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The purpose of this paper is to complete the classification of binary
self-dual [48,24,10] codes with an automorphism of odd prime
order. We prove that if there is a self-dual [48,24,10] code with
an automorphism of type p-(c, f ) with p being an odd prime,
then p = 3, c = 16, f = 0. By considering only an automorphism
of type 3-(16,0), we prove that there are exactly 264 inequivalent
self-dual [48,24,10] codes with an automorphism of odd prime
order, equivalently, there are exactly 264 inequivalent cubic self-
dual [48,24,10] codes.
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1. Introduction

A linear [n,k] code over Fq is a k-dimensional subspace of F
n
q . A linear code C is called self-

dual if it is equal to its dual C⊥ = {x ∈ F
n
q | x · c = 0 for any c ∈ C}. The classification of binary self-

dual codes was initiated and done up to length 20 by V. Pless [15]. Since then the classification of
self-dual codes has been one of the most active research topics (see [16,14]). The classification of
binary self-dual [38,19,8] codes has been recently done by Aguilar-Melchor, Gaborit, Kim, Sok, and
Solé [1] and independently by Betsumiya, Harada and Munemasa [2]. Very recently, Bouyuklieva and
Bouyukliev [7] have classified all binary self-dual [38,19] codes.

In this paper, we are interested in the classification of binary self-dual [48,24,10] codes with an
automorphism of odd prime order. It was motivated by the following reasons. Bonnecaze, et al. [3]
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constructed binary self-dual codes with a fixed-point free automorphism of order 3, called cubic self-
dual codes due to the correspondence with self-dual codes over a ring F2[Y ]/(Y 3 − 1). They gave a
partial list of binary cubic self-dual codes of lengths � 72 by combining binary self-dual codes and
Hermitian self-dual codes. Later, Han, et al. [11] have given the classification of binary cubic optimal
self-dual codes of length 6k where k = 1,2, . . . ,7. Hence it is natural to ask exactly how many binary
cubic self-dual optimal [48,24,10] codes exist and we answer it in this paper. On the other hand,
we have noticed that Huffman [14, Table 2] listed all possible values of the type p-(c, f ) with p odd
for an automorphism of a self-dual [48,24,10] code. They are 11-(4,4), 7-(6,6), 5-(8,8), 3-(14,6),
and 3-(16,0). We will show that the first four types are not possible. Therefore, the classification
of binary [48,24,10] self-dual codes with a nontrivial odd order automorphism coincides with the
classification of binary [48,24,10] self-dual cubic codes.

There are two possible weight enumerators for self-dual [48,24,10] codes [10]:

W48,1(y) = 1 + 704y10 + 8976y12 + 56 896y14 + 267 575y16 + · · · , (1)

W48,2(y) = 1 + 768y10 + 8592y12 + 57 600y14 + 267 831y16 + · · · . (2)

Brualdi and Pless [8] found a self-dual [48,24,10] code with weight enumerator W48,1. The order of
its group of automorphisms is 4. A classification of binary self-dual [48,24,10] codes with W48,1 is
known [12]. A code with weight enumerator W48,2 is given in [10].

The first author [6] showed that any code with W48,1(y) has no automorphism of odd prime order
and that any code with W48,2(y) has a group of automorphisms of order 2l3s for some integers l � 0
and s � 0. However, this result has received less attention and hence we will include it briefly. In this
paper, we prove that if there is a self-dual [48,24,10] code with an automorphism of type p-(c, f )
with p being an odd prime, then p = 3, c = 16, f = 0. Therefore by considering only an automorphism
of type 3-(16,0), we prove that there are exactly 264 inequivalent self-dual [48,24,10] codes with an
automorphism of odd prime order. To do that we apply the method for constructing binary self-dual
codes possessing an automorphism of odd prime order (see [13,17,18]).

2. Construction method

Let C be a binary self-dual code of length n with an automorphism σ of prime order p � 3 with
exactly c independent p-cycles and f = n − cp fixed points in its decomposition. We may assume that

σ = (1,2, . . . , p)(p + 1, p + 2, . . . ,2p) · · · ((c − 1)p + 1, (c − 1)p + 2, . . . , cp
)
, (3)

and say that σ is of type p-(c, f ).
We begin with a theorem which gives a useful restriction for the type of the automorphism.

Theorem 2.1. (See [18].) Let C be a binary self-dual [n,n/2,d] code with an automorphism of type p-(c, f )
where p is an odd prime. Denote g(k) = d + � d

2 � + · · · + � d
2k−1 �. Then:

(i) pc � g(
(p−1)c

2 ) and if d � 2(p−1)c/2−2 the equality does not occur;

(ii) if f > c then f � g(
f −c

2 ) and if d � 2( f −c)/2−2 the equality does not occur;
(iii) if 2 is a primitive root modulo p then c is even.

