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Abstract

In this paper we use the successive minima profile to measure structural properties of pseudorandom
multisequences. We show that both the lattice profile and the joint linear complexity profile of a multisequence
can be expressed in terms of the successive minima profile.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Complexity theory is of great relevance to cryptology, in particular, to the area of stream
ciphers (see [18]). Recent developments in stream ciphers point towards an interest in word-
based or vectorized keystreams; see e.g. Dawson and Simpson [2], Hawkes and Rose [9], and
the proposals DRAGON, NLS, and SSS to the ECRYPT stream cipher project [7]. The theory of
such stream ciphers requires the study of multisequences, i.e., of parallel streams of finitely many
sequences, and of their complexity properties.

For a positive integer m, consider m sequences S(h) = s
(h)
1 , s

(h)
2 , . . . , where 1�h�m, with

terms s
(h)
j in an arbitrary field F, i.e., an m-fold multisequence (or m-dimensional vector sequence)

S = (S(1), . . . , S(m)).
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For a positive integer n, let Sn denote the finite-length multisequence consisting of the first n terms
of S. A monic polynomial C(x) = xd +∑d−1

i=0 cix
i ∈ F[x] is called a characteristic polynomial

of Sn if

s
(h)
j + cd−1s

(h)
j−1 + · · · + c0s

(h)
j−d = 0

for j = d + 1, d + 2, . . . , n and h = 1, 2, . . . , m. (1)

A minimal polynomial of Sn is a characteristic polynomial of Sn with the least degree. The nth
joint linear complexity LC(Sn) of S is the degree of a minimal polynomial of Sn. The joint linear
complexity profile of S is the sequence {LC(Sn)}n�1. We refer to [16] for a recent survey of work
on the joint linear complexity and the joint linear complexity profile of multisequences.

Another quality measure appraising the intrinsic structure of multisequences is given by the
extension of Marsaglia’s lattice test in [12] from single sequences to multisequences: for n�2, S
passes the R-dimensional n-lattice test if the vectors {s(h)

j − s
(h)
1 : 2�j �n− R + 1, 1�h�m}

span FR , where

s
(h)
j = (s

(h)
j , s

(h)
j+1, . . . , s

(h)
j+R−1), 1�j �n− R + 1, 1�h�m.

If S passes the R-dimensional n-lattice test, then it passes all R′-dimensional n-lattice tests for
R′�R, and if S fails the R-dimensional n-lattice test, then it fails all R′-dimensional n-lattice
tests for R′�R. We call the greatest R such that S passes the R-dimensional n-lattice test, denoted
by LA(Sn), the nth lattice level of S. The lattice profile of S is the sequence {LA(Sn)}n�2. The
lattice profile was originally introduced in the context of pseudorandom number generation (see
[5]). There are many results about the lattice test for a single sequence, i.e., for m = 1 (see
[3–6,8,13,14,17]). Recently, multisequences were also studied with regard to the lattice test by
Meidl [15] who discussed the relationship between the lattice level and the joint linear complexity
for multisequences.

In [1] the authors utilized successive minima to study certain pseudorandom number generators.
In Section 2 of the present paper we use the successive minima profile to measure the structural
properties of pseudorandom multisequences. We show that the joint linear complexity profile and
the lattice profile of a multisequence can be expressed in terms of the successive minima profile
in Section 3 and Section 4, respectively.

2. Successive minima profile

For each h = 1, 2, . . . , m, we identify the sequence S(h) having terms s
(h)
1 , s

(h)
2 , . . . ∈ F with

the formal power series S(h)(x) = ∑∞
j=1 s

(h)
j x−j which we view as an element of the Laurent

series field

K = F((x−1)) =
⎧⎨
⎩
∞∑

j=j0

ajx
−j : j0 ∈ Z, aj ∈ F

⎫⎬
⎭ .

