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Abstract 

This paper gives results related to and including laws of large numbers for (possibly 
non-harmonizable) periodically and almost periodically correlated processes. These results 
admit periodically correlated processes that are not continuous in quadratic mean. The idea of 
a stationarizing random shift is used to show that strong law results for weakly stationary 
processes may be used to obtain strong law results for such processes. 

Kq”’ lvords; Periodically and almost periodically correlated processes; Laws of large numbers; 
Stationarizing random shift 

1. Introduction 

A second-order continuous time complex-valued process X(t), t E R, is called 

periodically correlated (PC) (see Gladyshev, 1963) with period T if, for every s, t, 

m(t) = E{X(t)} = m(t + T), (1.1) 

R(s,t) = E{X(s)X(t)} = R(s + T,t + T). (1.2) 

*Corresponding author. 

‘Supported by the Air Force Office of Scientific Research under Contract F49620-85C-0144. 
2Department of Statistics, Stanford University, Stanford, CA 94305, USA. Supported by the Office of 

Naval Research under Contracts NOO014-91-J-1003 and N00014-89-C-0310. 
3Harry L. Hurd Associates Incorporated, 309 Moss Run, Raleigh, NC 27614, USA. Supported by the 

Office of Naval Research under Contracts NOO014-86-C-0227 and NOO014-89-C-0310. 

4Department of Statistics and Applied Probability, University of California at Santa Barbara, Santa 

Barbara, CA 93106, USA. Supported by the Office of Naval Research under Contracts N00014-86-C-0227 

and N00014-89-C-0310. 

0304-4149/94/$07.00 0 1994 Elsevier Science B.V. All rights reserved 

SSDI 0304-4149(93)E0098-Y 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82455538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


38 S. Camhanis ct al. JStochastic Processes and their Applications 53 (1994) 37 5s* 

A statement equivalent to (1.2) is that, for every t, z, 

B(t,r) = R(t + r, t) = B(t + T,z). (1.3) 

For a review of PC processes, see Yaglom (1987). Similarly, a process is called almost 

periodically correlated (APC) in the sense of Gladyshev (1963) if the functions m(t) and 

R(s, t) (or B) are uniformly continuous in (s, t) and for every (s, t), m(t + IX) and 

R(s + c(, t + x) (or equivalently B(cc,s - t)) are uniformly almost periodic (UAP) 

functions of SI. Throughout the paper we assume the mean function vanishes, m(t) E 0. 

If X(t) is PC and B(. , T) E L1 [0, T] for every T, then the coefficient functions 

Uk(T) = ' 

j_ 

T 

TO 

B(t, z) exp( - i2rrkt/ T) dt 

exist for every k and r. Further, they have the representation 

(1.4) 

I 

r 

Q(r) = exp(W dG&), (1.5) 
- IX, 

where G,(y) is non-decreasing and all the Gk(y) are of bounded variation with 

~““,IdG&)I I J”“x dG&) < cc, if and only if q,(z) is continuous at T = 0 (see Hurd, 

1974a). Note that so(r) may be continuous even when X(t) is not continuous in 

quadratic mean (q.m.). The sequence of functions {Gk(y)} may be interpreted as the 

non-stationary spectrum of the process X(t) in the sense that B(t, T) = R(t + T, t) is 

given for each r by a Fourier series of the form 

B(t, T) = R(t + T, t) - 1 auk exp(i2rrkt/ T), (1.6) 
k 

where the sense of convergence depends on the smoothness of R(r + T, t) in the 

variable t. 

If X(r) is APC, the coefficient functions 

s 

A 

~(2,s) = lim $J 
A - x 

B(t, z) exp( - iAt) dt (1.7) 
-A 

exist for each 2 and T and the set /i = (A: a(& T) + 0 for some r} = { 1.k; is countable 

(Gladyshev, 1963; Hurd, 1991) and contains 0; we set /lo = 0. As in the PC case, the 

Fourier coefficient functions are themselves Fourier transforms, 

I 

” 
u(2k,z) = exP(iV)d&(?), (1.8) 

m 

with G,(i’) non-decreasing and all the Gk(Y) of bounded variation with sym ldGk(7j)l I 

1: x dGO(‘/) < ac: , if and only if ~(0, T) is continuous at T = 0 (Hurd, 1991). Similarly, the 

sequence {Gk(y)} may be interpreted as the non-stationary spectrum of the process X(t) in 

the sense that B(t, z) = R(t + T, t) has, for each r, a Fourier series of the form 

B(t, T) = R(t + 5, t) - ,GA a(&, 7) exp(i@), 
L 

where the convergence is in the sense of UAP functions (Corduneanu, 1989). 

(1.9) 
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This paper is concerned with the q.m. and as. convergence of the averages 

JA,X& O) = ; 

I 

A 

X(t, co) exp( - iAt) dt. (1.10) 
0 

In the PC case it will not be assumed that X is q.m. continuous; instead the weaker 

assumption will be made that X(&O) is jointly measurable in t,o and that 

B( - ,O) E L1 [0, r]. In the APC case, X is q.m. continuous and thus has a version 

jointly measurable in t, w which will be considered. Then the integral in (1.10) is 

a well-defined Lebesgue integral and has a finite second moment since 

E{ joA,X(r),dr[<E{,4 joA,X(r),‘dt}=A j;B(t,O)di< 00. 