Applying the theorem for the parameters n = 48 and d = 10, we obtain

Corollary 2.2. Any putative automorphism of an odd prime order for a singly-even self-dual [48,24,10] code
is of type 47-(1,1), 23-(2,2), 11-(4,4), 7-(6,6), 5-(8,8), 3-(12,12), 3-(14,6), or 3-(16,0).

Denote the cycles of σ by Ω1 = {1,2, . . . , p}, Ω2, . . . ,Ωc , and the fixed points by Ωc+1 =
{cp + 1}, . . . ,Ωc+ f = {cp + f = n}. Define
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Fσ (C) = {
v ∈ C

∣∣ σ(v) = v
}
,

Eσ (C) = {
v ∈ C

∣∣ wt(v|Ωi) ≡ 0 (mod 2), i = 1, . . . , c + f
}
,

where v|Ωi is the restriction of v on Ωi .

Theorem 2.3. (See [13].) C = Fσ (C) ⊕ Eσ (C), dim(Fσ (C)) = c+ f
2 , dim(Eσ (C)) = c(p−1)

2 .

We have that v ∈ Fσ (C) if and only if v ∈ C and v is constant on each cycle. The cyclic group
generated by σ splits the set of codewords into disjoint orbits which consists of p or 1 codewords.
Moreover, a codeword v is the only element in an orbit if and only if v ∈ Fσ (C). Using that all
codewords in one orbit have the same weight, we obtain the following proposition.

Proposition 2.4. Let (A0, A1, . . . , An) and (B0, B1, . . . , Bn) be the weight distributions of the codes C and
Fσ (C), respectively. Then Ai ≡ Bi (mod p).

Proposition 2.4 eliminates the first two types from Corollary 2.2. In fact, these cases were elimi-
nated by Huffman [14, Appendix] in a different way.

Corollary 2.5. If C is a self-dual [48,24,10] code, then C does not have automorphisms of orders 47 and 23.

Proof. Let σ be an automorphism of C . If σ is of type 47-(1,1) then Fσ (C) is the repetition
[48,1,48] code and therefore B10 = 0. Since neither 704 nor 768 is congruent 0 modulo 47, this
case is not possible.

If the type is 23-(2,2) then Bi = 0 for 0 < i < 24. Therefore B10 = 0 and A10 	≡ B10 (mod 23) – a
contradiction. �

To understand the structure of a self-dual code C invariant under the permutation (3), we define
two maps. The first one is the projection map π : Fσ (C) → F

c+ f
2 where (π(v))i = v j for some j ∈ Ωi ,

i = 1,2, . . . , c + f , v ∈ Fσ (C).
Denote by Eσ (C)∗ the code Eσ (C) with the last f coordinates deleted. So Eσ (C)∗ is a self-

orthogonal binary code of length pc. For v in Eσ (C)∗ we let v|Ωi = (v0, v1, . . . , v p−1) correspond
to the polynomial v0 + v1x + · · · + v p−1xp−1 from P , where P is the set of even-weight polynomials
in F2[x]/(xp − 1). P is a cyclic code of length p with generator polynomial x − 1. Moreover, if 2 is a
primitive root modulo p, P is a finite field with 2p−1 elements [13]. In this way we obtain the map
ϕ : Eσ (C)∗ → Pc . Let Cπ = π(Fσ (C)) and Cϕ = ϕ(Eσ (C)∗). The following theorems give necessary
and sufficient conditions for a binary code with an automorphism of type (3) to be self-dual.

Theorem 2.6. (See [18].) A binary [n,n/2] code C with an automorphism σ is self-dual if and only if the
following two conditions hold:

(i) Cπ is a binary self-dual code of length c + f ,
(ii) for every two vectors u, v ∈ Cϕ we have

∑c
i=1 ui(x)vi(x−1) = 0.

Theorem 2.7. (See [13].) Let 2 be a primitive root modulo p. Then the binary code C with an automorphism
σ is self-dual if and only if the following two conditions hold:

(i) Cπ is a self-dual binary code of length c + f ;
(ii) Cϕ is a self-dual code of length c over the field P under the inner product (u, v) = ∑c

i=1 ui v2(p−1)/2

i .

To classify the codes, we need additional conditions for equivalence. That’s why we use the fol-
lowing theorem:
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Theorem 2.8. (See [17].) The following transformations preserve the decomposition and send the code C to an
equivalent one:

(a) the substitution x → xt in Cϕ , where t is an integer, 1 � t � p − 1;
(b) multiplication of the jth coordinate of Cϕ by xt j where t j is an integer, 0 � t j � p − 1, j = 1,2, . . . , c;
(c) permutation of the first c cycles of C ;
(d) permutation of the last f coordinates of C .