There is a standard (exponential) valuation � on K whereby for � = ∑∞
j=j0

ajx
−j ∈ K we

put �(�) = max {−j ∈ Z : aj �= 0} if � �= 0 and �(�) = −∞ if � = 0. The valuation
v(�) of an (m + 1)-dimensional vector � = (�1, . . . , �m+1) ∈ Km+1 is defined as max{�(�i ) :
1� i�m + 1}. In the sequel we often use the projection � : Km+1 → Fm+1 such that � =
(�i )1� i �m+1 �→ (a1,−v(�), . . . , am+1,−v(�))

T , where �i =∑∞
j=j0

ai,j x
−j , 1� i�m + 1, and T

denotes the transpose of a vector.
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A subset � of Km+1 is called an F[x]-lattice if there exists a basis �1, . . . ,�m+1 of Km+1

such that

� =
m+1∑
i=1

F[x]�i =
{

m+1∑
i=1

fi �i : fi ∈ F[x], i = 1, . . . , m+ 1

}
.

In this situation we say that �1, . . . ,�m+1 form a basis for � and we often denote the lat-
tice by �(�1, . . . ,�m+1). We call m + 1 the rank of �. A basis �1, . . . ,�m+1 is reduced if
�(�1), . . . , �(�m+1) are linearly independent over F. A reduced basis is normal if v(�1)� · · · �v

(�m+1) and the (m+1)th component of �(�i ) is either 0 or 1 for i = 1, . . . , m+1. The determi-
nant of the lattice is defined by det(�(�1, . . . ,�m+1)) := v(det(�1, . . . ,�m+1)). In [10] it was
proved that

m+1∑
i=1

v(�i ) = det(�), (2)

if �1, . . . ,�m+1 are a reduced basis for a lattice �.
There is an important notion of successive minima (see [11]). The ith successive minimum

Mi(�) is defined by Mi(�) := min{k ∈ Z : there are i F[x]-linearly independent vectors
�1, . . . , �i in � such that v(�j )�k, 1�j � i} for 1� i�m+1. If the reduced basis �1, . . . ,�m+1
satisfies v(�1)� · · · �v(�m+1), then Mi(�) = v(�i ) for 1� i�m + 1 (see [10]), and so it is
clear that �1 is a shortest nonzero element in the lattice.

For any integer n�1, we construct a special lattice �(�1, . . . , �m, �n) in Km+1 spanned by
the vectors �1 = (1, 0, . . . , 0), . . . , �m = (0, . . . , 0, 1, 0), �n = (S(1)(x), . . . , S(m)(x), x−n−1).
Clearly

det(�(�1, . . . , �m, �n)) = −n− 1. (3)

By means of a lattice basis reduction algorithm [10,19], we can transform the initial basis
�1, . . . , �m, �n into a reduced one and then it is easy to transform a reduced basis into a normal
one only by rearranging its elements and multiplying them by scalars. We denote a normal basis for
the lattice by �1,n, . . . ,�m+1,n. So we obtain Mi(�(�1, . . . , �m, �n)) = v(�i,n) for 1� i�m+1.
It is clear that the successive minima of the lattice �(�1, . . . , �m, �n) are completely determined
by the m-fold multisequence S and the length n, and so these successive minima can be viewed
as intrinsic parameters of multisequences. Therefore we also denote Mi(�(�1, . . . , �m, �n)) by
Mi(Sn). Now we can introduce the following definition.

Definition 1. The multiset {M1(Sn), . . . , Mm+1(Sn)}, denoted by SM(Sn), is called the suc-
cessive minima of the multisequence S at n, and the successive minima profile is the sequence
{SM(Sn)}n�1.

3. Relationship between successive minima and joint linear complexity profile

In [21,22] the lattice �(�1, . . . , �m, �n) constructed above was used to obtain a minimal poly-
nomial of Sn by means of the so-called LBRMS algorithm. Using this algorithm, we first establish
an important relationship between the joint linear complexity and the successive minima.
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Let �i (	), i = 1, . . . , m+ 1, denote the ith component of a vector 	 ∈ Fm+1, let �(Sn) be the
set of all characteristic polynomials of Sn, and put

S(�(�1, . . . , �m, �n)) := {� ∈ �(�1, . . . , �m, �n) : �m+1(�(�)) = 1}.
The mapping 
 : �(�1, . . . , �m, �n)→ F[x] is given by


(D1(x)�1 + · · · +Dm(x)�m + C(x)�n) = C(x),

where D1(x), . . . , Dm(x), C(x) ∈ F[x]. Conversely, C(x) completely determines an associated
element in �(�1, . . . , �m, �n) given by

�(C(x))|�(�1,...,�m,�n) := C(x)�n −
m∑

h=1

Pol(C(x)S(h)(x))�h,

where Pol(C(x)S(h)(x)) is the polynomial part of C(x)S(h)(x). The following result is obtained
from [22, Theorem 2].

