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Abstract

For a knot or linkK , L(K) denotes the rope length ofK andCr(K) denotes the crossing numb
of K . An important problem in geometric knot theory concerns the bound onL(K) in terms of
Cr(K). It is well known that there exist positive constantsc1, c2 such that for any knot or linkK ,
c1 · (Cr(K))3/4 � L(K)� c2 · (Cr(K))2. In this paper, we prove that there exists a constantc > 0
such that for any knot or linkK , L(K)� c · (Cr(K))3/2. This is done through the study of regul
projections of knots and links as 4-regular plane graphs. We show that for any knot or linkK there
exists a knot or linkK ′ and a regular projectionG of K ′ such thatK ′ is of the same knot type as th
of K , G has at most 4· Cr(K) crossings, andG is a Hamiltonian graph. We then use this resul
develop an embedding algorithm. Using this algorithm, we are able to embed any knot or linkK into
the simple cubic lattice such that the length of the embedded knot is of order at most O((Cr(K))3/2).
This result in turn establishes the above mentioned upper bound onL(K) for smooth knots and links
Moreover, for many knots and links with special Hamiltonian projections, our embedding algo
ensures that the bound onL(K) can be of order O(Cr(K)). The study of Hamilton cycles in a regul
knot projection plays a very important role and many questions can be raised in this direction
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1. Introduction
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In this paper, we are interested in geometric properties of knots when the
considered as physical subjects, that is, when the knots are tied with ropes whic
thickness and volumes. This is in sharp contrast with the traditional mathematical trea
of knots which views knots as volumeless simple closed curves in the 3-dimen
spaceR3. It is well known that knots play an important role in studying the behavio
various enzymes known as topoisomerases, see, for example, [14,16,17,27,31,32
the (effective) diameter of DNA can be measured, it is reasonable to treat it as a rop
certain physical properties, see, for example, [26,25]. In many cases it is also impor
recognize the geometric shapes and volumes of physical knots [19]. An essential iss
is to relate the length of a rope (with certain thickness) to those knots that can be tie
this rope. Such information plays an important role in studying the effect of topolo
entanglement in subjects such as circular DNA and long chain polymers, where
occur and cannot be treated as volumeless curves.

There are different ways to define the thickness of a knot [7,11,21]. In this pape
will be using the so-calleddisk thicknessintroduced in [21] and described as follows. L
K be aC2 knot. A numberr > 0 is said to benice if for any distinct pointsx, y on
K, we haveD(x, r) ∩ D(y, r) = ∅, whereD(x, r) andD(y, r) are the discs of radiu
r centered atx andy which are normal toK. The disk thicknessof K is defined to be
t (K)= sup{r: r is nice}.

It is shown in [7] that the disk thickness definition can be extended to allC1,1 curves.
Therefore, we will restrict our discussions to such curves in this paper. However, the
obtained in this paper also hold for other thickness definitions with a suitable change
constant coefficient.

1.1. Definition. For any given knotK, athick realizationK0 ofK is a knot of unit thickness
which is of the same knot type as that ofK. Therope lengthL(K) of K is the infimum
of the length ofK0 taken over all thick realizations ofK. The existence ofL(K) is shown
in [7].

In this paper, we are interested in finding lower and upper bounds onL(K) in terms of
Cr(K), the minimum crossing number ofK.

It is shown in [2,3] that there is a constanta > 0 such that for any knotK, L(K) �
a · (Cr(K))3/4 (this is called thethree-fourth power law). The constanta is estimated to
be at least 1.105 by a result in [3]. This is improved to 2.135 in [24].

In [16], it is reported that a linear relation betweenL(K) and Cr(K) is observed
Consequently, one conjectures that the minimum rope length of any knotK is proportional
to its crossing number. In other words, there exist constants 0< a < b such thata �
L(K)/Cr(K)� b for any nontrivial knotK. Half of this conjecture is proven to be fal
since the three-fourth power law is also shown to be achievable for some knot fa
[6,9]. That is, there exists an infinite family{Kn} of knots and a constanta0 > 0 such that
Cr(Kn) → ∞ asn → ∞ andL(Kn) � a0 · (Cr(Kn))

3/4. However, the other half of th
conjecture is still open. That is, it is still not known if there exists an infinite family{Kn}
of knots such thatL(Kn)/Cr(Kn) → ∞ ask → ∞. In fact, for a long time, it was no
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clear whether there exists an infinite family{Kn} of prime knots such thatCr(Kn)→ ∞
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asn→ ∞ andL(Kn) is of order more than O((Cr(Kn))
3/4). It is shown very recently in

[13] that there indeed exists an infinite family{Kn} of prime knots such thatCr(Kn)→ ∞
asn → ∞ andL(Kn) = O(Cr(Kn)). Let us restate the above unsolved conjecture as
following problem.

1.2. Problem. Does there exist a constantc > 0 such that for any knot or linkK, we have

L(K)� c · Cr(K)?

In the case thatK is a link of two components (of unit thickness) with lengthsL1 and
L2, it is shown in [12] thatL1L

1/3
2 andL1/3

1 L2 are both bounded below bya1 · |�(K)|,
wherea1 > 0 is a constant and�(K) is the linking number between the two compone
of K. This result also holds when�(K) is replaced byCr(K), see [10]. For a thick linkK
of m components, it is well known that the length ofK is of the order at leastm. So it is
not difficult to construct links whose lengths grow linearly with their crossing numbe

There is very little in the literature about the upper bounds onL(K). It is known that
there is a constanta2 > 0 such that for any knotK, L(K) � a2 · (Cr(K))2 (see [15,7]).
The constanta2 is estimated to be around 24 [7] and is improved to less than 3
recent report [5]. The main objective of this paper is to establish the following signifi
breakthrough on the upper bound of the rope length of knots.

1.3. Theorem. There exists a constantc > 0 such that for any knotK,

L(K)� c · (Cr(K)
)3/2

.

Due to difficulties of dealing with a thick smooth knot, a physical knot is often mode
by a polygon in the cubic lattice, called alattice knot. (The cubic lattice consists of a
points in R

3 with integral coordinates and all unit line segments joining these poi
We will first prove Theorem 1.3 for lattice knots. Since knots realized in the cubic la
can easily be modified into smoothC1,1 knots of thickness 1/2, Theorem 1.3 can then b
extended to smooth knots as well.

To prove Theorem 1.3 for lattice knots, we will design an algorithm which embe
knot into the cubic lattice. This algorithm will make use of a particular projection of a
where the projection can be thought of as a 4-regular Hamiltonian graph (to be defi
Section 3).

This paper is organized as follows. In Section 2, we view regular projections of kn
graphs and study their connectivity. In Section 3, we show that every knotK has a regula
projection which is a Hamiltonian graph with at most 4·Cr(K) vertices. In Section 4, suc
a regular projection is embedded into the cubic lattice using at mostc · (Cr(K))3/2 unit
line segments in the cubic lattice. Then in Section 5, the embedding produced in Se
is used to prove Theorem 1.3 for lattice knots and finally for smooth thick knots.
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2. Regular projection graphs
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In this section, we introduce some basic results in knot theory and graph theo
addition, some new terms are defined as they will be needed in our discussions
terms used in this section are well-known definitions in knot theory and graph theor
reader is referred to [1,30].

A geometric realizationof a graphG is an embedding ofG in R
2 or R

3 such that
the edges ofG are represented by simple arcs that do not intersect each other in
interior and the vertices ofG are represented by the end points of these arcs. Of cour
two edges ofG are adjacent, then the two corresponding arcs in the geometric realiz
of G will share a common vertex of the geometric realization. It is convenient to
the cubic lattice as the geometric realization inR

3 of the infinite graph with vertex se
{(x, y, z): x, y, z ∈ N} and edge set{(x, y, z)(x ′, y ′, z′): x, y, z, x ′, y ′, z′ ∈ N, (x − x ′)2 +
(y − y ′)2 + (z− z′)2 = 1}. Here,N is the set of all integers and the edges are represe
by the unit line segments between their ends. We say that a graphG is planar if it has
a geometric realization in a plane. Such a geometric realization is called aplane graph.
Plane graphs are related to knots through regular projections of knots.

A common measure for the complexity of a knot or linkK is its crossing number,
which is the minimum number of crossings in all possible regular projections of k
having same knot typeK. This is denoted byCr(K). Of course, by this definition, ifK
andK ′ are of the same knot type, thenCr(K)= Cr(K ′). We say thatP(K) is aminimum
projectionof K if it is a regular projection withCr(K) crossings.

Let K be a knot or link and letP(K) be a regular projection ofK. If we treat the
crossings inP(K) as vertices and the arcs ofP(K) joining these crossings as edges, th
P(K) can be viewed as a 4-regular plane graph. Thus, from now on, we may v
regular projectionP(K) as a 4-regular plane graphG. To stress the fact thatG arises from
a regular projection of a knot or linkK, we will call it anRP-graphof K. If G arises from
a minimum projection of a knot or linkK, we will then call it aminimum RP-graphof K.
Note that any 4-regular plane graph is an RP-graph of some knot or link. Thus, a gr
an RP-graph if, and only if, it is a 4-regular plane graph.

