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1. Introduction

A linear [n, k] code over [y is a k-dimensional subspace of IFZ. A linear code C is called self-
dual if it is equal to its dual C+ = {x e IF('Jl | x- ¢ =0 for any c € C}. The classification of binary self-
dual codes was initiated and done up to length 20 by V. Pless [15]. Since then the classification of
self-dual codes has been one of the most active research topics (see [16,14]). The classification of
binary self-dual [38, 19, 8] codes has been recently done by Aguilar-Melchor, Gaborit, Kim, Sok, and
Solé [1] and independently by Betsumiya, Harada and Munemasa [2]. Very recently, Bouyuklieva and
Bouyukliev [7] have classified all binary self-dual [38, 19] codes.

In this paper, we are interested in the classification of binary self-dual [48, 24, 10] codes with an
automorphism of odd prime order. It was motivated by the following reasons. Bonnecaze, et al. [3]
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constructed binary self-dual codes with a fixed-point free automorphism of order 3, called cubic self-
dual codes due to the correspondence with self-dual codes over a ring Fo[Y]/(Y3 — 1). They gave a
partial list of binary cubic self-dual codes of lengths < 72 by combining binary self-dual codes and
Hermitian self-dual codes. Later, Han, et al. [11] have given the classification of binary cubic optimal
self-dual codes of length 6k where k=1,2,...,7. Hence it is natural to ask exactly how many binary
cubic self-dual optimal [48, 24, 10] codes exist and we answer it in this paper. On the other hand,
we have noticed that Huffman [14, Table 2] listed all possible values of the type p-(c, f) with p odd
for an automorphism of a self-dual [48, 24, 10] code. They are 11-(4, 4), 7-(6, 6), 5-(8, 8), 3-(14, 6),
and 3-(16, 0). We will show that the first four types are not possible. Therefore, the classification
of binary [48, 24, 10] self-dual codes with a nontrivial odd order automorphism coincides with the
classification of binary [48, 24, 10] self-dual cubic codes.
There are two possible weight enumerators for self-dual [48, 24, 10] codes [10]:

Was1(y) =1+ 704y + 8976y 4+ 56896y'* +267575y'16 + ..., (1)
Was2(y) =1+ 768y'° +8592y12 4 57600y'* + 267831y + ... (2)

Brualdi and Pless [8] found a self-dual [48, 24, 10] code with weight enumerator Wys 1. The order of
its group of automorphisms is 4. A classification of binary self-dual [48, 24, 10] codes with Wyg 1 is
known [12]. A code with weight enumerator Wyg > is given in [10].

The first author [6] showed that any code with Wyg 1(y) has no automorphism of odd prime order
and that any code with W4g 2(y) has a group of automorphisms of order 2135 for some integers I > 0
and s > 0. However, this result has received less attention and hence we will include it briefly. In this
paper, we prove that if there is a self-dual [48, 24, 10] code with an automorphism of type p-(c, f)
with p being an odd prime, then p =3, c =16, f = 0. Therefore by considering only an automorphism
of type 3-(16, 0), we prove that there are exactly 264 inequivalent self-dual [48, 24, 10] codes with an
automorphism of odd prime order. To do that we apply the method for constructing binary self-dual
codes possessing an automorphism of odd prime order (see [13,17,18]).

2. Construction method

Let C be a binary self-dual code of length n with an automorphism o of prime order p > 3 with
exactly ¢ independent p-cycles and f =n—cp fixed points in its decomposition. We may assume that

o=01,2,....p(p+1,p+2,....2p) - (c=Dp+1,c=Dp+2,...,cp), (3)

and say that o is of type p-(c, f).
We begin with a theorem which gives a useful restriction for the type of the automorphism.

Theorem 2.1. (See [18].) Let C be a binary self-dual [n,n/2, d] code with an automorphism of type p-(c, f)
where p is an odd prime. Denote g(k) =d + [%1 4+ -+ [2,%1. Then:

(i) pc > g(“25Y) and if d < 2(P~1/2-2 the equality does not occur;
(i) if f > c then f > g(%) and if d < 24/=9/2-2 the equality does not occur;
(iii) if 2 is a primitive root modulo p then c is even.

Applying the theorem for the parameters n =48 and d = 10, we obtain

Corollary 2.2. Any putative automorphism of an odd prime order for a singly-even self-dual [48, 24, 10] code
is of type 47-(1, 1), 23-(2, 2), 11-(4, 4), 7-(6, 6), 5-(8, 8), 3-(12, 12), 3-(14, 6), or 3-(16, 0).

