K^{\prime} such that K^{\prime} is of the same knot type as that of K, G has at most $4 \cdot C r(K)$ crossings, and G is a Hamiltonian graph. We then use this result to develop an embedding algorithm. Using this algorithm, we are able to embed any knot or link K into the simple cubic lattice such that the length of the embedded knot is of order at most $\mathrm{O}\left((\operatorname{Cr}(\mathrm{K}))^{3 / 2}\right)$. This result in turn establishes the above mentioned upper bound on $L(K)$ for smooth knots and links. Moreover, for many knots and links with special Hamiltonian projections, our embedding algorithm ensures that the bound on $L(K)$ can be of order $\mathrm{O}(\operatorname{Cr}(K))$. The study of Hamilton cycles in a regular knot projection plays a very important role and many questions can be raised in this direction.

 © 2003 Elsevier B.V. All rights reserved.MSC: 57M25

Keywords: Knots; Links; Crossing number; Thickness of knots; Rope length of knots

[^0]
1. Introduction

In this paper, we are interested in geometric properties of knots when they are considered as physical subjects, that is, when the knots are tied with ropes which have thickness and volumes. This is in sharp contrast with the traditional mathematical treatment of knots which views knots as volumeless simple closed curves in the 3-dimensional space \mathbb{R}^{3}. It is well known that knots play an important role in studying the behavior of various enzymes known as topoisomerases, see, for example, [14,16,17,27,31,32]. Since the (effective) diameter of DNA can be measured, it is reasonable to treat it as a rope with certain physical properties, see, for example, [26,25]. In many cases it is also important to recognize the geometric shapes and volumes of physical knots [19]. An essential issue here is to relate the length of a rope (with certain thickness) to those knots that can be tied with this rope. Such information plays an important role in studying the effect of topological entanglement in subjects such as circular DNA and long chain polymers, where knots occur and cannot be treated as volumeless curves.

There are different ways to define the thickness of a knot [7,11,21]. In this paper, we will be using the so-called disk thickness introduced in [21] and described as follows. Let K be a C^{2} knot. A number $r>0$ is said to be nice if for any distinct points x, y on K, we have $D(x, r) \cap D(y, r)=\emptyset$, where $D(x, r)$ and $D(y, r)$ are the discs of radius r centered at x and y which are normal to K. The disk thickness of K is defined to be $t(K)=\sup \{r: r$ is nice $\}$.

It is shown in [7] that the disk thickness definition can be extended to all $C^{1,1}$ curves. Therefore, we will restrict our discussions to such curves in this paper. However, the results obtained in this paper also hold for other thickness definitions with a suitable change in the constant coefficient.
1.1. Definition. For any given knot K, a thick realization K_{0} of K is a knot of unit thickness which is of the same knot type as that of K. The rope length $L(K)$ of K is the infimum of the length of K_{0} taken over all thick realizations of K. The existence of $L(K)$ is shown in [7].

In this paper, we are interested in finding lower and upper bounds on $L(K)$ in terms of $C r(K)$, the minimum crossing number of K.

It is shown in [2,3] that there is a constant $a>0$ such that for any knot $K, L(K) \geqslant$ $a \cdot(C r(K))^{3 / 4}$ (this is called the three-fourth power law). The constant a is estimated to be at least 1.105 by a result in [3]. This is improved to 2.135 in [24].

In [16], it is reported that a linear relation between $L(K)$ and $\operatorname{Cr}(K)$ is observed. Consequently, one conjectures that the minimum rope length of any knot K is proportional to its crossing number. In other words, there exist constants $0<a<b$ such that $a \leqslant$ $L(K) / C r(K) \leqslant b$ for any nontrivial knot K. Half of this conjecture is proven to be false since the three-fourth power law is also shown to be achievable for some knot families [6,9]. That is, there exists an infinite family $\left\{K_{n}\right\}$ of knots and a constant $a_{0}>0$ such that $C r\left(K_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$ and $L\left(K_{n}\right) \leqslant a_{0} \cdot\left(C r\left(K_{n}\right)\right)^{3 / 4}$. However, the other half of the conjecture is still open. That is, it is still not known if there exists an infinite family $\left\{K_{n}\right\}$ of knots such that $L\left(K_{n}\right) / \operatorname{Cr}\left(K_{n}\right) \rightarrow \infty$ as $k \rightarrow \infty$. In fact, for a long time, it was not
clear whether there exists an infinite family $\left\{K_{n}\right\}$ of prime knots such that $\operatorname{Cr}\left(K_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$ and $L\left(K_{n}\right)$ is of order more than $\mathrm{O}\left(\left(C r\left(K_{n}\right)\right)^{3 / 4}\right)$. It is shown very recently in [13] that there indeed exists an infinite family $\left\{K_{n}\right\}$ of prime knots such that $\operatorname{Cr}\left(K_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$ and $L\left(K_{n}\right)=\mathrm{O}\left(C r\left(K_{n}\right)\right)$. Let us restate the above unsolved conjecture as the following problem.
1.2. Problem. Does there exist a constant $c>0$ such that for any knot or link K, we have

$$
L(K) \leqslant c \cdot C r(K) ?
$$

In the case that K is a link of two components (of unit thickness) with lengths L_{1} and L_{2}, it is shown in [12] that $L_{1} L_{2}^{1 / 3}$ and $L_{1}^{1 / 3} L_{2}$ are both bounded below by $a_{1} \cdot|\ell(K)|$, where $a_{1}>0$ is a constant and $\ell(K)$ is the linking number between the two components of K. This result also holds when $\ell(K)$ is replaced by $C r(K)$, see [10]. For a thick link K of m components, it is well known that the length of K is of the order at least m. So it is not difficult to construct links whose lengths grow linearly with their crossing numbers.

There is very little in the literature about the upper bounds on $L(K)$. It is known that there is a constant $a_{2}>0$ such that for any knot $K, L(K) \leqslant a_{2} \cdot(\operatorname{Cr}(K))^{2}$ (see [15,7]). The constant a_{2} is estimated to be around 24 [7] and is improved to less than 3 in a recent report [5]. The main objective of this paper is to establish the following significant breakthrough on the upper bound of the rope length of knots.

1.3. Theorem. There exists a constant $c>0$ such that for any knot K,

$$
L(K) \leqslant c \cdot(C r(K))^{3 / 2}
$$

Due to difficulties of dealing with a thick smooth knot, a physical knot is often modelled by a polygon in the cubic lattice, called a lattice knot. (The cubic lattice consists of all points in \mathbb{R}^{3} with integral coordinates and all unit line segments joining these points.) We will first prove Theorem 1.3 for lattice knots. Since knots realized in the cubic lattice can easily be modified into smooth $C^{1,1}$ knots of thickness $1 / 2$, Theorem 1.3 can then be extended to smooth knots as well.

To prove Theorem 1.3 for lattice knots, we will design an algorithm which embeds a knot into the cubic lattice. This algorithm will make use of a particular projection of a knot where the projection can be thought of as a 4-regular Hamiltonian graph (to be defined in Section 3).

This paper is organized as follows. In Section 2, we view regular projections of knots as graphs and study their connectivity. In Section 3, we show that every knot K has a regular projection which is a Hamiltonian graph with at most $4 \cdot C r(K)$ vertices. In Section 4, such a regular projection is embedded into the cubic lattice using at most $c \cdot(C r(K))^{3 / 2}$ unit line segments in the cubic lattice. Then in Section 5, the embedding produced in Section 4 is used to prove Theorem 1.3 for lattice knots and finally for smooth thick knots.

2. Regular projection graphs

In this section, we introduce some basic results in knot theory and graph theory. In addition, some new terms are defined as they will be needed in our discussions. Most terms used in this section are well-known definitions in knot theory and graph theory. The reader is referred to $[1,30]$.

A geometric realization of a graph G is an embedding of G in \mathbb{R}^{2} or \mathbb{R}^{3} such that the edges of G are represented by simple arcs that do not intersect each other in their interior and the vertices of G are represented by the end points of these arcs. Of course, if two edges of G are adjacent, then the two corresponding arcs in the geometric realization of G will share a common vertex of the geometric realization. It is convenient to view the cubic lattice as the geometric realization in \mathbb{R}^{3} of the infinite graph with vertex set $\{(x, y, z): x, y, z \in \mathbb{N}\}$ and edge set $\left\{(x, y, z)\left(x^{\prime}, y^{\prime}, z^{\prime}\right): x, y, z, x^{\prime}, y^{\prime}, z^{\prime} \in \mathbb{N},\left(x-x^{\prime}\right)^{2}+\right.$ $\left.\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}=1\right\}$. Here, \mathbb{N} is the set of all integers and the edges are represented by the unit line segments between their ends. We say that a graph G is planar if it has a geometric realization in a plane. Such a geometric realization is called a plane graph. Plane graphs are related to knots through regular projections of knots.

A common measure for the complexity of a knot or link K is its crossing number, which is the minimum number of crossings in all possible regular projections of knots having same knot type K. This is denoted by $\operatorname{Cr}(K)$. Of course, by this definition, if K and K^{\prime} are of the same knot type, then $\operatorname{Cr}(K)=\operatorname{Cr}\left(K^{\prime}\right)$. We say that $P(K)$ is a minimum projection of K if it is a regular projection with $\operatorname{Cr}(K)$ crossings.

Let K be a knot or link and let $P(K)$ be a regular projection of K. If we treat the crossings in $P(K)$ as vertices and the arcs of $P(K)$ joining these crossings as edges, then $P(K)$ can be viewed as a 4-regular plane graph. Thus, from now on, we may view a regular projection $P(K)$ as a 4-regular plane graph G. To stress the fact that G arises from a regular projection of a knot or link K, we will call it an $R P$-graph of K. If G arises from a minimum projection of a knot or link K, we will then call it a minimum $R P$-graph of K. Note that any 4-regular plane graph is an RP-graph of some knot or link. Thus, a graph is an RP-graph if, and only if, it is a 4-regular plane graph.

If an RP-graph G of a knot (or link) K contains a loop edge e incident with a vertex w, then K can be isotoped to some knot (or link) K^{\prime} through a Reidemeister move such that K^{\prime} has an RP-graph G^{\prime} which can be obtained from G by replacing e, w, and the other two edges incident with w by a single edge. See Fig. 1. For the definition and properties of Reidemeister moves, see [1] or [4]. It follows that we only need to consider RP-graphs without loop edges.

Therefore, for RP-graphs in the rest of this paper, we will assume that no loop edges are present. It follows that every vertex is incident with four distinct edges. In order to

Fig. 1. Loop edges in RP-graphs are removable.

Fig. 2. Pairs of opposite edges: $\left\{e_{1}, e_{3}\right\},\left\{e_{2}, e_{4}\right\}$.

Fig. 3. The connected sum $K_{1} \# K_{2}$ of K_{1} and K_{2}.
recover a knot from an RP-graph, it is important to keep track of the over-strands and under-strands at crossings. Therefore, we introduce the concepts of adjacent and opposite edges in RP-graphs.
2.1. Definition. Let G be an RP-graph, let v be a vertex of G, and let $e_{1}, e_{2}, e_{3}, e_{4}$ be the edges of G incident with v. Suppose that e_{1}, e_{2}, e_{3}, and e_{4} occur around v in this cyclic order. See Fig. 2. Then we say that e_{i} is opposite to e_{j} if $|j-i|=2$, and e_{i} and e_{j} are adjacent otherwise.

