Classification of binary self-dual $[48,24,10]$ codes with an automorphism of odd prime order

Stefka Bouyuklieva ${ }^{\text {a }}$, Nikolay Yankov ${ }^{\text {b }}$, Jon-Lark Kim ${ }^{\text {c, }}{ }^{\text {* }}$
${ }^{\text {a }}$ Faculty of Mathematics and Informatics, Veliko Tarnovo University, 5000 Veliko Tarnovo, Bulgaria
${ }^{\text {b }}$ Faculty of Mathematics and Informatics, Shumen University, 9700 Shumen, Bulgaria
${ }^{\text {c }}$ Department of Mathematics, Sogang University, Seoul 121-742, South Korea

A R T I C L E I N F O

Article history:

Received 19 January 2012
Revised 1 August 2012
Accepted 14 August 2012
Available online 24 August 2012
Communicated by W. Cary Huffman

MSC:

94B05

Keywords:

Automorphism groups
Cubic self-dual codes
Self-dual codes

Abstract

The purpose of this paper is to complete the classification of binary self-dual $[48,24,10]$ codes with an automorphism of odd prime order. We prove that if there is a self-dual $[48,24,10]$ code with an automorphism of type $p-(c, f)$ with p being an odd prime, then $p=3, c=16, f=0$. By considering only an automorphism of type 3-(16, 0), we prove that there are exactly 264 inequivalent self-dual $[48,24,10]$ codes with an automorphism of odd prime order, equivalently, there are exactly 264 inequivalent cubic selfdual $[48,24,10]$ codes.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A linear $[n, k]$ code over \mathbb{F}_{q} is a k-dimensional subspace of \mathbb{F}_{q}^{n}. A linear code C is called selfdual if it is equal to its dual $C^{\perp}=\left\{x \in \mathbb{F}_{q}^{n} \mid x \cdot c=0\right.$ for any $\left.c \in C\right\}$. The classification of binary selfdual codes was initiated and done up to length 20 by V. Pless [15]. Since then the classification of self-dual codes has been one of the most active research topics (see $[16,14]$). The classification of binary self-dual $[38,19,8]$ codes has been recently done by Aguilar-Melchor, Gaborit, Kim, Sok, and Solé [1] and independently by Betsumiya, Harada and Munemasa [2]. Very recently, Bouyuklieva and Bouyukliev [7] have classified all binary self-dual [38, 19] codes.

In this paper, we are interested in the classification of binary self-dual $[48,24,10]$ codes with an automorphism of odd prime order. It was motivated by the following reasons. Bonnecaze, et al. [3]

[^0]constructed binary self-dual codes with a fixed-point free automorphism of order 3, called cubic selfdual codes due to the correspondence with self-dual codes over a ring $\mathbb{F}_{2}[Y] /\left(Y^{3}-1\right)$. They gave a partial list of binary cubic self-dual codes of lengths $\leqslant 72$ by combining binary self-dual codes and Hermitian self-dual codes. Later, Han, et al. [11] have given the classification of binary cubic optimal self-dual codes of length $6 k$ where $k=1,2, \ldots, 7$. Hence it is natural to ask exactly how many binary cubic self-dual optimal $[48,24,10]$ codes exist and we answer it in this paper. On the other hand, we have noticed that Huffman [14, Table 2] listed all possible values of the type $p-(c, f)$ with p odd for an automorphism of a self-dual $[48,24,10]$ code. They are 11-(4, 4), 7-(6, 6), 5-(8, 8), 3-(14, 6), and $3-(16,0)$. We will show that the first four types are not possible. Therefore, the classification of binary $[48,24,10]$ self-dual codes with a nontrivial odd order automorphism coincides with the classification of binary $[48,24,10]$ self-dual cubic codes.

There are two possible weight enumerators for self-dual [48, 24, 10] codes [10]:

$$
\begin{align*}
& W_{48,1}(y)=1+704 y^{10}+8976 y^{12}+56896 y^{14}+267575 y^{16}+\cdots, \tag{1}\\
& W_{48,2}(y)=1+768 y^{10}+8592 y^{12}+57600 y^{14}+267831 y^{16}+\cdots . \tag{2}
\end{align*}
$$

Brualdi and Pless [8] found a self-dual [48,24,10] code with weight enumerator $W_{48,1}$. The order of its group of automorphisms is 4 . A classification of binary self-dual [48,24,10] codes with $W_{48,1}$ is known [12]. A code with weight enumerator $W_{48,2}$ is given in [10].

The first author [6] showed that any code with $W_{48,1}(y)$ has no automorphism of odd prime order and that any code with $W_{48,2}(y)$ has a group of automorphisms of order $2^{l} 3^{s}$ for some integers $l \geqslant 0$ and $s \geqslant 0$. However, this result has received less attention and hence we will include it briefly. In this paper, we prove that if there is a self-dual $[48,24,10]$ code with an automorphism of type $p-(c, f)$ with p being an odd prime, then $p=3, c=16, f=0$. Therefore by considering only an automorphism of type 3-(16,0), we prove that there are exactly 264 inequivalent self-dual $[48,24,10]$ codes with an automorphism of odd prime order. To do that we apply the method for constructing binary self-dual codes possessing an automorphism of odd prime order (see [13,17,18]).

2. Construction method

Let C be a binary self-dual code of length n with an automorphism σ of prime order $p \geqslant 3$ with exactly c independent p-cycles and $f=n-c p$ fixed points in its decomposition. We may assume that

$$
\begin{equation*}
\sigma=(1,2, \ldots, p)(p+1, p+2, \ldots, 2 p) \cdots((c-1) p+1,(c-1) p+2, \ldots, c p) \tag{3}
\end{equation*}
$$

and say that σ is of type $p-(c, f)$.
We begin with a theorem which gives a useful restriction for the type of the automorphism.
Theorem 2.1. (See [18].) Let C be a binary self-dual [$n, n / 2, d]$ code with an automorphism of type p-(c, f) where p is an odd prime. Denote $g(k)=d+\left\lceil\frac{d}{2}\right\rceil+\cdots+\left\lceil\frac{d}{2^{k-1}}\right\rceil$. Then:
(i) $p c \geqslant g\left(\frac{(p-1) c}{2}\right)$ and if $d \leqslant 2^{(p-1) c / 2-2}$ the equality does not occur;
(ii) if $f>c$ then $f \geqslant g\left(\frac{f-c}{2}\right)$ and if $d \leqslant 2^{(f-c) / 2-2}$ the equality does not occur;
(iii) if 2 is a primitive root modulo p then c is even.