Denote the cycles of o by £21 =1{1,2,...,p}, §22,...,82, and the fixed points by 2.1 =
{cp+1), ..., 2cr ={cp + f =n}. Define
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Fo(O)={veC|ow)=v},
Ex(C)={veC|wt(v|2)=0(@mod2), i=1,....c+ f},

where v|£2; is the restriction of v on £2;.
Theorem 2.3. (See [13].) C = Fo (C) ® Eo (C), dim(Fo (C)) = L, dim(E, (€)) = 9271,

We have that v € F5(C) if and only if v € C and v is constant on each cycle. The cyclic group
generated by o splits the set of codewords into disjoint orbits which consists of p or 1 codewords.
Moreover, a codeword v is the only element in an orbit if and only if v € F5(C). Using that all
codewords in one orbit have the same weight, we obtain the following proposition.

Proposition 2.4. Let (Ao, A1, ..., Ap) and (Bo, B1, ..., By) be the weight distributions of the codes C and
Fo (C), respectively. Then A; = B; (mod p).

Proposition 2.4 eliminates the first two types from Corollary 2.2. In fact, these cases were elimi-
nated by Huffman [14, Appendix]| in a different way.

Corollary 2.5. If C is a self-dual [48, 24, 10] code, then C does not have automorphisms of orders 47 and 23.

Proof. Let 0 be an automorphism of C. If o is of type 47-(1,1) then F,(C) is the repetition
[48,1,48] code and therefore Big = 0. Since neither 704 nor 768 is congruent 0 modulo 47, this
case is not possible.

If the type is 23-(2,2) then B; =0 for 0 < i < 24. Therefore B1p =0 and A1g # B1o (mod 23) - a
contradiction. O

To understand the structure of a self-dual code C invariant under the permutation (3), we define
two maps. The first one is the projection map 7 : F5(C) — IE‘;H where (77 (v)); = v; for some j € £2;,
i=1,2,....,c+ f, ve Fs(C).

Denote by E,(C)* the code E,(C) with the last f coordinates deleted. So E,(C)* is a self-
orthogonal binary code of length pc. For v in E4(C)* we let v|§2; = (vo, V1, ..., Vp—1) correspond
to the polynomial vg + vix+---+ vp,le*l from P, where P is the set of even-weight polynomials
in Fy[x]/(xP — 1). P is a cyclic code of length p with generator polynomial x — 1. Moreover, if 2 is a
primitive root modulo p, P is a finite field with 2P~ elements [13]. In this way we obtain the map
@ 1 Es(C)* — PC. Let C; =1 (F5(C)) and Cy = @(E5(C)*). The following theorems give necessary
and sufficient conditions for a binary code with an automorphism of type (3) to be self-dual.

Theorem 2.6. (See [18].) A binary [n,n/2] code C with an automorphism o is self-dual if and only if the
following two conditions hold:

(i) Cyx is a binary self-dual code of length ¢ + f,
(i) for every two vectors u, v € Cyp we have Zf:] uix)vi(x~1 =0.

Theorem 2.7. (See [13].) Let 2 be a primitive root modulo p. Then the binary code C with an automorphism
o is self-dual if and only if the following two conditions hold:

(i) Cy is a self-dual binary code of length ¢ + f;
(ii) Cy is a self-dual code of length c over the field P under the inner product (u, v) =Y i_, uiviz(p*l)/z.

To classify the codes, we need additional conditions for equivalence. That's why we use the fol-
lowing theorem:
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Theorem 2.8. (See [17].) The following transformations preserve the decomposition and send the code C to an
equivalent one:

(a) the substitution x — x' in Cy, where t is aninteger, 1<t <p —1;

(b) multiplication of the jth coordinate of Cy, by xli wheretjisaninteger, 0<tj<p—1,j=1,2,...,¢;
(c) permutation of the first c cycles of C;

(d) permutation of the last f coordinates of C.

a
b
c

3. Codes with an automorphism of odd prime order
3.1. Codes with an automorphism of order 3

In this section we first classify self-dual codes with an automorphism of order 3.

Let C be a self-dual [48, 24, 10] code with an automorphism of order 3. According to Corollary 2.2
this automorphism is of type 3-(12,12), 3-(14,6) or 3-(16,0). In this section we prove that only the
type 3-(16,0) is possible. Moreover, we classify all binary self-dual codes with the given parameters
which are invariant under a fixed point free permutation of order 3.