Recall that a composite knot K can be constructed from two nontrivial knots K_{1} and K_{2} as shown in Fig. 3 by cutting the arcs marked with X and then adding the dashed arcs. We say that K is a connected sum of K_{1} and K_{2} in this case and also denote K by $K_{1} \# K_{2}$. One can similarly define the connected sum of more than two knots.

The following theorems are classical results in knot theory [4] or [20].
2.2. Theorem. Any nontrivial knot K can be decomposed as the connected sum of prime knots. That is, for any nontrivial knot K, there exist prime knots $K_{1}, K_{2}, \ldots, K_{j}(j \geqslant 1)$ such that $K=K_{1} \# K_{2} \# \cdots \# K_{j}$.
2.3. Theorem $[18,23,28]$. For any knots K_{1} and K_{2}, we have $\operatorname{Cr}\left(K_{1} \# K_{2}\right) \leqslant \operatorname{Cr}\left(K_{1}\right)+$ $\operatorname{Cr}\left(K_{2}\right)$. If K_{1} and K_{2} are alternating knots, then we have $\operatorname{Cr}\left(K_{1} \# K_{2}\right)=\operatorname{Cr}\left(K_{1}\right)+$ $\operatorname{Cr}\left(K_{2}\right)$.

It is still an open problem whether $\operatorname{Cr}\left(K_{1} \# K_{2}\right)=\operatorname{Cr}\left(K_{1}\right)+\operatorname{Cr}\left(K_{2}\right)$ is true for any two knots K_{1} and K_{2}, although it has recently been proven by one of the authors that this is also true for all torus knots [8]. Since we are not sure if $\operatorname{Cr}\left(K_{1} \# K_{2}\right)=\operatorname{Cr}\left(K_{1}\right)+\operatorname{Cr}\left(K_{2}\right)$
in general, the upper bounds on $L\left(K_{1}\right)$ and $L\left(K_{2}\right)$ (in terms of $\operatorname{Cr}\left(K_{1}\right)$ and $\operatorname{Cr}\left(K_{2}\right)$) do not automatically provide us an upper bound on $L\left(K_{1} \# K_{2}\right)$ in terms of $\operatorname{Cr}\left(K_{1} \# K_{2}\right)$.

We devote the rest of this section to the study of connectivity of RP-graphs.
A graph G is said to be connected if for any $u, v \in V(G)$, there is a path in G from u to v. A component of G is a maximal subgraph of G that is connected. It can be shown that G is connected if, and only if, for any partition V_{1} and V_{2} of $V(G), G$ has an edge with one end in V_{1} and the other in V_{2}.

For any $X \subset V(G)$, let $G-X$ denote the subgraph of G obtained from G by deleting vertices of G in X and edges of G with at least one end in X. Similarly, for any $Y \subset E(G)$, we use $G-Y$ to denote the subgraph of G obtained from G by deleting the edges in Y (but keeping all vertices of G). We say that G is k-connected, where k is a positive integer, if $|V(G)| \geqslant k+1$ and, for any subset $X \subset V(G)$ with $|X|<k, G-X$ is connected. We say that G is k-edge-connected if, for any $Y \subset E(G)$ with $|Y|<k, G-Y$ is connected. The connectivity (respectively, edge-connectivity) of G is the largest integer k such that G is k-connected.

An easy observation is that an RP-graph is at most 4-connected and at most 4-edgeconnected. For a minimum RP-graph of a knot, we can say more.

2.4. Lemma. If G is a minimum $R P$-graph of a nontrivial knot or link K, then

(a) G is 2-connected,
(b) the edge connectivity of G is 2 or 4 , and
(c) if K is a prime knot or link, then G is 4-edge-connected.

Proof. Suppose G is not 2-connected. Then G has a single vertex v such that $G-\{v\}$ is disconnected. See Fig. 4. By twisting part of the corresponding projection $P(K)$ as shown in Fig. 4, we obtain a new projection of K with crossing number $\operatorname{Cr}(K)-1$, a contradiction. So (a) holds.

Assume that there is a set $Y \subset E(G)$ of size at most four such that $G-Y$ is not connected. Then there exists a simple closed curve α which intersects G exactly once at each edge in Y. Since there must be an even number of intersections between any two simple closed curves in general position in a plane, we have $|Y|=2$ or 4 . So (b) holds.

Now assume that G is not 4-edge-connected. Then G is 2-edge-connected. So there is a set $Y \subset E(G)$ such that $|Y|=2$ and $G-Y$ is not connected. In fact, $G-Y$ has two components, say G_{1} and G_{2}. Moreover, there is a topological 2-sphere S^{2} intersecting K exactly twice such that the part of K corresponding to G_{1} is inside S^{2} and the part of K corresponding to G_{2} is outside S^{2}. If one of these two parts of K corresponding to G_{1} and G_{2} forms a trivial knot with an arc on S^{2} connecting the points in $K \cap S^{2}$, then G is not a

Fig. 4. 1-Connected RP-graph is not minimum.
minimum RP-graph. If both parts form nontrivial knots with an arc on S^{2} connecting the points in $K \cap S^{2}$, then K is not a prime knot by definition. So we have (c).

3. Hamiltonian knots and graphs

Let G be a graph. A Hamilton cycle in G is a cycle that contains all vertices of G. A graph with a Hamilton cycle is said to be Hamiltonian. In this section, we first study the following question: given a knot K, does K always have a minimum RP-graph which is Hamiltonian? After obtaining a negative answer to this question, we then ask a weaker question: given a knot K, does K have an RP-graph that is Hamiltonian? Furthermore, if K does have a Hamiltonian RP-graph, how many crossings does this Hamiltonian RP-graph have?

We show that any knot K has a Hamiltonian RP-graph with at most $4 \cdot C r(K)$ vertices. This result will be used in the subsequent sections to establish a thick realization of K with length at most $\mathrm{O}\left((C r(K))^{3 / 2}\right)$. For convenience, let us introduce the following concepts.
3.1. Definition. A knot K is said to be Hamiltonian if there exists some knot K^{\prime} such that K^{\prime} and K have the same knot type and K^{\prime} has a Hamiltonian RP-graph (not necessarily minimum). A knot K is said to be minimally Hamiltonian if there exists some knot K^{\prime} such that K^{\prime} and K have the same knot type and K^{\prime} has a Hamiltonian minimum RP-graph.

Almost all minimum RP-graphs of small prime knots as listed in the knot tables are Hamiltonian. Notice that the knot 9_{46} has a non-Hamiltonian minimum RP-graph as shown in the left portion of Fig. 5. However, it is minimally Hamiltonian since it does have a minimum RP-graph that is Hamiltonian as shown in the right portion of Fig. 5.

So is it true that all prime knots are minimally Hamiltonian? The following theorem gives a negative answer to this question.

Fig. 5. Non-Hamiltonian and Hamiltonian minimum RP-graphs of 9_{46}.

3.2. Theorem. Not all prime knots are minimally Hamiltonian.

Proof. It suffices to show an example. We claim that 9_{35} is a prime knot such that none of its minimum RP-graphs is Hamiltonian.

Notice that 9_{35} is an alternating knot that can be obtained from the knot 9_{46} shown in the left portion of Fig. 5 by taking the mirror image of the three crossings on the left. So an RP-graph of 9_{35} is identical to the RP-graph of 9_{46} shown in the left portion of Fig. 5, which is not Hamiltonian.

Therefore, it suffices to show that any minimum projection of 9_{35} leads to an RP-graph that is isomorphic to the one shown. A flype is the modification of a knot diagram as shown in Fig. 6.

Clearly a flype does not alter the number of crossings in the knot diagram nor does it change the knot type. In [22] it is shown that for an alternating knot K, any minimum regular projection of K can be obtained from any given minimum regular projection of K through a finite sequence of flypes.

Note that 9_{35} is an alternating knot, and one can easily check that any flype on the minimum projection of 9_{35} shown in Fig. 5 produces a minimum RP-graph isomorphic to the original one. Therefore 9_{35} is not minimally Hamiltonian.

Note that the above proof cannot be applied to the knot 9_{46} since 9_{46} is nonalternating and the modification of its diagram shown in Fig. 5 is not a sequence of flypes.

Our next result shows that Hamiltonicity is preserved under connected sum.
3.3. Theorem. Suppose for each $i \in\{1, \ldots, j\}, K_{i}$ is knot which admits a Hamiltonian $R P$-graph with n_{i} vertices. Then $K=K_{1} \# K_{2} \# \cdots \# K_{j}$ admits a Hamiltonian RP-graph with $n_{1}+\cdots+n_{j}$ vertices.

Proof. For $i=1,2$, let G_{i} be a Hamiltonian RP-graph of K_{i} contained in some plane P_{i}, and let H_{i} be a Hamilton cycle in G_{i}. Notice that G_{i} divides the plane P_{i} into closed regions. Choose a point O_{i} in one of these regions whose boundary contains an edge $u_{i} v_{i}$ of H_{i}, and choose a circle C_{i} contained in P_{i} centered at O_{i} that does not intersect G_{i}.

An inversion of the plane P_{i} about C_{i} maps G_{i} to a graph G_{i}^{\prime} isomorphic to G_{i}, maps H_{i} to a Hamilton cycle H_{i}^{\prime} in G_{i}^{\prime}, and maps $u_{i} v_{i}$ to an edge $u_{i}^{\prime} v_{i}^{\prime}$ of H_{i}^{\prime}. This inversion in the plane P_{i} about C_{i} can be extended to an inversion in \mathbb{R}^{3} about S_{i}^{2}, where S_{i}^{2} is the 2 -sphere with C_{i} as a great circle. We can assume that the knot K_{i} is very close to the plane P_{i} and, for a suitably chosen C_{i}, we can assume that S_{i}^{2} does not intersect the knot K_{i}. Then, this inversion maps K_{i} to a knot K_{i}^{\prime} that is of the same knot type as that of the mirror image of K_{i}. Furthermore, since K_{i} is close to P_{i}, we can assume that (after a small

Fig. 6. A flype in a knot diagram.

Fig. 7. Connecting two Hamilton cycles.
isotopy of K_{i}^{\prime}) G_{i}^{\prime} is the RP-graph of K_{i}^{\prime} in P_{i}. So the mirror image $K_{i}^{\prime \prime}$ of K_{i}^{\prime} through the plane P_{i} is of the same knot type as that of K_{i}. Also, G_{i}^{\prime} is the RP-graph of $K_{i}^{\prime \prime}$ in P_{i}. So G_{i}^{\prime} is still an RP-graph of K_{i}. Notice that H_{i}^{\prime} is a Hamilton cycle in G_{i}^{\prime} and $u_{i}^{\prime} v_{i}^{\prime}$ is on the boundary of the unbounded region of $P_{i}-G_{i}^{\prime}$. See Fig. 7 for an example.

We can now obtain a new graph G from the disjoint union of G_{1}^{\prime} and G_{2}^{\prime} (as illustrated in Fig. 7) by deleting edges $u_{1}^{\prime} v_{1}^{\prime}$ and $u_{2}^{\prime} v_{2}^{\prime}$ and by adding edges $u_{1}^{\prime} u_{2}^{\prime}$ and $v_{1}^{\prime} v_{2}^{\prime}$. We also obtain a Hamilton cycle H of G from the disjoint union of H_{1}^{\prime} and H_{2}^{\prime} by deleting edges $u_{1}^{\prime} v_{1}^{\prime}$ and $u_{2}^{\prime} v_{2}^{\prime}$ and by adding edges $u_{1}^{\prime} u_{2}^{\prime}$ and $v_{1}^{\prime} v_{2}^{\prime}$. Clearly, G is a Hamiltonian RP-graph of $K_{1}^{\prime \prime} \# K_{2}^{\prime \prime}$ and $|V(G)|=\left|V\left(G_{1}^{\prime}\right)\right|+\left|V\left(G_{2}^{\prime}\right)\right|=n_{1}+n_{2}$.