If an RP-graphG of a knot (or link)K contains a loop edgee incident with a vertexw,
thenK can be isotoped to some knot (or link)K ′ through a Reidemeister move such th
K ′ has an RP-graphG′ which can be obtained fromG by replacinge, w, and the othe
two edges incident withw by a single edge. See Fig. 1. For the definition and prope
of Reidemeister moves, see [1] or [4]. It follows that we only need to consider RP-g
without loop edges.

Therefore, for RP-graphs in the rest of this paper, we will assume that no loop
are present. It follows that every vertex is incident with four distinct edges. In ord

Fig. 1. Loop edges in RP-graphs are removable.
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Fig. 2. Pairs of opposite edges:{e1, e3}, {e2, e4}.

Fig. 3. The connected sumK1 #K2 of K1 andK2.

recover a knot from an RP-graph, it is important to keep track of the over-strand
under-strands at crossings. Therefore, we introduce the concepts of adjacent and o
edges in RP-graphs.

2.1. Definition. Let G be an RP-graph, letv be a vertex ofG, and lete1, e2, e3, e4 be the
edges ofG incident withv. Suppose thate1, e2, e3, ande4 occur aroundv in this cyclic
order. See Fig. 2. Then we say thatei is oppositeto ej if |j − i| = 2, andei andej are
adjacentotherwise.

Recall that a composite knotK can be constructed from two nontrivial knotsK1 and
K2 as shown in Fig. 3 by cutting the arcs marked with X and then adding the dashe
We say thatK is aconnected sumofK1 andK2 in this case and also denoteK byK1 #K2.
One can similarly define the connected sum of more than two knots.

The following theorems are classical results in knot theory [4] or [20].

2.2. Theorem. Any nontrivial knotK can be decomposed as the connected sum of p
knots. That is, for any nontrivial knotK, there exist prime knotsK1, K2, . . . , Kj (j � 1)
such thatK =K1 #K2 # · · · #Kj .

2.3. Theorem [18,23,28].For any knotsK1 andK2, we have Cr(K1 #K2) � Cr(K1) +
Cr(K2). If K1 and K2 are alternating knots, then we have Cr(K1 #K2) = Cr(K1) +
Cr(K2).

It is still an open problem whetherCr(K1 #K2)= Cr(K1)+ Cr(K2) is true for any two
knotsK1 andK2, although it has recently been proven by one of the authors that t
also true for all torus knots [8]. Since we are not sure ifCr(K1 #K2)= Cr(K1)+ Cr(K2)



12 Y. Diao et al. / Topology and its Applications 136 (2004) 7–36

in general, the upper bounds onL(K1) andL(K2) (in terms ofCr(K1) andCr(K2)) do
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not automatically provide us an upper bound onL(K1 #K2) in terms ofCr(K1 #K2).
We devote the rest of this section to the study of connectivity of RP-graphs.
A graphG is said to beconnectedif for any u, v ∈ V (G), there is a path inG from u

to v. A componentofG is a maximal subgraph ofG that is connected. It can be shown th
G is connectedif, and only if, for any partitionV1 andV2 of V (G), G has an edge with
one end inV1 and the other inV2.

For anyX ⊂ V (G), letG−X denote the subgraph ofG obtained fromG by deleting
vertices ofG in X and edges ofG with at least one end inX. Similarly, for anyY ⊂E(G),
we useG− Y to denote the subgraph ofG obtained fromG by deleting the edges inY
(but keeping all vertices ofG). We say thatG is k-connected, wherek is a positive integer
if |V (G)| � k + 1 and, for any subsetX ⊂ V (G) with |X|< k, G−X is connected. We
say thatG is k-edge-connectedif, for any Y ⊂ E(G) with |Y |< k, G− Y is connected
Theconnectivity(respectively,edge-connectivity) of G is the largest integerk such thatG
is k-connected.

An easy observation is that an RP-graph is at most 4-connected and at most 4
connected. For a minimum RP-graph of a knot, we can say more.

2.4. Lemma. If G is a minimum RP-graph of a nontrivial knot or linkK, then

(a) G is 2-connected,
(b) the edge connectivity ofG is 2 or 4, and
(c) if K is a prime knot or link, thenG is 4-edge-connected.

Proof. SupposeG is not 2-connected. ThenG has a single vertexv such thatG − {v}
is disconnected. See Fig. 4. By twisting part of the corresponding projectionP(K) as
shown in Fig. 4, we obtain a new projection ofK with crossing numberCr(K) − 1, a
contradiction. So (a) holds.

Assume that there is a setY ⊂ E(G) of size at most four such thatG − Y is not
connected. Then there exists a simple closed curveα which intersectsG exactly once
at each edge inY . Since there must be an even number of intersections between an
simple closed curves in general position in a plane, we have|Y | = 2 or 4. So (b) holds.

Now assume thatG is not 4-edge-connected. ThenG is 2-edge-connected. So there
a setY ⊂ E(G) such that|Y | = 2 andG − Y is not connected. In fact,G − Y has two
components, sayG1 andG2. Moreover, there is a topological 2-sphereS2 intersectingK
exactly twice such that the part ofK corresponding toG1 is insideS2 and the part ofK
corresponding toG2 is outsideS2. If one of these two parts ofK corresponding toG1 and
G2 forms a trivial knot with an arc onS2 connecting the points inK ∩ S2, thenG is not a

Fig. 4. 1-Connected RP-graph is not minimum.
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minimum RP-graph. If both parts form nontrivial knots with an arc onS2 connecting the
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points inK ∩ S2, thenK is not a prime knot by definition. So we have (c).✷

3. Hamiltonian knots and graphs

Let G be a graph. AHamilton cyclein G is a cycle that contains all vertices ofG.
A graph with a Hamilton cycle is said to beHamiltonian. In this section, we first stud
the following question: given a knotK, doesK always have a minimum RP-graph whi
is Hamiltonian? After obtaining a negative answer to this question, we then ask a w
question: given a knotK, doesK have an RP-graph that is Hamiltonian? Furthermore,K
does have a Hamiltonian RP-graph, how many crossings does this Hamiltonian RP
have?

We show that any knotK has a Hamiltonian RP-graph with at most 4· Cr(K) vertices.
This result will be used in the subsequent sections to establish a thick realization ofK with
length at most O((Cr(K))3/2). For convenience, let us introduce the following concep

3.1. Definition. A knotK is said to beHamiltonianif there exists some knotK ′ such that
K ′ andK have the same knot type andK ′ has a Hamiltonian RP-graph (not necessa
minimum). A knotK is said to beminimally Hamiltonianif there exists some knotK ′ such
thatK ′ andK have the same knot type andK ′ has a Hamiltonian minimum RP-graph.

Almost all minimum RP-graphs of small prime knots as listed in the knot table
Hamiltonian. Notice that the knot 946 has a non-Hamiltonian minimum RP-graph as sho
in the left portion of Fig. 5. However, it is minimally Hamiltonian since it does hav
minimum RP-graph that is Hamiltonian as shown in the right portion of Fig. 5.

So is it true that all prime knots are minimally Hamiltonian? The following theo
gives a negative answer to this question.

Fig. 5. Non-Hamiltonian and Hamiltonian minimum RP-graphs of 946.
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3.2. Theorem. Not all prime knots are minimally Hamiltonian.
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Proof. It suffices to show an example. We claim that 935 is a prime knot such that none
its minimum RP-graphs is Hamiltonian.

Notice that 935 is an alternating knot that can be obtained from the knot 946 shown in
the left portion of Fig. 5 by taking the mirror image of the three crossings on the lef
an RP-graph of 935 is identical to the RP-graph of 946 shown in the left portion of Fig. 5
which is not Hamiltonian.

Therefore, it suffices to show that any minimum projection of 935 leads to an RP-grap
that is isomorphic to the one shown. Aflypeis the modification of a knot diagram as sho
in Fig. 6.

Clearly a flype does not alter the number of crossings in the knot diagram nor d
change the knot type. In [22] it is shown that for an alternating knotK, any minimum
regular projection ofK can be obtained from any given minimum regular projection oK
through a finite sequence of flypes.

Note that 935 is an alternating knot, and one can easily check that any flype o
minimum projection of 935 shown in Fig. 5 produces a minimum RP-graph isomorphi
the original one. Therefore 935 is not minimally Hamiltonian. ✷

Note that the above proof cannot be applied to the knot 946 since 946 is nonalternating
and the modification of its diagram shown in Fig. 5 is not a sequence of flypes.

Our next result shows that Hamiltonicity is preserved under connected sum.

3.3. Theorem. Suppose for eachi ∈ {1, . . . , j }, Ki is knot which admits a Hamiltonia
RP-graph withni vertices. ThenK =K1 #K2 # · · · #Kj admits a Hamiltonian RP-grap
with n1 + · · · + nj vertices.