Theorem 1. The mapping 
 is a valuation-preserving one-to-one correspondence between
S(�(�1, . . . , �m, �n)) and �(Sn).

Therefore the problem of determining a minimal polynomial of Sn is reduced to asking for a
shortest element � in S(�(�1, . . . , �m, �n)). The following theorem (see [21, Theorem 1] and [22,
Theorem 3]) shows that such an element must appear in a normal basis of �(�1, . . . , �m, �n).

Theorem 2. Let �1, . . . ,�l be a normal basis of a lattice � of rank l and let

S(�) = {� ∈ � : �l (�(�)) = 1}.
Let k be the least integer such that �k ∈ S(�). Then �k is a shortest element of S(�).

Let kn denote the least integer such that �kn,n ∈ S(�(�1, . . . , �m, �n)). Then 
(�kn,n) is a
minimal polynomial of Sn by Theorems 1 and 2, and

v(�kn,n) = LC(Sn)− n− 1. (4)

This is the basic idea of the LBRMS algorithm (see [21,22] and Appendix A for details).

Proposition 1. For any m-fold multisequence S and any integer n�1, there exists some integer
kn, 1�kn �m+ 1, such that Mkn(Sn) = LC(Sn)− n− 1 and

m+1∑
i=1
i �=kn

Mi(Sn) = −LC(Sn). (5)

Proof. The result easily follows from (2), (3), and (4). �

In the following, we describe the dynamics of the successive minima profile and the joint linear
complexity profile.
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Let

�′i = �(
(�i,n))|�(�1,...,�m,�n+1), 1� i�m+ 1.

Then �′1, . . . ,�′m+1 form a basis for the lattice �(�1, . . . , �m, �n+1) and now we transform it into
a reduced one. It is clear that v(�′i ) = v(�i,n) for i �= kn. As to the value of v(�′kn

), there are
two cases.

If �m+1(�(�′kn
)) �= 0, it means that 
(�′kn

) also generates the first n+ 1 terms of S and hence
�′1, . . . ,�′m+1 form a reduced basis for the lattice �(�1, . . . , �m, �n+1). So v(�′kn

) = v(�kn,n)−1
and LC(Sn+1) = LC(Sn) = n+ 1+ v(�kn,n).

Otherwise, we have �m+1(�(�′kn
)) = 0 and v(�′kn

) = v(�kn,n) = LC(Sn)− n− 1. Therefore
�(�′kn

) is a linear combination of {�(�′i ) : 1� i�m+1, i �= kn}, and so there exist scalars ai ∈ F

with akn = 1 such that

m+1∑
i=1

ai�(�′i ) = 0.

Let hn be an integer such that v(�′hn
) = max {v(�′i ) : 1� i�m+ 1, ai �= 0}. We let

� =
m+1∑
i=1

aix
−v(�′i )+v(�′hn

)�′i .

The reduced basis for �(�1, . . . , �m, �n+1) is �′1, . . . ,�′hn−1, �, �′hn+1, . . . ,�
′
m+1, and

LC(Sn+1) = n+ 1+ v(�′hn
),

v(�) = LC(Sn+1)− n− 2 = v(�′hn
)− 1.

Suppose v(�1,n)�v(�2,n)�v(�tn,n) < v(�tn+1,n) = · · · = v(�hn,n)�v(�hn+1,n)� · · · �v

(�m+1,n). Then �′1, . . . ,�′tn , �, �′tn+1, . . . ,�
′
hn−1, �

′
hn+1, . . . ,�

′
m+1 is a normal basis for the

lattice.
These results are summarized in the following proposition.

Proposition 2. We have:

(i) LC(Sn+1) = n + 1 +Mhn(Sn), SM(Sn+1) = (SM(Sn) ∪ {Mhn(Sn) − 1}) \ {Mhn(Sn)}, for
some integer hn, 1�hn �m+ 1.