Proposition 3.1. Self-dual [48, 24, 10] codes with an automorphism of type 3-(12, 12) do not exist.

Proof. In this case the code Cy, is a self-dual [12,6] code over the field P = {0,e(x) = x + x2,
xe(x), x%e(x)} under the inner product (u, v) = u1v? +u3v3 + -+ 4+ u2v3,. The highest possible min-
imum distance of a quaternary Hermitian self-dual [12, 6] code is 4 (see [9]), hence the minimum
distance of E4 (C) can be at most 8 — a conflict with the minimum distance of C. O

Proposition 3.2. Self-dual [48, 24, 10] codes with an automorphism of type 3-(14, 6) do not exist.

Proof. Assume that o = (1,2,3)(4,5,6)---(40,41,42) is an automorphism of the self-dual
[48,24,10] code C. Then C; is a binary self-dual [20, 10,4] code. There are exactly 7 inequiva-
lent self-dual [20, 10, 4] codes, namely Jo, As @ B12, K20, L2o, S20, R20 and Myg (see [15]). If C
is equivalent to any of these codes there is a vector v = (v1,v3) in C5 with vy € F}4, v, € FS and
wt(v1) = wt(vy) = 2. Thus the vector 7~ 1(v) € F, (C) has weight 8 which contradicts the minimum
distance. O

Let now C be a singly-even [48,24,10] code, possessing an automorphism with 16 cycles of
length 3 and no fixed point in its decomposition into independent cycles.

According to Theorem 2.6, the subcode C;; is a binary self-dual [16, 8, > 4] code. We further show
that Cy is singly-even as follows. By Theorem 2.7(ii), C, is Hermitian self-dual over P, which is the
field of 4 elements given in the proof of Proposition 3.1. So Cy, has only even weight vectors, implying
that E, (C) has all vectors of weights a multiple of 4. If C;; is doubly-even, all vectors in F4(C) also
have weights a multiple of 4, making C doubly-even, a contradiction. So C is singly-even.

There is one such code, denoted by Fi¢ in [15], with a generator matrix

1000001110010010
0100001110011101
0010001110001111
0001001100011010
0000101010011010
0000010110011010
0000000001010110
0000000000110011

Gs
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It is more convenient for us to denote this code by B. The automorphism group of B is gener-
ated by the permutations (1,12,4,2,13,15,9, 3)(5, 16, 8,11)(6, 14)(7,10) and (1, 8,7)(5, 6, 13)(10,
12)(14, 15). Its order is 76 728.

According to Theorem 2.6 the subcode C, is a quaternary Hermitian self-dual [16, 8, > 5] code.
There are exactly 4 inequivalent such codes 11, 16 + 2 f5, 4f4, and 2 fg [9]. Their generator matrices

in standard form are G; = (I|X;), i=1,...,4, where
0 0 w 1 1 1 0
0 @ 0 @ w o 1 1
w 0 1 w 0 1 w 0
xi—|1 * 0 o 0 0 @ 0
“lo 1 1 1 0 & o 1|
@ 1 @ 0 w 0 w 0
o 0 o o* 1 o 1
0 1 ? o? v 0? v w?
0 1 w* 0 w* 0 w 0
1 @ o ©* 1 1 0 1
w 1 1 o 1 & o* 0
X, — 0 o 0 w 0 1 o o
1 o 0 w 1 1 o 1|
0 0 o 1 o 0w o ?
wo 0 0 1 w? o?* o 0
0 w o 1 o o o? &?
w 0 @ 0 0 w 1 o?
1 @ o * 1 1 0 1
@ 0 @ w 0w o 1
e | 1 @ 0 o @ o 0 0
Tl 0w 0w 11 @ 1|
0 1 & 0w o w o o
1 1 1 o 0 0 0
1 o 0 o 0 0* 0* ?
1 0 @ o w 1 o 1
1 o o o 1 1 0 1
w 1 1 @?* 1 0? o* 0
Xoz | @ w0 0 1 0 o w
1 o 0 o 1 1 o 1
1 0 w w* 0 1 1 0
w 0 0 1 w 0 w* 0
0 0 1 o 1 1 1 1

Denote by Cl.f the self-dual [48, 24, 10] code with a generator matrix

_ (7 1(zB)
genCi = < o1 (X)) )

where 7 is a permutation from the symmetric group Si6, and 1 <i < 4. We use the following.