Applying the theorem for the parameters $n=48$ and $d=10$, we obtain
Corollary 2.2. Any putative automorphism of an odd prime order for a singly-even self-dual [48, 24, 10] code is of type 47-(1, 1), 23-(2, 2), 11-(4, 4), 7-(6, 6), 5-(8, 8), 3-(12, 12), 3-(14, 6), or 3-(16, 0).

Denote the cycles of σ by $\Omega_{1}=\{1,2, \ldots, p\}, \Omega_{2}, \ldots, \Omega_{c}$, and the fixed points by $\Omega_{c+1}=$ $\{c p+1\}, \ldots, \Omega_{c+f}=\{c p+f=n\}$. Define

$$
\begin{aligned}
& F_{\sigma}(C)=\{v \in C \mid \sigma(v)=v\} \\
& E_{\sigma}(C)=\left\{v \in C \mid \operatorname{wt}\left(v \mid \Omega_{i}\right) \equiv 0(\bmod 2), i=1, \ldots, c+f\right\}
\end{aligned}
$$

where $v \mid \Omega_{i}$ is the restriction of v on Ω_{i}.
Theorem 2.3. $\left(\right.$ See [13].) $C=F_{\sigma}(C) \oplus E_{\sigma}(C), \operatorname{dim}\left(F_{\sigma}(C)\right)=\frac{c+f}{2}, \operatorname{dim}\left(E_{\sigma}(C)\right)=\frac{c(p-1)}{2}$.
We have that $v \in F_{\sigma}(C)$ if and only if $v \in C$ and v is constant on each cycle. The cyclic group generated by σ splits the set of codewords into disjoint orbits which consists of p or 1 codewords. Moreover, a codeword v is the only element in an orbit if and only if $v \in F_{\sigma}(C)$. Using that all codewords in one orbit have the same weight, we obtain the following proposition.

Proposition 2.4. Let $\left(A_{0}, A_{1}, \ldots, A_{n}\right)$ and ($B_{0}, B_{1}, \ldots, B_{n}$) be the weight distributions of the codes C and $F_{\sigma}(C)$, respectively. Then $A_{i} \equiv B_{i}(\bmod p)$.

Proposition 2.4 eliminates the first two types from Corollary 2.2. In fact, these cases were eliminated by Huffman [14, Appendix] in a different way.

Corollary 2.5. If C is a self-dual [48, 24, 10] code, then C does not have automorphisms of orders 47 and 23.
Proof. Let σ be an automorphism of C. If σ is of type 47-(1,1) then $F_{\sigma}(C)$ is the repetition [48, 1, 48] code and therefore $B_{10}=0$. Since neither 704 nor 768 is congruent 0 modulo 47, this case is not possible.

If the type is $23-(2,2)$ then $B_{i}=0$ for $0<i<24$. Therefore $B_{10}=0$ and $A_{10} \not \equiv B_{10}(\bmod 23)-\mathrm{a}$ contradiction.

To understand the structure of a self-dual code C invariant under the permutation (3), we define two maps. The first one is the projection map $\pi: F_{\sigma}(C) \rightarrow \mathbb{F}_{2}^{c+f}$ where $(\pi(v))_{i}=v_{j}$ for some $j \in \Omega_{i}$, $i=1,2, \ldots, c+f, v \in F_{\sigma}(C)$.

Denote by $E_{\sigma}(C)^{*}$ the code $E_{\sigma}(C)$ with the last f coordinates deleted. So $E_{\sigma}(C)^{*}$ is a selforthogonal binary code of length p. For v in $E_{\sigma}(C)^{*}$ we let $v \mid \Omega_{i}=\left(v_{0}, v_{1}, \ldots, v_{p-1}\right)$ correspond to the polynomial $v_{0}+v_{1} x+\cdots+v_{p-1} x^{p-1}$ from \mathcal{P}, where \mathcal{P} is the set of even-weight polynomials in $\mathbb{F}_{2}[x] /\left(x^{p}-1\right) . \mathcal{P}$ is a cyclic code of length p with generator polynomial $x-1$. Moreover, if 2 is a primitive root modulo p, \mathcal{P} is a finite field with 2^{p-1} elements [13]. In this way we obtain the map $\varphi: E_{\sigma}(C)^{*} \rightarrow \mathcal{P}^{c}$. Let $C_{\pi}=\pi\left(F_{\sigma}(C)\right)$ and $C_{\varphi}=\varphi\left(E_{\sigma}(C)^{*}\right)$. The following theorems give necessary and sufficient conditions for a binary code with an automorphism of type (3) to be self-dual.

Theorem 2.6. (See [18].) A binary $[n, n / 2]$ code C with an automorphism σ is self-dual if and only if the following two conditions hold:
(i) C_{π} is a binary self-dual code of length $c+f$,
(ii) for every two vectors $u, v \in C_{\varphi}$ we have $\sum_{i=1}^{c} u_{i}(x) v_{i}\left(x^{-1}\right)=0$.

Theorem 2.7. (See [13].) Let 2 be a primitive root modulo p. Then the binary code C with an automorphism σ is self-dual if and only if the following two conditions hold:
(i) C_{π} is a self-dual binary code of length $c+f$;
(ii) C_{φ} is a self-dual code of length c over the field \mathcal{P} under the inner product $(u, v)=\sum_{i=1}^{c} u_{i} v_{i}^{2^{(p-1) / 2}}$.

To classify the codes, we need additional conditions for equivalence. That's why we use the following theorem:

Theorem 2.8. (See [17].) The following transformations preserve the decomposition and send the code C to an equivalent one:
(a) the substitution $x \rightarrow x^{t}$ in C_{φ}, where t is an integer, $1 \leqslant t \leqslant p-1$;
(b) multiplication of the j th coordinate of C_{φ} by $x^{t_{j}}$ where t_{j} is an integer, $0 \leqslant t_{j} \leqslant p-1, j=1,2, \ldots, c$;
(c) permutation of the first c cycles of C;
(d) permutation of the last f coordinates of C.

3. Codes with an automorphism of odd prime order

3.1. Codes with an automorphism of order 3

In this section we first classify self-dual codes with an automorphism of order 3.
Let C be a self-dual $[48,24,10]$ code with an automorphism of order 3 . According to Corollary 2.2 this automorphism is of type $3-(12,12), 3-(14,6)$ or $3-(16,0)$. In this section we prove that only the type $3-(16,0)$ is possible. Moreover, we classify all binary self-dual codes with the given parameters which are invariant under a fixed point free permutation of order 3.