3. Codes with an automorphism of odd prime order

3.1. Codes with an automorphism of order 3

In this section we first classify self-dual codes with an automorphism of order 3.
Let C be a self-dual [48,24,10] code with an automorphism of order 3. According to Corollary 2.2

this automorphism is of type 3-(12,12), 3-(14,6) or 3-(16,0). In this section we prove that only the
type 3-(16,0) is possible. Moreover, we classify all binary self-dual codes with the given parameters
which are invariant under a fixed point free permutation of order 3.

Proposition 3.1. Self-dual [48,24,10] codes with an automorphism of type 3-(12,12) do not exist.

Proof. In this case the code Cϕ is a self-dual [12,6] code over the field P = {0, e(x) = x + x2,

xe(x), x2e(x)} under the inner product (u, v) = u1 v2
1 + u2 v2

2 + · · · + u12 v2
12. The highest possible min-

imum distance of a quaternary Hermitian self-dual [12,6] code is 4 (see [9]), hence the minimum
distance of Eσ (C) can be at most 8 – a conflict with the minimum distance of C . �
Proposition 3.2. Self-dual [48,24,10] codes with an automorphism of type 3-(14,6) do not exist.

Proof. Assume that σ = (1,2,3)(4,5,6) · · · (40,41,42) is an automorphism of the self-dual
[48,24,10] code C . Then Cπ is a binary self-dual [20,10,4] code. There are exactly 7 inequiva-
lent self-dual [20,10,4] codes, namely J20, A8 ⊕ B12, K20, L20, S20, R20 and M20 (see [15]). If Cπ

is equivalent to any of these codes there is a vector v = (v1, v2) in Cπ with v1 ∈ F
14
2 , v2 ∈ F

6
2 and

wt(v1) = wt(v2) = 2. Thus the vector π−1(v) ∈ Fσ (C) has weight 8 which contradicts the minimum
distance. �

Let now C be a singly-even [48,24,10] code, possessing an automorphism with 16 cycles of
length 3 and no fixed point in its decomposition into independent cycles.

According to Theorem 2.6, the subcode Cπ is a binary self-dual [16,8,� 4] code. We further show
that Cπ is singly-even as follows. By Theorem 2.7(ii), Cϕ is Hermitian self-dual over P , which is the
field of 4 elements given in the proof of Proposition 3.1. So Cϕ has only even weight vectors, implying
that Eσ (C) has all vectors of weights a multiple of 4. If Cπ is doubly-even, all vectors in Fσ (C) also
have weights a multiple of 4, making C doubly-even, a contradiction. So Cπ is singly-even.

There is one such code, denoted by F16 in [15], with a generator matrix

G B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1000001110010010
0100001110011101
0010001110001111
0001001100011010
0000101010011010
0000010110011010
0000000001010110

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

0000000000110011
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It is more convenient for us to denote this code by B . The automorphism group of B is gener-
ated by the permutations (1,12,4,2,13,15,9,3)(5,16,8,11)(6,14)(7,10) and (1,8,7)(5,6,13)(10,

12)(14,15). Its order is 76 728.
According to Theorem 2.6 the subcode Cϕ is a quaternary Hermitian self-dual [16,8,� 5] code.

There are exactly 4 inequivalent such codes 116, 16 + 2 f5, 4 f4, and 2 f8 [9]. Their generator matrices
in standard form are Gi = (I|Xi), i = 1, . . . ,4, where

X1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 ω 1 1 1 0 ω2

ω2 ω2 0 ω2 ω ω2 1 1
ω 0 1 ω 0 1 ω 0
1 ω2 ω2 ω ω2 ω2 ω2 0
0 1 1 1 ω2 ω2 ω 1
ω2 1 ω2 0 ω 0 ω 0
ω 0 ω ω2 1 ω 1 ω2

0 1 ω2 ω2 ω2 ω2 ω2 ω2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

X2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω2 1 ω2 0 ω2 0 ω 0
1 ω2 ω ω2 1 1 0 1
ω 1 1 ω2 1 ω2 ω2 0
0 ω 0 ω2 0 1 ω2 ω2

1 ω 0 ω 1 1 ω2 1
0 ω2 ω 1 ω2 ω ω ω2

ω 0 0 1 ω2 ω2 ω2 0
0 ω ω2 1 ω2 ω2 ω2 ω2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

X3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω 0 ω2 0 0 ω2 1 ω2

1 ω2 ω ω2 1 1 0 1
ω2 ω2 ω2 ω 0 ω ω 1
1 ω2 0 ω2 ω2 ω 0 0
1 ω 0 ω 1 1 ω2 1
0 1 ω2 ω ω ω2 ω2 ω
1 1 1 ω 0 0 0 ω2