We review some weak laws of large numbers first and then describe the sense in 

which strong laws are obtained. 

If X(t) is q.m. continuous and weakly stationary, it has the representation 

X(t) = 
s 

m exp(ilt)d<(A), (1.11) 
-cc 

where the second-order spectral process 5 has orthogonal increments and is right q.m. 

continuous. The correlation of X(t) may be expressed as 

s 

m 
R(t + ,r, t) = exp(iAr) dF,(i), (1.12) 

-m 

where the spectral distribution F&n) is right continuous, bounded and non-decreasing 

with E{lM) - 5(&)12} = F&) - F&J, A2 < A1. For each A, the average J&A) 

converges in q.m. to the jump ((2) - ((A - ) of the spectral process at I., and 

E{ It(n) - <(J. - )I’} = F<(A) - Fs(l - ), the jump of the spectral distribution Fc at 

2 (see Lo&e, 1963). 

If X(t) is (strongly) harmonizable in the sense of Lo&e (1963), the representation 

(1.11) is still valid but ((2) does not have orthogonal increments (unless X(t) is 

stationary). The correlation R(s, t) then has the representation 

co cc 
R(s, t) = 

s s 
exp(i/l,s - i&t)rg(dA1,d,%2), (1.13) 

-00 -cc 

with r<{(a,b] x(c,d]j = E{ [5(b) - <(a)] [5(d) - c(c)]}. Again for each 2, J&A) 

converges in q.m. to ((2) - ((2 - ) and El 4(;1) - ((2 - )I2 = rT{ (A, A)}, the rg measure 

of the point (,$A) (Lo&e, 1963, Sec. 34.4). If X(t) is harmonizable and either PC or 

APC, the spectral distribution function Go(n) may be identified with the restriction of 

rg to the main diagonal, so E It(A) - ((2 - )I2 = G,(A) - Go(13 - ) (see Honda, 1982; 

Hurd, 1989, 1991). 

In this paper we derive weak law results for PC and APC processes without the 

assumption of harmonizability, and then use strong law results of Gaposhkin for 
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weakly stationary processes to obtain strong law results for such processes. We obtain our 

results under the assumption m(t) = 0, and note that they may be applied to the 

estimation of the Fourier coefficients of m(t) in the following manner. In the PC case, 

assume m(t) $0 and is in L, [0, T] so the Fourier coefficients mk = T-’ 

lEm(t)exp( - i2rrkt/T)dt exist. If the zero mean process X - m satisfies JA,X_m(&) -+ 0 

as A + GO with /Ik = 2nklT, then JA.X(&) + mk as A -+ cc. A similar result holds in the 

APC case where m(t) is a UAP function. We now summarize the results. 

In the case of PC processes, we find (Theorem 1) that JA,X(i) converges in q.m. to 

a limit vi with ElqA-j2 = G,(i) - Go(3. - ), assuming only that X(t) is measurable with 

B( -, 0) E L1 [0, T] and that so(t) is continuous at the origin. Since X(t) may be neither 

stationary nor harmonizable, a question arises concerning the existence of a spectral 

process with which vi may be identified. As a partial answer we relate qj to the 

spectral process i(n) of a weakly stationary process Y(t) = X(t + 0) formed by 

shifting X(t) by the random time 0, taken to be independent of X and uniformly 

distributed over [0, T], by qnexp(ii,O) = ((2) - <(EL - ). Theorem 2 shows that if 

either Ja,x(i_) or J,,y(n) converge a.s., then the other does also, and JA,X(i) and 

J,,,(A)exp( - ij.@(ta)) have the same limit (a.s.). Thus, any condition that suffices for 

the strong law for Y will give the strong law for X. 

If X(t) is APC, then under the additional hypothesis 1 i;’ < x (excluding any 

j,, = 0), we show (Theorem 3) that J,.,(A) converges in q.m. to a limit vi, with 

El qA I2 = G,(i) - Go(iL - ). An example is given that shows the condition C ii 2 to be not 

necessary. When 0 is not a limit point of the set of frequencies il, we show (Theorem 4) 

that a random variable 0, independent of X(t), may be constructed for which 

Y(t) = X(r + 0) is weakly stationary, and as in the PC case, q,exp(i;lO) = [(I.) - ;(i - ) 

where [(I.) is the spectral process of Y(r) (Proposition 2). Theorem 5 extends Theorem 2 to 

APC processes and to 0 having finite moment of order larger than 1. 

2. Periodically correlated processes 

We begin with a simple example of a PC process that is discontinuous in q.m.: an 

amplitude modulation of a stationary process, X(t,t~) =,f(t)Z(t, co), where Z(t) is 

a q.m. continuous weakly stationary process and j’(t) is a T-periodic function in 

L,[O, T]. Then X(t) is a PC process with B( .,T) E L, [0, T] for every 5 and is q.m. 

discontinuous if,f(t) is discontinuous. 

The following lemma shows that when B( ., 0) E L, [0, T], the integrals liB(t, t)dt 

may be approximated, with uniformly bounded error, by (L: - u)ao(r). This will play 

a crucial role in proving the weak law for PC processes. 