Proposition 3.1. Self-dual $[48,24,10]$ codes with an automorphism of type 3-(12, 12) do not exist.
Proof. In this case the code C_{φ} is a self-dual [12,6] code over the field $\mathcal{P}=\left\{0, e(x)=x+x^{2}\right.$, $\left.x e(x), x^{2} e(x)\right\}$ under the inner product $(u, v)=u_{1} v_{1}^{2}+u_{2} v_{2}^{2}+\cdots+u_{12} v_{12}^{2}$. The highest possible minimum distance of a quaternary Hermitian self-dual [12,6] code is 4 (see [9]), hence the minimum distance of $E_{\sigma}(C)$ can be at most 8 - a conflict with the minimum distance of C.

Proposition 3.2. Self-dual $[48,24,10]$ codes with an automorphism of type 3-(14, 6$)$ do not exist.

Proof. Assume that $\sigma=(1,2,3)(4,5,6) \cdots(40,41,42)$ is an automorphism of the self-dual [48, 24, 10] code C. Then C_{π} is a binary self-dual $[20,10,4]$ code. There are exactly 7 inequivalent self-dual [20, 10, 4] codes, namely $J_{20}, A_{8} \oplus B_{12}, K_{20}, L_{20}, S_{20}, R_{20}$ and M_{20} (see [15]). If C_{π} is equivalent to any of these codes there is a vector $v=\left(v_{1}, v_{2}\right)$ in C_{π} with $v_{1} \in \mathbb{F}_{2}^{14}, v_{2} \in \mathbb{F}_{2}^{6}$ and $w t\left(v_{1}\right)=w t\left(v_{2}\right)=2$. Thus the vector $\pi^{-1}(v) \in F_{\sigma}(C)$ has weight 8 which contradicts the minimum distance.

Let now C be a singly-even $[48,24,10$] code, possessing an automorphism with 16 cycles of length 3 and no fixed point in its decomposition into independent cycles.

According to Theorem 2.6, the subcode C_{π} is a binary self-dual $[16,8, \geqslant 4]$ code. We further show that C_{π} is singly-even as follows. By Theorem 2.7 (ii), C_{φ} is Hermitian self-dual over \mathcal{P}, which is the field of 4 elements given in the proof of Proposition 3.1. So C_{φ} has only even weight vectors, implying that $E_{\sigma}(C)$ has all vectors of weights a multiple of 4 . If C_{π} is doubly-even, all vectors in $F_{\sigma}(C)$ also have weights a multiple of 4 , making C doubly-even, a contradiction. So C_{π} is singly-even.

There is one such code, denoted by F_{16} in [15], with a generator matrix

$$
G_{B}=\left(\begin{array}{l}
1000001110010010 \\
0100001110011101 \\
0010001110001111 \\
0001001100011010 \\
0000101010011010 \\
0000010110011010 \\
0000000001010110 \\
0000000000110011
\end{array}\right) .
$$

It is more convenient for us to denote this code by B. The automorphism group of B is generated by the permutations $(1,12,4,2,13,15,9,3)(5,16,8,11)(6,14)(7,10)$ and $(1,8,7)(5,6,13)(10$, $12)(14,15)$. Its order is 76728 .

According to Theorem 2.6 the subcode C_{φ} is a quaternary Hermitian self-dual $[16,8, \geqslant 5]$ code. There are exactly 4 inequivalent such codes $1_{16}, 1_{6}+2 f_{5}, 4 f_{4}$, and $2 f_{8}$ [9]. Their generator matrices in standard form are $G_{i}=\left(I \mid X_{i}\right), i=1, \ldots, 4$, where

$$
\begin{aligned}
& X_{1}=\left(\begin{array}{cccccccc}
0 & 0 & \omega & 1 & 1 & 1 & 0 & \omega^{2} \\
\omega^{2} & \omega^{2} & 0 & \omega^{2} & \omega & \omega^{2} & 1 & 1 \\
\omega & 0 & 1 & \omega & 0 & 1 & \omega & 0 \\
1 & \omega^{2} & \omega^{2} & \omega & \omega^{2} & \omega^{2} & \omega^{2} & 0 \\
0 & 1 & 1 & 1 & \omega^{2} & \omega^{2} & \omega & 1 \\
\omega^{2} & 1 & \omega^{2} & 0 & \omega & 0 & \omega & 0 \\
\omega & 0 & \omega & \omega^{2} & 1 & \omega & 1 & \omega^{2} \\
0 & 1 & \omega^{2} & \omega^{2} & \omega^{2} & \omega^{2} & \omega^{2} & \omega^{2}
\end{array}\right), \\
& X_{2}=\left(\begin{array}{ccccccc}
\omega^{2} & 1 & \omega^{2} & 0 & \omega^{2} & 0 & \omega \\
1 & \omega^{2} & \omega & \omega^{2} & 1 & 1 & 0 \\
1 \\
\omega & 1 & 1 & \omega^{2} & 1 & \omega^{2} & \omega^{2} \\
0 & \omega & 0 & \omega^{2} & 0 & 1 & \omega^{2} \\
\omega^{2} \\
1 & \omega & 0 & \omega & 1 & 1 & \omega^{2} \\
0 & \omega^{2} & \omega & 1 & \omega^{2} & \omega & \omega \\
\omega^{2} \\
\omega & 0 & 0 & 1 & \omega^{2} & \omega^{2} & \omega^{2} \\
0 & \omega & \omega^{2} & 1 & \omega^{2} & \omega^{2} & \omega^{2} \\
\omega^{2}
\end{array}\right), \\
& X_{3}=\left(\begin{array}{cccccccc}
\omega & 0 & \omega^{2} & 0 & 0 & \omega^{2} & 1 & \omega^{2} \\
1 & \omega^{2} & \omega & \omega^{2} & 1 & 1 & 0 & 1 \\
\omega^{2} & \omega^{2} & \omega^{2} & \omega & 0 & \omega & \omega & 1 \\
1 & \omega^{2} & 0 & \omega^{2} & \omega^{2} & \omega & 0 & 0 \\
1 & \omega & 0 & \omega & 1 & 1 & \omega^{2} & 1 \\
0 & 1 & \omega^{2} & \omega & \omega & \omega^{2} & \omega^{2} & \omega \\
1 & 1 & 1 & \omega & 0 & 0 & 0 & \omega^{2} \\
1 & \omega & 0 & \omega^{2} & \omega^{2} & \omega^{2} & \omega^{2} & \omega^{2}
\end{array}\right), \\
& X_{4}=\left(\begin{array}{cccccccc}
1 & 0 & \omega^{2} & \omega^{2} & \omega & 1 & \omega^{2} & 1 \\
1 & \omega^{2} & \omega & \omega^{2} & 1 & 1 & 0 & 1 \\
\omega & 1 & 1 & \omega^{2} & 1 & \omega^{2} & \omega^{2} & 0 \\
\omega & \omega^{2} & 0 & 0 & 1 & 0 & \omega & \omega \\
1 & \omega & 0 & \omega & 1 & 1 & \omega^{2} & 1 \\
1 & 0 & \omega & \omega^{2} & 0 & 1 & 1 & 0 \\
\omega & 0 & 0 & 1 & \omega^{2} & \omega^{2} & \omega^{2} & 0 \\
0 & \omega^{2} & 1 & \omega & 1 & 1 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

