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Abstract

This paper gives results related to and including laws of large numbers for (possibly
non-harmonizable) periodically and almost periodically correlated processes. These results
admit periodically correlated processes that are not continuous in quadratic mean. The idea of
a stationarizing random shift is used to show that strong law results for weakly stationary
processes may be used to obtain strong law results for such processes.
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1. Introduction

A second-order continuous time complex-valued process X(t), t € R, is called
periodically correlated (PC) (see Gladyshev, 1963) with period T if, for every s.t,

m(t) = E{X(t)} = m(t + T), (1.1)

R(s.,t)= E{X(5)X(D} = R(s + T,t + T). (1.2)
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A statement equivalent to (1.2) is that, for every ¢, 1,
B(t,7) = R(t + t,t) = B(t + T,7). (1.3)

For a review of PC processes, see Yaglom (1987). Similarly, a process is called almost

periodically correlated (APC) in the sense of Gladyshev (1963) if the functions m(t) and

R(s,t) (or B) are uniformly continuous in (s,t) and for every (s,t), m(t + «) and

R(s 4+ a,t + o) (or equivalently B(x,s — t)) are uniformly almost periodic (UAP)

functions of «. Throughout the paper we assume the mean function vanishes, m(t) = 0.
If X(t)is PC and B(-,1)e L,[0, T] for every 7, then the coefficient functions

T
a(t) = %J B(t,v)exp( — i2nkt/T)dt (1.4)

0

exist for every k and 1. Further, they have the representation

axle) = f " explive) Gy ), (1.5)

- o0

where Go(y) is non-decreasing and all the G,(y) are of bounded variation with
JZ 1G] < [ dGy(y) < oo, if and only if ao(t) is continuous at t = 0 (see Hurd,
1974a). Note that ay(r) may be continuous even when X(f) is not continuous in
quadratic mean (q.m.). The sequence of functions {G,(y)} may be interpreted as the
non-stationary spectrum of the process X (t) in the sense that B(t,1) = R(t + 1,1) is
given for each 7 by a Fourier series of the form

B(t,7) = R(t + 7,1) ~ ) a(t)exp(i2nkt/ T), (1.6)
P

where the sense of convergence depends on the smoothness of R(f + 1,1) in the
variable 1.
If X (1) 1s APC, the coefficient functions

A
a(A,1) = Alim ] J B(t,t)exp( — iAr) dt (1.7)
o 4
exist for each /1 and 7 and the set A = {4: a(4, 1) # O for some t} = {4,} is countable
{Gladyshev, 1963; Hurd, 1991) and contains 0; we set 1, = 0. As in the PC case, the
Fourier coefficient functions are themselves Fourier transforms,

4l 7) = f ' expliy) dGy(), (1.8)

with Go(y) non-decreasing and all the Gy (y) of bounded variation with [*_ |dG,(y)| <
|Z . dGo(y) < oc,if and only if a(0,7) is continuous at t = 0 (Hurd, 1991). Similarly, the
sequence {G,(y)} may be interpreted as the non-stationary spectrum of the process X(t)in
the sense that B(t,t) = R(t + 7,t) has, for each 7, a Fourier series of the form
B(t,1) = R(t + 1,1) ~ Y. ally, ) exp(idy), (1.9)
AxeA

where the convergence is in the sense of UAP functions (Corduneanu, 1989).
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This paper is concerned with the q.m. and a.s. convergence of the averages

A
Ja x4 o) = %j X(t, w)exp( — iAt)dt. (1.10)
4]
In the PC case it will not be assumed that X is q.m. continuous; instead the weaker
assumption will be made that X(t,w) is jointly measurable in ¢, and that
B(-,0)e L,[0,T]. In the APC case, X is q.m. continuous and thus has a version
jointly measurable in r, which will be considered. Then the integral in (1.10) is
a well-defined Lebesgue integral and has a finite second moment since

E{r |X(t)|dt}2 <E {AJ-A|X(t)|2dt} = ArB(t,O)dt < .
(4] 0] (4]

We review some weak laws of large numbers first and then describe the sense in
which strong laws are obtained.
If X(t) is q.m. continuous and weakly stationary, it has the representation

X(t) :J exp(ilt)dé(A), (1.11)
where the second-order spectral process £ has orthogonal increments and is right q.m.
continuous. The correlation of X (t) may be expressed as

R(t + 1,1) = J exp(idt)dF:(4), (1.12)
where the spectral distribution F,(4) is right continuous, bounded and non-decreasing
with E{|&(4y) — &(A2)]2} = Fe(d1) — Fe(Ay), 4, < ;. For each 4, the average J 4 x(4)
converges in q.m. to the jump &(4) — £(4 —) of the spectral process at 4, and
E{|&(2) — &(A —)I?} = Fy(4) — Fe(4 —), the jump of the spectral distribution F; at
A (see Loéve, 1963).