(ii) Mi(Sn+1) = Mi(Sn) or Mi(Sn)− 1 for all 1� i�m+ 1.

4. Relationship between successive minima profile and lattice profile

In this section we investigate the relationship between the successive minima profile and the
lattice profile.

Lemma 1. For any integer N with 1�N �n, we have LC(SN)−N − 1�M1(Sn).

Proof. We prove the lemma by contradiction. So suppose that there exists an integer N0 with
1�N0 �n such that LC(SN0)−N0−1 < M1(Sn). Then Proposition 1 yields M1(SN0) < M1(Sn),
which is a contradiction to Proposition 2(ii). �
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Lemma 2. Let�1,n, . . . ,�m+1,n be a normal basis for the lattice�(�1, . . . , �m, �n).Then
(�1,n)

is a minimal polynomial of SN , where N = −M1(Sn)+ deg(
(�1,n))− 1.

Proof. Put � = �(
(�1,n))|�(�1,...,�m,�N). Then � is an element of a basis for �(�1, . . . , �m, �N).
Since �m+1(�(�)) = 1, by Theorem 1 we have 
(�) = 
(�1,n) is a characteristic polynomial
of SN . By Proposition 2(ii) we have v(�)�Mi(SN) for all 1� i�m + 1, and so � is a shortest
element of S(�(�1, . . . , �m, �N)) by Theorem 2. �

Theorem 3. For any m-fold multisequence S and any integer n�1, we have

LA(Sn) = n+ 1+M1(Sn) or LA(Sn) = n+M1(Sn).

Proof. First we show that LA(Sn)�n + 1 + M1(Sn), and so we need to prove that S fails to
pass the R-dimensional n-lattice test with R = n+ 2+M1(Sn), that is, the vectors {s(h)

j − s
(h)
1 :

2�j �n− R + 1, 1�h�m} do not span FR , i.e., the row vectors of the matrix

A =

⎛
⎜⎜⎜⎜⎝

s
(1)
2 − s

(1)
1 . . . s

(1)
n−R+1 − s

(1)
1 . . . s

(m)
2 − s

(m)
1 . . . s

(m)
n−R+1 − s

(m)
1

s
(1)
3 − s

(1)
2 . . . s

(1)
n−R+2 − s

(1)
2 . . . s

(m)
3 − s

(m)
2 . . . s

(m)
n−R+2 − s

(m)
2

...
...

...
...

...

s
(1)
R+1 − s

(1)
R . . . s

(1)
n − s

(1)
R . . . s

(m)
R+1 − s

(m)
R . . . s

(m)
n − s

(m)
R

⎞
⎟⎟⎟⎟⎠

R×m(n−R)

are linearly dependent over F.
Let �1,n, . . . ,�m+1,n be a normal basis for the lattice �(�1, . . ., �m, �n). Then M1(Sn) =

v(�1,n). Put N = −M1(Sn)+deg(
(�1,n))−1. Then 
(�1,n) is a minimal polynomial of SN by
Lemma 2. Let 
(�1,n) = xLC(SN)+cLC(SN)−1x

LC(SN)−1+· · ·+c0. Then for 1�j �N−LC(SN),
1�h�m, we have

s
(h)
j+LC(SN)

+ cLC(SN)−1s
(h)
j+LC(SN)−1 + · · · + c0s

(h)
j = 0. (6)

Since R − LC(SN) − 1 = n + 2 − (N + 1 − LC(SN)) − LC(SN) − 1 = n − N �0, we get
R�LC(SN) + 1. On the other hand, we have n − R + LC(SN)�N − 1 because of n − R +
LC(SN)−N = −M1(Sn)− 2+ LC(SN)−N � − 1. Using elementary row operations and (6),
the (LC(SN)+ 1)th row is transformed to the zero row and LA(Sn)�n+ 1+M1(Sn) is shown.