Denote by C_{i}^{τ} the self-dual $[48,24,10]$ code with a generator matrix

$$
\operatorname{gen} C_{i}^{\tau}=\binom{\pi^{-1}(\tau B)}{\varphi^{-1}\left(X_{i}\right)},
$$

where τ is a permutation from the symmetric group S_{16}, and $1 \leqslant i \leqslant 4$. We use the following.
Lemma 3.3. (See [18].) If τ_{1} and τ_{2} are in one and the same right coset of $\operatorname{Aut}(B)$ in S_{16}, then $C_{i}^{\tau_{1}}$ and $C_{i}^{\tau_{2}}$ are equivalent.

Table 1
Generating permutations and $|\operatorname{Aut}(C)|$ for codes with $C_{\varphi}=1_{16}$.

Permutation	\mid Aut \mid	Permutation	\mid Aut \mid	Permutation	\mid Aut \mid
$(5,6)(12,14)$	3	$(2,3,14,8,12,6)(5,9,11)$	6	$(2,14,8,12,6)(5,9,11)$	6
$(3,6,5,12,10,9,11)$	6	$(3,6,7,5,12,14,15,9,11)$	6		

Table 2
Generating permutations and $|\operatorname{Aut}(C)|$ for codes with $C_{\varphi}=1_{6}+2 f_{5}$.

Permutation	\mid Aut \mid	Permutation	Puut \mid	Permutation	\mid Aut \mid
$(1,2,16,14,15,10,13)$	3	$(1,7,12,13,5,2,10,11,9)$	3	$(1,12,16,9)(2,10,13,6,5)$	3
$(2,10,13,4,8,7,12,16,11,9)$	3	$(2,11,16,5,10,8,12,13)$	3	$(2,12)(4,6,8,7)(14,16)$	3
$(2,12,9,11,14,6,7,8)$	3	$(2,13)(3,7,12,6,11,10)$	3	$(2,14,12,13,4,6,11,9,8,3)$	3
$(2,15,3,11,10,13)$	3	$(2,8,11,14,16,13,4)(6,12)$	3	$(2,8,11,5,12,13)$	3
$(2,8,7,15,11,16)(6,14)$	3	$(2,9,7,12,10,16,13)(6,15)$	3	$(2,16,8,13)(6,11,7,12,10,9)$	3
$(3,10)(4,7,11,13)(6,12,8)$	3	$(2,3,11,10,6,5,8,4,12)$	6	$(2,8,14,6,5,9,15)$	6
$(2,8,15,9,11,10,6,5)$	6	$(2,12,3)(7,10,9,8)$	6		

In order to classify all codes we have considered all representatives of the right transversal of S_{16} with respect to $\operatorname{Aut}(B)$. We have checked the equivalence of codes using Q-Extension [4]. The obtained inequivalent codes and the orders of their automorphism groups are listed in Tables 1-4, where the column labeled "permutation" is the value of τ used to construct gen C_{i}^{τ}.

Proposition 3.4. There are exactly 264 inequivalent binary [48, 24, 10] self-dual codes with an automorphism of type 3-(16, 0).

Corollary 3.5. There are exactly 264 inequivalent binary cubic self-dual [48, 24, 10] codes.

3.2. Codes with automorphisms of orders 5, 7, and 11

The first author [6] showed that there are no self-dual [48, 24, 10] codes with automorphisms of orders 5, 7 , and 11 . However, these results have received less attention since even Huffman in his survey paper [14] could not eliminate these types of automorphisms. Hence it is worth sketching the nonexistence of self-dual $[48,24,10]$ codes with automorphisms of orders 5,7 , and 11.

Let C be a binary singly-even self-dual $[48,24,10]$ code with an automorphism of order 11 and

$$
\sigma=(1,2, \ldots, 11)(12, \ldots, 22)(23, \ldots, 33)(34, \ldots, 44)
$$

be an automorphism of C. Then $\pi\left(F_{\sigma}(C)\right)$ is a binary self-dual code of length 8 .
Lemma 3.6. The code $\pi\left(F_{\sigma}(C)\right)$ is generated by the matrix $\left(I_{4} \mid I_{4}+J_{4}\right)$ up to a permutation of the last four coordinates. Here I_{4} is the identity matrix and J_{4} is the all-one matrix.

Since 10 is the multiplicative order of 2 modulo $11, C_{\varphi}=\varphi\left(E_{\sigma}(C)^{*}\right)$ is a self-dual [4,2] code over the field \mathcal{P} of even-weight polynomials in $F_{2}[x] /\left(x^{11}-1\right)$ with 2^{10} elements under the inner product

$$
\begin{equation*}
(u, v)=u_{1} v_{1}^{32}+u_{2} v_{2}^{32}+u_{3} v_{3}^{32}+u_{4} v_{4}^{32} . \tag{4}
\end{equation*}
$$

Lemma 3.7. C_{φ} is $a[4,2,3]$ self-dual code over the field \mathcal{P}.
By considering all possibilities of C_{φ}, one can get the following.
Theorem 3.8. (See [6].) There does not exist a self-dual [48, 24, 10] code with an automorphism of order 11.