If X () is (strongly) harmonizable in the sense of Loéve (1963), the representation
(1.11) 1s still valid but £(4) does not have orthogonal increments (unless X (¢) is
stationary). The correlation R(s,t) then has the representation

R(s,t) = exp(idys — id,t)re(dd,,dA,), (1.13)
i B 4

with r:{(a,b] x(c,d]} = E{[£(b) — £(a)]1[&(d) — &(c)]}. Again for each 4, J, x(4)
converges in g.m. to &(4) — &(A — ) and E|E(4) — &(4 —)|? = re{(4,4)}, the r; measure
of the point (4, 1) (Loéve, 1963, Sec. 34.4). If X(¢t) is harmonizable and either PC or
APC, the spectral distribution function Gy(4) may be identified with the restriction of
r: to the main diagonal, so E|&(A) — &(A — }|* = Go(4) — Go(A — ) (see Honda, 1982;
Hurd, 1989, 1991).

In this paper we derive weak law results for PC and APC processes without the
assumption of harmonizability, and then use strong law results of Gaposhkin for
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weakly stationary processes to obtain strong law results for such processes. We obtain our
results under the assumption m(f) =0, and note that they may be applied to the
estimation of the Fourier coefficients of m(t) in the following manner. In the PC case,
assume m(t) #0 and is in L,[0,T] so the Fourier coefficients m, = 7!
jgm(t)exp( — i2mkt/T") dt exist. If the zero mean process X — m satisfies J 4 x_,.(A4) = O
as A —» oo with 4, = 2rnk/T, then J 4 x(4) - m,as A — oc. A similar result holds in the
APC case where m(t) is a UAP function. We now summarize the results.

In the case of PC processes, we find (Theorem 1) that J, x(4) converges in q.m. to
alimit n, with E[n;|* = Go(4) — Go(2 — ), assuming only that X (t) is measurable with
B(-,0)e L,[0, 7] and that a () is continuous at the origin. Since X (t) may be neither
stationary nor harmonizable, a question arises concerning the existence of a spectral
process with which n; may be identified. As a partial answer we relate 5, to the
spectral process ((4) of a weakly stationary process Y(t) = X(t + ©O) formed by
shifting X(t) by the random time O, taken to be independent of X and uniformly
distributed over [0,7], by n,exp(ii@) = {(1) — {(4 — ). Theorem 2 shows that if
either J 4 x(4) or J, y(2) converge a.s., then the other does also, and J, x(4) and
J1.y(2)exp( — 1A@(w)) have the same limit (a.s.). Thus, any condition that suffices for
the strong law for Y will give the strong law for X.

If X(1) is APC, then under the additional hypothesis ¥ i;2 < oo (excluding any
A, = 0), we show (Theorem 3) that J, x(4) converges in qm. to a limit n; with
E|n:1* = Go(Z) — Go(~ — ). An example is given that shows the condition ¥ /4 2 to be not
necessary. When 0 is not a limit point of the set of frequencies A, we show (Theorem 4)
that a random variable ©, independent of X(t), may be constructed for which
Y(t) = X(t + ©)is weakly stationary, and as in the PC case, ; exp(iA®@) = {(2) — {(/ —)
where {(4) is the spectral process of Y{t) (Proposition 2). Theorem 5 extends Theorem 2 to
APC processes and to @ having finite moment of order larger than 1.

2. Periodically correlated processes

We begin with a simple example of a PC process that is discontinuous in q.m.: an
amplitude modulation of a stationary process, X (t,w) = f(t)Z(t,»), where Z(t) is
a q.m. continuous weakly stationary process and f(t) is a T-periodic function in
L,[0,T7]. Then X(t)is a PC process with B(-,7) € L,[0, 7] for every t and is q.m.
discontinuous if f(¢) is discontinuous.

The following lemma shows that when B(-,0) € L, [0, T'], the integrals | B(t, t)dt
may be approximated, with uniformly bounded error, by (v — u)ay(t). This will play
a crucial role in proving the weak law for PC processes.

Lemma 1. If X (t) is PC with period T and B(-,0)€ L,[0, T, then for any u, v and =,

f B(t,7)dt — (v — u)ae(t) | < Tay(0). 2.1

u
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Proof, Assume u < v and let n be the largest integer < (v — u)/T so we may write

v —u=nT + 8T where 0 < 6 < 1. Then from the periodicity of B(-,1) and (1.4), we
find

v n+d)T T
J B(t,7)dt — (v — wao(t) = U —(n+ 5)J }B(t, 7)dt
0

u 0

T T
={f —6J }B(t,r)dt
0 0
T T
:{(1_5)f —5j }B(t,r)dt.
0 T

Taking absolute value, the LHS of (2.1) is

T T
sf |B(t,7)|dt sj BY2(t + 7,0)BY?(¢,0)dt < Tay(0), (2.2)

0 0

where we applied the Schwarz inequality first in the probability space to
B(t,7) = E{X(t + 1)X(t)}, and then in L,[0,7]. U

We now give the weak law for a class of PC processes that includes processes of the
form X (t, w) = f(t)Z(t, w) discussed above.