The same argument can be repeated for $K_{1}^{\prime \prime} \# K_{2}^{\prime \prime}$ and K_{3}, and so on. So the statement of the theorem holds by induction on the number of summands.

As mentioned before, our main objective in this section is to show that every knot or link is Hamiltonian. Notice that RP-graphs are plane graphs. Whitney [33] showed in 1931 that every 4-connected plane triangulation contains a Hamilton cycle. In 1956, Tutte [29] generalized Whitney's result to all plane graphs.

3.4. Theorem. If G is a 4-connected plane graph, then G has a Hamilton cycle.

Using Theorem 3.4, we are able to prove the following theorem.
3.5. Theorem. If K is a prime knot or link, then K admits a Hamiltonian RP-graph with at most $4 \cdot C r(K)$ vertices.

Proof. Let K be a prime knot (or link) and let G be a minimum RP-graph of K in a plane P. By Lemma 2.4, G is 2-connected and 4-edge-connected. The proof proceeds as follows. First, we construct a plane graph H from G such that H is 4-connected and thus has a Hamilton cycle C. We then use C and H to construct a knot K^{\prime} such that K^{\prime} and K have the same knot type and K^{\prime} has a Hamiltonian RP-graph with at most $4 \cdot C r(K)$ vertices.
(I) The construction of a plane graph H from G.

For each vertex v of G, let D_{v} be a disk in P centered at v with a small radius such that D_{v} contains no other vertex of G and the boundary γ_{v} of D_{v} intersects G at exactly four points v_{1}, v_{2}, v_{3} and v_{4}. Let $\Gamma_{v}=\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and call it the vertex cluster at v

Fig. 8. The graph H around a vertex cluster Γ_{v}.
to stress the fact that the points v_{1}, v_{2}, v_{3} and v_{4} are created around v and will be vertices of H. These points in $\bigcup_{v \in V(G)} \Gamma_{v}$ divide each edge of G into 3 arcs and divide each γ_{v} into 4 arcs. Let H denote the graph whose vertex set is $\bigcup_{v \in V(G)} \Gamma_{v}$ and whose edge set consists of all these arcs in G and γ_{v} created by the points in $\bigcup_{v \in V(G)} \Gamma_{v}$. Then H is a 4-regular plane graph. A local picture of H around a vertex cluster Γ_{v} is shown in Fig. 8.
(II) The proof that H is 4-connected.

Assume to the contrary that H is not 4-connected. Then there exists a set $X \subset V(H)$ such that $|X| \leqslant 3$ and $H-X$ is not connected. Choose X such that $|X|$ is minimum. Hence, there exists a partition X_{1} and X_{2} of $V(H)-X$ such that H has no edge with one end in X_{1} and the other in X_{2}. Since $|X|$ is minimum, each vertex in X is adjacent to a vertex in X_{1} and also to a vertex in X_{2}.
(1) We claim that for any $v \in V(G), v \notin X$.

Suppose (1) does not hold. Let $v \in V(G)$ such that $v \in X$. Then v is adjacent to a vertex in X_{1} and a vertex in X_{2}. Since H has no edge from X_{1} to X_{2} and by the local structure of H on $\Gamma_{v},|X|=3$ and $X \subset \Gamma_{v}$. For $i=1,2$, let $V_{i}=\left\{u \in V(G): \Gamma_{u} \subset X_{i}\right\}$. Since H is 4-regular and $|X|=3,\left|X_{i}\right| \geqslant 2$ for $i=1,2$. Since $X \subset \Gamma_{v}, V_{i} \neq \emptyset$ for $i=1,2$. Clearly, V_{1}, V_{2} form a partition of $V(G)-\{v\}$ such that G has no edge from V_{1} to V_{2}. This means that $G-\{v\}$ is not connected, a contradiction (since G is 2 -connected). So we have (1).

By (1) and by the local structure of H on Γ_{v}, we have
(2) For any $v \in V(G)$, either $\Gamma_{v} \subset X \cup X_{1}$ or $\Gamma_{v} \subset X \cup X_{2}$.

For $i=1,2$, let $U_{i}=\left\{u \in V(G): \Gamma_{u} \subset X \cup X_{i}\right\}$. Then U_{1} and U_{2} form a partition of $V(G)$. We claim that
(3) G has at most $|X|$ edges from U_{1} to U_{2}.

For any edge e of G connecting U_{1} to U_{2}, it contains two vertices of $V(H) \backslash V(G)$ by the construction of H. At least one of them is in X, since otherwise there is any edge in $E(H)$ connecting X_{1} to X_{2}. This shows (3).

Since $|X| \leqslant 3$, (3) contradicts Theorem 2.4 which asserts that G is 4-edge-connected. Thus X cannot disconnect H, and so, H is 4 -connected.
(III) The construction of a knot K^{\prime} such that K^{\prime} and K have the same knot type and K^{\prime} has a Hamiltonian RP-graph with at most $4 \cdot \operatorname{Cr}(K)$ vertices.

By Theorem 3.4, H has a Hamilton cycle, say C. Since a Hamilton cycle passes each vertex of H exactly once, for any vertex cluster Γ_{v} either (a) C enters and leaves Γ_{v} exactly once or (b) C enters and leaves Γ_{v} exactly twice. We will make changes to the projection of K corresponding to G by applying a sequence of Reidemeister moves according to (a) or (b). The result will be a knot K^{\prime} isotopic to K such that K^{\prime} has a Hamiltonian RP-graph with at most $4 \cdot \operatorname{Cr}(K)$ vertices.

Fig. 9. No change to a crossing at v when Γ_{v} is of type (a).

The middle portion of Fig. 9 shows all possibilities when Γ_{v} is of type (a), where the thickened edges are in C. For each vertex cluster Γ_{v} of type (a), we leave unchanged the crossing at v in the projection of K corresponding to G. See bottom portion of Fig. 9 .

The top portion of Fig. 10 shows all possibilities when $\Gamma(v)$ is of type (b), where the thickened edges are in C. For each vertex cluster Γ_{v} of type (b), we first make the changes locally as shown in the middle section of Fig. 10. Notice that these changes do not affect the Hamilton cycle C, so C is still a Hamilton cycle in the resulting new graph H^{\prime}. We then modify K to a new knot K^{\prime} through some suitable Reidemeister moves as shown in the bottom portion of Fig. 11 such that the RP-graph of K^{\prime} is H^{\prime}.

Therefore we have constructed a knot K^{\prime} such that: (1) K^{\prime} is obtained from K by a sequence of Reidemeister moves (and so, K^{\prime} is isotopic to K); (2) K^{\prime} has a projection H^{\prime} with at most $4 \cdot C r(K)$ crossings; and (3) C is a Hamilton cycle in H^{\prime}.

Fig. 10. The changes to a crossing at v when Γ_{v} is of type (b).

The following theorem is the main result of this section.
3.6. Theorem. Every knot or link K admits a Hamiltonian RP-graph with at most $4 \cdot \operatorname{Cr}(K)$ vertices.

Proof. Suppose Theorem 3.6 is false. Let K be a counter-example with the smallest minimum crossing number. That is, Theorem 3.6 holds for any knot with crossing number less than $\operatorname{Cr}(K)$. Let G be a minimum projection of K. By Lemma 2.4, G has edgeconnectivity either 2 or 4 . In fact, G has edge-connectivity 2 , for otherwise, the same proof of Theorem 3.5 shows that K has a Hamiltonian RP-graph with at most $4 \cdot C r(K)$ vertices, contradicting the assumption that K is a counter-example to Theorem 3.6.

So let $u_{1}^{\prime} u_{2}^{\prime}, v_{1}^{\prime} v_{2}^{\prime}$ be the edges of G such that $G-\left\{u_{1}^{\prime} u_{2}^{\prime}, v_{1}^{\prime} v_{2}^{\prime}\right\}$ has two components G_{1}^{\prime} and $G_{2}^{\prime}, u_{1}^{\prime}, v_{1}^{\prime} \in V\left(G_{1}^{\prime}\right)$, and $u_{2}^{\prime}, v_{2}^{\prime} \in V\left(G_{2}^{\prime}\right)$. See Fig. 7 for an example. Therefore, there exists a topological 2 -sphere S^{2} intersecting K exactly twice such that the part of K corresponding to G_{1}^{\prime} is inside S^{2} and the part of K corresponding to G_{2}^{\prime} is outside S^{2}. For $i=1,2$, let G_{i} be the graph obtained from G_{i}^{\prime} by adding the edge $u_{i}^{\prime} v_{i}^{\prime}$. Then G_{1} (respectively, G_{2}) is an RP-graph of the knot K_{1} (respectively, K_{2}) formed by the part of K inside (respectively, outside) S^{2} and an arc on S^{2} connecting the points in $K \cap S^{2}$.

Because $\operatorname{Cr}\left(K_{1}\right)+\operatorname{Cr}\left(K_{2}\right) \geqslant \operatorname{Cr}(K)=\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|$ and $\left|V\left(G_{i}\right)\right| \geqslant \operatorname{Cr}\left(K_{i}\right)$ for $i=1$, 2, we have $\operatorname{Cr}\left(K_{i}\right)=\left|V\left(G_{i}\right)\right|$ for $i=1,2$. So for $i=1,2, G_{i}$ is a minimum RPgraph of K_{i}. Since $\operatorname{Cr}\left(K_{1}\right)<\operatorname{Cr}\left(K_{)}\right.$and $\operatorname{Cr}\left(K_{2}\right)<\operatorname{Cr}(K)$, Theorem 3.6 holds for K_{1} and K_{2} by the choice of K. That is, K_{i} has a Hamiltonian RP-graph with at most $4 \cdots \operatorname{Cr}\left(K_{i}\right)$
vertices. So by Theorem 3.3 and the fact that $\operatorname{Cr}(K)=\operatorname{Cr}\left(K_{1}\right)+C r\left(K_{2}\right), K=K_{1} \# K_{2}$ also has a Hamiltonian RP-graph with at most $4 \cdot C r(K)$ vertices, a contradiction.

4. The embedding of RP-graphs

In this section, we will show a way to embed a Hamiltonian RP-graph of a knot K into the cubic lattice, and such an embedding will then be modified in the next section to give a thick realization of K.

Recall that the cubic lattice is the infinite graph in \mathbb{R}^{3} whose vertices are points with integer coordinates and whose edges are unit length line segments connecting these points. Hence, there are three types of edges in the cubic lattice: those parallel to the x-axis, those parallel to the y-axis, and those parallel to the z-axis. An edge of the cubic lattice that is parallel to the x-axis is called an x-step. If an oriented x-step increases (respectively, decreases) the x-coordinate, then it is called an x^{+}-step (respectively, x^{-}-step). The terms y-step, y^{+}-step, y^{-}-step, z-step, z^{+}-step, and z^{-}-step are similarly defined. For the sake of clarity, the vertices and edges of the cubic lattice are called lattice vertices and lattice edges, respectively. A lattice path is a simple curve in the cubic lattice between two distinct lattice vertices, and the ends of curve are called the ends of the lattice path. A lattice graph is a graph whose vertices are lattice vertices and whose edges are lattice paths that are pairwise disjoint except possibly at their ends.
4.1. Definition. We say that a graph G in \mathbb{R}^{3} can be embedded into the cubic lattice if there is an ambient isotopy $H: I \times \mathbb{R}^{3} \rightarrow I \times \mathbb{R}^{3}$ such that $H(0, x)$ is the identity map and $H(1, x)$ maps G onto a lattice graph F. The length of the lattice graph F, denoted by $L(F)$, is the total number of lattice edges in F.