Lemma 3.3. (See [18].) If Ty and t; are in one and the same right coset of Aut(B) in S1g, then Cif‘ and Cir2 are
equivalent.
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Table 1

Generating permutations and |Aut(C)| for codes with Cy = 116.
Permutation |Aut | Permutation |Aut | Permutation |Aut |
(5,6)(12,14) 3 (2,3,14,8,12,6)(5,9,11) 6 (2,14,8,12,6)(5,9,11) 6
(3,6,5,12,109,11) 6 (3,6,7,5,12,14,15,9,11) 6

Table 2

Generating permutations and |Aut(C)| for codes with Cy, =16 +2f5.
Permutation |Aut | Permutation |Aut| Permutation |Aut |
(1,2,16,14,15,10,13) 3 (1,712,13,5,2,10,11,9) 3 (1,12,16,9)(2,10,13,6,5) 3
(2,10,13,4,8,7,12,16,11,9) 3 (2,11,16,5,10,8,12,13) 3 (2,12)(4,6,8,7)(14,16) 3
(212,9,11,14,6,7,8) 3 (2,13)(3,7,12,6,11,10) 3 (214,12,13,4,6,11,9,8,3) 3
(2,15,3,11,10,13) 3 (2,8,11,14,16,13,4)(6,12) 3 (2,8,11,5,12,13) 3
(2,8,715,11,16)(6,14) 3 (2,9,712,10,16,13)(6,15) 3 (2,16,8,13)(6,11,7,12,10,9) 3
(3,10)(4,7,11,13)(6,12,8) 3 (2,3,11,10,6,5,8,4,12) 6 (2,8,14,6,5,9,15) 6
(2,8,15,9,11,10,6,5) 6 (2,12,3)(7,10,9,8) 6

In order to classify all codes we have considered all representatives of the right transversal of
S16 with respect to Aut(B). We have checked the equivalence of codes using Q-EXTENSION [4]. The
obtained inequivalent codes and the orders of their automorphism groups are listed in Tables 1-4,
where the column labeled “permutation” is the value of T used to construct genC;.

Proposition 3.4. There are exactly 264 inequivalent binary [48, 24, 10] self-dual codes with an automorphism
of type 3-(16, 0).

Corollary 3.5. There are exactly 264 inequivalent binary cubic self-dual [48, 24, 10] codes.

3.2. Codes with automorphisms of orders 5, 7, and 11

The first author [6] showed that there are no self-dual [48, 24, 10] codes with automorphisms of
orders 5, 7, and 11. However, these results have received less attention since even Huffman in his
survey paper [14] could not eliminate these types of automorphisms. Hence it is worth sketching the
nonexistence of self-dual [48, 24, 10] codes with automorphisms of orders 5, 7, and 11.

Let C be a binary singly-even self-dual [48, 24, 10] code with an automorphism of order 11 and

o=(1,2,...,11)(12,...,22)(23,...,33)(34, ...,44)
be an automorphism of C. Then 7 (F4(C)) is a binary self-dual code of length 8.

Lemma 3.6. The code 1t (F, (C)) is generated by the matrix (14|14 + J4) up to a permutation of the last four
coordinates. Here 14 is the identity matrix and ] 4 is the all-one matrix.

Since 10 is the multiplicative order of 2 modulo 11, Cy = @(E; (C)*) is a self-dual [4, 2] code over
the field P of even-weight polynomials in Fp[x]/(x'! — 1) with 21° elements under the inner product

(U, v) = uvi% + upv3? +usvi2 + ugvi’. (4)
Lemma 3.7. C,, is a [4, 2, 3] self-dual code over the field P.
By considering all possibilities of Cyp, one can get the following.

Theorem 3.8. (See [6].) There does not exist a self-dual [48, 24, 10] code with an automorphism of order 11.
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Table 3
Generating permutations and |Aut(C)| for codes with Cy =4 f4.