Table 3
Generating permutations and $|\operatorname{Aut}(C)|$ for codes with $C_{\varphi}=4 f_{4}$.

| Permutation | \|Aut| | Permutation | \|Aut | | Permutation | \|Aut| |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (1,2,10,5,6,11,13,16)(3,4) | 3 | (1,14,4,10,11,7,9,3)(8,15) | 3 | $(1,16,7)(2,15,14,6)(4,12,5)$ | 3 |
| (1,16,8,6,14,4,11,12,7,3) | 3 | (2,3,6,9,8,12,7,16,10) | 3 | $(2,3,9)(4,7,10,5)$ | 3 |
| (2,5,4,9,3,14,6)(12,16) | 3 | $(2,5,6,15)(7,10,11)(9,12)$ | 3 | (2,6,10,3,9,15,8,12,4,16) | 3 |
| $(2,6,16,10)(4,15,5)(7,12)$ | 3 | $(2,6,16,10)(7,9,8,12)$ | 3 | (2,6,3,5,12,13)(7,9,10,16) | 3 |
| (2,6,5,12,9,8,14,11) | 3 | $(2,7,9,8,12,13)(5,16,10,14)$ | 3 | $(2,8,12)(4,16,9,15,6,10)$ | 3 |
| (2,8,12,13)(5,14,9,11,15,6) | 3 | (2,8,4,3,6,11)(5,15) | 3 | $(2,8,7,15,9,11)(5,10)$ | 3 |
| (2,9,11,10,5,8,12,15,6) | 3 | (2,9,11,8,14,10,6,5,15) | 3 | (2,9,15,8,12,6,11,5) | 3 |
| (2,9,6,5,12,13) | 3 | (2,9,8,10,14,5,6) | 3 | (2,9,8,11,6)(5,16,10) | 3 |
| (2,9,8,12,3,6,11) | 3 | (2,9,8,16,14,6,5,12,3,13) | 3 | $(2,9,8,6)(5,10)$ | 3 |
| (2,9,8,7,14,10,16)(6,12) | 3 | (2,9,8,7,4,12,15,13) | 3 | (2,10,5,12,9,8,11,15,6) | 3 |
| (2,10,5,16,7,6,4,12,15,13) | 3 | (2,10,5,4,11,15,9,12,6) | 3 | $(2,11,5,4,3,14,6)(9,15)$ | 3 |
| $(2,11,9,12)(5,15)(7,10)$ | 3 | $(2,13)(3,5,4)(6,16,12,14)$ | 3 | $(2,13)(5,11,12,9,8,14,6)$ | 3 |
| $(2,13)(5,12,16,6,7,9,11,10)$ | 3 | $(2,14,12,13)(3,5,4)(6,16)$ | 3 | $(2,14,6)(3,11,5,4,15,9)$ | 3 |
| (2,14,7,5,4,15,8,10,11) | 3 | $(2,14,9,12,6)(4,11,10,5)$ | 3 | (3,4)(6,15,11,8,7,14) | 3 |
| $(3,5)(4,12,16,6)(7,15,14)$ | 3 | $(3,5)(6,15)(7,12)(14,16)$ | 3 | $(3,5)(6,15,7,12)$ | 3 |
| $(3,5)(6,9,15,10,16,7,12)$ | 3 | $(3,5,15)(6,10,12)(9,11)$ | 3 | $(3,5,15,6,10)(9,11)$ | 3 |
| $(3,5,15,8,16,6,10)(9,11)$ | 3 | (3,6,11,9,5,8,12,10) | 3 | (3,6,9,15,7,12,5) | 3 |
| (3,7,10,16,5,15,11,9,8) | 3 | (3,7,12,6,16,10,15,5) | 3 | $(3,7,4,12,5)(6,15)(10,11)$ | 3 |
| $(3,11)(5,15)(7,8,10,9,12)$ | 3 | (3,11,6,4,12,7,15,5) | 3 | (3,11,8,14,6,10,5,15) | 3 |
| $(3,11,8,15)(5,14)(6,10)$ | 3 | (3,14,11,5,4,12,6,15,7) | 3 | $(3,14,6,15,16,7,4,12,5)$ | 3 |
| $(3,16)(5,15,9,12)(7,8,10)$ | 3 | (3,16,5,15,9,12,7,8,10) | 3 | $(3,16,6,15,9,10)(5,12)$ | 3 |
| $(3,16,7,12,9,5)(6,14)$ | 3 | (3,16,7,4,15,6,10,12,5) | 3 | $(3,16,9,5,12)(6,10)(7,14)$ | 3 |
| (5,12,7,10,9,8,14) | 3 | (5,12,9,11,8,14)(6,10) | 3 | $(5,14,16)(6,11,8,15)$ | 3 |
| (5,15,9,11,8,16,6,10) | 3 | (7,11,12,9,8) | 3 | $(1,15,7,6,10,11,8,14,4,3)$ | 6 |
| (2,5,3,7)(6,16,14) | 6 | (2,6,12,5,15)(9,11) | 6 | $(2,6,7,15)(5,12)(9,11)$ | 6 |
| $(2,7,10,13)(3,9,8,12,14,5,16)$ | 6 | (2,7,10,5,16,9,8,12,13) | 6 | $(2,7,15)(5,6,12,16,9,10)$ | 6 |
| (2,7,8,15,9,10,5,12,11) | 6 | $(2,9,11)(5,8,15,14,6,12)$ | 6 | (2,9,11,10,5,16,6,12,13) | 6 |
| (2,9,11,6,16,5,8,12,13) | 6 | (2,9,6,5,11,12,13)(8,14) | 6 | (2,9,6,5,14,8,11,16,12,13) | 6 |
| (2,9,8,14,6,12)(7,15) | 6 | (2,9,8,14,6,15)(7,12) | 6 | $(2,13)(5,12,9,11)(6,16,14)$ | 6 |
| $(2,13)(5,16,7,10)(6,12,9)$ | 6 | $(2,13)(5,6,12)(7,16)(9,10,11)$ | 6 | $(2,13)(5,8,12,9,11)(6,16)$ | 6 |
| $(2,13)(5,8,16,6,12,9,11)$ | 6 | $(2,14)(5,12,9,8,15,6,11)$ | 6 | $(2,14,6,15,9,11)(5,8,12)$ | 6 |
| (2,16,7,10,5,15,9,8,12) | 6 | $(3,5,12,7,10,16)(8,15,9)$ | 6 | (3,5,8,15,6,12,9,11) | 6 |
| $(3,6,11,14,9,8,12)(5,15)$ | 6 | (3,7,12,5,4)(6,15,14) | 6 | (3,7,5,4,12,13)(6,14) | 6 |
| $(3,9,10,5,6,15,11)(7,12)$ | 6 | $(3,9,12,7,10,11)(4,15,5)$ | 6 | (3,9,8,15,7,10,11)(5,12) | 6 |
| (3,10,11,6,12,5)(7,15) | 6 | (3,11,5,15,9,8,12,7,10) | 6 | (3,11,7,12,14,6,15,5) | 6 |
| (3,11,7,12,6,9,15,10,5,13) | 6 | $(3,11,7,15,5,4)(6,12)$ | 6 | (3,11,7,15,6,12,5,4) | 6 |
| (3,11,7,9,15,6,12,10,5,13) | 6 | $(4,11,9)(5,15,6,12)$ | 6 | $(5,6,12)(7,15,9,10,11)$ | 6 |
| (5,8,15,10,6,12,9,11) | 6 | $(5,10)(6,16,7,9,11,8,14)$ | 6 | $(5,15)(7,8,12,9,10,11)$ | 6 |
| (5,15,7,8,12,9,10,11) | 6 | $(1,16,7)(2,15,5,4,12,14,6)$ | 12 | $(3,9,12,14,6,11)(4,15,5)$ | 12 |
| (5,15,6,11,9,8,12) | 12 | $(2,6,12,7,16,13)(3,5)$ | 24 | $(3,6,7,12,9,11,10)(5,15)$ | 24 |
| (2,5,3,6,12,7,16,13) | 48 | | | | |