Theorem 1. If X (t) is a measurable PC process with period T, B(+,0) € L,[0,T] and
ao(t) continuous at © =0, then for each A, as A - oo, J 4 x(A) converges in g.m. to
a random variable n; and E{|n;1*} = Go(4) — Go(4 —).

Proof. In order to show that J, (1) converges in q.m., we show that
- 1 A pB
E{Jx(M)Jp x(A)} =—5 R(s, t)exp(idt — ids)dsdt (2.3)

converges to a limit as 4 and B tend independently to oo . Assuming A < B and using
the transformation 7 = s — t, we obtain

- A pB
E{J  x(X)Jp x(A)} = LJ J B(t,s — t)exp[ii(t — s)]dsdt
AB Jo Jo

1 0 A B—A pA
=— +
AB{.I;——AJ;=r J;:O J1=0

B B—1
+ J j }B(t, t)exp( — iAt)dtdr
t=B—-AJt=0
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The use of Lemma 1! in each of these three integrals produces

I, = 2173 UPOA(A + 1t)ae(t)exp( — idr)dr + ﬁ OA ey(t)dr, (2.5)
| (B4 1 (B4

I, = B J, Aag(t)exp( — iAt)dt + 1B L &,(1)dr, (2.6)
1 B 1 B

Iy = 1B vB"A(B — 1)ag(r)exp( — iAr)dt + 1B L»Aéia(f) dr, 2.7

where in each case ¢;(7) is a measurable function of  and |¢;(t)| < Tay(0). Combining
the leftmost integrals in these three expressions (use (2.4) with B(t, 1) replaced with
as(t)) yields

fi1(4,B) = % Jo L aop(s — t)exp[iA(t — s)] dsdt.

Now from (1.5) we have

RN 1
f1(4, B) = J {ZL e‘“"‘”dt} {EJ e““'“’sds}dGo(u)
— 4]

ei(l*u)A _ 1 e'i(}.*u)B — 1

=Go(/1)—Go(—/1)+LH G TwA iU _wB dGo(u)

- Go(A) — Go(— 4) as A,B - o0,

since the integrand converges boundedly to zero. Similarly, combining the rightmost
integrals in (2.5)—(2.7) gives

1 0 B-4A4 B
3(A,B) = — - (1)d 5, (1)d c5(T)dT ).
il ) AB{J_AEI(T) T+L &,(7) T+J‘B—AF (1) r}

In view of the bounds |&;{(t)| < Ta,(0) it follows that

A+ B

| f2(4,B)| < Tay(0)

and so f5(4,B) >0 as 4 - o and B — oo independently. It follows that
E{|J4.x(2) — Jp.x(A)]*)} >0 as A4,B — oc and thus J, x(%) converges in q.m. to
a random variable 5; with E{|n,]?} = Go(4) — Go(— 4). O

The weak law obtained from Theorem 1 is: For measurable PC processes with
B(-,0)e L{[0, T, and ay(t) continuous at T = 0, we have A~ 1j'gX(t)dt — 0 in g.m. as
A — oo if and only if Gy(4) is continuous at A = 0.

In regard to the example X (t) = f(¢)Z(¢), note that B(¢,t) = f(t + 1) f(t)Rz(1) and
so B(-,7)e L [0,T] as f(-)e L,;[0,T]. Also, since a.(t)= ci(t)Rz(7) . where
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ci(t) = Ijo t+0f exp( 12mkt/ T)dt, and the c,(7) are continuous, then aq(1)
is continuous at T = 0. Finally, to get the condition on G, in terms of the spectral
distribution F, we denote by { f,,n € Z} the Fourier coefficients of /. It follows that
G(A) = an,,f;_sz(/l — 2nn/T) and so Gy{4) is continuous at 4 = 0 if and only if F,
is continuous at all the points {27n/T, n € Z}.

When the process X (f) is stationary or harmonizable, the limiting random variable
1, described in Theorem 1 is the jump x,; = &(A) — &(4 — ) of the spectral process
appearing in (1.11). Although processes satisfying the hypotheses of Theorem 1 are not
necessarily weakly stationary or harmonizable, there is an associated weakly station-
ary process that may be formed by a random time shift X(t + @), where © is
independent of X and uniformly distributed over the interval [0, 7] (Hurd, 1974b).
For the construction of such a ® independent of X the probability space may have to
be enlarged, and if so, the original probability space will be replaced by the enlarged
one without further notice. The correlation of X (¢t + @) is ay(z), and since it has
a spectral representation

o

Xt+0)= J exp(iit)d{(4),
it is natural to enquire about the connection between 7, and {(4).

Proposition 1. Suppose X(t) is PC with period T and satisfies the hypotheses of
Theorem 1. If © is independent of X and uniformly distributed over the interval
[0,T] then n,exp(ii®)={(A) — (A —) as. where ((i) is the spectral process
of X(t + O).