Throughout the rest of this section, we fix the following notation.
4.2. Notation. Let G be a Hamiltonian RP-graph of a knot K in a plane $z=0$ and let C be a Hamilton cycle in G. Let $n=|V(G)|$. Let v_{1}, \ldots, v_{n} denote the vertices of G which occur on C in the cyclic order listed. Let $k=\lceil\sqrt{n}\rceil$. For any point p in \mathbb{R}^{3}, we use $y(p)$ to denote the y-coordinate of p. Observe that as a simple closed curve in the plane $z=0$, C divides the plane $z=0$ into two closed regions, one bounded and one unbounded. The edges in the set $E(G)-E(C)$ are then divided into two groups: those in the bounded region, called B-edges, and those in the unbounded region, called U-edges.

Before we describe our algorithm, let us first look at an example.

4.3. Example. An embedding of 9_{32}.

The top portion of Fig. 11 shows a minimum RP-graph of 932 and a Hamilton cycle represented by the thickened curve. The bottom portion of Fig. 11 shows an embedding of the given RP-graph in the cubic lattice where again the embedding of the Hamilton cycle is marked as the thickened lattice polygon.

Fig. 11. A Hamiltonian RP-graph of 9_{32} and its realization in the cubic lattice.

The thickened Hamilton cycle allows us to embed the RP-graph into the cubic lattice in a systematic way. First, we embed the vertices along the y-axis following the order inherited from the Hamilton cycle so that any two consecutive vertices are three y-steps apart. The edges of the Hamilton cycle are then embedded in the plane $x=0$ (with the exception of one edge) and between the planes $z=1$ and $z=-1$. The remaining edges of G are then embedded according to their relations with the Hamilton cycle. The U-edges are embedded in the plane $x=0$ above y-axis, and the B-edges are embedded in the plane $x=0$ below y-axis. Fig. 11 outlines this idea. Note that the lattice graph shown in Fig. 11 is essentially contained in a single square lattice.

The above example gives an intuitive idea how an algorithm may be designed to embed an RP-graph into the cubic lattice using $\mathrm{O}\left((\operatorname{Cr}(K))^{2}\right)$ lattice edges. Since we aim to achieve an upper bound better than $\mathrm{O}\left((\operatorname{Cr}(K))^{2}\right)$, we leave out a detailed description of such an algorithm. An interested reader can easily work this out.

To achieve the upper bound $\mathrm{O}\left((\operatorname{Cr}(\mathrm{K}))^{3 / 2}\right.$), we need to embed a Hamiltonian RP-graph into the cubic lattice in a more compact and subtle way. In particular, we need to construct an embedding that fills up a part of the lattice by making use of all 6 directions available in the cubic lattice. Similar to the embedding scheme sketched in Example 4.3, we will embed G into the cubic lattice in four steps. First, we embed the vertices of G into the plane $z=0$. We then embed the edges of C between the planes $z=1$ and $z=-1$. Next we embed the U-edges in the half-space $z \geqslant 0$. Finally, the B-edges are embedded in a similar way into the half-space $z \leqslant 0$.
4.4. The embedding of $V(G)$ in the plane $z=0$.

Fig. 12. The embedding of vertices of C for $n=14$ and $n=23$.

We will embed $V(G)$ into the set of points $\{(3 i, 3 j, 0\}: 0 \leqslant i<k, 1 \leqslant j \leqslant k\}$. Recall the notations defined in Notation 4.2.

Intuitively, we embed v_{1}, \ldots, v_{k} in the order listed on the y-axis by starting with v_{1} at $(0,3,0)$, increasing the y-coordinate by 3 at a time, ending with v_{k} at $(0,3 k, 0)$. We then embed $v_{k+1}, \ldots, v_{2 k}$ on the line determined by $x=3$ and $z=0$, by starting with v_{k+1} at $(3,3 k, 0)$, decreasing the y-coordinate by 3 at a time, ending with $v_{2 k}$ at $(3,3,0)$. We then continue in this way by embedding $v_{i k+1}, \ldots, v_{(i+1) k}$ on the line determined by $x=3 i$ and $z=0$ in the order from $(3 i, 3,0)$ to $(3 i, 3 k, 0)$ when i is even or from $(3 i, 3 k, 0)$ to $(3 i, 3,0)$ when i is odd, with y-coordinates differing by 3 at a time. Fig. 12(a) and (b) illustrate the embedding with $n=14$ and $n=23$, respectively.

To precisely state this embedding, let $p_{i, j}=(3 i, 3 j, 0)$ for $0 \leqslant i<k$ and $1 \leqslant j \leqslant k$. For each $1 \leqslant \ell \leqslant n$, there exist unique integers i, j such that $0 \leqslant i \leqslant k-1,1 \leqslant j \leqslant k$, and $\ell=i k+j$. If i is even then embed v_{ℓ} to $p_{i, j}$, otherwise embed v_{ℓ} to $p_{i, k-j+1}$.

One may view the points $p_{i, 1}, p_{i, 2}, \ldots, p_{i, k}$ as in column i, and there are k such columns. However, it is possible that column $k-1$ contains no vertices of G at all (for example, when $n=12$ or $n=20$). This completes the description of the embedding of $V(G)$.

For convenience, we will not distinguish between v_{ℓ} and $p_{i, j}$ if v_{ℓ} is embedded to $p_{i, j}$, and we sometimes write $v_{\ell}=p_{i, j}$. Also we let $v_{0}=v_{n}$ so that $v_{\ell-1} v_{\ell}$ makes sense for all $\ell=1, \ldots, n$.

4.5. The embedding of C as a lattice polygon between the planes $z=-1$ and $z=1$.

The embedding of edges of C depends on the edges in $E(G)-E(C)$. Let v_{ℓ} be a vertex of G. Since G is 4-regular and is free of loop edges, there are exactly two distinct edges of G incident with v_{ℓ} which are not on C, and these two edges can be both U-edges, both B-edges, or one U-edge and one B-edge. We say that v_{ℓ} is of type (a) if one of these two edges is a U-edge and the other one is a B-edge. We say that v_{ℓ} is of type (b) if these two edges are both U-edges. Finally, we say that v_{ℓ} is of type (c) if these two edges are both B-edges.

Fig. 13. The local embedding of C.

We now embed C onto a lattice polygon between the planes $z=-1$ and $z=1$. As we will see later that a reason to embed the edges between the planes $z=1$ and $z=-1$ is to make room for embedding the U-edges in the half space $z \geqslant 0$ and the B-edges in the half space $z \leqslant 0$. The lattice paths corresponding to $v_{i k} v_{i k+1}, i=1, \ldots, k-1$, and $v_{n} v_{1}$ will require x-steps, while the lattice paths corresponding to the other edges will not use x-steps.

First, we embed $v_{\ell-1} v_{\ell}$ for all $\ell \in\{1, \ldots, n-1\}$. Let $\ell=i k+j$, where $0 \leqslant i \leqslant k-1$ and $1 \leqslant j \leqslant k$.

Assume that v_{ℓ} is of type (a). See Fig. 13(a) for an illustration of the embedding process described below. If $j \neq k$ and i is even, then we embed the edge $v_{\ell} v_{\ell+1}$ onto the lattice path from v_{ℓ} to $v_{\ell+1}$ obtained by taking three y^{+}-steps. If $j \neq k$ and i is odd, then we embed the edge $v_{\ell} v_{\ell+1}$ onto the lattice path from v_{ℓ} to $v_{\ell+1}$ obtained by taking three y^{-}-steps. If $j=k$ and i is even, then we embed the edge $v_{\ell} v_{\ell+1}$ onto the lattice path from v_{ℓ} to $v_{\ell+1}$ obtained by taking two y^{+}-step, then three x^{+}-steps, and then two y^{-}-steps. If $j=k$ and i is odd, then we embed the edge $v_{\ell} v_{\ell+1}$ onto the lattice path from v_{ℓ} to $v_{\ell+1}$ obtained by taking two y^{-}-steps, then three x^{+}-steps, and then two y^{+}-step.

If v_{ℓ} is of type (b) or of type (c), the embedding process is illustrated in Fig. 13(b) and (c) and one can write down the corresponding lattice paths in a similar way to the above. The details are left to the reader.

It remains to embed the edge $v_{n} v_{1}$ into the cubic lattice. See Fig. 12 for an example when v_{n} is of type (a). When v_{n} is of type (b) or (c), make adjustments as in Fig. 13(b) and (c). By the definition of k, we have $n=i k+j$ for some $k-2 \leqslant i \leqslant k-1$ and $1 \leqslant j \leqslant k$.

First, assume i is odd. Then $v_{n}=(3 i, 3 k-3 j+3,0)$. If v_{n} is of type (a), we embed the edge $v_{n} v_{1}$ onto the lattice path from v_{n} to v_{1} obtained by taking $3 k-3 j+2 y^{-}$-steps, $3 i$ x^{-}-steps, and two y^{+}-steps. If v_{n} is of type (b) (respectively, (c)), then we embed the edge $v_{n} v_{1}$ onto a lattice path from v_{n} to v_{1} obtained by taking a z^{-}-step (respectively, z^{+}-step), two y^{-}-steps, a z^{+}-step (respectively, z^{-}-step), $3 k-3 j y^{-}$-steps, $3 i x^{-}$-steps, and two y^{+}-steps. Now assume that i is even. Then $v_{n}=(3 i, 3 j, 0)$. If v_{n} is of type (a), then we embed the edge $v_{n} v_{1}$ onto the lattice path from v_{n} to v_{1} obtained by taking two y^{+}-steps, two x^{+}-steps, $3 j+4 y^{-}$-steps, $3 i+2 x^{-}$-steps, and two y^{+}-steps. If v_{n} is of type (b) (respectively, (c)), then we embed the edge $v_{n} v_{1}$ onto a lattice path from v_{n} to v_{1} obtained by taking a z^{+}(respectively, z^{-}-step), two y^{+}-steps, a z^{-}(respectively, z^{+}-step), two $x^{+}{ }_{-}$ steps, $3 j+4 y^{-}$-steps, $3 i+2 x^{-}$-steps, and two y^{+}-steps. This concludes the embedding of C.

Remark. It is clear from the embedding scheme in 4.5 that the embedding of C is a lattice polygon between the planes $z=-1$ and $z=1$. It is also easy to see that the process in 4.5 can be realized by an ambient isotopy that keeps the edges in $E(G)-E(C)$ on the plane $z=0$, and maps C to the lattice polygon described above. Note that the lattice path from v_{n} to v_{1} uses at most $6 k+10$ lattice edges, the lattice path from $v_{i k}$ to $v_{i k+1}$ use either seven or nine lattice edges, and the lattice path connecting other consecutive vertices of C uses either three or five lattice edges. Thus the total length of the embedding for C is bounded above by $6 k+10+9(k-1)+5(n-k)<5 n+11 k$.