Proof. For i = 1,2, let Gi be a Hamiltonian RP-graph ofKi contained in some plan
Pi , and letHi be a Hamilton cycle inGi . Notice thatGi divides the planePi into closed
regions. Choose a point Oi in one of these regions whose boundary contains an edgeuivi
of Hi , and choose a circleCi contained inPi centered at Oi that does not intersectGi .

An inversion of the planePi aboutCi mapsGi to a graphG′
i isomorphic toGi , maps

Hi to a Hamilton cycleH ′
i in G′

i , and mapsuivi to an edgeu′
iv

′
i of H ′

i . This inversion
in the planePi aboutCi can be extended to an inversion inR

3 aboutS2
i , whereS2

i is the
2-sphere withCi as a great circle. We can assume that the knotKi is very close to the
planePi and, for a suitably chosenCi , we can assume thatS2

i does not intersect the kno
Ki . Then, this inversion mapsKi to a knotK ′

i that is of the same knot type as that of t
mirror image ofKi . Furthermore, sinceKi is close toPi , we can assume that (after a sm

Fig. 6. A flype in a knot diagram.
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Fig. 7. Connecting two Hamilton cycles.

isotopy ofK ′
i ) G

′
i is the RP-graph ofK ′

i in Pi . So the mirror imageK ′′
i of K ′

i through the
planePi is of the same knot type as that ofKi . Also,G′

i is the RP-graph ofK ′′
i in Pi . So

G′
i is still an RP-graph ofKi . Notice thatH ′

i is a Hamilton cycle inG′
i andu′

iv
′
i is on the

boundary of the unbounded region ofPi −G′
i . See Fig. 7 for an example.

We can now obtain a new graphG from the disjoint union ofG′
1 andG′

2 (as illustrated
in Fig. 7) by deleting edgesu′

1v
′
1 andu′

2v
′
2 and by adding edgesu′

1u
′
2 andv′

1v
′
2. We also

obtain a Hamilton cycleH of G from the disjoint union ofH ′
1 andH ′

2 by deleting edge
u′

1v
′
1 andu′

2v
′
2 and by adding edgesu′

1u
′
2 andv′

1v
′
2. Clearly,G is a Hamiltonian RP-grap

of K ′′
1 #K ′′

2 and|V (G)| = |V (G′
1)| + |V (G′

2)| = n1 + n2.
The same argument can be repeated forK ′′

1 #K ′′
2 andK3, and so on. So the stateme

of the theorem holds by induction on the number of summands.✷
As mentioned before, our main objective in this section is to show that every kn

link is Hamiltonian. Notice that RP-graphs are plane graphs. Whitney [33] showed in
that every 4-connected plane triangulation contains a Hamilton cycle. In 1956, Tutt
generalized Whitney’s result to all plane graphs.

3.4. Theorem. If G is a 4-connected plane graph, thenG has a Hamilton cycle.

Using Theorem 3.4, we are able to prove the following theorem.

3.5. Theorem. If K is a prime knot or link, thenK admits a Hamiltonian RP-graph wit
at most4 · Cr(K) vertices.

Proof. Let K be a prime knot (or link) and letG be a minimum RP-graph ofK in a
planeP . By Lemma 2.4,G is 2-connected and 4-edge-connected. The proof procee
follows. First, we construct a plane graphH fromG such thatH is 4-connected and thu
has a Hamilton cycleC. We then useC andH to construct a knotK ′ such thatK ′ and
K have the same knot type andK ′ has a Hamiltonian RP-graph with at most 4· Cr(K)
vertices.

(I) The construction of a plane graphH fromG.
For each vertexv of G, let Dv be a disk inP centered atv with a small radius such

thatDv contains no other vertex ofG and the boundaryγv of Dv intersectsG at exactly
four pointsv1, v2, v3 andv4. Let Γv = {v, v1, v2, v3, v4} and call it thevertex cluster atv
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Fig. 8. The graphH around a vertex clusterΓv .

to stress the fact that the pointsv1, v2, v3 andv4 are created aroundv and will be vertices
of H . These points in

⋃
v∈V (G) Γv divide each edge ofG into 3 arcs and divide eachγv

into 4 arcs. LetH denote the graph whose vertex set is
⋃

v∈V (G) Γv and whose edge se
consists of all these arcs inG andγv created by the points in

⋃
v∈V (G) Γv . ThenH is a

4-regular plane graph. A local picture ofH around a vertex clusterΓv is shown in Fig. 8.

(II) The proof thatH is 4-connected.
Assume to the contrary thatH is not 4-connected. Then there exists a setX ⊂ V (H)

such that|X| � 3 andH −X is not connected. ChooseX such that|X| is minimum. Hence
there exists a partitionX1 andX2 of V (H)−X such thatH has no edge with one end
X1 and the other inX2. Since|X| is minimum, each vertex inX is adjacent to a vertex i
X1 and also to a vertex inX2.

(1) We claim that for anyv ∈ V (G), v /∈X.
Suppose (1) does not hold. Letv ∈ V (G) such thatv ∈X. Thenv is adjacent to a verte

in X1 and a vertex inX2. SinceH has no edge fromX1 to X2 and by the local structur
of H on Γv , |X| = 3 andX ⊂ Γv . For i = 1,2, letVi = {u ∈ V (G): Γu ⊂ Xi}. SinceH
is 4-regular and|X| = 3, |Xi | � 2 for i = 1,2. SinceX ⊂ Γv , Vi �= ∅ for i = 1,2. Clearly,
V1, V2 form a partition ofV (G)− {v} such thatG has no edge fromV1 to V2. This means
thatG− {v} is not connected, a contradiction (sinceG is 2-connected). So we have (1).

By (1) and by the local structure ofH onΓv , we have

(2) For anyv ∈ V (G), eitherΓv ⊂X ∪X1 or Γv ⊂X ∪X2.
For i = 1,2, letUi = {u ∈ V (G): Γu ⊂ X ∪Xi}. ThenU1 andU2 form a partition of

V (G). We claim that

(3)G has at most|X| edges fromU1 toU2.
For any edgee of G connectingU1 to U2, it contains two vertices ofV (H)\V (G) by

the construction ofH . At least one of them is inX, since otherwise there is any edge
E(H) connectingX1 toX2. This shows (3).

Since|X| � 3, (3) contradicts Theorem 2.4 which asserts thatG is 4-edge-connected
ThusX cannot disconnectH , and so,H is 4-connected.

(III) The construction of a knotK ′ such thatK ′ andK have the same knot type andK ′
has a Hamiltonian RP-graph with at most 4· Cr(K) vertices.

By Theorem 3.4,H has a Hamilton cycle, sayC. Since a Hamilton cycle passes ea
vertex ofH exactly once, for any vertex clusterΓv either (a)C enters and leavesΓv exactly
once or (b)C enters and leavesΓv exactly twice. We will make changes to the project
of K corresponding toG by applying a sequence of Reidemeister moves according t
or (b). The result will be a knotK ′ isotopic toK such thatK ′ has a Hamiltonian RP-grap
with at most 4· Cr(K) vertices.
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Fig. 9. No change to a crossing atv whenΓv is of type (a).

The middle portion of Fig. 9 shows all possibilities whenΓv is of type (a), where the
thickened edges are inC. For each vertex clusterΓv of type (a), we leave unchanged t
crossing atv in the projection ofK corresponding toG. See bottom portion of Fig. 9.

The top portion of Fig. 10 shows all possibilities whenΓ (v) is of type (b), where the
thickened edges are inC. For each vertex clusterΓv of type (b), we first make the chang
locally as shown in the middle section of Fig. 10. Notice that these changes do not
the Hamilton cycleC, soC is still a Hamilton cycle in the resulting new graphH ′. We
then modifyK to a new knotK ′ through some suitable Reidemeister moves as show
the bottom portion of Fig. 11 such that the RP-graph ofK ′ isH ′.

Therefore we have constructed a knotK ′ such that: (1)K ′ is obtained fromK by a
sequence of Reidemeister moves (and so,K ′ is isotopic toK); (2)K ′ has a projectionH ′
with at most 4· Cr(K) crossings; and (3)C is a Hamilton cycle inH ′. ✷
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Fig. 10. The changes to a crossing atv whenΓv is of type (b).

The following theorem is the main result of this section.

3.6. Theorem. Every knot or linkK admits a Hamiltonian RP-graph with at most4·Cr(K)
vertices.

Proof. Suppose Theorem 3.6 is false. LetK be a counter-example with the smalle
minimum crossing number. That is, Theorem 3.6 holds for any knot with crossing nu
less thanCr(K). Let G be a minimum projection ofK. By Lemma 2.4,G has edge-
connectivity either 2 or 4. In fact,G has edge-connectivity 2, for otherwise, the same p
of Theorem 3.5 shows thatK has a Hamiltonian RP-graph with at most 4· Cr(K) vertices,
contradicting the assumption thatK is a counter-example to Theorem 3.6.