Proof. First fix any real number 8 € [0, T]. Then

E{ r 1J X(t + O)exp( — 1At)dt — n, exp(i10)

Alo
§

where #; is the limit whose existence is guaranteed by Theorem 1, and adding
and subtracting 4~ 1[J X (s)exp( — ids)ds, and using |z + w|* < 2(|z|> + |w|?), we

find
1 A+6 A 2
SZEH~<J —J >X(s)exp( ils)ds }
A\ Jo 0

A
+ 2EHIJ X(s)exp( — is)ds — n,
AJo

i

ZE{{H X(s)exp( — ids)ds —

b

21(A,0) + J(A). (2.8)
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By Theorem 1, J(4) » 0 as A — oo . Putting D = (0,4 + 0) A (0, A) we have

I(A,O)Sisz E{IX(s)X(t)[}dsdtS%(J‘ B”z(s,O)ds>2
A DJD A D

2 8T (7T
< P;D|L3(s,0)ds = L B(s,0)ds. (2.9)

Now since @ is uniformly distributed on [0, 7] independently of X, it follows that
for A > T we have
1

1 (T 104
:~J EH—[ X(t + Q) exp( — 1dt)dt — 5, exp(146)
T Jo Ao
T

1 T
E{ ‘ X_[ X(t + O)exp( — i4t)dt — 5, exp(iAO)
0

= E[E{| - *|@}]

2
}d@

1 8T (7

<o | 1A.0d0+J(4) < -5 | Bls,0)ds+J(4) =0 as 4~ . (210)
o] (4]

But we also know that 4 ! {o X(t + @)exp( — iAt)dt — {(i) — {(4 — ) in q.m. for the

weakly stationary process X(t + @) (Doob, 1953, p. 489) and so evidently

naexp(ii®) = (1) — (A —)as. O

The preceding result permits an identification of the limit of J, x(4) with the
spectral process of X(r + ©). But the random shift notion leads to even stronger
results because the shifted process Y(t,w) = X(t + O(w),w) has the same sample
paths as X (¢, w) shifted by &(w), which for the case at hand is assumed to be in the
interval [0, 7']. The following theorem shows that if either J 4 x(4) or J 4 y(4) converge
a.s., then the other does also, and J , y(2) and J 4 y(1) exp(-iA@(w)) have the same limit
(a.s.).

Theorem 2. Suppose X (t)is PC with period T and satisfies the hypotheses of Theorem 1.
If Y(t) = X (¢t + @) where O is independent of X and uniformly distributed over the
interval [0, T, then if either J 4 x(A) or J 4.v(A) converge a.s., the other does also and
lm, . J4 () =exp(—i2@)lim ,_ . J 4 y(4) as.

Proof. The techniques used in this proof are similar to those found in Loéve (1963,
Section 34.7). In view of

Jayd oyexp( — 140 () — J 4 x (4, w)
1 A+ 6O (w) 1 O(w)

= —f X(t,w)exp( — 14t)dt — —j X(t,w)exp( — iAr)dt, (2.11)
A A A o]
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the result follows if we can show these last two terms converge to zero a.s., for every 4. We
will actually show that the convergence is uniform in 4 a.s.; that is, the exceptional set does
not depend on A. The rightmost term in (2.11) converges to zero a.s., and uniformly in /, as
A — oo because for almost every o, it is upperbounded in absolute value by
j"g | X (t,w)|dt < oc. To prove that the leftmost term converges to zero ass., and uniformly
in 4, we first show that it does so along the particular sequence 4, = nT. For if

An+0 ()
gn(d, w) = A—f X(t,w)exp( — iAt)dt, (2.12)
it may be easily verified that for all 4, E{|g.(2)*} <ao(@)n ? and so
YL E{lgn(A)?} < cc. It follows from the Borel-Cantelli lemma that
lim, ., ,g,(4, @) = 0 a.s. uniformly in 4. To show the general result we set

1 A+6(w)
h, (A, A w)= ZJ X(t, w)exp( — iit)dt — g,(4, w),
A
h, (4, w) = sup |h, (A, 4, ).

M—1)T<A<nT

If we can show that for all 4,
ZE{h,,(/l)Z} < o0, (2.13)

then by the Borel-Cantelli lemma, lim,, , , A,(4, w) = 0 a.s. uniformly in 4, and hence
the leftmost term in (2.11) converges to zero a.s., uniformly in 4. To establish (2.13) we
may write (for (n— )T<A<nT and A+ 6 >nT), with I{t,Aw)=
X(t, w)exp( — iat),

nT

1 1 A+6 1 nT+6
I(t,,l,w)dt+<———>f I(t,/l,co)dt—AJ. I(t, A, w)dt
nT Jai0

1
(A, 2 0) = —
(4.4, ) AJ A nT) )y

A
é‘]l(n’ Aa Aaw) + JZ(n’ A, /L Ct)) + J3(n’ A9 ):" w},

where if A + @ < nT the middle integral is replaced by its negative. It follows that