1 ω 0 ω2 ω2 ω2 ω2 ω2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

X4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 ω2 ω2 ω 1 ω2 1
1 ω2 ω ω2 1 1 0 1
ω 1 1 ω2 1 ω2 ω2 0
ω ω2 0 0 1 0 ω ω
1 ω 0 ω 1 1 ω2 1
1 0 ω ω2 0 1 1 0
ω 0 0 1 ω2 ω2 ω2 0
0 ω2 1 ω 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Denote by Cτ
i the self-dual [48,24,10] code with a generator matrix

gen Cτ
i =

(
π−1(τ B)

ϕ−1(Xi)

)
,

where τ is a permutation from the symmetric group S16, and 1 � i � 4. We use the following.

Lemma 3.3. (See [18].) If τ1 and τ2 are in one and the same right coset of Aut(B) in S16 , then Cτ1
i and Cτ2

i are
equivalent.
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Table 1
Generating permutations and |Aut(C)| for codes with Cϕ = 116.

Permutation |Aut | Permutation |Aut | Permutation |Aut |
(5,6)(12,14) 3 (2,3,14,8,12,6)(5,9,11) 6 (2,14,8,12,6)(5,9,11) 6
(3,6,5,12,10,9,11) 6 (3,6,7,5,12,14,15,9,11) 6

Table 2
Generating permutations and |Aut(C)| for codes with Cϕ = 16 + 2 f5.

Permutation |Aut | Permutation |Aut | Permutation |Aut |
(1,2,16,14,15,10,13) 3 (1,7,12,13,5,2,10,11,9) 3 (1,12,16,9)(2,10,13,6,5) 3
(2,10,13,4,8,7,12,16,11,9) 3 (2,11,16,5,10,8,12,13) 3 (2,12)(4,6,8,7)(14,16) 3
(2,12,9,11,14,6,7,8) 3 (2,13)(3,7,12,6,11,10) 3 (2,14,12,13,4,6,11,9,8,3) 3
(2,15,3,11,10,13) 3 (2,8,11,14,16,13,4)(6,12) 3 (2,8,11,5,12,13) 3
(2,8,7,15,11,16)(6,14) 3 (2,9,7,12,10,16,13)(6,15) 3 (2,16,8,13)(6,11,7,12,10,9) 3
(3,10)(4,7,11,13)(6,12,8) 3 (2,3,11,10,6,5,8,4,12) 6 (2,8,14,6,5,9,15) 6
(2,8,15,9,11,10,6,5) 6 (2,12,3)(7,10,9,8) 6

In order to classify all codes we have considered all representatives of the right transversal of
S16 with respect to Aut(B). We have checked the equivalence of codes using Q-Extension [4]. The
obtained inequivalent codes and the orders of their automorphism groups are listed in Tables 1–4,
where the column labeled “permutation” is the value of τ used to construct gen Cτ

i .

Proposition 3.4. There are exactly 264 inequivalent binary [48,24,10] self-dual codes with an automorphism
of type 3-(16,0).

Corollary 3.5. There are exactly 264 inequivalent binary cubic self-dual [48,24,10] codes.

3.2. Codes with automorphisms of orders 5, 7, and 11

The first author [6] showed that there are no self-dual [48,24,10] codes with automorphisms of
orders 5, 7, and 11. However, these results have received less attention since even Huffman in his
survey paper [14] could not eliminate these types of automorphisms. Hence it is worth sketching the
nonexistence of self-dual [48,24,10] codes with automorphisms of orders 5, 7, and 11.

Let C be a binary singly-even self-dual [48,24,10] code with an automorphism of order 11 and

σ = (1,2, . . . ,11)(12, . . . ,22)(23, . . . ,33)(34, . . . ,44)

be an automorphism of C . Then π(Fσ (C)) is a binary self-dual code of length 8.

Lemma 3.6. The code π(Fσ (C)) is generated by the matrix (I4|I4 + J4) up to a permutation of the last four
coordinates. Here I4 is the identity matrix and J4 is the all-one matrix.

Since 10 is the multiplicative order of 2 modulo 11, Cϕ = ϕ(Eσ (C)∗) is a self-dual [4,2] code over
the field P of even-weight polynomials in F2[x]/(x11 − 1) with 210 elements under the inner product

(u, v) = u1 v32
1 + u2 v32

2 + u3 v32
3 + u4 v32

4 . (4)

Lemma 3.7. Cϕ is a [4,2,3] self-dual code over the field P .

By considering all possibilities of Cϕ , one can get the following.