Lemma 1. Jf‘X(t) is PC with period T and B(. ,O) E L, [0, T], thenjiv any u, u and T, 

B(t,r)dt - (a - u)ao(s) I Tao(O). (2.1) 
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Proof. Assume u < o and let n be the largest integer I (u - u)/T so we may write 

c - u = nT + 6T where 0 I 6 < 1. Then from the periodicity of B( -, 5) and (1.4), we 

find 

j 

v (n+b)T 

B(t, 7) dt - (v - U)Q(T) = 
u is 

- (n + 6) B(t, z) dt 
0 

I s T l-7 
I B(t, T) I dt I 

0 ? 
B1”(t + qO)B1’2(t,0)dt I Tao(O), (2.2) 

0 

where we applied the Schwarz inequality first in the probability space to 

B(t,z) = E {X(t + 7)X(t)), and then in L,[O, T]. 0 

We now give the weak law for a class of PC processes that includes processes of the 

= { jr-6 j;}B(t,T)df 

={(l-d)jr-6j8L}B(r,i)df. 

Taking absolute value, the LHS of (2.1) is 

form X(t, o) =f(t)Z(t, co) discussed above. 

Theorem 1. IfX(t) is a measurable PC process with period T, B(. , 0) E L, [0, T] and 

uo(s) continuous at T = 0, then for each /I, us A + a, JA,X(/Z) converges in q.m. to 

a random variable vi and E{ Iqn(‘} = G,(A) - Go(i - ). 

Proof. In order to show that JA,X(/Z) converges in q.m., we show that 

A B ss R(s, t) exp(iit - iis) ds dt 
0 0 

(2.3) 

converges to a limit as A and B tend independently to x Assuming A < B and using 

the transformation 7 = s - t. we obtain 

E{JA,X(2)JB,X(2)j =&j 

A B 

IS 

B(t, s - t)exp[iA(t - s)] dsdt 
0 0 

+ jT:,, jc:O’} B(t, z) exp( - ii,z)dt dr 

(2.4) 
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The use of Lemma 1 in each of these three integrals produces 

I1 2 AB 
s 

y (A + r)aO(r)exp( - iAr)dr + & 
s 

y ai (r) dr, 
A A 

12 =& 

I 

B-A 

0 

AaO(r)exp( - i1z)dz + $ 
s 

B-A 

ez (r) dr, 
0 

s 
‘_ aj(r) dr, 

B A 

(B - s)a,,(z)exp( - iir)dr + & 
s 

‘_ 
B A 

(2.5) 

(2.6) 

(2.7) 

where in each case Ej(Z) is a measurable function of r and 1 Ej(r)( I ra,,(O). Combining 

the leftmost integrals in these three expressions (use (2.4) with B(t,r) replaced with 

~(7)) yields 

1;(A,B)=~ A B ss 43 0 

uo(s - t)exp[iA(t - s)] dsdt. 
0 

Now from (1.5) we have 

= G,(i) - G,( - 2) + s ei(lmu)A _ 1 e-i(l-u)B _ 1 

U + 1 i(i - u)A - i(n - u)B 
dGo(u) 

-+ G,(A) - G,( - A) as A, B -+ GO, 

since the integrand converges boundedly to zero. Similarly, combining the rightmost 

integrals in (2.5))(2.7) gives 

&MB) = & 
il 

O at(r)dr + 
-A s 

B-Aaz(r)dr + I;_Ar,ii)drj 
0 

In view of the bounds lej(r)l I Tao(O) it follows that 

and so f;(A,B) + 0 as A + a and B + x independently. It follows that 

E{ lJ,,,(%) - JB,x(1ti)12} + 0 as A,B -+ 8~ and thus 5,,,(1.) converges in q.m. to 

a random variable Y]~ with E { ) qA- 1’) = G,(J) - Go ( - 2). Cl 

The weak law obtained from Theorem 1 is: For measurable PC processes with 

B( . ,O) E L, [0, T], and u,(z) continuous uf 5 = 0, we huue A Is{ X(t) dt --) 0 in q.m. us 

A -+ cc ifund only if G,(2) is continuous at j. = 0. 

In regard to the example X(t) =f(t)Z(t), note that B(t, t) =,f‘(t + z)f(t)R&) and 

so B( e, t) E Li [O, r] as .j( -) E L2 [O, r]. Also, since ~~(7) = ck(~)RZ(z) where 
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~(7) = T- ‘llf(t + ~)f(t) exp( - i27ckt/ T) dt, and the Q(Z) are continuous, then ao(~) 

is continuous at z = 0. Finally, to get the condition on Go in terms of the spectral 

distribution FZ, we denote by {f,,n E Z> the Fourier coefficients off: It follows that 

G,(3,) = C,fn,fn_kFz(A - 2nn/T) and so G,(L) is continuous at ,I = 0 if and only if FZ 

is continuous at all the points {27cn/T, n E Z>. 

When the process X(t) is stationary or harmonizable, the limiting random variable 

qI described in Theorem 1 is the jump q1 = <(A) - t(i - ) of the spectral process 

appearing in (1.11). Although processes satisfying the hypotheses of Theorem 1 are not 

necessarily weakly stationary or harmonizable, there is an associated weakly station- 

ary process that may be formed by a random time shift X(t + O), where 0 is 

independent of X and uniformly distributed over the interval [0, T] (Hurd, 1974b). 