3
E{lh,,(/l)lz}sZ3E{ sup le(n,A,)h)lz} (2.14)
=1

J (n—1)T<A<nT

and, for J(n, A4, 4, w),

1 nT 2
E Jin A B2 < B ——— d
{(n—l)STuspA<nTl . ) }< {((n— l)Tﬁnl)T|X(t)| t) }

S;E{ljﬂ |X(t)|2dt}
(n— 1)? T)w-—nr

1
“no1p a0(0).
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Similar inequalities for J,(n, A, A, ) and J3(n, 4, A, w) show that E{|h,(A}*} is O(n™?)
for all 4 and hence the desired summability of (2.13) is established. [

Theorem 2 shows that any condition that suffices for the strong law for Y gives the
strong law for X. Since Y(r) is wide sense stationary with correlation function given by
(1.5) with k = 0, the conditions of Gaposhkin (1977) on ag(z) or Go(4) will suffice for
the a.s. convergence to 0 of J 4 y(/). For example, if G,(A} is continuous at A = 0 and
there 1s a »" > 0 for which

2
f (log log 1) dGy(l) < o, (2.15)
0<|A|<a’ [4]

then the strong law holds for Y(t) and therefore for X{(¢). The preceding complements
a recent result by Honda (1990) on the strong law of large numbers for Gaussian PC
processes. Gaposhkin (1977) also gives sufficient conditions for the strong law for
processes that are quasi-stationary in the sense m(t) =0, R(t,t) is bounded and
IR(t + 1,1)| < ¢(x) where ¢(1) | O as t1 oc. If {17 p(r)dr < o, then the strong
law holds for X (r).

For the example X(t) = f(t)Z(t) we may contrast the two sufficient conditions for
the strong law. The spectral condition is that Go(4) = 5| fu|* Fz(2 — 2rnn/T ) must be
continuous at / = 0 and satisfy (2.15). On the other hand, if f(r) is bounded and
continuous, and if |Rz(t)| < ¢(r) with ¢(r) | Oast T o and [ 77 "¢(r)dr < oo, then
Xt} is quasi-stationary and the strong law holds for X (t). It may be noted that the
spectral condition constrains Fz(2) only at the points {4 = 2mn/T: f, % 0}, thus
permitting F,(4) to have jumps elsewhere and in this event, R,(r) will oscillate as
7 — o0, thus violating the condition of quasi-stationarity.

3. Almost periodically correlated processes

As noted in the introduction, if X(z) is APC and harmonizable, then we can
conclude a weak law of large numbers based on the harmonizability assumption. But
the APC processes are not all harmonizable because they contain the continuous PC
processes which are not all harmonizable, as pointed out by Gladyshev (1963). Our
approach is to obtain conditions yielding an approximation similar to (2.1), and the
rest will follow. But the proof of Lemma 1 relies heavily on the periodicity and so an
alternative proof is needed for APC processes. We have found a method of proof,
subject to a condition on the frequencies A, which i1s developed in Lemmas 2 and 3.

First, Lemma 2 gives a condition under which the average 4 ™' {2** f(x)dx of
a complex valued UAP function f(x) converges as A — oc toits limit M { f'} at a rate
O(A™ ') uniformly in the variable a; for an arbitrary UAP function, the convergence is
uniform in a, but not necessarily O(A~!). For the UAP function f, denote A, =
{2;: M{f(x)exp(—14;x)} + 0} and recall that A, is countable.
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Lemma 2. Iff(x)is UAP and ¥ o, ; .4, Aj * < o0, then there exists a finite constant
K such that for arbitrary a and for A > 0,

Jmﬂf(x)dx—AM{f} <K. (3.1)

Proof. To prove this claim we recall from the theory of UAP functions (Corduneanu,
1968, 1989, p. 41) that there exists a sequence of trigonometric polynomials

H(x)= Y aj.exp(ii;x), (3.2)
AjeAn
converging uniformly to f(x) where the finite set A, T A, and for every j,
lim a;, = a; = M{f(x)exp( —ii;x)}.

Therefore, it suffices to show (3.1) for f,. Then
1 fat4 et
Z'L f,,(x)dx Zao',“i— Z aj,,,e"lf"—im:—;ao‘,, = M{ﬁ,},

0% Ajed, J

where ay, =01if 0¢ 4,, and

FYREETTS

2
< z |a.‘ |—
0+ Ajedn o [4;]1 A

2 1/2 1/2
< Z( Y Ia,-,,l|2> ( Y /1[2> . (3.3)
Ajedn 0+ AjeAn

Finally, f, - fimplies that M{|f,1*} = ¥, .4 1a;.a> = M{ [’} = ¥ j.zla)l* < o0,
because the Fourier coefficients of UAP functions are square summable. This leads to

[

a

S%(M{!f|2})”2< Z /1]._2>1/2

0% AjeAy
for sufficiently large n, which implies (3.1). O
For APC processes, the development in Lemma 2 may be applied to each UAP

function B(-, 1), T € R, to obtain the required approximation. We recall that if A, is the
set of frequencies for B(-,7) then A = |} A, is countable.