Theorem 3.8. (See [6].) There does not exist a self-dual [48,24,10] code with an automorphism of order 11.
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Table 3
Generating permutations and |Aut(C)| for codes with Cϕ = 4 f4.

Permutation |Aut | Permutation |Aut | Permutation |Aut |
(1,2,10,5,6,11,13,16)(3,4) 3 (1,14,4,10,11,7,9,3)(8,15) 3 (1,16,7)(2,15,14,6)(4,12,5) 3
(1,16,8,6,14,4,11,12,7,3) 3 (2,3,6,9,8,12,7,16,10) 3 (2,3,9)(4,7,10,5) 3
(2,5,4,9,3,14,6)(12,16) 3 (2,5,6,15)(7,10,11)(9,12) 3 (2,6,10,3,9,15,8,12,4,16) 3
(2,6,16,10)(4,15,5)(7,12) 3 (2,6,16,10)(7,9,8,12) 3 (2,6,3,5,12,13)(7,9,10,16) 3
(2,6,5,12,9,8,14,11) 3 (2,7,9,8,12,13)(5,16,10,14) 3 (2,8,12)(4,16,9,15,6,10) 3
(2,8,12,13)(5,14,9,11,15,6) 3 (2,8,4,3,6,11)(5,15) 3 (2,8,7,15,9,11)(5,10) 3
(2,9,11,10,5,8,12,15,6) 3 (2,9,11,8,14,10,6,5,15) 3 (2,9,15,8,12,6,11,5) 3
(2,9,6,5,12,13) 3 (2,9,8,10,14,5,6) 3 (2,9,8,11,6)(5,16,10) 3
(2,9,8,12,3,6,11) 3 (2,9,8,16,14,6,5,12,3,13) 3 (2,9,8,6)(5,10) 3
(2,9,8,7,14,10,16)(6,12) 3 (2,9,8,7,4,12,15,13) 3 (2,10,5,12,9,8,11,15,6) 3
(2,10,5,16,7,6,4,12,15,13) 3 (2,10,5,4,11,15,9,12,6) 3 (2,11,5,4,3,14,6)(9,15) 3
(2,11,9,12)(5,15)(7,10) 3 (2,13)(3,5,4)(6,16,12,14) 3 (2,13)(5,11,12,9,8,14,6) 3
(2,13)(5,12,16,6,7,9,11,10) 3 (2,14,12,13)(3,5,4)(6,16) 3 (2,14,6)(3,11,5,4,15,9) 3
(2,14,7,5,4,15,8,10,11) 3 (2,14,9,12,6)(4,11,10,5) 3 (3,4)(6,15,11,8,7,14) 3
(3,5)(4,12,16,6)(7,15,14) 3 (3,5)(6,15)(7,12)(14,16) 3 (3,5)(6,15,7,12) 3
(3,5)(6,9,15,10,16,7,12) 3 (3,5,15)(6,10,12)(9,11) 3 (3,5,15,6,10)(9,11) 3
(3,5,15,8,16,6,10)(9,11) 3 (3,6,11,9,5,8,12,10) 3 (3,6,9,15,7,12,5) 3
(3,7,10,16,5,15,11,9,8) 3 (3,7,12,6,16,10,15,5) 3 (3,7,4,12,5)(6,15)(10,11) 3
(3,11)(5,15)(7,8,10,9,12) 3 (3,11,6,4,12,7,15,5) 3 (3,11,8,14,6,10,5,15) 3
(3,11,8,15)(5,14)(6,10) 3 (3,14,11,5,4,12,6,15,7) 3 (3,14,6,15,16,7,4,12,5) 3
(3,16)(5,15,9,12)(7,8,10) 3 (3,16,5,15,9,12,7,8,10) 3 (3,16,6,15,9,10)(5,12) 3
(3,16,7,12,9,5)(6,14) 3 (3,16,7,4,15,6,10,12,5) 3 (3,16,9,5,12)(6,10)(7,14) 3
(5,12,7,10,9,8,14) 3 (5,12,9,11,8,14)(6,10) 3 (5,14,16)(6,11,8,15) 3
(5,15,9,11,8,16,6,10) 3 (7,11,12,9,8) 3 (1,15,7,6,10,11,8,14,4,3) 6
(2,5,3,7)(6,16,14) 6 (2,6,12,5,15)(9,11) 6 (2,6,7,15)(5,12)(9,11) 6
(2,7,10,13)(3,9,8,12,14,5,16) 6 (2,7,10,5,16,9,8,12,13) 6 (2,7,15)(5,6,12,16,9,10) 6
(2,7,8,15,9,10,5,12,11) 6 (2,9,11)(5,8,15,14,6,12) 6 (2,9,11,10,5,16,6,12,13) 6
(2,9,11,6,16,5,8,12,13) 6 (2,9,6,5,11,12,13)(8,14) 6 (2,9,6,5,14,8,11,16,12,13) 6
(2,9,8,14,6,12)(7,15) 6 (2,9,8,14,6,15)(7,12) 6 (2,13)(5,12,9,11)(6,16,14) 6
(2,13)(5,16,7,10)(6,12,9) 6 (2,13)(5,6,12)(7,16)(9,10,11) 6 (2,13)(5,8,12,9,11)(6,16) 6
(2,13)(5,8,16,6,12,9,11) 6 (2,14)(5,12,9,8,15,6,11) 6 (2,14,6,15,9,11)(5,8,12) 6
(2,16,7,10,5,15,9,8,12) 6 (3,5,12,7,10,16)(8,15,9) 6 (3,5,8,15,6,12,9,11) 6
(3,6,11,14,9,8,12)(5,15) 6 (3,7,12,5,4)(6,15,14) 6 (3,7,5,4,12,13)(6,14) 6
(3,9,10,5,6,15,11)(7,12) 6 (3,9,12,7,10,11)(4,15,5) 6 (3,9,8,15,7,10,11)(5,12) 6
(3,10,11,6,12,5)(7,15) 6 (3,11,5,15,9,8,12,7,10) 6 (3,11,7,12,14,6,15,5) 6
(3,11,7,12,6,9,15,10,5,13) 6 (3,11,7,15,5,4)(6,12) 6 (3,11,7,15,6,12,5,4) 6
(3,11,7,9,15,6,12,10,5,13) 6 (4,11,9)(5,15,6,12) 6 (5,6,12)(7,15,9,10,11) 6
(5,8,15,10,6,12,9,11) 6 (5,10)(6,16,7,9,11,8,14) 6 (5,15)(7,8,12,9,10,11) 6
(5,15,7,8,12,9,10,11) 6 (1,16,7)(2,15,5,4,12,14,6) 12 (3,9,12,14,6,11)(4,15,5) 12
(5,15,6,11,9,8,12) 12 (2,6,12,7,16,13)(3,5) 24 (3,6,7,12,9,11,10)(5,15) 24
(2,5,3,6,12,7,16,13) 48