For the construction of such a 0 independent of X the probability space may have to 

be enlarged, and if so, the original probability space will be replaced by the enlarged 

one without further notice. The correlation of X(t + 0) is so(r), and since it has 

a spectral representation 

s 

3c 
X(t + 0) = exp(iit) d<(A), 

mn: 

it is natural to enquire about the connection between qn and ((A). 

Proposition 1. Suppose X(t) is PC with period T and satisfies the hypotheses of 

Theorem 1. If 0 is independent qf X and uniformly distributed over the interval 

[0, T] then ~Aexp(ii.O) = i(i) - i(A - ) as. where [(A) is the spectral process 

qfX(t + 0). 

Proof. First fix any real number 8 E [0, T]. Then 

X(t + B)exp( - iAt)dt - y,:exp(iM) 

= X(s)exp( - iAs)ds - qI , 

where ~2 is the limit whose existence is guaranteed by Theorem 1, and adding 

and subtracting K’jfX(s)exp( - iAs)ds, and using IZ + w12 2 ~(1~1~ + lw12), we 

find 

X(s)exp( - ils)ds - yi 

(2.8) 
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By Theorem 1, J(A) -+ 0 as A -+ ‘x Putting D = (U, A + U) A (0, A) 

I(A, e) I ; 
ss 

E{ (X(s)X(t)l}dsdt I 1 
D D 

Az(S,B112(s,0)ds)2 

s 
B(s, 0) ds = $. 

s 

T 

B(s, 0) ds. 
D 0 

37-54 

we have 

(2.9) 

Now since 0 is uniformly distributed on [0, r] independently of X, it follows that 

for A > T we have 

E 
1 T 

iI s 70 

X(t + O)exp( - ii_t)dt - qA exp(ii,O) 

= E[E{ 1 “. I’IO}] 

1 T =-s il I E f 
A 

To 

X(t + H)exp( - iAt)dt - qiexp(iM) d6 
0 

1 T 
I- 

s To 

I(A, fI)dh, + J(A) I $ 
s 

T 

B(s, 0) ds + J(A) + 0 asA+ xc. (2.10) 
0 

But we also know that A-’ itX(t + O)exp( - iAt)dt + [(A) - [(i - ) in q.m. for the 

weakly stationary process X(t + 0) (Doob, 1953, p. 489) and so evidently 

qAexp(i(i@) = i(i) - [(3. - ) a.s. 0 

The preceding result permits an identification of the limit of JA,X(j_) with the 

spectral process of X(r + 0). But the random shift notion leads to even stronger 

results because the shifted process Y(~,o) = X(t + O(w),o) has the same sample 

paths as X(t, w) shifted by O(W), which for the case at hand is assumed to be in the 

interval [0, r]. The following theorem shows that if either Ja.x(je) or JA.y(l.) converge 

a.s., then the other does also, and J,,, (3.) and JA.Y(/I) exp(-G.@(o)) have the same limit 

(a.s.). 

Theorem 2. Suppose X(t) is PC with period Tund satisjies rhe hypotheses qf Theorem 1. 

If Y(f) = X(t + 0) where 0 is independent ?f‘X and uniformly distributed over the 

interval [0, T], then if either J a,x(2) or Ja,u(i) converge a.s., the other does also and 

lim A-1 JA,x(3.) = exp( - i3.0) lim.A _ z JA. u(/z) a.s. 

Proof. The techniques used in this proof are similar to those found in Lo&e (1963, 

Section 34.7). In view of 

J&i,~)exp( - ii.@(t - JA,X(L~ti) 

1 

=-1 

A+@(w) 

A A 

X(t,w)exp( - i;lt)dt - f X(t, (0) exp( - iAt) dt, (2.11) 
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the result follows if we can show these last two terms converge to zero a.s., for every A We 

will actually show that the convergence is uniform in A a.s.; that is, the exceptional set does 

not depend on 1,. The rightmost term in (2.11) converges to zero as., and uniformly in i, as 

A + cc because for almost every o, it is upperbounded in absolute value by 

J”lI X(t, o) (dt < cc . To prove that the leftmost term converges to zero a.s., and uniformly 

in /I, we first show that it does so along the particular sequence A, = nT. For if 

&(A 4 = f 
s 

A, + O(W) 
X(t, w)exp( - iRt) dt, (2.12) 

n A, 

it may be easily verified that for all I, E{ lg,,(%)1*} I ao(O * and so 

xHE{ lgn(2)12j < m. It follows from the Borel-Cantelli lemma that 

lim n + ,g,(A, w) = 0 a.s. uniformly in A. To show the general result we set 

1 

s 

A+@(W) 
hJ.4, A, (0) = - 

A A 

X(t, w) exp( - Gt) dt - g,(& o), 

hu, 0) = sup I MA, 4 Q) I. 
(n-l)TsA<nT 

If we can show that for all i, 

~-WL@)~) -c ~0 1 (2.13) 

then by the Borel-Cantelli lemma, lim n + 7i h,(%, o) = 0 as. uniformly in i, and hence 

the leftmost term in (2.11) converges to zero as., uniformly in A. To establish (2.13) we 

may write (for (n-l)TSA<nT and A+O>nT), with I(t,A,u)= 
X(t, Q) exp( - iit), 

kJ,(n, A,2,o) + J2(n, A,&w) f J,(n, A,i,,w), 

where if A + 0 I nT the middle integral is replaced by its negative. It follows that 

E{ lh,(;1)12} I 2 3E sup IJj(n,A,~~)12 (2.14) 
j=l (n-l)TSA<,,T 

and, for J, (n, A, i, w), 
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Similar inequalities for J2(n, A, n, w) and Jj(n, A, 1, co) show that E { ( h,(12)12} is O(n- ‘) 

for all i and hence the desired summability of (2.13) is established. I? 