It remains to prove that LA(Sn)�n+M1(Sn), i.e., that S passes the R-dimensional n-lattice test
with R = n+M1(Sn), i.e., the row vectors of the corresponding matrix A are linearly independent
over F. Suppose that the row vectors of A were linearly dependent over F, so that there are scalars
a1, a2, . . . , at = 1 such that

a11 + a22 + · · · + att = 0,

where i denotes the ith row vector of A for 1� i�R. Let N = n − R + t . Then 1�N �n

because of t �R. Furthermore, f (x) = (atx
t−1+ at−1x

t−2+ · · ·+ a1)(x− 1) is a characteristic
polynomial of SN . So t �LC(SN) and

M1(Sn) = −n+ R = −N + t � −N + LC(SN) > −N − 1+ LC(SN),

which is impossible by Lemma 1. �

Using Theorem 3, it is easy to deduce some properties of the lattice profile, some of which
were already shown in [15] by a different argument.
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Corollary 1. For any m-fold multisequence S and any integer n�1, we have

LA(Sn)�
m

m+ 1
(n+ 1).

Proof. By (2) and (3), we get

−n− 1 =
∑

a∈SM(Sn)

a�(m+ 1)M1(Sn).

Thus, M1(Sn)� − 1
m+1 (n+ 1) and LA(Sn)�n+ 1+M1(Sn)� m

m+1 (n+ 1) by Theorem 3. �

Corollary 2. We have LA(Sn)�LC(Sn).

Proof. By Theorem 3 and Proposition 1 we get LA(Sn)�n+ 1+M1(Sn)�n+ 1+ LC(Sn)−
n− 1 = LC(Sn). �

Corollary 3. If M1(Sn) = LC(Sn)− n− 1, then

LA(Sn) = LC(Sn) or LA(Sn) = LC(Sn)− 1.

Proof. The result follows directly from Theorem 3. �

Corollary 4. If M1(Sn) = LC(Sn)−n−1 and M1(Sn) < M2(Sn), then LA(Sn−1)�LC(Sn)−1.

Proof. Since M1(Sn) = LC(Sn)−n−1 and M1(Sn) < M2(Sn), we have M1(Sn−1) > M1(Sn) =
LC(Sn)− n− 1 by Proposition 2, hence M1(Sn−1)�LC(Sn)− n, and the desired result follows
from Theorem 3. �

The following result for single sequences in [5, Theorem 1] is also obtained as a consequence
of Theorem 3.

Corollary 5. If m = 1, then

LA(Sn) = min(LC(Sn), n+ 1− LC(Sn))

or

LA(Sn) = min(LC(Sn), n+ 1− LC(Sn))− 1.

Proof. Since m = 1, by Propositions 1 and 2 we obtain

M1(Sn) = min(−LC(Sn), LC(Sn)− n− 1).

The result follows from Theorem 3. �

We now return to the general case of m-fold multisequences S with arbitrary m�1. We recall
the following result which provides a necessary and sufficient condition for the uniqueness of
minimal polynomials (see [20, Theorem 4]).
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Proposition 3. The minimal polynomial of Sn is unique if and only if M1(Sn) = LC(Sn)−n− 1
and M1(Sn) < M2(Sn).

We can now give a condition under which the alternative LA(Sn) = LC(Sn) − 1 holds in
Corollary 3.

Theorem 4. If the minimal polynomial C(x) of Sn is unique, then LA(Sn) = LC(Sn)− 1 if and
only if C(1) = 0.

Proof. The sufficiency of the condition C(1) = 0 for multisequences is shown in a similar
way as in [5, Proposition 6] for single sequences. Now we prove the converse. Suppose

C(x) = xd − cd−1x
d−1−· · ·− c0, where d := LC(Sn). Applying elementary column operations

to the matrix A defined in the proof of Theorem 3 with R = d, we get a matrix

A′ =

⎛
⎜⎜⎜⎜⎜⎝

s
(1)
2 −s

(1)
1 s

(1)
3 −s

(1)
2 . . . s

(1)
n−d+1−s

(1)
n−d

. . . s
(m)
2 −s

(m)
1 . . . s

(m)
n−d+1−s

(m)
n−d

s
(1)
3 −s

(1)
2 s

(1)
4 −s

(1)
3 . . . s

(1)
n−d+2−s

(1)
n−d+1 . . . s

(m)
3 −s

(m)
2 . . . s

(m)
n−d+2−s

(m)
n−d+1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

s
(1)
d+1−s

(1)
d

s
(1)
d+2−s

(1)
d+1 . . . s

(1)
n −s

(1)
n−1 . . . s

(m)
d+1−s

(m)
d

. . . s
(m)
n −s

(m)
n−1

⎞
⎟⎟⎟⎟⎟⎠

d×m(n−d)

.