Let C be a binary singly-even self-dual [48,24,10] code with an automorphism of order 7 and let

σ = (1,2, . . . ,7)(8, . . . ,14) · · · (36, . . . ,42).

Now π(Fσ (C)) is a [12,6] self-dual code. Since the minimal distance of Fσ (C) is at least 10, π(Fσ (C))

has a generator matrix of the form (I6|A), where I6 is the identity matrix. We obtain a unique possi-
bility for A up to a permutation of its columns:

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1
0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎠

. (5)
1 0 1 1 1 1



S. Bouyuklieva et al. / Finite Fields and Their Applications 18 (2012) 1104–1113 1111
Table 4
Generating permutations and |Aut(C)| for codes with Cϕ = 2 f8.

Permutation |Aut | Permutation |Aut | Permutation |Aut |
(1,11,12,5,3,13,2,8,15,9) 3 (1,12,3,7,10)(4,5,14,13,16) 3 (2,3,11,12,8,7,5) 3
(2,5,11,12,3,6)(9,10) 3 (2,5,11,6)(8,14,12,15) 3 (2,5,3,10,6,4,11)(7,15) 3
(2,5,3,6)(8,15,16,9,10) 3 (2,5,4,12,3,6)(9,16,10) 3 (2,5,4,3,6)(9,15,16,10) 3
(2,5,7,3,6,15,9,11) 3 (2,5,8,11,12,3,6)(9,10) 3 (2,5,8,15,10,11,6) 3
(2,5,8,15,11,3,6) 3 (2,6)(3,5)(8,15,16,9,10) 3 (2,6)(3,5,4)(9,11,12) 3
(2,6)(3,5,4,15,16,10,9) 3 (2,6)(3,5,4,16,14,9,12) 3 (2,6)(3,5,7)(9,15,10,16) 3
(2,6)(3,5,8,4,10,11,12) 3 (2,6)(3,8,16,9,10,5,12) 3 (2,8,12,3,6)(5,16,9,10) 3
(2,8,4,10,5,11,12,3,6) 3 (2,8,4,12,3,6)(5,11) 3 (2,9,10,11,5)(3,8,7,12) 3
(2,9,11,5,15,8,3,6) 3 (2,9,11,5,3,6)(8,15) 3 (2,9,11,6,8,16,5,12) 3
(2,9,11,8,3,5,15,16,14,6) 3 (2,9,15,5,3,8,11,12,14,6) 3 (2,9,8,14,5,10,6)(15,16) 3
(2,9,8,16,5,12,11,6) 3 (2,9,8,5,6)(12,14,15) 3 (2,9,8,5,6)(12,16,15) 3
(2,9,8,5,6)(15,16) 3 (2,9,8,6)(12,16,15) 3 (2,10,7,9,15)(3,6,11,5) 3
(2,11,12,8,7,5) 3 (2,11,14,15,9,4,5,7) 3 (2,11,3,5,8,4)(6,12) 3
(2,11,6)(5,12,9,8,16) 3 (2,12,16,10,3,9,7,5,4) 3 (2,15)(5,7,10)(6,14)(9,11) 3
(2,15,16,10,9,5,4,6) 3 (2,15,16,11,9,10,5,6) 3 (2,15,16,14,10,8,6,7) 3
(2,15,16,14,6)(4,10,5) 3 (2,15,16,14,6,12,5,4) 3 (2,15,16,14,8,6,7) 3
(2,15,16,9,10,5,14,6) 3 (2,15,16,9,10,5,14,6,7) 3 (2,15,16,9,10,5,6,7) 3