Theorem 2 shows that any condition that suffices for the strong law for Y gives the 

strong law for X. Since Y(t) is wide sense stationary with correlation function given by 

(1.5) with k = 0, the conditions of Gaposhkin (1977) on ~(7) or G,,(i_) will suffice for 

the a.s. convergence to 0 of J,,,(J). For example, if G,(1) is continuous at i = 0 and 

there is a i.’ > 0 for which 

then the strong law holds for Y(t) and therefore for X(t). The preceding complements 

a recent result by Honda (1990) on the strong law of large numbers for Gau.ssian PC 

processes. Gaposhkin (1977) also gives sufficient conditions for the strong law for 

processes that are quasi-stationary in the sense m(t) = 0, R(t, t) is bounded and 

~~(f+z,t)(~~(r)wherec$(t)~Oasr~~.~f~~r~’~(~)dr< s,thenthestrong 

law holds for X(t). 

For the example X(t) =,f(t)Z(t) we may contrast the two sufficient conditions for 

the strong law. The spectral condition is that G,(i) = 1 l,fJ2Fz(3. - 2m/T) must be 

continuous at 3. = 0 and satisfy (2.15). On the other hand, if ,f(t) is bounded and 

continuous,and if IR,(r)I < 4(t) with 4(r) 1 Oas T T x andJ,’ rC’~$(r)dz < a, then 

X(t) is quasi-stationary and the strong law holds for X(t). It may be noted that the 

spectral condition constrains F,(3.) only at the points {;_ = 2mjT: fn + 0}, thus 

permitting F,(i,) to have jumps elsewhere and in this event, R,(T) will oscillate as 

T + xl, thus violating the condition of quasi-stationarity. 

3. Almost periodically correlated processes 

As noted in the introduction, if X(t) is APC and harmonizable, then we can 

conclude a weak law of large numbers based on the harmonizability assumption. But 

the APC processes are not all harmonizable because they contain the continuous PC 

processes which are not all harmonizable, as pointed out by Gladyshev (1963). Our 

approach is to obtain conditions yielding an approximation similar to (2.1) and the 

rest will follow. But the proof of Lemma 1 relies heavily on the periodicity and so an 

alternative proof is needed for APC processes. We have found a method of proof, 

subject to a condition on the frequencies 4, which is developed in Lemmas 2 and 3. 

First, Lemma 2 gives a condition under which the average A -’ ~~‘A,f(~)d~ of 

a complex valued UAP functionf‘(x) converges as A + x to its limit M{f‘S at a rate 

O(K ‘) uniformly in the variable a; for an arbitrary UAP function, the convergence is 

uniform in a, but not necessarily 0(.4- ‘). For the UAP function 1; denote 4, = 

13.j: M (,f(x)exp( - i3,jx)) =#= 0) and recall that A, is countable. 
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Lemma 2. Iff(x) is UAP and 1 0 + l,E,,, J ;i 7 2 < 00 , then there exists a finite constant 

K such that for arbitrary a and for A > 0, 

Is 
a+A 

f(x)dx - AM{f} <K. a (3.1) 

Proof. To prove this claim we recall from the theory of UAP functions (Corduneanu, 

1968, 1989, p. 41) that there exists a sequence of trigonometric polynomials 

(3.2) 

converging uniformly to f(x) where the finite set /1, r A, and for every j, 

,“f”, Uj,n = Uj E M{f(X)exp( - in,x)>. 

Therefore, it suffices to show (3.1) forf”. Then 

1 eiljA _ 1 

xl s 

a+A 

.I&) dx = ao,n + c aj,d 
iljll 

~ - a0 n = M(f,), 

0 9 1,EA” iljA A-m ’ 

where r+ = 0 if O$ A,, and 

(3.3) 

Finally,f, +fimplies that M{lfn12) =C+,,,l~j,~l~ 4 M{lfl’} =CjE&rj12 < cc, 
because the Fourier coefficients of UAP functions are square summable. This leads to 

for sufficiently large n, which implies (3.1). 0 

For APC processes, the development in Lemma 2 may be applied to each UAP 

function B( ., r), T E R, to obtain the required approximation. We recall that if A, is the 

set of frequencies for B( ., T) then /i = UrtR/lr is countable. 