So letu′
1u

′
2, v

′
1v

′
2 be the edges ofG such thatG − {u′

1u
′
2, v

′
1v

′
2} has two component

G′
1 andG′

2, u′
1, v

′
1 ∈ V (G′

1), andu′
2, v

′
2 ∈ V (G′

2). See Fig. 7 for an example. Therefo
there exists a topological 2-sphereS2 intersectingK exactly twice such that the part o
K corresponding toG′

1 is insideS2 and the part ofK corresponding toG′
2 is outsideS2.

For i = 1,2, let Gi be the graph obtained fromG′
i by adding the edgeu′

iv
′
i . ThenG1

(respectively,G2) is an RP-graph of the knotK1 (respectively,K2) formed by the part o
K inside (respectively, outside)S2 and an arc onS2 connecting the points inK ∩ S2.

BecauseCr(K1)+ Cr(K2)� Cr(K)= |V (G1)| + |V (G2)| and|V (Gi)| � Cr(Ki) for
i = 1,2, we haveCr(Ki) = |V (Gi)| for i = 1,2. So fori = 1,2, Gi is a minimum RP-
graph ofKi . SinceCr(K1) <Cr(K) andCr(K2) <Cr(K), Theorem 3.6 holds forK1 and
K2 by the choice ofK. That is,Ki has a Hamiltonian RP-graph with at most 4· · ·Cr(Ki)
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also has a Hamiltonian RP-graph with at most 4· Cr(K) vertices, a contradiction.✷

4. The embedding of RP-graphs

In this section, we will show a way to embed a Hamiltonian RP-graph of a knotK into
the cubic lattice, and such an embedding will then be modified in the next section to
thick realization ofK.

Recall that the cubic lattice is the infinite graph inR
3 whose vertices are points wit

integer coordinates and whose edges are unit length line segments connecting thes
Hence, there are three types of edges in the cubic lattice: those parallel to thex-axis, those
parallel to they-axis, and those parallel to thez-axis. An edge of the cubic lattice th
is parallel to thex-axis is called anx-step. If an orientedx-step increases (respective
decreases) thex-coordinate, then it is called anx+-step(respectively,x−-step). The terms
y-step, y+-step, y−-step, z-step, z+-step, andz−-stepare similarly defined. For the sak
of clarity, the vertices and edges of the cubic lattice are calledlattice verticesand lattice
edges, respectively. Alattice pathis a simple curve in the cubic lattice between two disti
lattice vertices, and the ends of curve are called theendsof the lattice path. Alattice graph
is a graph whose vertices are lattice vertices and whose edges are lattice paths
pairwise disjoint except possibly at their ends.

4.1. Definition. We say that a graphG in R
3 can beembeddedinto the cubic lattice if

there is an ambient isotopyH : I × R
3 → I × R

3 such thatH(0, x) is the identity map
andH(1, x) mapsG onto a lattice graphF . Thelengthof the lattice graphF , denoted by
L(F), is the total number of lattice edges inF .

Throughout the rest of this section, we fix the following notation.

4.2. Notation. Let G be a Hamiltonian RP-graph of a knotK in a planez = 0 and letC
be a Hamilton cycle inG. Let n= |V (G)|. Let v1, . . . , vn denote the vertices ofG which
occur onC in the cyclic order listed. Letk = �√n�. For any pointp in R

3, we usey(p)
to denote they-coordinate ofp. Observe that as a simple closed curve in the planez= 0,
C divides the planez = 0 into two closed regions, one bounded and one unbounded
edges in the setE(G) − E(C) are then divided into two groups: those in the boun
region, calledB-edges, and those in the unbounded region, calledU-edges.

Before we describe our algorithm, let us first look at an example.

4.3. Example. An embedding of 932.

The top portion of Fig. 11 shows a minimum RP-graph of 932 and a Hamilton cycle
represented by the thickened curve. The bottom portion of Fig. 11 shows an embed
the given RP-graph in the cubic lattice where again the embedding of the Hamilton
is marked as the thickened lattice polygon.
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Fig. 11. A Hamiltonian RP-graph of 932 and its realization in the cubic lattice.

The thickened Hamilton cycle allows us to embed the RP-graph into the cubic l
in a systematic way. First, we embed the vertices along they-axis following the order
inherited from the Hamilton cycle so that any two consecutive vertices are threey-steps
apart. The edges of the Hamilton cycle are then embedded in the planex = 0 (with the
exception of one edge) and between the planesz= 1 andz= −1. The remaining edges o
G are then embedded according to their relations with the Hamilton cycle. The U-
are embedded in the planex = 0 abovey-axis, and the B-edges are embedded in the p
x = 0 belowy-axis. Fig. 11 outlines this idea. Note that the lattice graph shown in Fig
is essentially contained in a single square lattice.

The above example gives an intuitive idea how an algorithm may be designed to e
an RP-graph into the cubic lattice using O((Cr(K))2) lattice edges. Since we aim to achie
an upper bound better than O((Cr(K))2), we leave out a detailed description of such
algorithm. An interested reader can easily work this out.

To achieve the upper bound O((Cr(K))3/2), we need to embed a Hamiltonian RP-gra
into the cubic lattice in a more compact and subtle way. In particular, we need to con
an embedding that fills up a part of the lattice by making use of all 6 directions ava
in the cubic lattice. Similar to the embedding scheme sketched in Example 4.3, w
embedG into the cubic lattice in four steps. First, we embed the vertices ofG into the
planez= 0. We then embed the edges ofC between the planesz= 1 andz= −1. Next we
embed the U-edges in the half-spacez� 0. Finally, the B-edges are embedded in a sim
way into the half-spacez� 0.

4.4. The embedding ofV (G) in the planez= 0.
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Fig. 12. The embedding of vertices ofC for n= 14 andn= 23.

We will embedV (G) into the set of points{(3i,3j,0}: 0 � i < k,1 � j � k}. Recall
the notations defined in Notation 4.2.

Intuitively, we embedv1, . . . , vk in the order listed on they-axis by starting withv1 at
(0,3,0), increasing they-coordinate by 3 at a time, ending withvk at (0,3k,0). We then
embedvk+1, . . . , v2k on the line determined byx = 3 andz= 0, by starting withvk+1 at
(3,3k,0), decreasing they-coordinate by 3 at a time, ending withv2k at (3,3,0). We then
continue in this way by embeddingvik+1, . . . , v(i+1)k on the line determined byx = 3i and
z= 0 in the order from(3i,3,0) to (3i,3k,0)wheni is even or from(3i,3k,0) to (3i,3,0)
wheni is odd, withy-coordinates differing by 3 at a time. Fig. 12(a) and (b) illustrate
embedding withn= 14 andn= 23, respectively.

To precisely state this embedding, letpi,j = (3i,3j,0) for 0 � i < k and 1� j � k.
For each 1� �� n, there exist unique integersi, j such that 0� i � k− 1, 1� j � k, and
�= ik + j . If i is even then embedv� to pi,j , otherwise embedv� to pi,k−j+1.

One may view the pointspi,1,pi,2, . . . , pi,k as in column i, and there arek such
columns. However, it is possible that columnk − 1 contains no vertices ofG at all (for
example, whenn = 12 or n = 20). This completes the description of the embedding
V (G).

For convenience, we will not distinguish betweenv� andpi,j if v� is embedded topi,j ,
and we sometimes writev� = pi,j . Also we letv0 = vn so thatv�−1v� makes sense for a
�= 1, . . . , n.

4.5. The embedding ofC as a lattice polygon between the planesz= −1 andz= 1.

The embedding of edges ofC depends on the edges inE(G)−E(C). Letv� be a vertex
of G. SinceG is 4-regular and is free of loop edges, there are exactly two distinct e
of G incident withv� which are not onC, and these two edges can be both U-edges,
B-edges, or one U-edge and one B-edge. We say thatv� is of type(a) if one of these two
edges is a U-edge and the other one is a B-edge. We say thatv� is of type(b) if these two
edges are both U-edges. Finally, we say thatv� is of type(c) if these two edges are bo
B-edges.
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Fig. 13. The local embedding ofC.

We now embedC onto a lattice polygon between the planesz= −1 andz= 1. As we
will see later that a reason to embed the edges between the planesz = 1 andz = −1 is
to make room for embedding the U-edges in the half spacez � 0 and the B-edges in th
half spacez � 0. The lattice paths corresponding tovikvik+1, i = 1, . . . , k − 1, andvnv1
will require x-steps, while the lattice paths corresponding to the other edges will no
x-steps.

First, we embedv�−1v� for all � ∈ {1, . . . , n− 1}. Let �= ik + j , where 0� i � k − 1
and 1� j � k.