Let C be a binary singly-even self-dual $[48,24,10]$ code with an automorphism of order 7 and let

$$
\sigma=(1,2, \ldots, 7)(8, \ldots, 14) \cdots(36, \ldots, 42)
$$

Now $\pi\left(F_{\sigma}(C)\right)$ is a $[12,6]$ self-dual code. Since the minimal distance of $F_{\sigma}(C)$ is at least $10, \pi\left(F_{\sigma}(C)\right)$ has a generator matrix of the form $\left(I_{6} \mid A\right)$, where I_{6} is the identity matrix. We obtain a unique possibility for A up to a permutation of its columns:

$$
\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \tag{5}\\
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1
\end{array}\right) .
$$

Table 4
Generating permutations and $|\operatorname{Aut}(C)|$ for codes with $C_{\varphi}=2 f_{8}$.

| Permutation | \|Aut| | Permutation | \|Aut | | Permutation | \|Aut | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (1,11,12,5,3,13,2,8,15,9) | 3 | (1,12,3,7,10)(4,5,14,13,16) | 3 | (2,3,11,12,8,7,5) | 3 |
| (2,5,11,12,3,6)(9,10) | 3 | (2,5,11,6)(8,14,12,15) | 3 | $(2,5,3,10,6,4,11)(7,15)$ | 3 |
| (2,5,3,6)(8,15,16,9,10) | 3 | (2,5,4,12,3,6)(9,16,10) | 3 | (2,5,4,3,6)(9,15,16,10) | 3 |
| (2,5,7,3,6,15,9,11) | 3 | $(2,5,8,11,12,3,6)(9,10)$ | 3 | (2,5,8,15,10,11,6) | 3 |
| (2,5,8,15,11,3,6) | 3 | $(2,6)(3,5)(8,15,16,9,10)$ | 3 | $(2,6)(3,5,4)(9,11,12)$ | 3 |
| $(2,6)(3,5,4,15,16,10,9)$ | 3 | $(2,6)(3,5,4,16,14,9,12)$ | 3 | $(2,6)(3,5,7)(9,15,10,16)$ | 3 |
| $(2,6)(3,5,8,4,10,11,12)$ | 3 | $(2,6)(3,8,16,9,10,5,12)$ | 3 | $(2,8,12,3,6)(5,16,9,10)$ | 3 |
| (2,8,4,10,5,11,12,3,6) | 3 | $(2,8,4,12,3,6)(5,11)$ | 3 | (2,9,10,11,5)(3,8,7,12) | 3 |
| (2,9,11,5,15,8,3,6) | 3 | $(2,9,11,5,3,6)(8,15)$ | 3 | (2,9,11,6,8,16,5,12) | 3 |
| (2,9,11,8,3,5,15,16,14,6) | 3 | (2,9,15,5,3,8,11,12,14,6) | 3 | (2,9,8,14,5,10,6)(15,16) | 3 |
| (2,9,8,16,5,12,11,6) | 3 | $(2,9,8,5,6)(12,14,15)$ | 3 | $(2,9,8,5,6)(12,16,15)$ | 3 |
| $(2,9,8,5,6)(15,16)$ | 3 | (2,9,8,6)(12,16,15) | 3 | (2,10,7,9,15)(3,6,11,5) | 3 |
| (2,11,12,8,7,5) | 3 | (2,11,14,15,9,4,5,7) | 3 | (2,11,3,5,8,4)(6,12) | 3 |
| $(2,11,6)(5,12,9,8,16)$ | 3 | (2,12,16,10,3,9,7,5,4) | 3 | $(2,15)(5,7,10)(6,14)(9,11)$ | 3 |
| (2,15,16,10,9,5,4,6) | 3 | (2,15,16,11,9,10,5,6) | 3 | (2,15,16,14,10,8,6,7) | 3 |
| $(2,15,16,14,6)(4,10,5)$ | 3 | (2,15,16,14,6,12,5,4) | 3 | (2,15,16,14,8,6,7) | 3 |
| (2,15,16,9,10,5,14,6) | 3 | (2,15,16,9,10,5,14,6,7) | 3 | (2,15,16,9,10,5,6,7) | 3 |
| $(2,15,5,12,6)(8,16)(9,10)$ | 3 | $(2,15,5,14,6,7)(9,11,12)$ | 3 | $(2,15,5,16,8,12,9,11,13,4)$ | 3 |
| (2,15,5,8,10,6)(9,11,12) | 3 | $(2,15,6)(4,11,9)(5,16)$ | 3 | $(2,15,6)(5,10)(8,14,9,11)$ | 3 |
| $(2,15,6)(5,10,9,11,8,14)$ | 3 | $(2,15,6)(5,11)(8,14)(9,10)$ | 3 | $(2,15,6)(5,12)(8,16)(9,10)$ | 3 |
| $(2,15,8,10,13,4)(5,14,16)$ | 3 | $(2,15,8,6)(5,12,9,10,11)$ | 3 | (3,5)(4,11,7,15,16,6) | 3 |
| (3,5,12,6,11,9,8,16) | 3 | $(3,6,4,11,14,5)(7,15,10)$ | 3 | (3,7,9,15,6,11,14,12,5) | 3 |
| $(3,12,5,7)(6,15)(9,11)$ | 3 | (3,15,6,8,10,5,14,9,11) | 3 | $(3,16,14,5)(6,11,7,9,15)$ | 3 |
| $(3,16,5)(6,8,15,9,11)$ | 3 | (3,16,9,11,5,7,15,6) | 3 | $(4,7,11,12,6)(5,15)$ | 3 |
| (5,7,12,9,10) | 3 | $(5,7,14)(6,10)(9,11)$ | 3 | $(5,15)(6,9,11,12)$ | 3 |
| (1,2,14,15,16,8,11,13,9) | 6 | (1,2,15,16,13,7,5,10,14,9) | 6 | $(1,2,9)(5,15,11,12,13,7)$ | 6 |
| $(1,15,13,12,9)(5,7,10,11)$ | 6 | $(1,15,9)(5,6,12)(10,13)$ | 6 | $(2,5,3,6)(8,15)(9,11,10)$ | 6 |
| $(2,5,6,10,16)(4,12,13)(9,15)$ | 6 | $(2,6)(3,14,5,9,15,16)$ | 6 | $(2,6)(5,10,8,16)(9,11)$ | 6 |
| (2,6,11,5,16,15,8)(9,10) | 6 | $(2,6,7,11)(5,12)(9,10)$ | 6 | (2,6,7,8,9,11,12,14) | 6 |
| (2,6,8,11,13,4)(3,5) | 6 | $(2,7,11,12)(5,9,10)(6,14)$ | 6 | (2,7,11,12)(5,9,10,6,14) | 6 |
| $(2,8,10,3,13,4)(5,15,16)$ | 6 | (2,8,10,5,15,16,3,13,4) | 6 | (2,9,11,5,3,8,15,14,6) | 6 |
| $(2,11,12,13,4)(5,10)(8,15)$ | 6 | $(2,11,12,3,13,4)(5,10,9,7)$ | 6 | (2,12,10,16,6,7,8,4) | 6 |
| $(2,12,16,9,4,10,6)(8,14)$ | 6 | (2,15,11,12,10,9,8,5,6) | 6 | (2,15,11,12,14,6,8,13,4) | 6 |
| (2,15,16,10,13,4,11,8,6) | 6 | (2,15,16,14,6,8,4) | 6 | $(2,15,16,6)(4,10,8,14,9)$ | 6 |
| (2,15,5,11,6)(4,16,8) | 6 | (2,15,5,9,10,11,6) | 6 | (2,15,9,4,5,7,10,11,12) | 6 |
| $(3,5,9,11)(6,10,12)(7,14)$ | 6 | (3,9,5,7,10,11,12) | 6 | $(3,16)(5,8,9,15)(6,12)$ | 6 |
| $(3,16)(5,9,15)(6,12)$ | 6 | $(3,16)(5,9,15,6,12)$ | 6 | (3,16,15,6,7,9,11) | 6 |
| (5,9,10,6,11,12,7,14) | 6 | (5,9,10,6,14)(7,11,12) | 6 | (5,9,11,12,7,14)(6,10) | 6 |
| (1,16,7,14,6,11,8,2,4,3) | 12 | $(1,15,3,9)(5,7,10,11,13,12)$ | 24 | (2,5,7,10,11,13,4,12,9,15) | 24 |
| $(4,15,5,7,10,16,13)(9,12)$ | 24 | | | | |