Lemma 3. IfX(t) is APC and I,, + n,En A,:’ < GO, then there exists a$nite K > 0, such 

that for every u,v and 5, 

Is 

” 
B(t,t)dt - (v - u)a(O,z) < K. (3.4) 

U 
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Proof. Using (3.2) for the UAP function B( ., z), with A,,, 1 A, c A, we have 

B,(t, 7) = 1 U”(Aj, r)eiA-Jr = U”(O, T) + 1 U,(ibj, t) e’“]‘, 
L,E,4”., 0 * I,EA,,l 

and by (3.3), 

B,(t, z) dt - aJO, ~)(li - u) i 2 j ( 

Letting 12 + m gives 

1 Iu(ij, z)12 
A,EAr 

Then (3.4) follows since for all 5 we have x0 + h+,,,3,,~2 5 x0 + l,E,, j,,-‘, and 

C lU(ij,T)1’ = ,“-“,, f ~~~B(r,r)‘d~ I ,I-,; J’B(i + T,O)B(t,O)dt 
I,t I, 0 

= lim f 
A+1 i 

A 

B’(t,O)dt = C la(i”j,0)(2, 
0 A,t,lo 

where we used B2(t, T) I B(t + z,O)B(t,O), and the Schwarz inequality in 

L2CO,Tl. 0 

In view of Lemma 3, the results of Theorem 1 remains true for APC processes 

whenever 1 o + A^, E ,, j.,r ’ < CXL: , a condition that is always satisfied for PC processes. 

Theorem 3. [f X(t) is APC and Co 4 A-,tn 1,:’ < m , then ,for each 2, as A + a, 

JA.x(A) conoeryes in qm. to a random tluriuble vi where _!I JqiJ2j = Go(ib) - Go(ir - ). 

Proof. We are reminded that APC processes are continuous in q.m., have bounded 

second moments and a (0, z) is continuous at T = 0. Thus, J,.,,,(i) may be interpreted 

either as a Lebesgue integral a.s. or as a q.m. integral in the Riemann sense and ~(0, t) 

has the representation (1.8). The remainder of the proof follows exactly the proof of 

Theorem 1 with the bound Tao(O) of Lemma 1 replaced with K from Lemma 3. 0 

Theorem 3 gives the following weak law for APC processes that satisfy 1,“;’ < m : 

JA,X(0) --f 0 in q.m. [fund only if G,(2) is continuous at i = 0. 

That the condition of square summability in Theorem 3 is not necessary is 

illustrated by the example of almost periodic amplitude modulation of a stationary 

process: X(t) =,f‘(t)Z(t). Let f’(t) be continuous, bounded and AP so that 

.f(t) c Ck.fkei’k’, CI, I.fil’ < a, and Z(t) be q.m. continuous weakly stationary so that 
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Z(t) = S? ~ eit’ d[(n) where [ has orthogonal increments, E ) d<(2) 1’ = dFZ(l) and FZ is 

non-decreasing, right-continuous and bounded. Then 

JA,X(i) = m f 
s is 

A 

-cc 0 

The integrand tends as A + co to fk if i - u = I, E A, and to 0 otherwise and is 

bounded in absolute value by sup,,n 1 j(t) ( < a3, thus 

1 A 

20 i 
eitcuma)f(t)dt __t A_r~hl;~-;.,;(4 inL2(dF). 

k 

It follows that the limit of JA,x(,I) always exists in q.m. 

and E { 1~~1~) = Ck I fk12{FZ(/1 - 2,) - F,(l - i;)}. In particular the weak law 

JA,X(O) -+ 0 in q.m. is satisfied if and only if the spectral distribution FZ(,l) of the 

stationary process Z(t) is continuous at the frequencies & E A, of the AP amplitude 

modulationf(t) (since dFZ( - i) = dF,(,I)). In this case the frequencies n are obtained 

from LI, as follows. From (1.7) we have 

a@, 5) = R,(r) lim i 
s 

A 
a-m2A -A 

f(t + r)f(t)e-‘“‘dt = R,(T) 11 hfje’““’ 
k i 

ar - a;= a 

so that /1 = {i = & - ~j: &,ij E A,}. In particular a(O,r) = R&)Ck Ifk12ei”’ and if 

we take & = ckli2 then & - A,, = ckl/’ and xk + ,,(/lk - &,-2 = cc so that 

1 n 0 + 1 En Ai2 = in,. Thus, in this example the conclusion of Theorem 3 holds true 

without the square summability assumption. 

The random shift interpretation may also be applied to APC processes since they 

can also be stationarized by a random time shift. 

Theorem 4. If X(t) is APC, and 0 is not a limit point of A, the distribution of a real 

random variable 0, independent of X(t), may be chosen so that X(t + 0) is weakly 

stationary with correlation function a(O,7). 

Proof. Put Y(t) = X(t + 0). Since 0 is independent of X(t) we have 

R&t) = E{X(s + @)x(t + 0)} = E{E[X(s + @)x(t + 0)1@]; 

m 
= 

I 
= E[X(s + H)X(t + Q]p(dfI) = 
-r s 

R(s + 8, r + 0),/4d0) 
-30 

or 

(3.5) 
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where p is the distribution of 0. To show that Y(t) is weakly stationary we will show 

that R,(u, v) = R,(u - u), or equivalently that By(t, r) = By(r). First, we may conclude 

that Y(t) is APC. To see this, the inequality 

s 
= I &(t + 4 z) - &(t, r)l I IB(t + 2 + 0,~) - B(t + U,r)lp(d@ 
mr) 

I sup) B(Q + c(,z) - B(Q,z)l 

shows that 

CI: sup 
etn 

OELK? 