Assume thatv� is of type (a). See Fig. 13(a) for an illustration of the embedding pro
described below. Ifj �= k andi is even, then we embed the edgev�v�+1 onto the lattice path
from v� to v�+1 obtained by taking threey+-steps. Ifj �= k andi is odd, then we embe
the edgev�v�+1 onto the lattice path fromv� to v�+1 obtained by taking threey−-steps. If
j = k andi is even, then we embed the edgev�v�+1 onto the lattice path fromv� to v�+1
obtained by taking twoy+-step, then threex+-steps, and then twoy−-steps. Ifj = k and
i is odd, then we embed the edgev�v�+1 onto the lattice path fromv� to v�+1 obtained by
taking twoy−-steps, then threex+-steps, and then twoy+-step.

If v� is of type (b) or of type (c), the embedding process is illustrated in Fig. 1
and (c) and one can write down the corresponding lattice paths in a similar way
above. The details are left to the reader.

It remains to embed the edgevnv1 into the cubic lattice. See Fig. 12 for an example wh
vn is of type (a). Whenvn is of type (b) or (c), make adjustments as in Fig. 13(b) and
By the definition ofk, we haven = ik + j for somek − 2 � i � k − 1 and 1� j � k.
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edgevnv1 onto the lattice path fromvn to v1 obtained by taking 3k − 3j + 2 y−-steps, 3i
x−-steps, and twoy+-steps. Ifvn is of type (b) (respectively, (c)), then we embed the e
vnv1 onto a lattice path fromvn to v1 obtained by taking az−-step (respectively,z+-step),
two y−-steps, az+-step (respectively,z−-step), 3k − 3j y−-steps, 3i x−-steps, and two
y+-steps. Now assume thati is even. Thenvn = (3i,3j,0). If vn is of type (a), then we
embed the edgevnv1 onto the lattice path fromvn to v1 obtained by taking twoy+-steps,
two x+-steps, 3j + 4 y−-steps, 3i + 2 x−-steps, and twoy+-steps. Ifvn is of type (b)
(respectively, (c)), then we embed the edgevnv1 onto a lattice path fromvn to v1 obtained
by taking az+ (respectively,z−-step), twoy+-steps, az− (respectively,z+-step), twox+-
steps, 3j + 4 y−-steps, 3i+ 2 x−-steps, and twoy+-steps. This concludes the embedd
of C.

Remark. It is clear from the embedding scheme in 4.5 that the embedding ofC is a lattice
polygon between the planesz= −1 andz= 1. It is also easy to see that the process in
can be realized by an ambient isotopy that keeps the edges inE(G)−E(C) on the plane
z = 0, and mapsC to the lattice polygon described above. Note that the lattice path
vn to v1 uses at most 6k + 10 lattice edges, the lattice path fromvik to vik+1 use either
seven or nine lattice edges, and the lattice path connecting other consecutive ver
C uses either three or five lattice edges. Thus the total length of the embedding foC is
bounded above by 6k+ 10+ 9(k − 1)+ 5(n− k) < 5n+ 11k.

LetF denote the lattice polygon constructed so far (which is the embedding ofC). Then
F is a lattice graph withV (F)= V (G). We will updateF by adding lattice paths toF as
we embed U-edges and B-edges ofG. During this process we will keep the symbolF for
the up-to-date embedding untilF becomes an embedding ofG.

4.6. Preparations for the embedding ofU -edges.

We want to embed the U-edges ofG into the half spacez � 0. More specifically, we
need to connect the ends of every U-edge using a lattice path in the half spacez� 0 such
that all lattice paths corresponding to U-edges or edges ofC are disjoint (except at the
ends) and can be isotoped back toG in the half-spacez� 0.

The embedding of a U-edge is based partially on which columns it connects. Lete be a
U-edge which has one end in columni and the other in columnj , and letJ (e)= |i − j |.
We callJ (e) the jump numberof e. Clearly 0� J (e)� k − 1. Furthermore, we say thate
jumpsfrom columni to columnj or from columnj to columni. If i < j then we say tha
e starts in columni andends in columnj . If J (e)= 0 then both ends ofe are in the same
column and the embedding ofe needs not use anyx-steps. IfJ (e) > 0, thenx-steps are
needed to embede.

We will embed the U-edges in three stages: the U-edges with jump number 0 w
embedded first, then the U-edges with jump number 1, and the U-edges with jump n
at least 2 will be embedded last.

The edges ofG will be embedded so that at each vertex ofG, edges which are opposi
in G will use “opposite” lattice edges at that vertex. To keep track of opposite edge
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define a regionRe for each U-edgee. Let e = vrvs be a U-edge ofG, and assume that
n
s

el

vel

0. Let
r < s. LetCe denote the simple closed curve in the planez= 0 corresponding to the unio
of e and the pathvrvr+1 . . . vs onC. ThenCe divides the planeP into two closed region
with boundaryCe , and we useRe to denote the region that does not containC −Ce.

Let v� be a vertex in columni and letv∗
� be the lattice vertex such thatv�v∗

� is the
lattice edge corresponding to they+-step (respectively,y−-step) fromv� when i is even
(respectively, odd).

We are now ready to embed the U-edges with jump number 0.

4.7. The embedding ofU -edges with jump number0 between the planesz = 0 and
z= k + 1.

To each U-edge of jump number 0, we associate a number, called thelevelof that edge,
defined recursively. A U-edgee with jump numberJ (e)= 0 is called anedge of level1 if
there are no other U-edges ofG insideRe . Suppose that we have defined edges of levi
for some integeri � 1. We say that a U-edgee with J (e)= 0 is an edge oflevel i + 1 if
all U-edges ofG contained inRe (which are necessarily of jump number 0) are of le
at mosti and at least one of them is of leveli. The level of an edgee is denoted byt (e).
Fig. 14 shows examples of edges of levels 1, 2 and 3.

We can now describe the embedding scheme of U-edges with jump number
e= vrvs be a U-edge withJ (e)= 0 and of levelt (e), that is,vr andvs are both in column
i for some 0� i � k − 1.

If e is adjacent to both edgesvr−1vr andvs−1vs in G, then we embede onto the lattice
path fromvr to vs obtained by taking the following steps:

(1) t (e)+ 1 z+-steps fromvr ,
(2) the minimum number ofy-steps to reach the point withy-coordinate equal toy(vs),

and
(3) t (e)+ 1 z−-steps tovs .

This process is illustrated by the edgese1, e3, ande4 in Fig. 15.
If e is adjacent tovr−1vr and opposite tovs−1vs in G, then we embede onto the lattice

path fromvr to vs obtained by taking the following steps: (1), (2), and (3) above withv∗
s

replacingvs , and (4) ay-step to reachvs . This is illustrated bye5 in Fig. 15.
If e is opposite tovr−1vr and adjacent tovs−1vs in G, then we embed the edgee onto

the lattice path fromvr to vs obtained by taking the following steps: (0) ay-step fromvr
to v∗

r , (1), (2), and (3) above withv∗
r replacingvr . This is illustrated bye2 in Fig. 15.

If e is opposite to bothvr−1vr andvs−1vs in G, then we embed the edgee onto the
lattice path fromvr to vs obtained by taking the following steps: (0) ay-step fromvr to

Fig. 14. Examples of edges of different levels.
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Fig. 15. The embedding of jump 0 edges.

v∗
r , (1), (2), (3) above withv∗

r , v
∗
s replacingvr , vs , respectively, and (4) ay-step to reach

vs . This is illustrated bye6 in Fig. 15.
Next, we observe that the jump 0 edges are embedded between the planez = 0 and

z = k + 1. This is becauset (e) � k for all jump 0 edges. To see this, note that
each column there are at mostk U-edges with jump number 0 (since each column
k vertices, each vertex in a column is incident to at most 2 U-edges, and each U
with jump number 0 connects to exactly two vertices in the same column). It fol
that each such lattice path onto which a jump 0 U-edge is embedded contains a
2(k+ 1)+ (3k− 1)= 5k+ 1 lattice edges. This completes the embedding of U-edges
jump number 0.

Remark. At this stage,F consists of the embedding ofC and the embedding of all U
edges with jump number 0. Next we show thatF is a lattice graph withV (F) = V (G).
To see that we need to show that all lattice paths used in 4.5 and 4.7 are disjoint
possibly at their ends. This is easy to see if one lattice path represents an edge onC and the
other represents a jump 0 U-edge. Now supposee1 ande2 are U-edges with jump numbe
0 such thatRe2 containsRe1. Thent (e2) > t(e1) by planarity, and hence, the embedd
of e2 is on top of the embedding ofe1. Moreover, ife1 = vrvs ande2 = vr ′vs ′ such that
r < s, r ′ < s′, Re1 does not containRe2, andRe2 does not containRe1, then eithers � r ′ or
s′ � r (by planarity). In other words, the lattice paths constructed in 4.7 are disjoint e
possibly at their ends. Furthermore, this embedding algorithm allows us to isotopeF to the
planez= 0 one lattice path at a time (starting with the edges with level one, then the
with level two and so on).

To describe the embedding of U-edges with jump number at least 1, we need add
notation. For each columnj , letE+

j (respectively,E−
j ) denote the set of U-edges starti

(respectively, ending) in columnj . Note that these sets may be empty. For any edgee ∈E+
j
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(respectively,e ∈E−), we definet+(e) (respectively,t−(e)) to be the number of edges in

,

edges
lattice
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ed:
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E+
j (respectively,E−

j ) which are contained inRe .