Lemma3. If X(t)is APCand ¥ o, ; . 4 Aj? < oo, then there exists a finite K > 0, such
that for every u,v and 1,

’ JUB(t, 7)dt — (v — wa(0,7) | < K. (3.4)
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Proof. Using (3.2) for the UAP function B(-,1), with A, .7 A, < A, we have

Bit,t)= Y a,(d,0et =a,00,0)+ Y  a,d;r)e,
Ajedn.: O+ Ajedn

and by (3.3),

,{lR(r Ydr — a2 (0 M — 1) (‘)/ Ay la (7. ”2\1/2( N 1‘2\1/2

Letting n - oo gives

u

f B(t,t)dt — a(0,7)(v — u)

1,2 1,2
SZ( Y |a(Aj,r)|2> ( Y /,;2) )
Aje A 0+ Aje:

Then (3.4) follows since for all t we have Yo, ; (4 2j 2 < Yq 4,044 > and

1
A—-w 0 A— 0

14 1A
im Zf |B(t,7)2dt < lim ZJ B(t + 1,0) B(t,0)dt

1 A
= lim; B*(t,0)dr = Y [a(2;,0)],
0

A-x Aijedo

where we used Bt 1) < B(t + 1,0)B(t,0), and the Schwarz inequality in
L,[0,T] O

In view of Lemma 3, the results of Theorem 1 remains true for APC processes
whenever Y ., _,4; % < oc, a condition that is always satisfied for PC processes.

Theorem 3. If X(t) is APC and ¥ ., ,4; %< oo, then for each 4, as A — oo,
J 4. x(A) converges in g.m. to a random variable n; where E{|n;|*} = Go(4) — Go(A —).

Proof. We are reminded that APC processes are continuous in ¢q.m., have bounded
second moments and a (0, 7) is continuous at t = 0. Thus, J 4 x(4) may be interpreted
either as a Lebesgue integral a.s. or as a q.m. integral in the Riemann sense and a(0, 7)
has the representation (1.8). The remainder of the proof follows exactly the proof of
Theorem 1 with the bound Tay(0) of Lemma 1 replaced with K from Lemma 3. [

Theorem 3 gives the following weak law for APC processes that satisfy ¥ i, 2 < oo :
J4.x(©0) = 0in gm. if and only if Go(A) is continuous at 2 = 0.

That the condition of square summability in Theorem 3 is not necessary is
illustrated by the example of almost periodic amplitude modulation of a stationary
process: X (1) =f(t)Z(t). Let f{(t) be continuous, bounded and AP so that
f@)~ S, L™ Y, | il < oo, and Z(t) be g.m. continuous weakly stationary so that
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= [¥_e"*d{(4) where { has orthogonal increments, E|d{(4)|> = dFz(4) and F is
non- decreasmg, right-continuous and bounded. Then

Sust= [ {5 [ e s aco
- 0

The integrand tends as 4 - o« to fy if A —u= A, €A, and to 0 otherwise and is
bounded in absolute value by sup,.g| f(f)| < co, thus

ir MOt —— T filyp ) in L(AF).

AO A= 0 g

It follows that the limit of J 4 x(4) always exists in q.m.
Ja.x(4) - LA = M) &n
.

and E{|n;:|*} =3, | fk?{Fz(+ — J) — Fz(A — 4, )}. In particular the weak law
J4.x(0) = 0 in g.m. is satisfied if and only if the spectral distribution F,(4) of the
stationary process Z(t) is continuous at the frequencies A, € A, of the AP amplitude
modulation f(t) (since dF z( — 4) = dF;(A)). In this case the frequencies A are obtained
from A, as follows. From (1.7) we have

. 1 —_— . .
a(d,7) = Rz(r)Ahm 74 Af(z+r)f(t)e"’“dt=RZ(r) Y3 fifie™
S _ 5
Ak A=A

so that A = {A = A, — 4;: 4, 4;€ A, }. In particular a(0,7t) = Rz(7)Y, | fi|*e"** and if
we take A, =ck'? then i, — Ado=ck'? and ¥,, (4 —4¢)"2= oo so that
Y04 a,ea4n > = 00. Thus, in this example the conclusion of Theorem 3 holds true
without the square summability assumption.

The random shift interpretation may also be applied to APC processes since they
can also be stationarized by a random time shift.

Theorem 4. If X(t) is APC, and O is not a limit point of A, the distribution of a real
random variable ©, independent of X (t), may be chosen so that X(t + ©) is weakly
stationary with correlation function a(0, 7).