(2,15,5,12,6)(8,16)(9,10) 3 (2,15,5,14,6,7)(9,11,12) 3 (2,15,5,16,8,12,9,11,13,4) 3
(2,15,5,8,10,6)(9,11,12) 3 (2,15,6)(4,11,9)(5,16) 3 (2,15,6)(5,10)(8,14,9,11) 3
(2,15,6)(5,10,9,11,8,14) 3 (2,15,6)(5,11)(8,14)(9,10) 3 (2,15,6)(5,12)(8,16)(9,10) 3
(2,15,8,10,13,4)(5,14,16) 3 (2,15,8,6)(5,12,9,10,11) 3 (3,5)(4,11,7,15,16,6) 3
(3,5,12,6,11,9,8,16) 3 (3,6,4,11,14,5)(7,15,10) 3 (3,7,9,15,6,11,14,12,5) 3
(3,12,5,7)(6,15)(9,11) 3 (3,15,6,8,10,5,14,9,11) 3 (3,16,14,5)(6,11,7,9,15) 3
(3,16,5)(6,8,15,9,11) 3 (3,16,9,11,5,7,15,6) 3 (4,7,11,12,6)(5,15) 3
(5,7,12,9,10) 3 (5,7,14)(6,10)(9,11) 3 (5,15)(6,9,11,12) 3
(1,2,14,15,16,8,11,13,9) 6 (1,2,15,16,13,7,5,10,14,9) 6 (1,2,9)(5,15,11,12,13,7) 6
(1,15,13,12,9)(5,7,10,11) 6 (1,15,9)(5,6,12)(10,13) 6 (2,5,3,6)(8,15)(9,11,10) 6
(2,5,6,10,16)(4,12,13)(9,15) 6 (2,6)(3,14,5,9,15,16) 6 (2,6)(5,10,8,16)(9,11) 6
(2,6,11,5,16,15,8)(9,10) 6 (2,6,7,11)(5,12)(9,10) 6 (2,6,7,8,9,11,12,14) 6
(2,6,8,11,13,4)(3,5) 6 (2,7,11,12)(5,9,10)(6,14) 6 (2,7,11,12)(5,9,10,6,14) 6
(2,8,10,3,13,4)(5,15,16) 6 (2,8,10,5,15,16,3,13,4) 6 (2,9,11,5,3,8,15,14,6) 6
(2,11,12,13,4)(5,10)(8,15) 6 (2,11,12,3,13,4)(5,10,9,7) 6 (2,12,10,16,6,7,8,4) 6
(2,12,16,9,4,10,6)(8,14) 6 (2,15,11,12,10,9,8,5,6) 6 (2,15,11,12,14,6,8,13,4) 6
(2,15,16,10,13,4,11,8,6) 6 (2,15,16,14,6,8,4) 6 (2,15,16,6)(4,10,8,14,9) 6
(2,15,5,11,6)(4,16,8) 6 (2,15,5,9,10,11,6) 6 (2,15,9,4,5,7,10,11,12) 6
(3,5,9,11)(6,10,12)(7,14) 6 (3,9,5,7,10,11,12) 6 (3,16)(5,8,9,15)(6,12) 6
(3,16)(5,9,15)(6,12) 6 (3,16)(5,9,15,6,12) 6 (3,16,15,6,7,9,11) 6
(5,9,10,6,11,12,7,14) 6 (5,9,10,6,14)(7,11,12) 6 (5,9,11,12,7,14)(6,10) 6
(1,16,7,14,6,11,8,2,4,3) 12 (1,15,3,9)(5,7,10,11,13,12) 24 (2,5,7,10,11,13,4,12,9,15) 24
(4,15,5,7,10,16,13)(9,12) 24

Since 23 ≡ 1 (mod 7), 2 is not a primitive root modulo 7 and P is not a field. Now P = I1 ⊕ I2,
where I1 and I2 are cyclic codes generated by the idempotents e1(x) = 1 + x + x2 + x4 and e2(x) =
1 + x3 + x5 + x6, respectively, so

I j = {
0, e j(x), xe j(x), . . . , x6e j(x)

}
, j = 1,2.