The following observations will be useful. First,|E+
j | � 2k and|E−

j | � 2k, and hence

t+j (e) � 2k and t−j (e) � 2k. Secondly, ife jumps from columnj to columnj + 1, then

t+j (e)= t−j+1(e). Finally, for any two distinct edgese1, e2 ∈E+
j (respectively,e1, e2 ∈E−

j ),

eitherRe1 containsRe2 or Re2 containsRe1, and hence,t+j (e1) �= t+j (e2) (respectively,

t−j (e1) �= t−j (e2)). The second and third observations make it possible to embed all
with jump number at least 1 with two embedding schemes (and also, to isotope the
paths back onto the edges ofG in the planez= 0).

4.8. The embedding ofU -edges with jump number1 between the planesz= 0 andz= 2k.

Let e = vrvs be a U-edge withvr in column j and vs in column j + 1. That is,
e ∈E+

j ∩E−
j+1, and hence,t+j (e)= t−j+1(e). First, assume thate is adjacent to bothvr−1vr

andvs−1vs in G. Then we embed the edgee onto the lattice path fromvr to vs obtained
by taking the following steps in the order listed:

(1) t+j (e) z+-steps starting fromvr ,
(2) onex+-steps,
(3) minimum number ofy-steps to reach a point withy-coordinate equal toy(vs),
(4) twox+-step,
(5) t+j (e)= t−j+1(e) z

−-steps tovs .

For an illustration of this embedding, see Fig. 16(a).
If e is adjacent tovr−1vr and opposite tovs−1vs in G, then we embed the edgee onto

the lattice path fromvr to vs obtained by taking the following steps in the order list
(1)–(5) as above withv∗

s replacingvs , and (6) oney-step fromv∗
s to vs . For an illustration,

see Fig. 16(b).
If e is opposite tovr−1vr and adjacent tovs−1vs in G, then we embed the edgee onto

the lattice path fromvr to vs obtained by taking the following steps in the order list
(0) oney-step fromvr to v∗

r , and (1)–(5) as above withv∗
r replacingvr . For an illustration,

see Fig. 16(c).
If e is opposite to bothvr−1vr andvs−1vs in G, then we embed the edgee onto the

lattice path fromvr to vs obtained by taking the following steps in the order listed: (0)
y-step fromvr to v∗

r , (1)–(5) as above withv∗
r , v∗

s replacingvr , vs , respectively, and (6)
y-step fromv∗

s to vs . For an illustration, see Fig. 16(d).
Sincet+j (e)� 2k, the embedding is between the planesz= 0 andz= 2k. By a simple

counting, we see that the lattice path representinge has at most 3x-steps, at most 4k z-
steps, and at most 3k− 1 y-steps. Hence the lattice path representinge uses at most 7k+ 2
lattice edges. This completes the description of the embedding of jump 1 U-edges.

Remark. The up-to-dateF consists of the embedding ofC and the embedding of all U
edges with jump number 0 or 1. Next we show thatF is a lattice graph with vertex se
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Fig. 16. The embedding of edges with jump number 1.

V (F)= V (G). That is, for any two edgese1 ande2 which are onC or with jump number
0 or 1, the corresponding lattice pathsP1 andP2 onto which they are embedded are disjo
except at their ends. By the remark following 4.7, we may assume thate1 = vrvs has jump
number 1 withvr in columnj andvs in columnj + 1, as shown in Fig. 16. Ife2 is on
C, then it is easy to see thatP1 andP2 are disjoint except possibly at their ends. Soe2
is a U-edge. If the ends ofe2 are not in columnj or columnj + 1, then obviouslyP1
andP2 are disjoint. Ife2 has jump number 0 and its ends are both in columnj or both in
columnj + 1, then again it is easy to see thatP1 andP2 are disjoint except possibly a
their ends. So we may assume thate2 has jump number 1 and has an end in columnj or
j + 1. Then either (i)Re1 containsRe2 or (ii) R(e2) containsR(e1) or (iii) the interiors
of Re1 andRe2 are disjoint. In case (i)P2 also jumps from columnj to columnj + 1.
Moreovert+j (e1) = t−j+1(e1) > t+j (e2) = t−j+1(e2) guarantees thatP1 andP2 are disjoint
except possibly at their ends. A similar argument works when (ii) occurs. In case (iiP2
connects columnj − 1 to columnj or connects columnj + 1 to columnj + 2. In neither
case there is an intersection ofP1 andP2 (except possibly at their ends).

When embedding U-edges with jump number at least 1, we need to usex-steps to
construct a lattice path connecting these columns. The following concept is use
making sure that thesex-steps do not cause intersections among these lattice path
each U-edgee of G, we assign an integerY (e) between 0 and 4k − 1, called theentrance
indexof e such thatY (e1) �= Y (e2) if e1 ande2 start in the same column or end in the sa
column. We point out here that mostx-steps that we will use in the embedding ofe will be
in the planey = Y (e).
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The following lemma assures the existence of such a functionY .
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s

4.9. Lemma. There exists a functionY from the set of allU -edges ofG to the set
W = {0,1,2, . . . ,4k − 1} such thatY (e1) �= Y (e2) for any distinct U-edgese1 and e2

which start or end in the same column.

Proof. We defineY in a doubly recursive way.
First, we defineY for the U-edges connecting column 0 and column 1. Lete = vqvr

wherevq is in column 0 andvr is in column 1. Then we defineY (e) = y(vq) if e is
adjacent tovq−1vq in G, and letY (e) = y(v∗

q ) if e is opposite tovq−1vq in G. (Recall
thaty(vq) is they-coordinate ofvq .) It is easy to see that for distinct U-edgese1 ande2

jumping from column 0 to column 1,Y (e1) �= Y (e2).
Assume that for somej ∈ {1, . . . , k−2}, Y has been defined for all U-edges connect

two distinct columns lower thanj + 1 such thatY (e1) �= Y (e2) for any distinct U-edgese1

ande2 which start or end in the same column. We need to extend the definition ofY to all
edges ending in columnj + 1 so that the condition in the lemma still holds.

This is done recursively. For eachm ∈ {0, . . . , j }, let Jm be the set of entrance indic
already used by edges that start in columnm.

For edges starting in column 1 and ending in columnj + 1, assign differentY values to
them from the setW\J0 (in a rather arbitrary way). SinceJ0 has at most 2k elements and
W has 4k elements, this can be done without a problem. Call the collection of these n
assigned indicesI0,j+1.

Now assume that for somei ∈ {0, . . . , j−1}, Y has been defined for all U-edges start
in columns lower thani + 1 and ending in columnj + 1 such thatY (e1) �= Y (e2) for any
two distinct U-edgese1 and e2 that connect distinct columns lower thanj + 1 or that
connect some column lower thani+ 1 to columnj + 1. Fors = 1, . . . , i, let Is,j+1 denote
the set of indices assigned to edges connecting columns and columnj +1. Since there ar
at most 2k edges ofG jumping to columnj + 1,

∑i
s=1 |Is,j+1| � 2k.

Next we defineY for edges connecting columni + 1 to columnj + 1. Note that|Ji+1|
is the number of U-edges that start in columni + 1 and end in some column lower tha
j + 1. Since there are at most 2k edges jumping from columni + 1, there are at mos
2k−|Ji+1| edges connecting columni+ 1 to columnj + 1. On the other hand, the indice
available are inW − (

⋃i
s=1 Is,j+1) whose size is|W |−∑i

s=1 |Is,j+1| � 2k � 2k−|Ji+1|.
Therefore, we can defineY for U-edges connecting columni + 1 to columnj + 1 by
arbitrarily assigning distinct numbers inW − (

⋃i
s=1 Is,j+1) to them.

Continuing this process in the orderi = 0, . . . , j − 1, we can defineY for all edges
ending in columnj + 1.

Now continuing the whole process in the orderj = 1, . . . , k − 1, we can defineY for
all U-edges. ✷
4.10. The embedding of U-edges with jump number at least2 between the planesz= 0 and
z= 3k − 1.
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Let e = vrvs be a U-edge withvr in columni andvs in columnj such thatj � i + 2.

ed:

carried
First, assume thate is adjacent to bothvr−1vr andvs−1vs in G. Then we embed the edgee
onto the lattice path fromvr to vs obtained by taking the following steps in the order list

(1) t+i (e) z+-steps starting fromvr ,
(2) onex+-steps,
(3) minimum number ofy-steps to reach a point withy-coordinate equal toY (e),
(4) onex+-step,
(5) 2k+ J (e)− t+i (e) z+-steps,
(6) 3J (e)− 4 x+-steps,
(7) 2k+ J (e)− t−j (e) z−-steps,
(8) onex+-step,
(9) minimum number ofy-steps to reach a point withy-coordinate equal toy(vs),

(10) onex+-step, and
(11) t−j (e) z−-steps tovs .