Let F denote the lattice polygon constructed so far (which is the embedding of C). Then F is a lattice graph with $V(F)=V(G)$. We will update F by adding lattice paths to F as we embed U-edges and B-edges of G. During this process we will keep the symbol F for the up-to-date embedding until F becomes an embedding of G.

4.6. Preparations for the embedding of U-edges.

We want to embed the U-edges of G into the half space $z \geqslant 0$. More specifically, we need to connect the ends of every U-edge using a lattice path in the half space $z \geqslant 0$ such that all lattice paths corresponding to U-edges or edges of C are disjoint (except at their ends) and can be isotoped back to G in the half-space $z \geqslant 0$.

The embedding of a U-edge is based partially on which columns it connects. Let e be a U-edge which has one end in column i and the other in column j, and let $J(e)=|i-j|$. We call $J(e)$ the jump number of e. Clearly $0 \leqslant J(e) \leqslant k-1$. Furthermore, we say that e jumps from column i to column j or from column j to column i. If $i<j$ then we say that e starts in column i and ends in column j. If $J(e)=0$ then both ends of e are in the same column and the embedding of e needs not use any x-steps. If $J(e)>0$, then x-steps are needed to embed e.

We will embed the U-edges in three stages: the U-edges with jump number 0 will be embedded first, then the U-edges with jump number 1, and the U-edges with jump number at least 2 will be embedded last.

The edges of G will be embedded so that at each vertex of G, edges which are opposite in G will use "opposite" lattice edges at that vertex. To keep track of opposite edges, we
define a region R_{e} for each U-edge e. Let $e=v_{r} v_{s}$ be a U-edge of G, and assume that $r<s$. Let C_{e} denote the simple closed curve in the plane $z=0$ corresponding to the union of e and the path $v_{r} v_{r+1} \ldots v_{s}$ on C. Then C_{e} divides the plane P into two closed regions with boundary C_{e}, and we use R_{e} to denote the region that does not contain $C-C_{e}$.

Let v_{ℓ} be a vertex in column i and let v_{ℓ}^{*} be the lattice vertex such that $v_{\ell} v_{\ell}^{*}$ is the lattice edge corresponding to the y^{+}-step (respectively, y^{-}-step) from v_{ℓ} when i is even (respectively, odd).

We are now ready to embed the U-edges with jump number 0 .
4.7. The embedding of U-edges with jump number 0 between the planes $z=0$ and $z=k+1$.

To each U-edge of jump number 0, we associate a number, called the level of that edge, defined recursively. A U-edge e with jump number $J(e)=0$ is called an edge of level 1 if there are no other U-edges of G inside R_{e}. Suppose that we have defined edges of level i for some integer $i \geqslant 1$. We say that a U-edge e with $J(e)=0$ is an edge of level $i+1$ if all U-edges of G contained in R_{e} (which are necessarily of jump number 0) are of level at most i and at least one of them is of level i. The level of an edge e is denoted by $t(e)$. Fig. 14 shows examples of edges of levels 1,2 and 3 .

We can now describe the embedding scheme of U-edges with jump number 0 . Let $e=v_{r} v_{s}$ be a U-edge with $J(e)=0$ and of level $t(e)$, that is, v_{r} and v_{s} are both in column i for some $0 \leqslant i \leqslant k-1$.

If e is adjacent to both edges $v_{r-1} v_{r}$ and $v_{s-1} v_{s}$ in G, then we embed e onto the lattice path from v_{r} to v_{s} obtained by taking the following steps:
(1) $t(e)+1 z^{+}$-steps from v_{r},
(2) the minimum number of y-steps to reach the point with y-coordinate equal to $y\left(v_{s}\right)$, and
(3) $t(e)+1 z^{-}$-steps to v_{s}.

This process is illustrated by the edges e_{1}, e_{3}, and e_{4} in Fig. 15.
If e is adjacent to $v_{r-1} v_{r}$ and opposite to $v_{s-1} v_{s}$ in G, then we embed e onto the lattice path from v_{r} to v_{s} obtained by taking the following steps: (1), (2), and (3) above with v_{s}^{*} replacing v_{s}, and (4) a y-step to reach v_{s}. This is illustrated by e_{5} in Fig. 15.

If e is opposite to $v_{r-1} v_{r}$ and adjacent to $v_{s-1} v_{s}$ in G, then we embed the edge e onto the lattice path from v_{r} to v_{s} obtained by taking the following steps: (0) a y-step from v_{r} to $v_{r}^{*},(1),(2)$, and (3) above with v_{r}^{*} replacing v_{r}. This is illustrated by e_{2} in Fig. 15.

If e is opposite to both $v_{r-1} v_{r}$ and $v_{s-1} v_{s}$ in G, then we embed the edge e onto the lattice path from v_{r} to v_{s} obtained by taking the following steps: (0) a y-step from v_{r} to

Fig. 14. Examples of edges of different levels.

Fig. 15. The embedding of jump 0 edges.
v_{r}^{*}, (1), (2), (3) above with v_{r}^{*}, v_{s}^{*} replacing v_{r}, v_{s}, respectively, and (4) a y-step to reach v_{s}. This is illustrated by e_{6} in Fig. 15.

Next, we observe that the jump 0 edges are embedded between the plane $z=0$ and $z=k+1$. This is because $t(e) \leqslant k$ for all jump 0 edges. To see this, note that in each column there are at most k U-edges with jump number 0 (since each column has k vertices, each vertex in a column is incident to at most 2 U-edges, and each U-edge with jump number 0 connects to exactly two vertices in the same column). It follows that each such lattice path onto which a jump 0 U-edge is embedded contains at most $2(k+1)+(3 k-1)=5 k+1$ lattice edges. This completes the embedding of U-edges with jump number 0 .

Remark. At this stage, F consists of the embedding of C and the embedding of all U edges with jump number 0 . Next we show that F is a lattice graph with $V(F)=V(G)$. To see that we need to show that all lattice paths used in 4.5 and 4.7 are disjoint except possibly at their ends. This is easy to see if one lattice path represents an edge on C and the other represents a jump 0 U-edge. Now suppose e_{1} and e_{2} are U-edges with jump number 0 such that $R_{e_{2}}$ contains $R_{e_{1}}$. Then $t\left(e_{2}\right)>t\left(e_{1}\right)$ by planarity, and hence, the embedding of e_{2} is on top of the embedding of e_{1}. Moreover, if $e_{1}=v_{r} v_{s}$ and $e_{2}=v_{r^{\prime}} v_{s^{\prime}}$ such that $r<s, r^{\prime}<s^{\prime}, R_{e_{1}}$ does not contain $R_{e_{2}}$, and $R_{e_{2}}$ does not contain $R_{e_{1}}$, then either $s \leqslant r^{\prime}$ or $s^{\prime} \leqslant r$ (by planarity). In other words, the lattice paths constructed in 4.7 are disjoint except possibly at their ends. Furthermore, this embedding algorithm allows us to isotope F to the plane $z=0$ one lattice path at a time (starting with the edges with level one, then the edges with level two and so on).

To describe the embedding of U -edges with jump number at least 1, we need additional notation. For each column j, let E_{j}^{+}(respectively, E_{j}^{-}) denote the set of U-edges starting (respectively, ending) in column j. Note that these sets may be empty. For any edge $e \in E_{j}^{+}$
(respectively, $e \in E_{j}^{-}$), we define $t_{j}^{+}(e)$ (respectively, $t_{j}^{-}(e)$) to be the number of edges in E_{j}^{+}(respectively, E_{j}^{-}) which are contained in R_{e}.

The following observations will be useful. First, $\left|E_{j}^{+}\right| \leqslant 2 k$ and $\left|E_{j}^{-}\right| \leqslant 2 k$, and hence, $t_{j}^{+}(e) \leqslant 2 k$ and $t_{j}^{-}(e) \leqslant 2 k$. Secondly, if e jumps from column j to column $j+1$, then $t_{j}^{+}(e)=t_{j+1}^{-}(e)$. Finally, for any two distinct edges $e_{1}, e_{2} \in E_{j}^{+}$(respectively, $e_{1}, e_{2} \in E_{j}^{-}$), either $R_{e_{1}}$ contains $R_{e_{2}}$ or $R_{e_{2}}$ contains $R_{e_{1}}$, and hence, $t_{j}^{+}\left(e_{1}\right) \neq t_{j}^{+}\left(e_{2}\right)$ (respectively, $\left.t_{j}^{-}\left(e_{1}\right) \neq t_{j}^{-}\left(e_{2}\right)\right)$. The second and third observations make it possible to embed all edges with jump number at least 1 with two embedding schemes (and also, to isotope the lattice paths back onto the edges of G in the plane $z=0$).
4.8. The embedding of U-edges with jump number 1 between the planes $z=0$ and $z=2 k$.

Let $e=v_{r} v_{s}$ be a U-edge with v_{r} in column j and v_{s} in column $j+1$. That is, $e \in E_{j}^{+} \cap E_{j+1}^{-}$, and hence, $t_{j}^{+}(e)=t_{j+1}^{-}(e)$. First, assume that e is adjacent to both $v_{r-1} v_{r}$ and $v_{s-1} v_{s}$ in G. Then we embed the edge e onto the lattice path from v_{r} to v_{s} obtained by taking the following steps in the order listed:
(1) $t_{j}^{+}(e) z^{+}$-steps starting from v_{r},
(2) one x^{+}-steps,
(3) minimum number of y-steps to reach a point with y-coordinate equal to $y\left(v_{s}\right)$,
(4) two x^{+}-step,
(5) $t_{j}^{+}(e)=t_{j+1}^{-}(e) z^{-}$-steps to v_{s}.

For an illustration of this embedding, see Fig. 16(a).
If e is adjacent to $v_{r-1} v_{r}$ and opposite to $v_{s-1} v_{s}$ in G, then we embed the edge e onto the lattice path from v_{r} to v_{s} obtained by taking the following steps in the order listed: (1)-(5) as above with v_{s}^{*} replacing v_{s}, and (6) one y-step from v_{s}^{*} to v_{s}. For an illustration, see Fig. 16(b).

If e is opposite to $v_{r-1} v_{r}$ and adjacent to $v_{s-1} v_{s}$ in G, then we embed the edge e onto the lattice path from v_{r} to v_{s} obtained by taking the following steps in the order listed: (0) one y-step from v_{r} to v_{r}^{*}, and (1)-(5) as above with v_{r}^{*} replacing v_{r}. For an illustration, see Fig. 16(c).

If e is opposite to both $v_{r-1} v_{r}$ and $v_{s-1} v_{s}$ in G, then we embed the edge e onto the lattice path from v_{r} to v_{s} obtained by taking the following steps in the order listed: (0) one y-step from v_{r} to $v_{r}^{*},(1)-(5)$ as above with v_{r}^{*}, v_{s}^{*} replacing v_{r}, v_{s}, respectively, and (6) a y-step from v_{s}^{*} to v_{s}. For an illustration, see Fig. 16(d).

Since $t_{j}^{+}(e) \leqslant 2 k$, the embedding is between the planes $z=0$ and $z=2 k$. By a simple counting, we see that the lattice path representing e has at most $3 x$-steps, at most $4 k z$ steps, and at most $3 k-1 y$-steps. Hence the lattice path representing e uses at most $7 k+2$ lattice edges. This completes the description of the embedding of jump 1 U-edges.

