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Abstract 

Geographic information science can be defined as the study of the fundamental issues of geographic information, and 
is often motivated by the need to improve geographic information technologies. One such issue concerns the design 
of the user interface, and the relationship between the tasks performed by the technologies on the one hand, and the 
concepts that humans use in thinking about those tasks on the other. Nowhere is this issue more important than in the 
design of GIS user interfaces and functionality. Recent efforts have led to a comprehensive understanding of the 
concepts of spatial thinking, and of how these concepts might form the basis for a much-improved functionality and 
user interface. The presentation summarizes those efforts, and points to a future in which GIS will be much easier to 
teach, master, and use. 
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1. The Problem 

Geographic information systems date from the 1960s, when the first attempts were made to apply 
computing systems to the handling and processing of geographic information. The Canada Geographic 
Information System (CGIS), for example, was developed in that era with the objective of capturing and 
storing the contents of a large number of maps, and producing statistics on the amounts of area mapped as 
having specific characteristics. For example, a map of land use would be analyzed to determine the areas 
used for agricultural purposes. The system had very limited functionality: in addition to basic 
housekeeping, the system supported queries about the characteristics of specified points, and summaries 
of areas within specified shapes such as circles centered on specified points. 

By the late 1970s various initiatives to apply computing to geographic information had converged, into 
a vision for a system that could perform a wide range of functions on many different data types. 
Applications in automated cartography, the management of the census, and land-use planning had 
converged with that represented by CGIS; and geographic information types included representations of 
road networks and topography. An industry dedicated to the creation and marketing of GIS software had 
emerged in the early 1980s, and since then GIS has continued to flourish. Today it is fair to say that the 
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leading GIS software products are capable of virtually any conceivable operation on any recognized type 
of geographic information. Functions have been added to address the needs of specific disciplines and 
problem areas, to integrate data that has been prepared using a wide range of standards, and to support a 
large number of forms of analysis, modeling, and visualization. 

Nevertheless, this incremental process of development has created a number of problems. GIS has 
developed without a well-defined and established body of theory; by contrast, the development of 
statistical software has always been able to rely on formally defined terms, and on techniques that were 
developed long before the advent of computers [1]. Many GIS operations are defined by reference to the 
physical maps that represented the primary storehouse of geographic information prior to computerization. 
Thus the integration of GIS data sets is commonly termed “overlay”, because of the physical analogy of 
the overlay of transparent maps, each representing a “layer” of information, though I comment in a 
subsequent section about whether this GIS task actually requires invocation by the user. The map 
metaphor persists in GIS, and it is still difficult to represent and work with geographic information that is 
not suited to the traditional map: dynamic data, for example, or three-dimensional data, or data about the 
interactions of pairs of places that I term binary geographic information to distinguish it from the more 
map-like unary information, or information about locations taken one at a time. The binary category 
includes flows, migrations, travel times, and distances. Other operations mirror those of computer science, 
including the “join” that is well recognized in relational algebra. Still others are defined by their 
objectives and outcomes, rather than by the conceptual intent of the operation. 

To take one example, the current version of Esri’s ArcGIS desktop software ArcMap 10.0 includes 
hundreds of operations. Some are invoked through drop-down menus, while a much larger number are 
invoked through the Toolbox. The total number of operations in the Toolbox is 615. Organizing them into 
a logical structure has proven very difficult. The current Toolbox organizes them hierarchically, into 18 
top-level headings that include “3D Analyst Tools”, “Analysis Tools”, “Geostatistical Analyst Tools”, 
“Spatial Analyst Tools”, and “Statistical Analyst Tools”. These top-level headings overlap substantially, 
making it very difficult for a user to decide which heading to explore in a given instance, or to learn the 
software in an educational setting. The number of tools under each of the top-level headings ranges from 2 
to 178; this fact alone suggests that the structure could be improved. 

In short, the forty-year process of development of GIS has led to a functionality that is confusing, 
poorly defined, and lacking in any conceptual framework or organizational structure. The purpose of this 
paper is to explore some of the ways in which such a framework or structure might be developed. If 
successful, it would lead to a substantial simplification of the user’s interaction with GIS, a substantial 
simplification of the task of learning GIS skills, and a substantial contribution to the GIScience literature. 