This embedding process is illustrated in Fig. 17(a). Note that the steps (4)–(8) are
out in the planey = Y (e).

Fig. 17. The embedding of edges with jump number� 2.
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If e is adjacent tovr−1vr and opposite tovs−1vs in G, then we embed the edgee onto
ed:

(0)

) a
)

n
d

s

n

ce
pt
.

the lattice path fromvr to vs obtained by taking the following steps in the order list
(1)–(11) as above withv∗

s replacingvs , and (12) oney-step fromv∗
s to vs . See Fig. 17(b).

If e is opposite tovr−1vr and adjacent tovs−1vs in G, then we embed the edgee onto
the lattice path fromvr to vs obtained by taking the following steps in the order listed:
oney-step fromvr to v∗

r , and (1)–(11) as above withv∗
r replacingvr . See Fig. 17(c).

If e is opposite to bothvr−1vr andvs−1vs in G, then we embed the edgee onto the
lattice path fromvr to vs obtained by taking the following steps in the order listed: (0
y-step fromvr to v∗

r , (1)–(11) as above withv∗
r , v∗

s replacingvr , vs , respectively, and (12
ay-step fromv∗

s to vs . See Fig. 17(d).
Sincet+j (e)� 2k andt−j (e)� 2k and becauseJ (e)� k − 1, the embedding is betwee

the planesz= 0 andz= 3k−1. Moreover, edges from columni to columnj are embedde
between the planesx = 3i andx = 3j . Also note that the lattice path representinge uses
at most

• 6 lattice edges for steps (0), (2), (4), (8), (10) and (12) of the construction,
• 3k− 1 lattice edges for steps (1) and (5) of the construction,
• 3k− 1 lattice edges for steps (7) and (11) of the construction,
• 8k lattice edges for steps (3) and (9) of the construction,
• 3k− 7 lattice edges for step (6) of the construction.

Thus the lattice path representinge contains at most 17k− 3 lattice edges. This complete
the embedding of U-edges.

Remark. The up-to-dateF consists of the embedding ofC and all lattice paths
representing all U-edges. We claim thatF is a lattice graph with vertex setV (F)= V (G).
We need to show that any two lattice paths representing distinct edges ofG are disjoint
except possibly at their ends. This is done in the following lemma.

4.11. Lemma. Let e1 ande2 be distinct edges which are not B-edges, and letP1, P2 be the
lattice paths onto whiche1, e2 are embedded respectively as constructed above. TheP1
andP2 do not intersect except possibly at their ends.

Proof. By the remark following 4.8, we may assume thate1 is a U-edge withJ (e1)� 2.
Let e1 = vrvs ande2 = vr ′vs ′ , and assume thatvr is in columni, vs is in columnj , and
j − i � 2.

Case1. e2 is an edge ofC.
ThenP2 is betweenz= −1 andz= 0 or betweenz= 1 andz= 0; all x-steps ofP2 are

in the planez= 0; and everyy-step ofP2 uses a constantx-coordinate which is a multiple
of 3. Note thatP1 is in the half-spacez � 0 and allx-steps are taken in the half-spa
z� 1. Any y-step ofP1 uses a constantx-coordinator which is not a multiple of 3, exce
it corresponds to somev�v∗

� . Hence,P1 andP2 are disjoint except possibly at their ends

Case2. e2 is a U-edge withJ (e2)= 0.
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By the planarity ofG, either (i)Re2 ⊂Re1 or (ii) the interiors ofRe2 andRe1 are disjoint.
t
)

at (ii)
as

be

t

.

steps
Since thatP2 does not use anyx-step,P2 lies entirely in a planex = x0. First, assume tha
(i) occurs. Then 3i � x0 � 3j . If 3i < x0 < 3j then becauset (e2) � k + 1, steps (5)–(7
in the construction ofP1 guarantee thatP1 does not intersectP2 (P1 jumps overP2). If
x0 = 3i or x0 = 3j thenP2 is contained entirely in the one side of the planex = x0 divided
by the line containing the intersection ofP1 with the planex = x0 (which is a single line
segment). SoP1 andP2 do not intersect except possibly at their ends. Now assume th
occurs. Then eitherx0 � 3i or x0 � 3j . If x0 = 3i or x0 = 3j , then the same argument
for (i) applies. Ifx0 < 3i or x0 > 3j , thenP1 andP2 can be separated by a planex = 3i− ε

or x = 3j + ε for some smallε > 0, and hence,P1 andP2 are disjoint.

Case3. e2 a U-edge withJ (e2)= 1.
As before we have either (i)Re2 ⊂ Re1 or (ii) the interiors ofRe2 andRe1 are disjoint.

Note that by 4.8,P2 is contained entirely between the two planesx = 3q andx = 3(q + 1)
for some integerq � 0. Also note that (i) implies 3i � 3q and 3(q + 1) � 3j , and (ii)
implies 3j � 3q or 3(q + 1) � 3i. Now a similar argument as used in Case 2 can
applied to show thatP1 andP2 are disjoint except possibly at their ends.

Case4. e2 is a U-edge withJ (e2)� 2.
We may assume thate2 jumps from columni ′ to columnj ′ with j ′− i ′ � 2. By planarity

and by symmetry, we have the following possibilities:i �= i ′ andj �= j ′; i = i ′ andj = j ′;
i = i ′ andj < j ′; or i ′ < i andj = j ′.

Subcase4(a).i �= i ′ andj �= j ′.
By symmetry, letj � j ′. If j < i ′, thenP1 andP2 are separated by the planex = 3j+1,

and so,P1 andP2 are disjoint.
Now assume thatj = i ′. ThenP1 lies in the half spacex � 3i ′ andP2 lies in the

half spacex � 3i ′. The only part ofP1 that intersects the planex = 3i ′ is a line segmen
consisting of onlyz-steps on top of somev� (or they-stepv�v∗

� andz-steps on top ofv∗
� ),

and is not used inP2 (exceptv�). SoP1 andP2 are disjoint except possibly at their ends
We may therefore assume thati ′ < j < j ′. By planarity ofG, i ′ � i < j < j ′. If i ′ < i

thenP1 andP2 are separated by the surfaceS = S1∪S2∪S3 defined byS1 = {(x, y, z): z=
2k + J (e2) − 0.5,3i − 0.5 � x � 3j + 0.5}, S2 = {(x, y, z): z � 2k + J (e2) − 0.5,
x = 3i − 0.5}, S3 = {(x, y, z): z � 2k + J (e2) − 0.5, x = 3j + 0.5}. SoP1 andP2 are
disjoint.

Subcase4(b). i ′ = i andj = j ′.
Therefore,e1, e2 ∈ E+

i ∩ E−
j . So by planarity, we may assumet+i (e2) > t+i (e1) and

t−j (e2) > t−j (e1). Furthermore, assume thate1 = vrvs ande2 = vr ′vs ′ .
Let us follow the pathP1 as defined in 4.10 and show that none of the embedding

leads to an intersection withP2. We only state the argument for the 11 steps whene1 is
adjacent to bothvr−1vr andvs−1vs in G ande2 is adjacent to bothvr ′−1vr ′ andvs ′−1vs ′
in G. The other cases are the same withv∗

r or v∗
s replacingvr or vs , respectively, and

adding steps (0) or (12) which will not cause intersections becausey(vr ), y(v∗
r ), y(vr ′),

andy(v∗
r ′) are all distinct.
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(1) P1 moves from(3i, y(vr),0) to (3i, y(vr), t
+(e1)) using onlyz-steps. The only

ts

s

at 4.6–

show
s.

ir

of

l
to
i

piece ofP2 in the planex = 3i is the line segment from(3i, y(vr ′),0) to (3i, y(vr ′), t+i (e2))

using onlyz-steps. Sincey(vr) andy(vr ′) are distinct, there is no intersection.
(2)–(4) P1 moves from(3i, y(vr), t

+
i (e1)) to (3i + 1, y(vr), t

+
i (e1)) using onex+-

step, then to(3i + 1, Y (e1), t
+
i (e1)) using y-steps, and then to(3i + 2, Y (e1), t

+
i (e1))

using a singlex+-step. All these steps occur in the space defined byA= {(x, y, z): 3i <
x < 3i + 2} (with the exception of the endpoints). The only pieces ofP2 in A are also
the three line segments generated by steps (2)–(4) moving from(3i, y(vr ′), t+i (e2)) to
(3i + 2, Y (e2), t

+
i (e2)). Sincet+i (e1) �= t+i (e2) there is no intersection.

(5)–(7) P1 moves from(3i + 2, Y (e1), t
+
i (e1)) to (3i + 2, Y (e1),2k + J (e1)) using

z+-steps, then to(3j − 2, Y (e1),2k + J (e1)) using x+-steps, and then to(3j −
2, Y (e1), t

−
j (e1)) using z−-steps. All these steps occur in the space defined byA =

{(x, y, z): 3i+2� x � 3j−2}. The only pieces ofP2 in A are also the three line segmen
generated by steps (5)–(7) moving from(3i+ 2, Y (e2), t

+
i (e2)) to (3j − 2, Y (e2), t

−
j (e2)).