Remark. The up-to-date F consists of the embedding of C and the embedding of all U edges with jump number 0 or 1 . Next we show that F is a lattice graph with vertex set

Fig. 16. The embedding of edges with jump number 1.
$V(F)=V(G)$. That is, for any two edges e_{1} and e_{2} which are on C or with jump number 0 or 1, the corresponding lattice paths P_{1} and P_{2} onto which they are embedded are disjoint except at their ends. By the remark following 4.7, we may assume that $e_{1}=v_{r} v_{s}$ has jump number 1 with v_{r} in column j and v_{s} in column $j+1$, as shown in Fig. 16. If e_{2} is on C, then it is easy to see that P_{1} and P_{2} are disjoint except possibly at their ends. So e_{2} is a U-edge. If the ends of e_{2} are not in column j or column $j+1$, then obviously P_{1} and P_{2} are disjoint. If e_{2} has jump number 0 and its ends are both in column j or both in column $j+1$, then again it is easy to see that P_{1} and P_{2} are disjoint except possibly at their ends. So we may assume that e_{2} has jump number 1 and has an end in column j or $j+1$. Then either (i) $R_{e_{1}}$ contains $R_{e_{2}}$ or (ii) $R\left(e_{2}\right)$ contains $R\left(e_{1}\right)$ or (iii) the interiors of $R_{e_{1}}$ and $R_{e_{2}}$ are disjoint. In case (i) P_{2} also jumps from column j to column $j+1$. Moreover $t_{j}^{+}\left(e_{1}\right)=t_{j+1}^{-}\left(e_{1}\right)>t_{j}^{+}\left(e_{2}\right)=t_{j+1}^{-}\left(e_{2}\right)$ guarantees that P_{1} and P_{2} are disjoint except possibly at their ends. A similar argument works when (ii) occurs. In case (iii), P_{2} connects column $j-1$ to column j or connects column $j+1$ to column $j+2$. In neither case there is an intersection of P_{1} and P_{2} (except possibly at their ends).

When embedding U-edges with jump number at least 1 , we need to use x-steps to construct a lattice path connecting these columns. The following concept is useful for making sure that these x-steps do not cause intersections among these lattice paths. To each U-edge e of G, we assign an integer $Y(e)$ between 0 and $4 k-1$, called the entrance index of e such that $Y\left(e_{1}\right) \neq Y\left(e_{2}\right)$ if e_{1} and e_{2} start in the same column or end in the same column. We point out here that most x-steps that we will use in the embedding of e will be in the plane $y=Y(e)$.

The following lemma assures the existence of such a function Y.
4.9. Lemma. There exists a function Y from the set of all U-edges of G to the set $W=\{0,1,2, \ldots, 4 k-1\}$ such that $Y\left(e_{1}\right) \neq Y\left(e_{2}\right)$ for any distinct U-edges e_{1} and e_{2} which start or end in the same column.

Proof. We define Y in a doubly recursive way.
First, we define Y for the U-edges connecting column 0 and column 1. Let $e=v_{q} v_{r}$ where v_{q} is in column 0 and v_{r} is in column 1. Then we define $Y(e)=y\left(v_{q}\right)$ if e is adjacent to $v_{q-1} v_{q}$ in G, and let $Y(e)=y\left(v_{q}^{*}\right)$ if e is opposite to $v_{q-1} v_{q}$ in G. (Recall that $y\left(v_{q}\right)$ is the y-coordinate of v_{q}.) It is easy to see that for distinct U-edges e_{1} and e_{2} jumping from column 0 to column 1, $Y\left(e_{1}\right) \neq Y\left(e_{2}\right)$.

Assume that for some $j \in\{1, \ldots, k-2\}, Y$ has been defined for all U-edges connecting two distinct columns lower than $j+1$ such that $Y\left(e_{1}\right) \neq Y\left(e_{2}\right)$ for any distinct U-edges e_{1} and e_{2} which start or end in the same column. We need to extend the definition of Y to all edges ending in column $j+1$ so that the condition in the lemma still holds.

This is done recursively. For each $m \in\{0, \ldots, j\}$, let J_{m} be the set of entrance indices already used by edges that start in column m.

For edges starting in column 1 and ending in column $j+1$, assign different Y values to them from the set $W \backslash J_{0}$ (in a rather arbitrary way). Since J_{0} has at most $2 k$ elements and W has $4 k$ elements, this can be done without a problem. Call the collection of these newly assigned indices $I_{0, j+1}$.

Now assume that for some $i \in\{0, \ldots, j-1\}, Y$ has been defined for all U-edges starting in columns lower than $i+1$ and ending in column $j+1$ such that $Y\left(e_{1}\right) \neq Y\left(e_{2}\right)$ for any two distinct U-edges e_{1} and e_{2} that connect distinct columns lower than $j+1$ or that connect some column lower than $i+1$ to column $j+1$. For $s=1, \ldots, i$, let $I_{s, j+1}$ denote the set of indices assigned to edges connecting column s and column $j+1$. Since there are at most $2 k$ edges of G jumping to column $j+1, \sum_{s=1}^{i}\left|I_{s, j+1}\right| \leqslant 2 k$.

Next we define Y for edges connecting column $i+1$ to column $j+1$. Note that $\left|J_{i+1}\right|$ is the number of U -edges that start in column $i+1$ and end in some column lower than $j+1$. Since there are at most $2 k$ edges jumping from column $i+1$, there are at most $2 k-\left|J_{i+1}\right|$ edges connecting column $i+1$ to column $j+1$. On the other hand, the indices available are in $W-\left(\bigcup_{s=1}^{i} I_{s, j+1}\right)$ whose size is $|W|-\sum_{s=1}^{i}\left|I_{s, j+1}\right| \geqslant 2 k \geqslant 2 k-\left|J_{i+1}\right|$. Therefore, we can define Y for U-edges connecting column $i+1$ to column $j+1$ by arbitrarily assigning distinct numbers in $W-\left(\bigcup_{s=1}^{i} I_{s, j+1}\right)$ to them.

Continuing this process in the order $i=0, \ldots, j-1$, we can define Y for all edges ending in column $j+1$.

Now continuing the whole process in the order $j=1, \ldots, k-1$, we can define Y for all U-edges.
4.10. The embedding of U-edges with jump number at least 2 between the planes $z=0$ and $z=3 k-1$.

Let $e=v_{r} v_{s}$ be a U-edge with v_{r} in column i and v_{s} in column j such that $j \geqslant i+2$. First, assume that e is adjacent to both $v_{r-1} v_{r}$ and $v_{s-1} v_{s}$ in G. Then we embed the edge e onto the lattice path from v_{r} to v_{s} obtained by taking the following steps in the order listed:
(1) $t_{i}^{+}(e) z^{+}$-steps starting from v_{r},
(2) one x^{+}-steps,
(3) minimum number of y-steps to reach a point with y-coordinate equal to $Y(e)$,
(4) one x^{+}-step,
(5) $2 k+J(e)-t_{i}^{+}(e) z^{+}$-steps,
(6) $3 J(e)-4 x^{+}$-steps,
(7) $2 k+J(e)-t_{j}^{-}(e) z^{-}$-steps,
(8) one x^{+}-step,
(9) minimum number of y-steps to reach a point with y-coordinate equal to $y\left(v_{s}\right)$,
(10) one x^{+}-step, and
(11) $t_{j}^{-}(e) z^{-}$-steps to v_{s}.

This embedding process is illustrated in Fig. 17(a). Note that the steps (4)-(8) are carried out in the plane $y=Y(e)$.

Fig. 17. The embedding of edges with jump number $\geqslant 2$.

If e is adjacent to $v_{r-1} v_{r}$ and opposite to $v_{s-1} v_{s}$ in G, then we embed the edge e onto the lattice path from v_{r} to v_{s} obtained by taking the following steps in the order listed: (1)-(11) as above with v_{s}^{*} replacing v_{s}, and (12) one y-step from v_{s}^{*} to v_{s}. See Fig. 17(b).

If e is opposite to $v_{r-1} v_{r}$ and adjacent to $v_{s-1} v_{s}$ in G, then we embed the edge e onto the lattice path from v_{r} to v_{s} obtained by taking the following steps in the order listed: (0) one y-step from v_{r} to v_{r}^{*}, and (1)-(11) as above with v_{r}^{*} replacing v_{r}. See Fig. 17(c).

If e is opposite to both $v_{r-1} v_{r}$ and $v_{s-1} v_{s}$ in G, then we embed the edge e onto the lattice path from v_{r} to v_{s} obtained by taking the following steps in the order listed: (0) a y-step from v_{r} to $v_{r}^{*},(1)-(11)$ as above with v_{r}^{*}, v_{s}^{*} replacing v_{r}, v_{s}, respectively, and (12) a y-step from v_{s}^{*} to v_{s}. See Fig. 17(d).

Since $t_{j}^{+}(e) \leqslant 2 k$ and $t_{j}^{-}(e) \leqslant 2 k$ and because $J(e) \leqslant k-1$, the embedding is between the planes $z=0$ and $z=3 k-1$. Moreover, edges from column i to column j are embedded between the planes $x=3 i$ and $x=3 j$. Also note that the lattice path representing e uses at most

- 6 lattice edges for steps (0), (2), (4), (8), (10) and (12) of the construction,
- $3 k-1$ lattice edges for steps (1) and (5) of the construction,
- $3 k-1$ lattice edges for steps (7) and (11) of the construction,
- $8 k$ lattice edges for steps (3) and (9) of the construction,
- $3 k-7$ lattice edges for step (6) of the construction.

Thus the lattice path representing e contains at most $17 k-3$ lattice edges. This completes the embedding of U-edges.

Remark. The up-to-date F consists of the embedding of C and all lattice paths representing all U-edges. We claim that F is a lattice graph with vertex set $V(F)=V(G)$. We need to show that any two lattice paths representing distinct edges of G are disjoint except possibly at their ends. This is done in the following lemma.
4.11. Lemma. Let e_{1} and e_{2} be distinct edges which are not B-edges, and let P_{1}, P_{2} be the lattice paths onto which e_{1}, e_{2} are embedded respectively as constructed above. Then P_{1} and P_{2} do not intersect except possibly at their ends.

Proof. By the remark following 4.8, we may assume that e_{1} is a U-edge with $J\left(e_{1}\right) \geqslant 2$. Let $e_{1}=v_{r} v_{s}$ and $e_{2}=v_{r^{\prime}} v_{s^{\prime}}$, and assume that v_{r} is in column i, v_{s} is in column j, and $j-i \geqslant 2$.

Case 1. e_{2} is an edge of C.
Then P_{2} is between $z=-1$ and $z=0$ or between $z=1$ and $z=0$; all x-steps of P_{2} are in the plane $z=0$; and every y-step of P_{2} uses a constant x-coordinate which is a multiple of 3 . Note that P_{1} is in the half-space $z \geqslant 0$ and all x-steps are taken in the half-space $z \geqslant 1$. Any y-step of P_{1} uses a constant x-coordinator which is not a multiple of 3 , except it corresponds to some $v_{\ell} v_{\ell}^{*}$. Hence, P_{1} and P_{2} are disjoint except possibly at their ends.

Case 2. e_{2} is a U-edge with $J\left(e_{2}\right)=0$.