Moreover, I1 and I2 are fields of 8 elements [18].
In this case Cϕ = ϕ(Eσ (C)∗) = M1 ⊕ M2, where M j = {u ∈ Cϕ | ui ∈ I j, i = 1, . . . ,6} is a linear code

of length 6 over the field I j , j = 1,2, and dimI1 M1 + dimI2 M2 = 6 [18]. Since the minimum weight
of the code C is 10, every vector of Cϕ must contain at least three nonzero coordinates. Hence the
minimum weight of M j is at least 3. Thus by the Singleton Bound, the maximum dimension of M j is
at most 4. Therefore the dimension of M j is at least 2, j = 1,2.

By Theorem 2.6 for every two vectors (u1(x), . . . , u6(x)) from M1 and (v1(x), . . . , v6(x)) from M2
we have

u1(x)v1
(
x−1) + · · · + u6(x)v6

(
x−1) = 0.



1112 S. Bouyuklieva et al. / Finite Fields and Their Applications 18 (2012) 1104–1113
Since e1(x−1) = e2(x) and e1(x)e2(x) = 0, M2 determines the whole code Cϕ . The substitution x → x3

in ϕ(Eσ (C)∗) interchanges M1 and M2 and therefore we may assume that dimI1 M1 � dimI2 M2. We
have two cases, dimI2 M2 = 2 and dimI2 M2 = 3. Each case does not produce a self-dual [48,24,10]
code with an automorphism of order 7 as follows.

Theorem 3.9. (See [6].) There does not exist a self-dual [48,24,10] code with an automorphism of order 7.

According to Corollary 2.2, if the self-dual [48,24,10] code C has an automorphism σ of order 5
then σ is of type 5-(8,8). Here we prove that this is not possible.

Let C have an automorphism σ of type 5-(8,8). Then Cϕ is a self-dual [8,4] code over the field
P with 16 elements under the inner product (u, v) = u1 v4

1 + u2 v4
2 + · · · + u8 v4

8, u, v ∈ Cϕ . There is
one-to-one correspondence between the elements of the field P and the set of 5 × 5 circulants with
rows of even weight defined by

a0 + a1x + a2x2 + a3x3 + a4x4 �→

⎛
⎜⎜⎜⎝

a0 a1 a2 a3 a4
a4 a0 a1 a2 a3
a3 a4 a0 a1 a2
a2 a3 a4 a0 a1
a1 a2 a3 a4 a0

⎞
⎟⎟⎟⎠ .

Moreover, the rank of a nonzero circulant of this type is 4. Therefore, any nonzero vector u ∈ Cϕ

corresponds to a subcode of Eσ (C)∗ of length 40 and dimension 4. Moreover, the effective length of
this subcode is 5wt(u). Since self-orthogonal [15,4,10] and [20,4,10] codes do not exist (see [5]),
we have wt(u) � 5. Hence Cϕ must be an MDS [8,4,5] Hermitian self-dual code over the field P ∼=
GF(16). Huffman proved in [13] that such codes do not exists. So a self-dual [48,24,10] code with an
automorphism of type 5-(8,8) does not exist.

Theorem 3.10. (See [6].) A self-dual [48,24,10] code C does not have automorphisms of order 5.

Lemma 3.11. (See [6].) A self-dual [48,24,10] code with an automorphism of order 3 has weight enumerator
W48,2(y).

Putting together the above results, we have the following theorems.

Theorem 3.12. (See [6].) If C is a singly-even self-dual [48,24,10] code with weight enumerator W48,1(y),
the automorphism group of C is of order 2s with s � 0.

Theorem 3.13. (See [6].) If C is a self-dual singly-even [48,24,10] code with weight enumerator W48,2(y),
then the automorphism group of C is of order 2s3t with s � 0, t � 0.

Therefore, using Proposition 3.4, we summarize our result below.

Theorem 3.14. If there is a self-dual [48,24,10] code with an automorphism of type p-(c, f ) with p being
an odd prime, then p = 3, c = 16, f = 0. Moreover, there are exactly 264 inequivalent binary [48,24,10]
self-dual codes with an automorphism of odd prime order, which is in fact of type 3-(16,0). Hence there are
exactly 264 inequivalent binary cubic self-dual [48,24,10] codes.
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