SinceY (e1) �= Y (e2) there is no intersection.
(8)–(10) The argument is similar to the one given for steps (2)–(4).
(11) The argument is similar to the one given for (1).
Hence,P1 andP2 are disjoint except possibly at their ends.

We have two cases remaining:i = i ′ andj < j ′, andi ′ < i andj = j ′. These two case
can be taken care of in the same way as for Subcase 2. We omit the details.✷
4.12. The embedding of B-edges in the half spacez� 0.

The embedding of B-edges can be done in the same way as for U-edges: We repe
4.10 with B-edges replacing U-edges, andz+-step (respectively,z−-step) replacingz−-
step (respectively,z+-step).

Remark. By using similar arguments for U-edges as we used for the B-edges, we can
that the lattice paths representing B-edges and edges onC are disjoint except at their end
Now assume thate1 is a U-edge ande2 is a B-edge. By our embedding scheme,P1 is in
the half spacez � 0 and allx-steps are taken inz � 1, andP2 is in z � 0 and allx-steps
are taken inz� −1. Moreover the onlyy-steps ofP1 andP2 in the planez= 0 correspond
to the singley-steps of typev�v∗

� . Hence,P1 andP2 are disjoint except possibly at the
ends.

Thus, the output of this algorithm is a lattice graphF which is an embedding ofG in
the cubic lattice. The following theorem asserts thatF is ambient isotopic toG.

4.13. Theorem. The lattice graphF is ambient isotopic toG.

Proof. It is easy to see that we can isotope the lattice paths representing the edgesC to
the planez= 0 by their projection in thez-direction.

Next we need to deform the lattice paths representing U-edges ofG one at a time unti
it coincides with the corresponding U-edges ofG. First, we deform the lattice paths on



Y. Diao et al. / Topology and its Applications 136 (2004) 7–36 33

which the jump 0 U-edges are embedded: starting with the U-edges of the lowest level, and
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increasing the level by one at a time. If two U-edges are of the same level, then it do
matter which corresponding lattice path will be deformed first into the planez = 0. Then
we deform the lattice paths representing U-edges inE−

j in the orderj = 2, . . . , k − 1:

starting with the U-edges of the lowestt−j -value. For each lattice path to deform thet−j -

value of the corresponding U-edge increases by one untilE−
j is exhausted. When tha

happens we move toE−
j+1. The critical observation is that this can be done at any st

since if we are looking at a lattice pathP whose corresponding edge has the lowest le
value ort−j -value in the remaining lattice paths that have not been isotoped back toG, then
there are no lattice paths ofF “between”P and the planez= 0. That is, the deformation o
the lattice path into the edge ofG will encounter no obstruction from another lattice pa
of F that has not already been isotoped back in the planez = 0. The isotopy of U-edge
can be done entirely in the half-spacez� 0.

Finally we deform the B-edges in a similar way, entirely in the half-spacez� 0. ✷
By 4.5, 4.7, 4.8, and 4.10, the length of each lattice path so constructed is bo

above by 17k − 3. Since there are a total ofn U-edges and B-edges, the total numbe
lattice edges to embed the U-edges and B-edges is bounded above by(17k−3)n. It follows
that the length ofF is bounded above by

17nk+ 2n+ 11k = 17n
⌈√

n
⌉ + 2n+ 11

⌈√
n

⌉
< 17n3/2 + 19n+ 11

√
n+ 11.

Or, if one prefers a simpler form, we may bound this by 18n3/2 + 13n for n � 50. Thus,
we have the following theorem.

4.14. Theorem. Let G be a Hamiltonian RP-graph withn vertices, thenG can be
embedded onto a lattice graphF such thatL(F)� 17n3/2 + 19n+ 11

√
n+ 11.

5. Rope length of knots and links

We can now use the embedding of Hamiltonian RP-graphs to prove results abo
rope length of knot. First we start with lattice knots.

5.1. Theorem. LetK be a knot or a link, and assume thatK has a Hamiltonian RP-grap
G with n vertices. Then we can embedK into the cubic lattice with a total length at mo
17n3/2 + 21n+ 11

√
n+ 11.

Proof. By applying Theorem 4.13, we can embedG onto a lattice graphF . For a vertexvG
ofG let v be the corresponding vertex ofF . The opposite edges ofG atvG are represente
by lattice paths using opposite lattice edges atv which correspond toy-steps andz-
steps. Letvv1, vv2, vv3, vv4 denote the lattice edges contained inF at v such thatvv1
corresponds to ay−-step fromv, vv2 corresponds to az+-step fromv, vv3 corresponds to
ay+-step fromv, vv4 corresponds to az−-step fromv. See Fig. 18(a). Then the followin
lattice paths are not used byF except for their ends: lattice pathLv from v1 to v3 obtained
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Fig. 18. ChangingF into the embedding of a knot or link.

by taking onex−-step, twoy+-steps, and onex+-step (see Fig. 18(b); and lattice pa
Rv from v1 to v3 obtained by taking onex+-step, twoy+-steps, and onex−-step, see
Fig. 18(c).

We fix an orientation in the projection to keep track of the under and over crossin
each vertexv of F that corresponds to a vertex ofG, we replace the lattice pathv1vv3 by
Lv , or byRv depending on whetherv1v3 is an under-strand or over-strand in the project
of the knotK as shown in Fig. 18.

Therefore, at each crossing two additionalx-steps are needed and the total length
the lattice embedding increases by 2n when the lattice graphF is changed into a lattic
embedding of the knot or linkK. ✷

By Theorem 5.1, we get the following theorem by simply substituting 4· Cr(K) for n.

5.2. Theorem. LetK be a knot or link. IfK is minimally Hamiltonian then we can emb
K into the cubic lattice with a length at most17(Cr(K))3/2+21Cr(K)+11

√
Cr(K)+11.

By Theorems 5.1 and 3.6, we have the following theorem.

5.3. Theorem. LetK be a knot or link. ThenK can be embedded into the cubic lattice w
length at most136(Cr(K))3/2 + 84Cr(K)+ 22

√
Cr(K)+ 11.

Since a lattice knot or link can be changed into aC1,1 knot or link of thickness 1/2
(by replacing the corners where the knot makes turns with suitable quarter circles of
1/2), we have the following:

5.4. Theorem. LetK be a knot or a link. Then the rope length ofK is bounded above b
34(Cr(K))3/2 + 42Cr(K)+ 22

√
Cr(K)+ 22 if K is minimally Hamiltonian. Otherwise

the rope length ofK is bounded above by272(Cr(K))3/2 + 168Cr(K)+ 44
√

Cr(K)+ 22.

6. Further discussions and questions

The main result in this paper is that the rope-length of a knotK is bounded abov
by c · (Cr(K))3/2 for some constantc > 0. There is apparently ample room left for t
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improvement of the constant we obtained here. However, a more important issue is whether
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one can improve the power 3/2. We know that there exist a constanta > 0 and an infinite
family of knots such that the rope-length of each knotK in that family is bounded below
by aCr(K) for some constanta > 0. What happens between the power 1 and 3/2? It is
apparent from our embedding algorithm that the length of the embedded knot depe
the levels of the edges inG\C whereG is a Hamiltonian projection ofK (with at most
4 · Cr(K) vertices) andC is a Hamilton cycle inG. In fact, we have the following

6.1. Theorem. Let {Kn} be a family of knots(or links). If there exists a constantm > 0
such that eachKn in this family admits a Hamiltonian projectionGn with at most
m · Cr(Kn) vertices and a Hamilton cycleCn such that every edge inGn\Cn has a level
number at mostm with at mostm exceptions, then there exists a constantc > 0 such that
L(Kn)� c · Cr(Kn) for everyKn in this family.

If the answer to Problem 1.2 is negative, then there must exist an infinite fam
knots{Kn} such that the condition in the above theorem fails to hold. Since the natu
Problem 1.2 calls for explicit construction of thick knots, we do not have many op
other than designing efficient embedding algorithms on the cubic lattice. To this e
the study of Hamilton cycles inG lends us a rather powerful tool. Many questions can
raised in this regard. For instance, one may ask what kind of knots have projection
would satisfy the condition in the above theorem. One may also explore the possib
changing the known projections of a family of knots so the new projections would
satisfy the condition of the theorem.

We conclude this paper with the following open questions.

6.2. Question. Is it true thatsup{L(K)/Cr(K)} = ∞ (where the supremum is taken ov
all knots and links)?

6.3. Question. For any1< p � 3/2, are there a constanta > 0 and an infinite family of
knots and links such that for any memberK in the family,L(K)� a · (Cr(K))p?

6.4. Question. Is it possible to improve the embedding algorithm in Section4 to give an
upper boundO((Cr(K))p) for some constant1 � p < 3/2?

None of the questions seems easy to solve, but the authors feel that improve
over the embedding algorithm are most promising and Question 3 above may h
affirmative answer.
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