By the planarity of G, either (i) $R_{e_{2}} \subset R_{e_{1}}$ or (ii) the interiors of $R_{e_{2}}$ and $R_{e_{1}}$ are disjoint. Since that P_{2} does not use any x-step, P_{2} lies entirely in a plane $x=x_{0}$. First, assume that (i) occurs. Then $3 i \leqslant x_{0} \leqslant 3 j$. If $3 i<x_{0}<3 j$ then because $t\left(e_{2}\right) \leqslant k+1$, steps (5)-(7) in the construction of P_{1} guarantee that P_{1} does not intersect P_{2} (P_{1} jumps over P_{2}). If $x_{0}=3 i$ or $x_{0}=3 j$ then P_{2} is contained entirely in the one side of the plane $x=x_{0}$ divided by the line containing the intersection of P_{1} with the plane $x=x_{0}$ (which is a single line segment). So P_{1} and P_{2} do not intersect except possibly at their ends. Now assume that (ii) occurs. Then either $x_{0} \leqslant 3 i$ or $x_{0} \geqslant 3 j$. If $x_{0}=3 i$ or $x_{0}=3 j$, then the same argument as for (i) applies. If $x_{0}<3 i$ or $x_{0}>3 j$, then P_{1} and P_{2} can be separated by a plane $x=3 i-\epsilon$ or $x=3 j+\epsilon$ for some small $\epsilon>0$, and hence, P_{1} and P_{2} are disjoint.

Case 3. e_{2} a U-edge with $J\left(e_{2}\right)=1$.
As before we have either (i) $R_{e_{2}} \subset R_{e_{1}}$ or (ii) the interiors of $R_{e_{2}}$ and $R_{e_{1}}$ are disjoint. Note that by $4.8, P_{2}$ is contained entirely between the two planes $x=3 q$ and $x=3(q+1)$ for some integer $q \geqslant 0$. Also note that (i) implies $3 i \leqslant 3 q$ and $3(q+1) \leqslant 3 j$, and (ii) implies $3 j \leqslant 3 q$ or $3(q+1) \leqslant 3 i$. Now a similar argument as used in Case 2 can be applied to show that P_{1} and P_{2} are disjoint except possibly at their ends.

Case 4. e_{2} is a U-edge with $J\left(e_{2}\right) \geqslant 2$.
We may assume that e_{2} jumps from column i^{\prime} to column j^{\prime} with $j^{\prime}-i^{\prime} \geqslant 2$. By planarity and by symmetry, we have the following possibilities: $i \neq i^{\prime}$ and $j \neq j^{\prime} ; i=i^{\prime}$ and $j=j^{\prime}$; $i=i^{\prime}$ and $j<j^{\prime}$; or $i^{\prime}<i$ and $j=j^{\prime}$.

Subcase 4(a). $i \neq i^{\prime}$ and $j \neq j^{\prime}$.
By symmetry, let $j \leqslant j^{\prime}$. If $j<i^{\prime}$, then P_{1} and P_{2} are separated by the plane $x=3 j+1$, and so, P_{1} and P_{2} are disjoint.

Now assume that $j=i^{\prime}$. Then P_{1} lies in the half space $x \leqslant 3 i^{\prime}$ and P_{2} lies in the half space $x \geqslant 3 i^{\prime}$. The only part of P_{1} that intersects the plane $x=3 i^{\prime}$ is a line segment consisting of only z-steps on top of some v_{ℓ} (or the y-step $v_{\ell} v_{\ell}^{*}$ and z-steps on top of v_{ℓ}^{*}), and is not used in P_{2} (except v_{ℓ}). So P_{1} and P_{2} are disjoint except possibly at their ends.

We may therefore assume that $i^{\prime}<j<j^{\prime}$. By planarity of $G, i^{\prime} \leqslant i<j<j^{\prime}$. If $i^{\prime}<i$ then P_{1} and P_{2} are separated by the surface $S=S_{1} \cup S_{2} \cup S_{3}$ defined by $S_{1}=\{(x, y, z): z=$ $\left.2 k+J\left(e_{2}\right)-0.5,3 i-0.5 \leqslant x \leqslant 3 j+0.5\right\}, S_{2}=\left\{(x, y, z): z \leqslant 2 k+J\left(e_{2}\right)-0.5\right.$, $x=3 i-0.5\}, S_{3}=\left\{(x, y, z): z \leqslant 2 k+J\left(e_{2}\right)-0.5, x=3 j+0.5\right\}$. So P_{1} and P_{2} are disjoint.

Subcase 4(b). $i^{\prime}=i$ and $j=j^{\prime}$.
Therefore, $e_{1}, e_{2} \in E_{i}^{+} \cap E_{j}^{-}$. So by planarity, we may assume $t_{i}^{+}\left(e_{2}\right)>t_{i}^{+}\left(e_{1}\right)$ and $t_{j}^{-}\left(e_{2}\right)>t_{j}^{-}\left(e_{1}\right)$. Furthermore, assume that $e_{1}=v_{r} v_{s}$ and $e_{2}=v_{r^{\prime}} v_{s^{\prime}}$.

Let us follow the path P_{1} as defined in 4.10 and show that none of the embedding steps leads to an intersection with P_{2}. We only state the argument for the 11 steps when e_{1} is adjacent to both $v_{r-1} v_{r}$ and $v_{s-1} v_{s}$ in G and e_{2} is adjacent to both $v_{r^{\prime}-1} v_{r^{\prime}}$ and $v_{s^{\prime}-1} v_{s^{\prime}}$ in G. The other cases are the same with v_{r}^{*} or v_{s}^{*} replacing v_{r} or v_{s}, respectively, and adding steps (0) or (12) which will not cause intersections because $y\left(v_{r}\right), y\left(v_{r}^{*}\right), y\left(v_{r \prime}\right)$, and $y\left(v_{r \prime}^{*}\right)$ are all distinct.
(1) P_{1} moves from $\left(3 i, y\left(v_{r}\right), 0\right)$ to ($\left.3 i, y\left(v_{r}\right), t_{i}^{+}\left(e_{1}\right)\right)$ using only z-steps. The only piece of P_{2} in the plane $x=3 i$ is the line segment from ($3 i, y\left(v_{r^{\prime}}\right), 0$) to ($3 i, y\left(v_{r^{\prime}}\right), t_{i}^{+}\left(e_{2}\right)$) using only z-steps. Since $y\left(v_{r}\right)$ and $y\left(v_{r^{\prime}}\right)$ are distinct, there is no intersection.
(2)-(4) P_{1} moves from ($\left.3 i, y\left(v_{r}\right), t_{i}^{+}\left(e_{1}\right)\right)$ to ($\left.3 i+1, y\left(v_{r}\right), t_{i}^{+}\left(e_{1}\right)\right)$ using one x^{+}step, then to $\left(3 i+1, Y\left(e_{1}\right), t_{i}^{+}\left(e_{1}\right)\right)$ using y-steps, and then to $\left(3 i+2, Y\left(e_{1}\right), t_{i}^{+}\left(e_{1}\right)\right)$ using a single x^{+}-step. All these steps occur in the space defined by $A=\{(x, y, z): 3 i<$ $x<3 i+2\}$ (with the exception of the endpoints). The only pieces of P_{2} in A are also the three line segments generated by steps (2)-(4) moving from ($\left.3 i, y\left(v_{r}\right), t_{i}^{+}\left(e_{2}\right)\right)$ to $\left(3 i+2, Y\left(e_{2}\right), t_{i}^{+}\left(e_{2}\right)\right)$. Since $t_{i}^{+}\left(e_{1}\right) \neq t_{i}^{+}\left(e_{2}\right)$ there is no intersection.
(5)-(7) P_{1} moves from $\left(3 i+2, Y\left(e_{1}\right), t_{i}^{+}\left(e_{1}\right)\right)$ to $\left(3 i+2, Y\left(e_{1}\right), 2 k+J\left(e_{1}\right)\right)$ using z^{+}-steps, then to $\left(3 j-2, Y\left(e_{1}\right), 2 k+J\left(e_{1}\right)\right)$ using x^{+}-steps, and then to $(3 j-$ 2, $\left.Y\left(e_{1}\right), t_{j}^{-}\left(e_{1}\right)\right)$ using z^{-}-steps. All these steps occur in the space defined by $A=$ $\{(x, y, z): 3 i+2 \leqslant x \leqslant 3 j-2\}$. The only pieces of P_{2} in A are also the three line segments generated by steps (5)-(7) moving from ($\left.3 i+2, Y\left(e_{2}\right), t_{i}^{+}\left(e_{2}\right)\right)$ to $\left(3 j-2, Y\left(e_{2}\right), t_{j}^{-}\left(e_{2}\right)\right)$. Since $Y\left(e_{1}\right) \neq Y\left(e_{2}\right)$ there is no intersection.
(8)-(10) The argument is similar to the one given for steps (2)-(4).
(11) The argument is similar to the one given for (1).

Hence, P_{1} and P_{2} are disjoint except possibly at their ends.
We have two cases remaining: $i=i^{\prime}$ and $j<j^{\prime}$, and $i^{\prime}<i$ and $j=j^{\prime}$. These two cases can be taken care of in the same way as for Subcase 2. We omit the details.

4.12. The embedding of B-edges in the half space $z \leqslant 0$.

The embedding of B-edges can be done in the same way as for U-edges: We repeat 4.64.10 with B -edges replacing U-edges, and z^{+}-step (respectively, z^{-}-step) replacing z^{-}step (respectively, z^{+}-step).

Remark. By using similar arguments for U-edges as we used for the B-edges, we can show that the lattice paths representing B-edges and edges on C are disjoint except at their ends. Now assume that e_{1} is a U-edge and e_{2} is a B-edge. By our embedding scheme, P_{1} is in the half space $z \geqslant 0$ and all x-steps are taken in $z \geqslant 1$, and P_{2} is in $z \leqslant 0$ and all x-steps are taken in $z \leqslant-1$. Moreover the only y-steps of P_{1} and P_{2} in the plane $z=0$ correspond to the single y-steps of type $v_{\ell} v_{\ell}^{*}$. Hence, P_{1} and P_{2} are disjoint except possibly at their ends.

Thus, the output of this algorithm is a lattice graph F which is an embedding of G in the cubic lattice. The following theorem asserts that F is ambient isotopic to G.
4.13. Theorem. The lattice graph F is ambient isotopic to G.

Proof. It is easy to see that we can isotope the lattice paths representing the edges of C to the plane $z=0$ by their projection in the z-direction.

Next we need to deform the lattice paths representing U-edges of G one at a time until it coincides with the corresponding U-edges of G. First, we deform the lattice paths onto
which the jump 0 U-edges are embedded: starting with the U-edges of the lowest level, and increasing the level by one at a time. If two U-edges are of the same level, then it does not matter which corresponding lattice path will be deformed first into the plane $z=0$. Then we deform the lattice paths representing U-edges in E_{j}^{-}in the order $j=2, \ldots, k-1$: starting with the U -edges of the lowest t_{j}^{-}-value. For each lattice path to deform the $t_{j}^{-}-$ value of the corresponding U-edge increases by one until E_{j}^{-}is exhausted. When that happens we move to E_{j+1}^{-}. The critical observation is that this can be done at any stage, since if we are looking at a lattice path P whose corresponding edge has the lowest levelvalue or t_{j}^{-}-value in the remaining lattice paths that have not been isotoped back to G, then there are no lattice paths of F "between" P and the plane $z=0$. That is, the deformation of the lattice path into the edge of G will encounter no obstruction from another lattice path of F that has not already been isotoped back in the plane $z=0$. The isotopy of U-edges can be done entirely in the half-space $z \geqslant 0$.