In addition to ease of use and learning, there is a second motivation for addressing the complex 
functionality of today’s GIS. Service-oriented architecture (SOA) is emerging as a new paradigm of 
computing, in which tasks are performed by chaining together on-line services rather than by operations at 
the desktop. In order for SOA to work it is essential that it be possible to search for and discover services, 
to evaluate them for suitability, and to invoke them. This process of search presumes the existence of 
standard terminology, so that the user can identify precisely those services that meet his or her need. But 
at this time there is no such standard terminology, despite earlier efforts. The functions defined by each 
GIS reflect numerous factors, including the legacy of previous versions of each software package, and 
other factors discussed earlier. Thus a new approach to functionality, that formalizes it in order to create 
standards, is essential if the promise of SOA is to be fulfilled in the GIS domain. 

Various efforts have been made by the GIS research community to bring some semblance of order to 
this apparent chaos. Of these, perhaps the most successful is the map algebra developed initally by 
Tomlin [2] and similar in many respects to the image algebras  of image processing (e.g., [3]). Operations 
on raster representations were organized into four distinct types: local operations performed on each 
raster cell or pixel independently; focal operations which compared each pixel with its immediate 
neighbors; zonal operations performed on contiguous cells sharing a common attribute; and global 
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operations on all cells. The scheme was sufficiently general to be adopted by several software packages, 
including elements of Esri’s ArcGIS. Significant extensions were later made by van Deursen [4], 
Takeyama and Couclelis [5], and others. Note, however, that the scheme still places emphasis on the 
algorithmic operations of each function, rather than on its conceptual goals.  

Several taxonomies have also been proposed (see, for example, [6], [7], [8], [9]), though none is 
substantially more satisfactory than the ArcGIS taxonomy discussed earlier. Goodchild [10] grounded his 
taxonomy in the GIS’s database, arguing that the latter formalized the representation of spatial data, and 
thus could provide a more formal grounding for a taxonomy of functions. His taxonomy is limited to 
discrete-object representations (for a discussion of the field/object dichotomy see, for example, [11]). In 
Unified Modeling Language (e.g., [12]): 
 Analyze the attributes of a single class of objects (statistical analysis); 
 Analyze one class of objects using both locational and attribute information; 
 Analyze the attributes of an association class; 
 Analyze more than one class of objects; 
 Create a new association class from existing classes; and 
 Create a new class from one or more existing classes. 

The results of further analysis along these lines were presented in a later paper by Burrough [13]. With 
further development, one might seek to devise a test of the completeness of this scheme, and to create a 
more formal description. 

The next section describes three ways in which the interface might be simplified: by implicit 
invocation, by removing the need to interact with the low-level components of GIS representation; and 
regarding analysis as a set of transformations of a geodatabase. This is followed by a section reviewing 
recent work in enumerating the concepts of spatial thinking, and how they might form a more coherent 
basis for user-interface design and the organization of functionality. The paper ends with a brief 
conclusion section. 

2. Three Strategies for Simplification 

2.1. Redundancy 

Consider the task known as polygon overlay, a primary feature of CGIS and of every GIS since. In the 
vector version, two area-class maps defined by non-overlapping, space-exhausting polygons must be 
combined to produce a single area-class map. Call the two input maps red and blue, and the output map 
purple. Then the purple map contains all of the boundaries of both the red and blue maps, except where 
red and blue boundaries coincide. Since coincidence will never be perfect in independently produced 
maps, some procedure must be implemented for removal of spurious polygons and the merger of their 
boundaries. Attributes of the red and blue polygons will be concatenated to provide the attributes of the 
purple map. The process is reversible, though removal of spurious polygons will produce variations in the 
locations of some boundaries after reversal. Note that polygon overlay is much more than simply drawing 
the two maps on top of each other and allowing the user’s eye and brain to combine them, a operation 
variously known as a form of mashup or more traditionally visual overlay. 