Proof. Put Y(t) = X(t + ©). Since O is independent of X(r) we have
Ry(s,0) = E{X(s + ®)X(t + ©)} = E{E[X(s + ©)X(t + ®)| 0]}

[=e}

= r E[X(s + 0)X(t + 0)Ju(dd) = j R(s + 0,t + 6)u(d0)

e & -0

or

— 00

By(t,7) = J "Bt + 0.71)u(d0), (3.5)
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where p is the distribution of @. To show that Y(¢) 1s weakly stationary we will show
that Ry(u, v} = Ry(u — v), or equivalently that By(t, 1) = By(7). First, we may conclude
that Y(t) is APC. To see this, the inequality

BG4+ 2+ 0.7) — Bt + 0,7)|u(d0)

-0

|By(t + o, 7) — By(t,7)| < J

< sup|B(# + a,17) — B(6,71)]
feR

shows that

{oc: sup|B(0 + a,7) — B(6,7)| < s} < {(XI sup|By(t + a,1) — By(t, 7} < e}.
0eR teR
Therefore, the larger set is relatively dense, since the smaller set is. Since By(t, 7) is also
seen to be uniformly continuous in (t, ), we conclude (Corduneanu, 1968, 1989, p. 14)
that B(-, 1) is UAP for every 7 and so Y(t) is APC.
It follows that By(t, 7) has a Fourier series as in (1.9) possessing at most a countable
set of frequencies and coefficient functions

24

1 A
ay(4,7) = lim ﬁf By(i, 7)exp( — iAr)dt
A

A=

B 1 A+0
= lim j —f B(s, 1) exp( — ids + 140) dsu(dh) (3.6)
] 24 —A+0

A—-

in view of (3.5). But (2A)‘1ff;ioB(s, 7)exp( — iAs)ds is a continuous function of

0 and, since B(s,7) is bounded, converges boundedly in 6 to a(4,7). Thus, by the
bounded convergence theorem, (3.6) becomes

o0

ay(4, 1) = a(4, ‘L')j exp(iA0)u(df) = a(4, 1) Pe(d), (3.7)

-

where ®@4(4) is the characteristic function of ®. This expression shows that the set Ay
of frequencies of By(+, 1) is a subset of the set of frequencies A of X, and that Y will be
weakly stationary if @g{1) =0 for 0 &+ i€ A.

Since 0 is not a limit point of A, there exists an interval [ — g, £] that contains only
one element of A, namely 4 = 0. It is not difficult to choose the distribution of & so
that @g(1) = Ofor A ¢ [ — ¢, ¢]; e.g., Po(4) triangular. For such ©® we have ay(4,7) =0
except for 4 = 0 and so for each 1, the UAP function By(t, 7) is equal to its Oth Fourier
coeflicient a(0, 1) from the uniqueness of the Fourier coefficients of UAP functions;
thus Y(¢) is weakly stationary and its correlation is a(0,7). [

Theorem 4 is motivated by Gardner (1978), who considers a narrower class of
APC processes, termed almost cyclostationary. When @ in Theorem 4 is chosen to
have a triangular characteristic function @g(1) = max(0,1 — |4|/e), its density is
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do(0) = (¢/2m){sin(e0/2)/(¢0/2)}* and E(|@|) < oo only when 0 < p < 1. To come
up with a @ with finite variance take its characteristic function to be the convolution
of the triangular characteristic function with itself so that its density is
bo(0) = (3e/4m){sin(e0/2)/(e0/2)}* (~ ¢|0] * as |6] » o) and then E(|@|7) < oo for
0 < p < 3. The following construction, also due to Gardner (1978) and applied to
harmonizable APC processes in Hurd (1991), may be used to give a different @ of
finite variance that makes X(t + @) weakly stationary. We first note that it may be
shown from (1.7) that a( — 4,7) = d(4, — 1)exp( — A1), so that 1 € A implies — 1€ A.
Let A" = {i€ A: 4 >0}. The random variable @ is the almost sure limit of the
sequence

=Y (3.8)

where #; is uniformly distributed over the interval [ — n/;,n/4;] for A;€ A™ and for
all n the random variables 7,75, ... ,#, are independent and are independent of the
process { X (¢),t € R}. Under the hypothesis Yo.:eadi 2 < oo it may be shown that
0, converges with probability 1 to a random variable @ having finite variance (see
Hurd, 1991). Also

i vy
oo -

j=1

(3.9)

satisfies ®Pg(4;) = 0 for ;e A except P(0) = 1.
Now, as in Proposition 1, we are able to relate the limiting random variable , given
by Theorem 3 to the spectral process {(A) associated with X(t + ©).

Proposition 2. If X () is APC and for each A, as A —» o, J4 x(A) =y, in gm., and if
@ is independent of X and X (t + ©) is weakly stationary with spectral process {(1), then
n,exp(i@) =¢{(4) — {(L —) as.