Permutation |Aut | Permutation |Aut | Permutation |Aut |
(1,2,10,5,6,11,13,16)(3,4) 3 (1,14,4,10,11,7,9,3)(8,15) 3 (1,16,7)(2,15,14,6)(4,12,5) 3
(1,16,8,6,14,4,11,12,7,3) 3 (2,3,6,9,8,12,7,16,10) 3 (2,3,9)(4,7,10,5) 3
(2,5,4,9,3,14,6)(12,16) 3 (2,5,6,15)(7,10,11)(9,12) 3 (2,6,10,3,9,15,8,12,4,16) 3
(2,6,16,10)(4,15,5)(7,12) 3 (2,6,16,10)(7,9,8,12) 3 (2,6,3,5,12,13)(7,9,10,16) 3
(2,6,5,12,9,8,14,11) 3 (2,7,9,8,12,13)(5,16,10,14) 3 (2,8,12)(4,16,9,15,6,10) 3
(2,8,12,13)(5,14,9,11,15,6) 3 (2,8,4,3,6,11)(5,15) 3 (2,8,7,15,9,11)(5,10) 3
(2,9,11,10,5,8,12,15,6) 3 (2,911,8,14,10,6,5,15) 3 (2,915,8,12,6,11,5) 3
(2,9,6,5,12,13) 3 (2,9,8,10,14,5,6) 3 (2,9,8,11,6)(5,16,10) 3
(2,9,8,12,3,6,11) 3 (2,9,8,16,14,6,5,12,3,13) 3 (2,9,8,6)(5,10) 3
(2,9,8,714,10,16)(6,12) 3 (2,9,8,7,4,12,15,13) 3 (210,5,12,9,8,11,15,6) 3
(2,10,5,16,7,6,4,12,15,13) 3 (2,10,5,4,11,15,9,12,6) 3 (2,11,5,4,3,14,6)(9,15) 3
(2,11,9,12)(5,15)(7,10) 3 (2,13)(3,5,4)(6,16,12,14) 3 (2,13)(5,11,12,9,8,14,6) 3
(2,13)(5,12,16,6,7,9,11,10) 3 (2,14,12,13)(3,5,4)(6,16) 3 (2,14,6)(3,11,5,4,15,9) 3
(2,14,7,5,4,15,8,10,11) 3 (2,14,9,12,6)(4,11,10,5) 3 (3,4)(6,15,11,8,7,14) 3
(3,5)(4,12,16,6)(7,15,14) 3 (3,5)(6,15)(7,12)(14,16) 3 (3,5)(6,15,7,12) 3
(3,5)(6,9,15,10,16,7,12) 3 (3,5,15)(6,10,12)(9,11) 3 (3,5,15,6,10)(9,11) 3
(3,5,15,8,16,6,10)(9,11) 3 (3,6,11,9,5,8,12,10) 3 (3,6,9,15,7,12,5) 3
(3,7,10,16,5,15,11,9,8) 3 (3,7,12,6,16,10,15,5) 3 (3,7.4,12,5)(6,15)(10,11) 3
(3,11)(5,15)(7,8,10,9,12) 3 (3,11,6,4,12,7,15,5) 3 (3,11,8,14,6,10,5,15) 3
(311,8,15)(5,14)(6,10) 3 (314,11,5,4,12,6,15,7) 3 (314,6,15,16,7,4,12,5) 3
(3,16)(5,15,9,12)(7,8,10) 3 (3,16,5,15,9,12,7,8,10) 3 (3,16,6,15,9,10)(5,12) 3
(3,16,7,12,9,5)(6,14) 3 (3,16,7,4,15,6,10,12,5) 3 (3,16,9,5,12)(6,10)(7,14) 3
(5,12,7,10,9,8,14) 3 (5,12,9,11,8,14)(6,10) 3 (5,14,16)(6,11,8,15) 3
(5,15,9,11,8,16,6,10) 3 (711,12,9,8) 3 (1,15,7,6,10,11,8,14,4,3) 6
(2,5,3,7)(6,16,14) 6 (2,6,12,5,15)(9,11) 6 (2,6,7,15)(5,12)(9,11) 6
(2,7,10,13)(3,9,8,12,14,5,16) 6 (2,7,10,5,16,9,8,12,13) 6 (2,7,15)(5,6,12,16,9,10) 6
(2,7.8159,10,512,11) 6 (2,9,11)(5,8,15,14,6,12) 6 (2,911,10,5,16,6,12,13) 6
(2,911,6,16,5,8,12,13) 6 (2,9,6,5,11,12,13)(8,14) 6 (2,9,6,5,14,8,11,16,12,13) 6
(2,9,8,14,6,12)(7,15) 6 (2,9,8,14,6,15)(7,12) 6 (2,13)(5,12,9,11)(6,16,14) 6
(2,13)(5,16,7,10)(6,12,9) 6 (2,13)(5,6,12)(7,16)(9,10,11) 6 (2,13)(5,8,12,9,11)(6,16) 6
(2,13)(5,8,16,6,12,9,11) 6 (2,14)(5,12,9,8,15,6,11) 6 (2,14,6,15,9,11)(5,8,12) 6
(2,16,7,10,5,15,9,8,12) 6 (3,5,12,7,10,16)(8,15,9) 6 (3,5,8,15,6,12,9,11) 6
(3,6,11,14,9,8,12)(5,15) 6 (3,7,12,5,4)(6,15,14) 6 (3,7,5,4,12,13)(6,14) 6
(3,9,10,5,6,15,11)(7,12) 6 (3,9,12,710,11)(4,15,5) 6 (3,9,8,15,7,10,11)(5,12) 6
(3,10,11,6,12,5)(7,15) 6 (3,11,5,15,9,8,12,7,10) 6 (3,11,7,12,14,6,15,5) 6
(3,11,7,12,6,9,15,10,5,13) 6 (3,11,7,15,5,4)(6,12) 6 (3,11,715,6,12,5,4) 6
(311,79,15,6,12,10,5,13) 6 (411,9)(5,15,6,12) 6 (5,6,12)(7,15,9,10,11) 6
(5,8,15,10,6,12,9,11) 6 (5,10)(6,16,7,9,11,8,14) 6 (5,15)(7,8,12,9,10,11) 6
(5,15,7,8,12,9,10,11) 6 (1,16,7)(2,15,5,4,12,14,6) 12 (3,9,12,14,6,11)(4,15,5) 12
(5,15,6,11,9,8,12) 12 (2,6,12,7,16,13)(3,5) 24 (3,6,7,12,9,11,10)(5,15) 24
(2,5,3,6,12,7,16,13) 48