Since $2^{3} \equiv 1(\bmod 7), 2$ is not a primitive root modulo 7 and \mathcal{P} is not a field. Now $\mathcal{P}=I_{1} \oplus I_{2}$, where I_{1} and I_{2} are cyclic codes generated by the idempotents $e_{1}(x)=1+x+x^{2}+x^{4}$ and $e_{2}(x)=$ $1+x^{3}+x^{5}+x^{6}$, respectively, so

$$
I_{j}=\left\{0, e_{j}(x), x e_{j}(x), \ldots, x^{6} e_{j}(x)\right\}, \quad j=1,2 .
$$

Moreover, I_{1} and I_{2} are fields of 8 elements [18].
In this case $C_{\varphi}=\varphi\left(E_{\sigma}(C)^{*}\right)=M_{1} \oplus M_{2}$, where $M_{j}=\left\{u \in C_{\varphi} \mid u_{i} \in I_{j}, i=1, \ldots, 6\right\}$ is a linear code of length 6 over the field $I_{j}, j=1,2$, and $\operatorname{dim}_{I_{1}} M_{1}+\operatorname{dim}_{I_{2}} M_{2}=6$ [18]. Since the minimum weight of the code C is 10 , every vector of C_{φ} must contain at least three nonzero coordinates. Hence the minimum weight of M_{j} is at least 3 . Thus by the Singleton Bound, the maximum dimension of M_{j} is at most 4. Therefore the dimension of M_{j} is at least $2, j=1,2$.

By Theorem 2.6 for every two vectors $\left(u_{1}(x), \ldots, u_{6}(x)\right)$ from M_{1} and $\left(v_{1}(x), \ldots, v_{6}(x)\right)$ from M_{2} we have

$$
u_{1}(x) v_{1}\left(x^{-1}\right)+\cdots+u_{6}(x) v_{6}\left(x^{-1}\right)=0
$$

Since $e_{1}\left(x^{-1}\right)=e_{2}(x)$ and $e_{1}(x) e_{2}(x)=0, M_{2}$ determines the whole code C_{φ}. The substitution $x \rightarrow x^{3}$ in $\varphi\left(E_{\sigma}(C)^{*}\right)$ interchanges M_{1} and M_{2} and therefore we may assume that $\operatorname{dim}_{I_{1}} M_{1} \geqslant \operatorname{dim}_{I_{2}} M_{2}$. We have two cases, $\operatorname{dim}_{I_{2}} M_{2}=2$ and $\operatorname{dim}_{I_{2}} M_{2}=3$. Each case does not produce a self-dual $[48,24,10]$ code with an automorphism of order 7 as follows.

Theorem 3.9. (See [6].) There does not exist a self-dual [48, 24, 10] code with an automorphism of order 7.
According to Corollary 2.2 , if the self-dual $[48,24,10]$ code C has an automorphism σ of order 5 then σ is of type $5-(8,8)$. Here we prove that this is not possible.