The programming of polygon overlay presented a major challenge to early developers. It is 
computationally intensive, though it responds well to various indexing strategies. A robust code for the 
task had become available by the early 1980s, and had much to do with the initial success of Esri’s 
ARC/INFO. The task has become iconic in GIS education, and would be cited by many as one of the 
most central tasks of GIS. Polygon overlay can be presented as a special case of spatial join, the 
integration of two data sets that differs from a conventional relational join because the common key 
needed to integrate their objects is not available; instead, it must be inferred from spatial relations such as 
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containment or overlap. Like a relational join, a spatial join is a form of de-normalization of a relational 
design. 

It is surprising, therefore, to discover that user invocation of polygon overlay, or spatial joins in 
general, is never actually required, since the need for it is always obvious from a previously defined user 
query. In GIS education, students are often challenged to see that a given conceptual query requires the 
invocation of this specific GIS function; if the invocation could be automatic, this challenge would 
disappear. Consider, for example, the major function performed by CGIS, and the function that motivated 
its development: the calculation of the area having characteristics such as capability for agriculture class 
1 and current land use class B. To obtain such a statistic manually it would be necessary first for one map 
in transparent form to be overlaid on the other, and then for some method of manual area measurement to 
be used, such as dot counting or the use of a mechanical planimeter, both methods being tedious, labor-
intensive, and error-prone. Instead the operation is fast, cheap, and accurate in a GIS, once the two layers 
have been topologically overlaid. 

The spatial join or topological overlay is necessary in this case only if the two attributes, capability for 
agriculture class and current land use class, are not already available for the same set of geographic 
features—in the terminology of geostatistics, they are not available on a common support. Because they 
are not, since areas of uniform capability for agriculture are not normally mapped as congruent with areas 
of uniform land use, it is necessary to perform a topological overlay and to obtain a set of purple polygons 
that are homogeneous on both properties—in other words, to create a set of features that have both 
characteristics (see [11], Chapter 14). The operation of area measurement is then straightforward. 

In response to the query “How much land is of capability for agriculture class 1 and current land use 
class B?”, the GIS needs first to ask whether both attributes are available in the same attribute table, in 
other words for the same set of features. If they are not, then a topological overlay is clearly necessary. 
But this question can be resolved automatically given a standard database design that tracks the names of 
attributes. If the answer is no, the GIS can then invoke the spatial join automatically. Explicit invocation 
of the spatial join is never necessary in a GIS with an intelligently designed user interface. One is tempted 
to ask whether other GIS operations are similarly redundant at the level of the user interface. 

2.2. Operations on Fields 

GIS uses six common ways of representing continuous fields: as a collection of randomly located 
sample points, as a triangular mesh, as an array of rectangular cells, as a rectangular grid of regularly 
spaced sample points, as a collections of non-overlapping, space-exhausting polygons (the area-class 
maps of the previous section), or as a collection of digitized isolines. In querying or analyzing the field, 
one would not want to have to interact with these individual features, since their role is merely to support 
the representation. There is one exception, however, when the boundaries of the area-class map are 
established through some quite independent process, as is the case when the area-class map records 
values for a set of independently established reporting zones, such as counties or census tracts. Smith and 
Varzi [14] have termed these fiat boundaries in contrast to the bona fide boundaries of maps of land use 
or capability for agriculture. 

Kemp [15], [16] has shown how entire fields can be manipulated and analyzed with single commands, 
extending the map algebra of Tomlin [2] that is specific to the raster case (rectangular cells or a 
rectangular grid). The user is freed from interacting with the individual features, and also with which of 
the six forms of representation is used. In this concept, a field A might be combined with a field B to 
obtain a field C by issuing the command C = f(A,B) where f represents some mathematical function, such 
as addition. The command would not need to specify the specific form of representation used by either A 
or B,  and the system would be capable of making intelligent decisions about the form of representation of 
the output field C. If such decisions require user input, the system would automatically request a response. 
Again, this approach has the advantage of greatly simplifying the complexity of the user interface by 
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removing the distinction between many different commands, and requiring the user to work at a higher 
conceptual plane. 

2.3. Transformations of a geodatabase 

The task of polygon overlay described in Section 2.1 can be seen as a transformation of a geodatabase 
G into a new geodatabase G' [10]. In this case, the effect is to add a new class of polygon features, by 
combining two existing classes, giving the a new set of polygons concatenated attributes, and creating 
boundaries by reassembling fragments of the input boundaries. Since we now have formal and rigorous 
models of the set of possible GIS data types (see, for example, the OGC Simple Feature Model), it should 
be possible to list every possible type of transformation, in other words to enumerate all of the possible 
GIS operations. It would be necessary to add operations that do not modify the database but instead result 
in numerical or tabular output, or in visualizations. Nevertheless research along these lines might yield a 
formal and provably complete structure for GIS functionality. 