Let C be a binary singly-even self-dual [48, 24, 10] code with an automorphism of order 7 and let

o=(1,2,...,7)8,...,14)--- (36, ...,42).

Now 7 (F4(C)) is a [12, 6] self-dual code. Since the minimal distance of F, (C) is at least 10, 7 (F4 (C))
has a generator matrix of the form (Ig|A), where Ig is the identity matrix. We obtain a unique possi-
bility for A up to a permutation of its columns:

(5)

[ o [ S S SR G
O = R =
el = = =R
- —_ 0 0=o0
- -0 = OO
—_—- =0 OO
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Table 4

Generating permutations and |Aut(C)| for codes with Cy =2 fs.

Permutation Permutation Permutation
(1,11,12,5,3,13,2,8,15,9) 3 (1,12,3,7,10)(4,5,14,13,16) 3 (2,3,11,12,8,7,5) 3
(2,5,11,12,3,6)(9,10) 3 (2,5,11,6)(8,14,12,15) 3 (2,5,3,10,6,4,11)(7,15) 3
(2,5,3,6)(8,15,16,9,10) 3 (2,5,4,12,3,6)(9,16,10) 3 (2,5,4,3,6)(9,15,16,10) 3
(2,5,7,3,6,15,9,11) 3 (2,5,8,11,12,3,6)(9,10) 3 (2,5,8,15,10,11,6) 3
(2,5,8,15,11,3,6) 3 (2,6)(3,5)(8,15,16,9,10) 3 (2,6)(3,5,4)(9,11,12) 3
(2,6)(3,5,4,15,16,10,9) 3 (2,6)(3,5,4,16,14,9,12) 3 (2,6)(3,5,7)(9,15,10,16) 3
(2,6)(3,5,8,4,10,11,12) 3 (2,6)(3,8,16,9,10,5,12) 3 (2,8,12,3,6)(5,16,9,10) 3
(2,8,4,10,5,11,12,3,6) 3 (2,8,4,12,3,6)(5,11) 3 (2,9,10,11,5)(3,8,7,12) 3
(2,9,11,5,15,8,3,6) 3 (2,9,11,5,3,6)(8,15) 3 (2,9,11,6,8,16,5,12) 3
(2,9,11,8,3,5,15,16,14,6) 3 (2,9,15,5,3,8,11,12,14,6) 3 (2,9,8,14,5,10,6)(15,16) 3
(2,9,8,16,5,12,11,6) 3 (2,9,8,5,6)(12,14,15) 3 (2,9,8,5,6)(12,16,15) 3
(2,9,8,5,6)(15,16) 3 (2,9,8,6)(12,16,15) 3 (2,10,7,9,15)(3,6,11,5) 3
(2,11,12,8,7,5) 3 (2,11,14,15,9,4,5,7) 3 (2,11,3,5,8,4)(6,12) 3
(2,11,6)(5,12,9,8,16) 3 (2,12,16,10,3,9,7,5,4) 3 (2,15)(5,7,10)(6,14)(9,11) 3
(2,15,16,10,9,5,4,6) 3 (2,15,16,11,9,10,5,6) 3 (2,15,16,14,10,8,6,7) 3
(2,15,16,14,6)(4,10,5) 3 (2,15,16,14,6,12,5,4) 3 (2,15,16,14,8,6,7) 3
(2,15,16,9,10,5,14,6) 3 (2,15,16,9,10,5,14,6,7) 3 (2,15,16,9,10,5,6,7) 3
(2,15,5,12,6)(8,16)(9,10) 3 (2,15,5,14,6,7)(9,11,12) 3 (2,15,5,16,8,12,9,11,134) 3