~lB(U + E,T) - B(B,s)l -=z E I i G Lx: sup 
ttn 

By(f + cc, T) - By(t, T)I < E . I 
Therefore, the larger set is relatively dense, since the smaller set is. Since By(t, r) is also 

seen to be uniformly continuous in (t,r), we conclude (Corduneanu, 1968, 1989, p. 14) 

that B( ., r) is UAP for every z and so Y(t) is APC. 

It follows that &(t,r) has a Fourier series as in (1.9) possessing at most a countable 

set of frequencies and coefficient functions 

1 * 
uy(&5) = lim - 

s ~+m2A -A 
B,(t, T) exp( - iAr) dt 

= lim rz A iAt0 B(s, z) exp( - i,Ls + iA@ dsp(d0) (3.6) 

in view of (3.5). But (2A)- ‘l!>@+OB(s, r)exp( - i3.s)d.s is a 

8 and, since B(s,z) is bounded, converges boundedly in 6’ 

bounded convergence theorem, (3.6) becomes 

Q(;t, T) = a(& r) exp(iM)p(d@ = a(]., ~)@~(3.), 
m-/ 

continuous function of 

to a(1,r). Thus, by the 

(3.7) 

where @o(1) is the characteristic function of 0. This expression shows that the set .4, 

of frequencies of BY( ., r) is a subset of the set of frequencies n of X, and that Y will be 

weakly stationary if @o(n) = 0 for 0 + ;1. E il. 

Since 0 is not a limit point of A, there exists an interval [ - E, E] that contains only 

one element of A, namely 2 = 0. It is not difficult to choose the distribution of 0 so 

that @o(A) = 0 for 1. $ [ - E, E]; e.g., @o(A) triangular. For such 0 we have ay(i, z) = 0 

except for i = 0 and so for each r, the UAP function B,(t, r) is equal to its 0th Fourier 

coefficient a(O,z) from the uniqueness of the Fourier coefficients of UAP functions; 

thus Y(r) is weakly stationary and its correlation is a(0,~). 0 

Theorem 4 is motivated by Gardner (1978) who considers a narrower class of 

APC processes, termed almost cyclostationary. When 0 in Theorem 4 is chosen to 

have a triangular characteristic function @o(L) = max(O, 1 - [Q/E), its density is 



0 .( - r)J - (y)j = (@y!)dxaYh OS pur? wrb u! ( - y);7 

- (y);7 + IP(W - )dxa(@ + 3)~;s I _ y ‘E wa.~oay_~ u! sv v-t8 cr, t y SC 0 01 spual 

(OT’E) ‘a3uaH . a + V sB 0 +- { (0 ‘Y)Z}B Wql sMoIIoJ II ‘IN8 5 (0 ‘y)I ‘y puv fj 118 JoJ 
pue 03 + y sv 0 + (0 ‘y)I ‘0 paxy qma .IoJ ‘snqL ‘(v ‘10 I)u~u z 5 1 a ( pasn aM alaqM 

amq aM (67) Icq pm ‘ co > jq lCes Icq papunoq s! I! ‘dvn s! (0 ‘ . )a am!s 
‘co c ffSl?OC { (0 ‘y)I)g Ir?qJ MOIjS MOU aM . Co + y SB 0 c (v)f uoydwnsse ica 

(01x) ‘(V)f + ((0 ‘V)ZlB 5 (@y!)dxaYlr - ~p(~y! - )dxa(O + 

a*w aM (01.5) pug 

‘s’n ( - y)) - C-t);7 = @r!)dxaY~ 
uql ‘(y)> ssmodd pwads Y3JM it’rvuo?~v~s iCj?/VaM s! (0 + 1)~ puv xjo luapuadapu~ sf 0 

j pun ‘wb u! rk + (~)~“f ‘ ix, +- y sv ‘y ynva doj-pun &$v sf (3)~ Jo ‘z uoysodo.Id 

‘(0 + 1)x ql!~ pale!Dossl? (7)) ssaDold pzwads aq$ 01 E rua.IoaqL Icq 

uaA$ uh a[qI+n?A LLIO~URI %!J!LI_I![ ay$ aJv1a.I 01 alqv am aM ‘1 uogsodold u! SI! ‘MON 

.I = (o)@@ IdaDxa v 3 ‘y .IOJ 0 = (‘y)@@ saysges 

(6X) 

osw ‘(1667 ‘PJ”H 
aas) am+?iz a$!uy %!aey @ a1qy.m uropu~.~ I? 01 1 dlg!qt?qo1d ql!~ sa%laAuo3 “0 

leq$ UMOIJS aq LeUI 11 cc > fyV3” * o z 3 srsaqloddq aql lapun .{a 3 3 ‘(3)~) ssaDoId 

aq$ JO luapuadapu! ale pue luapuadapu! a.n? “Ir ‘ ... ‘zLt‘~Ld salqe!.wA uropuw aq3 u 11~ 

10~ pw +I/ 3 ‘y 10~ c’y/~~‘~y/u. - ] p3Alaw! aql JaAo palnqgs!p @u-Toj!un s! CL4 alaqM 