3. Spatial Thinking 

One place to look for ideas about reorganizing the user interface would be the textbooks of spatial 
analysis, since they also need conceptual frameworks for dividing the body of material into chapters and 
ordering the chapters. Bailey and Gatrell [17] organized their text by data type, describing the forms of 
analysis that could be conducted on sets of points, sets of polygons, etc. This is helpful, but it does not 
reflect the fundamental distinction between continuous fields and discrete objects, since a single set of 
points or a single set of polygons can represent either, but the operations that can be performed are 
entirely different. For example, users often confuse the operation of kernel density estimation, which can 
be applied to mapping the density of disease mortality, for example, with spatial interpolation, which is 
used to interpolate values of a variable such as temperature between the locations where it has been 
measured. The former case is appropriate for creating a surface of the density of discrete objects, while 
the latter is used to interpolate a continuous field. Applying kernel density estimation to points that 
sample a field, or spatial interpolation to discrete objects, makes no sense. Yet GIS software typically 
does not prevent the user from doing so, seeing both cases as collections of point features. 

Mitchell’s books on spatial analysis ([18], [19]) use a different approach in which analysis is organized 
according to the concepts and questions that motivate a user to use GIS. Volume 1, for example, includes 
the following chapters: Mapping Where Things Are, Mapping the Most and Least, Mapping Density, 
Finding What’s Inside, Finding What’s Nearby, and Mapping Change. These titles reflect the GIS-
independent thoughts in the mind of the user, including well-understood terms such as “inside” rather 
than the technical language of GIS functionality. The user is not concerned with the process of turning 
such thoughts into sequences of GIS functions, but only with the purpose that GIS technology is in 
principle designed to serve. Section 2 presented three bases on which GIS functions might be simplified. 
In this section I explore a broader notion, that one might organize the functionality of GIS by the spatial 
concepts that already exist in the mind of a user. 

Recently there have been several efforts to enumerate such concepts, although the broader literature 
extends back for many decades. At the Center for Spatial Studies at the University of California, Santa 
Barbara, we have developed a set of Web resources (teachspatial.org) designed to sythesize this literature, 
integrate it into a defined set of spatial concepts, create a number of organizing structures that allow the 
set to be navigated, and develop teaching resources that can elaborate the most important of the concepts. 
The resources are largely the work of Karl Grossner, with assistance from the author, Donald Janelle, and 
Josh Bader. To date we have found some 185 concepts, distributed across the literatures of many 
disciplines. 
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Besides alphabetical order, perhaps the most obvious way to organize the concepts is through metrics 
of similarity, bearing in mind that the same concept may appear in different forms and under different 
names in several disciplines. There may also be hierarchical part-whole relationships, if one concept is a 
subset of another. The side also allows concepts to be accessed by discipline, in an effort to identify the 
disciplines that most often use each concept. We have also prepared various short lists of the concepts 
most likely to be employed in GIS analysis (see, for example, [20], Chapter 2). 

The next stage of this effort will be the development of a new interface to the ArcGIS Toolbox, that 
shields the user from the technical terminology of GIS and allows interaction through the spatial concepts 
that each function addresses. At the same time the approach will employ the ideas developed in Section 2, 
to reduce the technical level of interaction to a more fundamental set of operations. 

4. Conclusion 

This paper has identified a major problem in GIS—that after four decades of development, we lack 
anything approaching a standard, formalized functionality that can support SOA, and that integrates well 
with the thought processes of the user. As a result, while great progress has been made at achieving 
interoperability of data, almost no progress has been made on functional interoperability. The GIS user 
interface remains complex, hard to learn and use, and lacking in any consistent conceptual or theoretical 
framework. 

I hope that this paper has stimulated interest in a topic that is intimately related to spatial thinking and 
GIS. We need a concerted, collaborative effort to solve this problem if GIS is to be as easily and 
intuitively accessible as it should be. 
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