(2,15,5,8,10,6)(9,11,12) 3 (2,15,6)(4,11,9)(5,16) 3 (2,15,6)(5,10)(8,14,9,11) 3
(2,15,6)(5,10,9,11,8,14) 3 (2,15,6)(5,11)(8,14)(9,10) 3 (2,15,6)(5,12)(8,16)(9,10) 3
(2,15,8,10,13,4)(5,14,16) 3 (2,15,8,6)(5,12,9,10,11) 3 (3,5)(4,11,7,15,16,6) 3
(3,5,12,6,11,9,8,16) 3 (3,6,4,11,14,5)(7,15,10) 3 (3,7,9,15,6,11,14,12,5) 3
(3,12,5,7)(6,15)(9,11) 3 (3,15,6,8,10,5,14,9,11) 3 (3,16,14,5)(6,11,7,9,15) 3
(3,16,5)(6,8,15,9,11) 3 (3,16,9,11,5,7,15,6) 3 (4,711,12,6)(5,15) 3
(5,712,9,10) 3 (5,7,14)(6,10)(9,11) 3 (5,15)(6,9,11,12) 3
(1,2,14,15,16,8,11,13,9) 6 (1,2,15,16,13,7,5,10,14,9) 6 (1,2,9)(5,15,11,12,13,7) 6
(1,15,13,12,9)(5,7,10,11) 6 (1,15,9)(5,6,12)(10,13) 6 (2,5,3,6)(8,15)(9,11,10) 6
(2,5,6,10,16)(4,12,13)(9,15) 6 (2,6)(3,14,5,9,15,16) 6 (2,6)(5,10,8,16)(9,11) 6
(2,6,11,5,16,15,8)(9,10) 6 (2,6,7,11)(5,12)(9,10) 6 (2,6,7,8,9,11,12,14) 6
(2,6,8,11,13,4)(3,5) 6 (2,711,12)(5,9,10)(6,14) 6 (2,711,12)(5,9,10,6,14) 6
(2,8,10,3,13,4)(5,15,16) 6 (2,8,10,5,15,16,3,13,4) 6 (2,9,11,5,3,8,15,14,6) 6
(2,11,12,13,4)(5,10)(8,15) 6 (2,11,12,3,13,4)(5,10,9,7) 6 (2,12,10,16,6,7,8,4) 6
(2,12,16,9,4,10,6)(8,14) 6 (2,15,11,12,10,9,8,5,6) 6 (2,15,11,12,14,6,3,13,4) 6
(2,15,16,10,13,4,11,8,6) 6 (2,15,16,14,6,8,4) 6 (2,15,16,6)(4,10,8,14,9) 6
(2,15,5,11,6)(4,16,8) 6 (2,15,5,9,10,11,6) 6 (2,15,9,4,5,7,10,11,12) 6
(3,5,9,11)(6,10,12)(7,14) 6 (3,9,5,710,11,12) 6 (3,16)(5,8,9,15)(6,12) 6
(3,16)(5,9,15)(6,12) 6 (3,16)(5,9,15,6,12) 6 (3,16,15,6,7,9,11) 6
(5,9,10,6,11,12,7,14) 6 (5,9,10,6,14)(7,11,12) 6 (5,9,11,12,7,14)(6,10) 6
(1,16,7,14,6,11,8,2,4,3) 12 (1,15,3,9)(5,7,10,11,13,12) 24 (2,5,7,10,11,13,4,12,9,15) 24
(4,15,5,7,10,16,13)(9,12) 24

Since 23 =1 (mod 7), 2 is not a primitive root modulo 7 and P is not a field. Now P =11 & I,
where 11 and I, are cyclic codes generated by the idempotents e1(x) =1+ x + x> 4+ x* and ey(x) =
1+ x3 + x° 4 8, respectively, so

Ij={0,ej(x),xej(x),....x%;x)}, j=12.