Finally we deform the B-edges in a similar way, entirely in the half-space $z \leqslant 0$.
By 4.5, 4.7, 4.8, and 4.10, the length of each lattice path so constructed is bounded above by $17 k-3$. Since there are a total of n U-edges and B-edges, the total number of lattice edges to embed the U-edges and B-edges is bounded above by $(17 k-3) n$. It follows that the length of F is bounded above by

$$
17 n k+2 n+11 k=17 n\lceil\sqrt{n}\rceil+2 n+11\lceil\sqrt{n}\rceil<17 n^{3 / 2}+19 n+11 \sqrt{n}+11 .
$$

Or, if one prefers a simpler form, we may bound this by $18 n^{3 / 2}+13 n$ for $n \geqslant 50$. Thus, we have the following theorem.
4.14. Theorem. Let G be a Hamiltonian RP-graph with n vertices, then G can be embedded onto a lattice graph F such that $L(F) \leqslant 17 n^{3 / 2}+19 n+11 \sqrt{n}+11$.

5. Rope length of knots and links

We can now use the embedding of Hamiltonian RP-graphs to prove results about the rope length of knot. First we start with lattice knots.
5.1. Theorem. Let K be a knot or a link, and assume that K has a Hamiltonian RP-graph G with n vertices. Then we can embed K into the cubic lattice with a total length at most $17 n^{3 / 2}+21 n+11 \sqrt{n}+11$.

Proof. By applying Theorem 4.13, we can embed G onto a lattice graph F. For a vertex v_{G} of G let v be the corresponding vertex of F. The opposite edges of G at v_{G} are represented by lattice paths using opposite lattice edges at v which correspond to y-steps and z steps. Let $v v_{1}, v v_{2}, v v_{3}, v v_{4}$ denote the lattice edges contained in F at v such that $v v_{1}$ corresponds to a y^{-}-step from $v, v v_{2}$ corresponds to a z^{+}-step from $v, v v_{3}$ corresponds to a y^{+}-step from $v, v v_{4}$ corresponds to a z^{-}-step from v. See Fig. 18(a). Then the following lattice paths are not used by F except for their ends: lattice path L_{v} from v_{1} to v_{3} obtained

Fig. 18. Changing F into the embedding of a knot or link.
by taking one x^{-}-step, two y^{+}-steps, and one x^{+}-step (see Fig. 18(b); and lattice path R_{v} from v_{1} to v_{3} obtained by taking one x^{+}-step, two y^{+}-steps, and one x^{-}-step, see Fig. 18(c).

We fix an orientation in the projection to keep track of the under and over crossings. At each vertex v of F that corresponds to a vertex of G, we replace the lattice path $v_{1} v v_{3}$ by L_{v}, or by R_{v} depending on whether $v_{1} v_{3}$ is an under-strand or over-strand in the projection of the knot K as shown in Fig. 18.

Therefore, at each crossing two additional x-steps are needed and the total length of the lattice embedding increases by $2 n$ when the lattice graph F is changed into a lattice embedding of the knot or link K.

By Theorem 5.1, we get the following theorem by simply substituting $4 \cdot \operatorname{Cr}(K)$ for n.
5.2. Theorem. Let K be a knot or link. If K is minimally Hamiltonian then we can embed K into the cubic lattice with a length at most $17(C r(K))^{3 / 2}+21 C r(K)+11 \sqrt{C r(K)}+11$.

By Theorems 5.1 and 3.6, we have the following theorem.
5.3. Theorem. Let K be a knot or link. Then K can be embedded into the cubic lattice with length at most $136(C r(K))^{3 / 2}+84 C r(K)+22 \sqrt{C r(K)}+11$.

Since a lattice knot or link can be changed into a $C^{1,1}$ knot or link of thickness $1 / 2$ (by replacing the corners where the knot makes turns with suitable quarter circles of radius $1 / 2$), we have the following:
5.4. Theorem. Let K be a knot or a link. Then the rope length of K is bounded above by $34(C r(K))^{3 / 2}+42 C r(K)+22 \sqrt{C r(K)}+22$ if K is minimally Hamiltonian. Otherwise the rope length of K is bounded above by $272(C r(K))^{3 / 2}+168 C r(K)+44 \sqrt{C r(K)}+22$.

6. Further discussions and questions

The main result in this paper is that the rope-length of a knot K is bounded above by $c \cdot(C r(K))^{3 / 2}$ for some constant $c>0$. There is apparently ample room left for the
improvement of the constant we obtained here. However, a more important issue is whether one can improve the power $3 / 2$. We know that there exist a constant $a>0$ and an infinite family of knots such that the rope-length of each knot K in that family is bounded below by $a \operatorname{Cr}(K)$ for some constant $a>0$. What happens between the power 1 and $3 / 2$? It is apparent from our embedding algorithm that the length of the embedded knot depends on the levels of the edges in $G \backslash C$ where G is a Hamiltonian projection of K (with at most 4. $\operatorname{Cr}(K)$ vertices) and C is a Hamilton cycle in G. In fact, we have the following
6.1. Theorem. Let $\left\{K_{n}\right\}$ be a family of knots (or links). If there exists a constant $m>0$ such that each K_{n} in this family admits a Hamiltonian projection G_{n} with at most $m \cdot \operatorname{Cr}\left(K_{n}\right)$ vertices and a Hamilton cycle C_{n} such that every edge in $G_{n} \backslash C_{n}$ has a level number at most m with at most m exceptions, then there exists a constant $c>0$ such that $L\left(K_{n}\right) \leqslant c \cdot \operatorname{Cr}\left(K_{n}\right)$ for every K_{n} in this family.

If the answer to Problem 1.2 is negative, then there must exist an infinite family of knots $\left\{K_{n}\right\}$ such that the condition in the above theorem fails to hold. Since the nature of Problem 1.2 calls for explicit construction of thick knots, we do not have many options other than designing efficient embedding algorithms on the cubic lattice. To this extent, the study of Hamilton cycles in G lends us a rather powerful tool. Many questions can be raised in this regard. For instance, one may ask what kind of knots have projections that would satisfy the condition in the above theorem. One may also explore the possibility of changing the known projections of a family of knots so the new projections would then satisfy the condition of the theorem.

We conclude this paper with the following open questions.
6.2. Question. Is it true that $\sup \{L(K) / C r(K)\}=\infty$ (where the supremum is taken over all knots and links)?
6.3. Question. For any $1<p \leqslant 3 / 2$, are there a constant $a>0$ and an infinite family of knots and links such that for any member K in the family, $L(K) \geqslant a \cdot(C r(K))^{p}$?
6.4. Question. Is it possible to improve the embedding algorithm in Section 4 to give an upper bound $\mathrm{O}\left((\operatorname{Cr}(K))^{p}\right)$ for some constant $1 \leqslant p<3 / 2$?

None of the questions seems easy to solve, but the authors feel that improvements over the embedding algorithm are most promising and Question 3 above may have an affirmative answer.

References

[1] C.C. Adams, The Knot Book, Freeman, New York, 1994.
[2] G. Buck, Four-thirds power law for knots and links, Nature 392 (1998) 238-239.
[3] G. Buck, J. Simon, Thickness and crossing number of knots, Topology Appl. 91 (3) (1999) 245-257.
[4] G. Burde, H. Zieschang, Knots, De Gruyter, Berlin, 1985.
[5] J. Cantarella, et al., Private communication.
[6] J. Cantarella, R.B. Kusner, J.M. Sullivan, Tight knot values deviate from linear relations, Nature 392 (1998) 237-238.
[7] J. Cantarella, R.B. Kusner, J.M. Sullivan, On the minimum ropelength of knots and links, Invent. Math. 150 (2) (2002) 257-286.
[8] Y. Diao, The additivity of crossing numbers, Preprint.
[9] Y. Diao, C. Ernst, The complexity of lattice knots, Topology Appl. 90 (1-3) (1998) 1-9.
[10] Y. Diao, C. Ernst, The crossing numbers of thick knots and links, in: Contemp. Math., Vol. 304, 2002, pp. 163-174.
[11] Y. Diao, C. Ernst, E.J. Janse Van Rensburg, Thicknesses of knots, Math. Proc. Cambridge Philos. Soc. 126 (1999) 293-310.
[12] Y. Diao, C. Ernst, E.J. Janse Van Rensburg, Upper bounds on the linking number of thick links, J. Knot Theory Ramifications 11 (2) (2002) 199-210.
[13] Y. Diao, C. Ernst, M. Thistlethwaite, The linear growth in rope length of a family of knots, J. Knot Theory Ramifications, submitted for publication.
[14] F.B. Dean, A. Stasiak, T. Toller, N.R. Cozzarelli, Duplex DNA knots produced by Escherichia coli topoisomerase I, J. Biol. Chem. 260 (1985) 4795-4983.
[15] H. Johnston, J. Cantarella, An upper bound on the minimal edge number of an n-crossing lattice knot, Preprint.
[16] V. Katritch, J. Bednar, D. Michoud, R.G. Scharein, J. Dubochet, A. Stasiak, Geometry and physics of knots, Nature 384 (1996) 142-145.
[17] V. Katritch, W.K. Olson, P. Pieranski, J. Dubochet, A. Stasiak, Properties of ideal composite knots, Nature 388 (1997) 148-151.
[18] L. Kauffman, State models and the Jones polynomial, Topology 26 (3) (1987) 395-407.
[19] K.V. Klenin, A.V. Vologodskii, V.V. Anshelevich, A.M. Dykhne, M.D. Frank-Kamenetskii, Effect of excluded volume on topological properties of circular DNA, J. Biomol. Struct. Dyn. 5 (1988) 1173-1185.
[20] W.B.R. Lickorish, An Introduction to Knot Theory, in: Graduate Text in Math., Vol. 175, Springer, Berlin, 1997.
[21] R. Litherland, J. Simon, O. Durumeric, E. Rawdon, Thickness of knots, Topology Appl. 91 (3) (1999) 233244.
[22] W. Menasco, M. Thistlethwaite, The tait flyping conjecture, Bull. Amer. Soc. 25 (2) (1991) 403-412.
[23] K. Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26 (2) (1987) 187-194.
[24] E. Rawdon, J. Simon, The Möbius energy of thick knots, Topology Appl. 125 (1) (2002) 97-109.
[25] V.V. Rybenkov, N.R. Cozzarelli, A.V. Vologodskii, Probability of DNA knotting and the effective diameter of the DNA double helix, Proc. Natl. Acad. Sci. USA 90 (1993) 5307-5311.
[26] S.Y. Shaw, J.C. Wang, DNA knot formation in aqueous solutions, in: K.C. Millett, D.W. Sumners (Eds.), Random Knotting and Linking, World Scientific, Singapore, 1994, pp. 55-66.
[27] A. Stasiak, V. Katritch, J. Bednar, D. Michoud, J. Dubochet, Electrophoretic mobility of DNA knots, Nature 384 (1996) 122.
[28] M. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26 (3) (1987) 297-309.
[29] W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 83 (1956) 99-116.
[30] W.T. Tutte, Graph Theory, Cambridge University Press, New York, 1984.
[31] J.C. Wang, DNA topoisomerases, Sci. Amer. 247 (1982) 94-109.
[32] J.C. Wang, DNA topoisomerases, Ann. Rev. Biochem. 54 (1985) 665-697.
[33] H. Whitney, A theorem on graphs, Ann. of Math. 32 (1931) 378-390.

[^0]: ${ }^{4}$ Partially supported by NSF grant DMS 9970527.

 * Corresponding author. E-mail addresses: ydiao@uncc.edu (Y. Diao), claus.ernst@wku.edu (C. Ernst), yu@math.gatech.edu (X. Yu).