Let C have an automorphism σ of type $5-(8,8)$. Then C_{φ} is a self-dual $[8,4]$ code over the field \mathcal{P} with 16 elements under the inner product $(u, v)=u_{1} v_{1}^{4}+u_{2} v_{2}^{4}+\cdots+u_{8} v_{8}^{4}, u, v \in C_{\varphi}$. There is one-to-one correspondence between the elements of the field \mathcal{P} and the set of 5×5 circulants with rows of even weight defined by

$$
a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4} \mapsto\left(\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} \\
a_{4} & a_{0} & a_{1} & a_{2} & a_{3} \\
a_{3} & a_{4} & a_{0} & a_{1} & a_{2} \\
a_{2} & a_{3} & a_{4} & a_{0} & a_{1} \\
a_{1} & a_{2} & a_{3} & a_{4} & a_{0}
\end{array}\right)
$$

Moreover, the rank of a nonzero circulant of this type is 4 . Therefore, any nonzero vector $u \in C_{\varphi}$ corresponds to a subcode of $E_{\sigma}(C)^{*}$ of length 40 and dimension 4. Moreover, the effective length of this subcode is $5 \mathrm{wt}(u)$. Since self-orthogonal $[15,4,10]$ and $[20,4,10]$ codes do not exist (see [5]), we have $\operatorname{wt}(u) \geqslant 5$. Hence C_{φ} must be an MDS [8,4,5] Hermitian self-dual code over the field $\mathcal{P} \cong$ $G F(16)$. Huffman proved in [13] that such codes do not exists. So a self-dual [48, 24, 10] code with an automorphism of type 5-(8,8) does not exist.

Theorem 3.10. (See [6].) A self-dual [48, 24, 10] code C does not have automorphisms of order 5 .
Lemma 3.11. (See [6].) A self-dual [48, 24, 10] code with an automorphism of order 3 has weight enumerator $W_{48,2}(y)$.

Putting together the above results, we have the following theorems.
Theorem 3.12. (See [6].) If C is a singly-even self-dual $[48,24,10]$ code with weight enumerator $W_{48,1}(y)$, the automorphism group of C is of order 2^{s} with $s \geqslant 0$.

Theorem 3.13. (See [6].) If C is a self-dual singly-even $[48,24,10]$ code with weight enumerator $W_{48,2}(y)$, then the automorphism group of C is of order $2^{s} 3^{t}$ with $s \geqslant 0, t \geqslant 0$.

Therefore, using Proposition 3.4, we summarize our result below.
Theorem 3.14. If there is a self-dual $[48,24,10]$ code with an automorphism of type $p-(c, f)$ with p being an odd prime, then $p=3, c=16, f=0$. Moreover, there are exactly 264 inequivalent binary $[48,24,10]$ self-dual codes with an automorphism of odd prime order, which is in fact of type $3-(16,0)$. Hence there are exactly 264 inequivalent binary cubic self-dual [48, 24, 10] codes.

Acknowledgments

S. Bouyuklieva was partially supported by VTU Science Fund under Contract RD-642-01/26.07.2010. N. Yankov was partially supported by Shumen University under Project RD-05-274/15.03.2012.
J.-L. Kim was partially supported by the Project Completion Grant (year 2011-2012) at the University of Louisville, and also by Korea Institute for Advanced Study. We also thank the referees for their valuable comments.

References

[1] C. Aguilar-Melchor, P. Gaborit, J.-L. Kim, L. Sok, P. Solé, Classification of extremal and s-extremal binary self-dual codes of length 38, IEEE Trans. Inform. Theory 58 (2012) 2253-2262.
[2] K. Betsumiya, M. Harada, A. Munemasa, A complete classification of doubly even self-dual codes of length 40 , arXiv: 1104.3727v2, May 31, 2011, arXiv:1104.3727v1, April 19, 2011.
[3] A. Bonnecaze, A.D. Bracco, S.T. Dougherty, L.R. Nochefranca, P. Solé, Cubic self-dual binary codes, IEEE Trans. Inform. Theory 49 (9) (2003) 2253-2259.
[4] I. Bouyukliev, About the code equivalence, in: Advances in Coding Theory and Cryptology, Series on Coding Theory and Cryptology, vol. 3, World Scientific Publishing, Hackensack, NJ, 2007.
[5] I. Bouyukliev, S. Bouyuklieva, T. Aaron Gulliver, Patric Östergård, Classification of optimal binary self-orthogonal codes, J. Combin. Math. Combin. Comput. 59 (2006) 33-87.
[6] S. Bouyuklieva, On the automorphism group of the extremal singly-even self-dual codes of length 48, in: Proceedings of Twenty Sixth Spring Conference of the Union of Bulgarian Mathematicians, Bulgaria, 1997, pp. 99-103.
[7] S. Bouyuklieva, I. Bouyukliev, An algorithm for classification of binary self-dual codes, IEEE Trans. Inform. Theory 58 (2012) 3933-3940.
[8] R.A. Brualdi, V. Pless, Weight enumerators of self-dual codes, IEEE Trans. Inform. Theory 37 (1991) 1222-1225.
[9] J.H. Conway, V. Pless, N.J.A. Sloane, Self-dual codes over GF(3) and GF(4) of length not exceeding 16, IEEE Trans. Inform. Theory 25 (1979) 312-322.
[10] J.H. Conway, N.J.A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory 36 (1991) 1319-1333.
[11] S. Han, J.-L. Kim, H. Lee, Y. Lee, Construction of quasi-cyclic self-dual codes, Finite Fields Appl. 18 (2012) 613-633.
[12] M. Harada, M. Kitazume, A. Munemasa, B. Venkov, On some self-dualcodes and unimodular lattices in dimension 48, European J. Combin. 26 (2005) 543-557.
[13] W.C. Huffman, Automorphisms of codes with application to extremal doubly-even codes of length 48, IEEE Trans. Inform. Theory 28 (1982) 511-521.
[14] W.C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Appl. 11 (2005) 451-490.
[15] V. Pless, A classification of self-orthogonal codes over GF(2), Discrete Math. 3 (1972) 209-246.
[16] E.M. Rains, N.J.A. Sloane, Self-dual codes, in: V.S. Pless, W.C. Huffman (Eds.), Handbook of Coding Theory, Elsevier, Amsterdam, 1998, pp. 177-294.
[17] V.Y. Yorgov, A method for constructing inequivalent self-dual codes with applications to length 56, IEEE Trans. Inform. Theory 33 (1987) 77-82.
[18] V. Yorgov, Binary self-dual codes with an automorphism of odd order, Probl. Inf. Transm. 4 (1983) 13-24.

[^0]: * Corresponding author.

 E-mail addresses: stefka@uni-vt.bg (S. Bouyuklieva), jankov_niki@yahoo.com (N. Yankov), ctryggoggo1@gmail.com (J.-L. Kim).