Proof. From (2.8) and (2.10) we have

1 A
E{ . ! J X(t + ©)exp( — iA)di — 1, exp(iA6)
(4]

2} < E{I(4,0)} + J(4). (3.10)

By assumption J(4) -» 0 as 4 — oo . We now show that E{I(4,0)} -0as 4 - .
Since B(-,0) is UAP, it is bounded by say M < oo, and by (2.9) we have

2 8M
1(4,0) < -5 |DPM = =5 min(07, 42),

where we used |D| < 2min(|0|, A). Thus, for each fixed 6, I(4,8) - 0as A - oo and
for all 8 and A, I(A4, 6) < 8M. It follows that E{I(4,0)} - 0as A —» oo . Hence, (3.10)
tends to 0 as 4 —» oco. But as in Theorem 3, A‘lng(t + O)exp(—iA)dt - {(4) —
{(A—)in qm. and so i, exp(il@) = {(A) - (A ~). O
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To use the shift notion to obtain strong laws in the APC case we have to be a little
more careful because @(w) is not confined to a bounded interval. The following
theorem shows that if ®(w) has finite absolute moment of order larger than one, then
a version of Theorem 2 is obtained for APC processes. As the proof uses only the fact
that APC processes have bounded variances, the result is stated in this more general
setup.

Theorem 5. Suppose X (t) is a measurable process and satisfies E{| X (t)|*} < M for all t,
O is independent of X with E(|@|°) < oo for some 1 < p <2, and Y(t)= X(t + O).
Then if either J, x(4) or J y(1) converge a.s., then the other does also and
lim, . Jix(2)=exp(—iA@)lim, ,  J, y(4) as.

Proof. As in Theorem 2 we will show that the two terms on the right-hand side of
(2.11) converge to zero a.s. The second term converges to zero a.s. because @(w) is
finite a.s., and thus for almost every w, it is upper-bounded in absolute value by

19N X (1,w)|dt < o . To prove that the first term in the right-hand side of (2.11)
converges to zero a.s., we first show that it does so for the particular sequence
A, = nT. For g,(4, w) given by (2.12) we obtain

1 nT+ |0}
I!ln(l)lﬁﬁj [ X (0}l dt
nT

and

nT+|O) /2
Lgn()IP < : |@l"/2<J IX(T)lzdf>p

T nfT? ol

and by the independence of @ and X, and since 2/p > 1, we have

1 oL ‘ nT+6 pi2
E{lgn(2)I"} < ,,f l()l”"zE{<f IX(I)IZdt> }u(dﬂ)
wT - nT

1 X " nT+6 B pi2
snTT—pr[ow [E{j” 1X(0)] dt}] 1(d0)

MPRE(|O|)
n?T?

o , |
Sn—pﬁj |0172[10| M17? u(d0) =

where E(]@P) < o by assumption and M is the bound on E{|X(1)|*} =
R(z,t) = B{1,0) which is UAP and thus bounded. We conclude that ¥, E {]¢.(2)"} < 0,
and as before the result follows from the Borel-Cantelli lemma. To show the general
result we also proceed, as in the proof of Theorem 2, to show the analog of (2.13),
Y, E{lh ()P} < oo, by establishing that E{|h,(4)|} is O(n 7). Again using the
analog of (2.14) based on |x + y + z|* < 3%(|x]” + | ¥|* + | z|?), the term involving J, is
seen to be O(n~?) because @ does not come into the argument. The term involving J;
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is also O(n~") because for each w the integral is over an interval of length less than 7.
We shall now show E {Sup,- 1,7<4<nr|J2(1 4,4) |7} is O(n~ ??) and thus also O(n 7).
For (n — 1)T < A < nT we have

p

1 1

p
p ——
1300 A, D)7 < (A nT)

1 1\? nT+|@| r
= ((" - I)T_ﬁ> <J(n1)T|@||X(t)|dt>

1 nT+|0| p/2
(T+2|9|)p/2<f lX(t)|2dl>
(

< -
nf(n — 1)°T? n-1)T—-|@]|

A+©
J X ()] dt
nT

and since X and @ are independent and we obtain

E{ sup IJz(n,A,i)I”}

(n—-1)T<A<nT

20 nT+|0]

1 p/2
<— T+ 210 ”/2E<J X(t 2dl‘) do)
n,,(n_l),,r,,J_m( oree( |7 xora) u

1 0 nT +1{0| p/2
j (T + 2|0|)"/2{Ef |X(r)|2dr} 1(d6)
el (

<
nfn — 1)PT? n—1)T— 0|

< MPPE{(T +2]0))"}
nP(n — 1HPT7?

This establishes the desired summability of ¥ E{[h,(A)"} < co. [

As is Theorem 2, this result may be applied to argue that any condition that suffices
for the strong law for Y will give the strong law for X. For example, if
20 +a,ea4 ;%< oo and O has characteristic function (3.9), then @ has finite variance
and Y(¢) 1s weakly stationary with correlation function a(0, 7) given by (1.8) and so the

conditions of Gaposhkin (1977) on a(0, 1) or Gy(y) will suffice for the a.s. convergence
of J 4. x(4).
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