Moreover, I; and I, are fields of 8 elements [18].

In this case Cp = @(Ex(C)*) = M1 @®M>, where Mj={ueCy|ujel;, i=1,...,6} is a linear code
of length 6 over the field I, j=1,2, and dim;, M1 4 dim;, M =6 [18]. Since the minimum weight
of the code C is 10, every vector of C, must contain at least three nonzero coordinates. Hence the
minimum weight of M; is at least 3. Thus by the Singleton Bound, the maximum dimension of M; is
at most 4. Therefore the dimension of M; is at least 2, j=1,2.

By Theorem 2.6 for every two vectors (uq(x),...,ug(x)) from My and (vq(x),..., ve(x)) from M,
we have

ur (v (x 1) + -+ us@ve(x 1) =0.
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Since eq(x~1) = ez(x) and e; (x)ez(x) =0, M, determines the whole code Cyp. The substitution x — x3

in ¢(Es(C)*) interchanges My and M and therefore we may assume that dim;, M1 > dim;, M. We
have two cases, dim;,M, =2 and dim;, M, = 3. Each case does not produce a self-dual [48, 24, 10]
code with an automorphism of order 7 as follows.

Theorem 3.9. (See [6].) There does not exist a self-dual [48, 24, 10] code with an automorphism of order 7.

According to Corollary 2.2, if the self-dual [48, 24, 10] code C has an automorphism o of order 5
then o is of type 5-(8, 8). Here we prove that this is not possible.

Let C have an automorphism o of type 5-(8, 8). Then C, is a self-dual [8, 4] code over the field
P with 16 elements under the inner product (u, v) =uqv§ 4+ uavj + -+ ugvg, u, v € C,. There is
one-to-one correspondence between the elements of the field P and the set of 5 x 5 circulants with
rows of even weight defined by

ap a1 dap as das
ag 4agp ap az as
ag+aix + a2x2 + a3x3 + a4x4 = la3 a4 ag ap az
a; das d4 ap aq
ay dap as dag Qo

Moreover, the rank of a nonzero circulant of this type is 4. Therefore, any nonzero vector u € Cy,
corresponds to a subcode of E4(C)* of length 40 and dimension 4. Moreover, the effective length of
this subcode is 5wt(u). Since self-orthogonal [15, 4, 10] and [20, 4, 10] codes do not exist (see [5]),
we have wt(u) > 5. Hence C, must be an MDS [8, 4, 5] Hermitian self-dual code over the field P =
GF(16). Huffman proved in [13] that such codes do not exists. So a self-dual [48, 24, 10] code with an
automorphism of type 5-(8,8) does not exist.

Theorem 3.10. (See [6].) A self-dual [48, 24, 10] code C does not have automorphisms of order 5.

Lemma 3.11. (See [6].) A self-dual [48, 24, 10] code with an automorphism of order 3 has weight enumerator
Wag 2(y).

Putting together the above results, we have the following theorems.

Theorem 3.12. (See [6].) If C is a singly-even self-dual [48, 24, 10] code with weight enumerator Wg 1(y),
the automorphism group of C is of order 25 with s > 0.

Theorem 3.13. (See [6].) If C is a self-dual singly-even [48, 24, 10] code with weight enumerator Wg 2(y),
then the automorphism group of C is of order 253t withs > 0,t > 0.

Therefore, using Proposition 3.4, we summarize our result below.

Theorem 3.14. If there is a self-dual [48, 24, 10] code with an automorphism of type p-(c, f) with p being
an odd prime, then p = 3, c = 16, f = 0. Moreover, there are exactly 264 inequivalent binary [48, 24, 10]
self-dual codes with an automorphism of odd prime order, which is in fact of type 3-(16, 0). Hence there are
exactly 264 inequivalent binary cubic self-dual [48, 24, 10] codes.
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