Since LA(Sn) < d , there exists a d-dimensional vector (b0, b1, . . . , bd−1) �= 0 such that

bd−1d−1 + bd−2d−2 + · · · + b00 = 0,

where i denotes the (i + 1)th row vector of A′ for 0� i�d − 1.
First we assume bd−1 �= 0. From the above linear dependence relation we infer a recurrence

relation, i.e.,

s
(h)
j+d = b−1

d−1((bd−1 − bd−2)s
(h)
j+d−1 + · · · + (b1 − b0)s

(h)
j+1 + b0s

(h)
j )

for 1�j �n− d, 1�h�m. Since the minimal polynomial is unique by assumption, we get

c0 + c1 + · · · + cd−1 = b−1
d−1(bd−1 − bd−2 + · · · + b1 − b0 + b0) = 1,

that is, C(1) = 0. Finally we prove that bd−1 = 0 is impossible. Suppose we had t := max
{i : bi �= 0} < d − 1. Put N = n− d + t + 2. Then

f (x) = b−1
t (btx

t+1 + (bt−1 − bt )x
t + · · · + (b0 − b1)x − b0)

is a characteristic polynomial of SN . Hence t + 1�LC(SN), and so

n+ 1− d = N − t − 1�N − LC(SN) < N + 1− LC(SN),

which is impossible by Lemma 1 and the fact that M1(Sn) = d − n− 1 (see Proposition 3). �

Example. We consider the following two sequences over the binary field F2:

S(1) = 1 1 1 1 1 0 0 1,

S(2) = 1 0 1 0 1 1 0 1.
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For this two-fold multisequence, we give a table of the three profiles we have studied in this paper.

n 2 3 4 5 6 7 8

LA(Sn) 1 1 1 1 2 3 4

SM(Sn) (-1-1,-1) (-2,-1,-1) (-3,-1,-1) (-4,-1,-1) (-4,-2,-1) (-4,-2,-2) (-4,-3,-2)

LC(Sn) 2 2 2 2 5 6 6

5. Conclusions

In this paper we have seen that the joint linear complexity and Marsaglia’s lattice level are closely
related to some special value and the first value of the successive minima of the multisequence,
respectively. Therefore the successive minima profile provides a powerful quality measure for the
intrinsic structure of multisequences. For a single sequence, these three profiles yield essentially
equivalent quality measures for pseudorandomness.
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Appendix A. The LBRMS Algorithm

We summarize the LBRMS algorithm from [21,22] in the following pseudocode.
Input: m-fold multisequence Sn.
Output: a minimal polynomial of Sn.

1. Initialize: �1 ← �1, . . . ,�m← �m, �m+1 ← �n, r ← 0.
2. While �(�1), . . . , �(�m+1) are linearly dependent over F do

Set r ← r + 1.
(reduction step) Find a vector (a1, . . . , am) such that �(�m+1) =∑m

i=1 ai �(�i ).
Find an integer k such that v(�k) = max{v(�i ) : 1� i�m, ai �= 0}.

If v(�m+1)�v(�k) then
Set �← �m+1 −∑m

i=1 aix
−v(�i )+v(�m+1)�i .

else
Set �← x−v(�m+1)+v(�k)�m+1 −∑m

i=1 aix
−v(�i )+v(�k)�i , �k ← �m+1.

end if
Set �m+1 ← �.

end while
3. Set t ← r , C(x)← 
(�m+1), output C(x) and terminate the algorithm.



L.-P. Wang, H. Niederreiter / Journal of Complexity 24 (2008) 144–153 153

References

[1] R. Couture, P. L’Ecuyer, S. Tezuka, On the distribution of k-dimensional vectors for simple and combined Tausworthe
sequences, Math. Comp. 60 (1993) 749–761 S11–S16.