(8X) 

amanbas 

aql ~0 Igu~ ams Isouqt3 aqi s! 0 aIqy.wA mopum aql ‘(0 < y :v 3 y’, = +I/ lay 

‘I/ 3 y - saqdw! 1/ 3 y Ivql OS ‘(zy! - )dxa(L - ‘y)?~ = (z ‘y - )v ieqi (~‘1) LLIO.IJ uMoqs 

aq icmu 1! lBq1 alou 1s.y a& ~hsuo!~s~s lCIysaM (0 + 3)x saym ivql a3ue!mh ai!uy 

Jo 0 lua.tag!p e a@ 01 pasn aq hm ‘( 1661) p.mH u! sassaDoJd 3dv a~qczyoumq 

01 paqdde pun (8~61) .Iaupmf) 01 anp oslc ‘uo!lmIlsuo3 %?U!MO[IOJ aql ‘E > d > () 

-‘oJ 03 > (Aol)a uav we (a + 101 sv v_lol3 -) .{(ele3)l(~le3)~!~}(1lp/3~) = (e)@$ 

s! Qsuap si! wql 0s Jlasy q+t4 uoymnJ 3!~s!~awmq3 .nqn%ep~ aql JO 

uognloAuo3 aql aq 01 uoyunJ 3gs!lam?leq3 SJ! aye1 a3uyleiz al!uy qI!M 0 E qyM dn 

au103 0.~ ‘1 > d > o uaqfi Quo ~0 > (,lol)a pue Z{(zle3)l(zle3)urs}(1r~/3) = (e)@$ 
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To use the shift notion to obtain strong laws in the APC case we have to be a little 

more careful because O(w) is not confined to a bounded interval. The following 

theorem shows that if O(o) has finite absolute moment of order larger than one, then 

a version of Theorem 2 is obtained for APC processes. As the proof uses only the fact 

that APC processes have bounded variances, the result is stated in this more general 

setup. 

Theorem 5. Suppose X(t) is a measurable process and satisjes E { 1 X(t) I”} 5 M,for all t, 

0 is independent of X with E( 10 1”) < cc .ftir some 1 < p I 2. and Y(t) = X(t + 0). 

Then if either J,,,(i) or Ja.u(/l) converge as., then the other does also and 

lim A _r J,.,(l) = exp( - iI.@)lim, _ , JA,Y(i) a.s. 

Proof. As in Theorem 2 we will show that the two terms on the right-hand side of 

(2.11) converge to zero a.s. The second term converges to zero as. because O(w) is 

finite as., and thus for almost every w, it is upper-bounded in absolute value by 

Sb”‘“” IX(t,(ti)ldt < SZ. To prove that the first term in the right-hand side of (2.11) 

converges to zero a.s., we first show that it does so for the particular sequence 

A, = nT. For g,,(Lr~) given by (2.12) we obtain 

I<q,(l)l I $T 
s 

“‘+‘@IX(t)/dt 
IZT 

and 

> 
P! 2 

I X(t) I2 dt 

and by the independence of 0 and X, and since 2/p 2 1, we have 

where E( 10lp) < r(, by assumption and M is the bound on E (IX(t)l’) = 

R(t, t) = B(t, 0) which is UAP and thus bounded. We conclude that 1, E { lg,,(2)lp) < a,, 

and as before the result follows from the Borel-Cantelli lemma. To show the general 

result we also proceed, as in the proof of Theorem 2, to show the analog of (2.13) 

C.~{lh,@JIP) < x 3 by establishing that E{ Ih,(l.)lP} is O(nmP). Again using the 

analog of(2.14) based on 1.x + JJ + zip 5 3p(I.xIp + 1.~1~ + IzIp), the term involving J1 is 

seen to be O(n-P) because 0 does not come into the argument. The term involving J3 
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is also O(nmP) because for each w the integral is over an interval of length less than T. 

We shall now show E { suptn _ 1)T~A<nTIJZ(n,A,3.)IP} is O(CzP) and thus also O(KP). 

For (n - 1) T I A < nT we have 

and since X and 0 are independent and we obtain 

E sup IJ,(~,A~)IP 
(n-l)T<A<nT 

1 
3o 

rtr+IB) P/2 

I np(n - l)pTp s 
(T + 2101)p’2E 

U 
Ix(t) I2 dt Ad@ _~ (n-l)T-101 

1 
m 

flT+tfI) PI2 

I np(n - l)PTP s 
(T+ 2101)p’2 E 

is 
Ix(t) I2 dt &W ~ (nm l)T-IeI 

< Mp’2E{(T+ 2lOl)“j 
- 

np(n - l)PTP 

This establishes the desired summability of xnE { Ih,(A)lP} < cc . 0 

As is Theorem 2, this result may be applied to argue that any condition that suffices 

for the strong law for Y will give the strong law for X. For example, if 

c 0 +h,EnAj2 < cc and 0 h as characteristic function (3.9) then 0 has finite variance 
and Y(t) is weakly stationary with correlation function a(0, z) given by (1.8) and so the 

conditions of Gaposhkin (1977) on ~(0, r) or Go(r) will suffice for the as. convergence 

of JA, x (4. 
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