[2] E. Dawson, L. Simpson, Analysis and design issues for synchronous stream ciphers, in: H. Niederreiter (Ed.), Coding
Theory and Cryptology, World Scientific, Singapore, 2002, pp. 49–90.

[3] G. Dorfer, Lattice profile and linear complexity profile of pseudorandom number sequences, in: G.L. Mullen,
A. Poli, H. Stichtenoth (Eds.), Finite Fields and Applications, Lecture Notes in Computer Science, vol. 2948,
Springer, Berlin, 2004, pp. 69–78.

[4] G. Dorfer, W. Meidl, A. Winterhof, Counting functions and expected values for the lattice profile at n, Finite Fields
Appl. 10 (2004) 636–652.

[5] G. Dorfer, A. Winterhof, Lattice structure and linear complexity profile of nonlinear pseudorandom number
generators, Appl. Algebra Engrg. Comm. Comput. 13 (2003) 499–508.

[6] G. Dorfer, A. Winterhof, Lattice structure of nonlinear pseudorandom number generators in parts of the period, in:
H. Niederreiter (Ed.), Monte Carlo and Quasi-Monte Carlo Methods 2002, Springer, Berlin, 2004, pp. 199–211.

[7] ECRYPT stream cipher project; available at: 〈http://www.ecrypt.eu.org/stream〉.
[8] F.-W. Fu, H. Niederreiter, On the counting function of the lattice profile of periodic sequences, J. Complexity,

to appear.
[9] P. Hawkes, G.G. Rose, Exploiting multiples of the connection polynomial in word-oriented stream ciphers, in:

T. Okamoto (Ed.), Advances in Cryptology—ASIACRYPT 2000, Lecture Notes in Computer Science, vol. 1976,
Springer, Berlin, 2000, pp. 303–316.

[10] A.K. Lenstra, Factoring multivariate polynomials over finite fields, J. Comput. System Sci. 30 (1985) 235–248.
[11] K. Mahler, An analogue to Minkowski’s geometry of numbers in a field of series, Ann. of Math. 42 (1941) 488–522.
[12] G. Marsaglia, The structure of linear congruential sequences, in: S.K. Zaremba (Ed.), Applications of Number Theory

to Numerical Analysis, Academic Press, New York, 1972, pp. 249–285.
[13] W. Meidl, Continued fraction for formal Laurent series and the lattice structure of sequences, Appl. Algebra Engrg.

Comm. Comput. 17 (2006) 29–39.
[14] W. Meidl, Enumeration results on linear complexity profiles and lattice profiles, J. Complexity 22 (2006) 275–286.
[15] W. Meidl, personal communication.
[16] H. Niederreiter, The probabilistic theory of the joint linear complexity of multisequences, in: G. Gong et al. (Ed.),

Sequences and Their Applications—SETA 2006, Lecture Notes in Computer Science, vol. 4086, Springer, Berlin,
2006, pp. 5–16.

[17] H. Niederreiter, A. Winterhof, Lattice structure and linear complexity of nonlinear pseudorandom numbers, Appl.
Algebra Engrg. Comm. Comput. 13 (2002) 319–326.

[18] R.A. Rueppel, Stream ciphers, in: G.J. Simmons (Ed.), Contemporary Cryptology: The Science of Information
Integrity, IEEE Press, New York, 1992, pp. 65–134.

[19] W.M. Schmidt, Construction and estimation of bases in function fields, J. Number Theory 39 (1991) 181–224.
[20] L.-P. Wang, The vector key equation and multisequence shift register synthesis, in: M. Fossorier et al. (Ed.), Applied

Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Computer Science, vol. 3857, Springer,
Berlin, 2006, pp. 68–75.

[21] L.-P. Wang, Y.-F. Zhu, F [x]-lattice basis reduction algorithm and multisequence synthesis, Sci. China Ser. F 44
(2001) 321–328.

[22] L.-P. Wang, Y.-F. Zhu, D.-Y. Pei, On the lattice basis reduction multisequence synthesis algorithm, IEEE Trans.
Inform. Theory 50 (2004) 2905–2910.

http://www.ecrypt.eu.org/stream

