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ABSTRACT 

Alternatives are considered for computing the projection of a vector onto the 
nullspace of a matrix, as is required to compute the step direction for the Karmarkar 
projective algorithm. Among the possibilities considered are forming and factoring the 
normal matrix, and working with a larger but sparser extended matrix. The extended 

matrices are symmetric but indefinite. A modification to the Harwell MA27 set of 
subroutines to make them more efficient for indefinite matrices is presented. Compu- 
tational results are given to support the conclusion that computing these projections 
using one of the extended matrices offers significant computational advantages over 
the other alternatives with which it is compared. 

The simplest form of the projective algorithm for linear programming, 

proposed by Karmarkar (1984), assumes that the standard linear program- 

ming problem 

minimize ET2 (1) 

subject to & = b, 

has been transformed so that the feasible region is the intersection of the 
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simplex {x:x > 0, eTr = n}, where e = (1,. 
{x : Ax = 0}, so that the problem to be solved 

‘.7 v, with the vector space 
is 

minimize crx (2) 

subject to Ax = 0, 

eTx = n, 

X > 0. 

A means of transforming the problem (1) into the problem (2) in a manner 
that preserves sparsity is given in Dennis, Morshedi, and Turner (1987). 

If the minimum value of the objective function in (1) is known, we may 
readily shift the objective function in (2) to have a minimum value of zero. 
The Karmarkar algorithm for sobing the problem (2) with minimum objec- 
tive value zero assumes we have an initial feasible point x0 > 0, and can be 
stated as follows: 

begin 
set r = xU 
while cry is too large 
Cl0 

let D = diag(x), B = 

compute cp as the projection of DC onto the nullspace of B 
determine a steplength (Y and set f = e - (YC,, 

n 
set x=---D5 

eTDf 
end do 

end 

The steplength parameter (Y is chosen at each step to ensure that iterates 
remain feasible, and that sufficient reduction in the potential function 

f(x)= 2 log$ 
i=l 2 

to ensure convergence of the algorithm in polynomial time is achieved at 
each step. In our implementation, the choice of the steplength parameter (Y 
at each step is made according to the three-faceted step acceptance criterion 
given in Dennis, Morshedi, and Turner (1987), which emphasizes reduction 
of the linear objective function given in (2) while enforcing Karmarkar’s 
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(1984) sufficient reduction of the potential function (3), safeguarded by the 
Goldstein-Armijo “a-condition.” [See Dennis and Schnabel (1983).] 

A feasible starting point for the problem (2) may be obtained by solving 
the phase-one problem (for x E R” + ‘1 

minimize x,+1 (4) 

subject to AX = 0, 

e’x=n+l, 

x 2 0, 

where d = [A / - Ax,]. A positive feasible starting point for this problem is 

for any strictly positive x^ E R”. 
Todd and Burrell (1986) proposed a modification of the Karmarkar 

algorithm to solve problems with unknown optimal objective value. This 
modification uses estimates of the optimal objective value based on the dual 
of problem (2), 

minimize 12~ 

subject to ATy + ,-e < c 

(5) 

They noted that for any y E R’“, (y, z) with 

z = min (C - ATy)j 
j 

is dual feasible with objective value nz. They proposed computing estimates 
of the dual variables at each step in such a way that the sequence (zi} is 
nondecreasing, and using the objective function (c - ze)rr in the computa- 
tion of the step direction for the primal problem (2). We shall use the 
notation PAz) to denote the projection of the vector o onto the nullspace of 
the matrix A: 



144 

and 

KATHRYN TURNER 

T 

P/m= Z-E_ 2). 
i i n 

The projective algorithm incorporating Todd and Bun-ells dual estimates can 
be stated as follows: 

begin 
set x = x0 
let D = diag(x) 
compute y =[(AD>(AD>T]-‘(AD)Dc and z = min(c - A“Y)~ 

while cTx - nz is too large 
j 

do 

end 
end 

(let D = diag(x1) 
compute s = PAD DC 
compute p = PAD De 
if min(s - .zplj > 0 

the; 
find a larger z such that min(s - zpjj = 0 

set y =[(ADKAD)~]-YA~)D(c - ze) 
end if 
compute the step direction cp = P,r(s - zp> 
determine a steplength (Y and set 5 = e - LYC~, 

n 
set x=zDf 

eTDi 
do 

It is clear that the computational effort in the Karmarkar algorithm is 
concentrated in the projection that is required to compute the step direction. 
As noted by Todd and Burrell (19861, since every iterate in the Karmarkar 
algorithm is feasible, we have ADe = 0 for D = diag(x), and PB = PA,,P,~ = 

Pt?TPAD~ Hence, we may focus attention on the computation of PADv. EfB- 
cient computation of this projection is crucial in an efficient implementation 
of the Karmarkar projective algorithm. 

We note that one may compute 

PADo = (I -(AD)T[(AD)(AD)T] -‘(AD)}c 
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by forming and factorizing the normal matrix (ADXADY at each step. 
Among the disadvantages of this approach are 

(i) the work involved in forming the normal matrix, 
(ii) the tendency for th e normal matrix to be ill conditioned, and 

(iii) the tendency for the normal matrix to be denser than the matrix AD. 

We may certainly avoid disadvantages (i) and (iii), and hope to reduce the 
severity of ill-conditioning, by working instead with the matrix 

Z (ADIT . 
AD 0 ) 

We note that we may obtain 

directly by solving 

I (ADf 

AD 0 )(;)=("si. 

An alternative is to restrict pivoting and solve 

I (AD)~ 

AD 0 )(:i=(-&DC)' 

where ? denotes a part of the solution that will not be computed. That is, if 
the factorization is carried out without pivoting, our problem is to solve the 
pair of triangular systems 

(ii: L,)(:)=(-:bDc) 

i”’ :j(:)=(q 
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which requires only the solution of the two small systems L,,v = - ADDc 

and Uz2t = v, since we are not interested in the part of the solution 
represented by ?. One may then compute s as DC -(ADjTt. However, 
carrying out the factorization without pivoting necessitates a factorization of 
- (ADXAD>~, which will arise in the lower right-hand comer. Since we 
have introduced the extended matrix in order to avoid factoring this denser 
matrix, we do not consider this alternative further. Factorization of the 
extended matrix 

I (AD)~ 

AD 0 

in our experiments was carried out without this structural restriction on 
pivoting, in an attempt to preserve as much sparsity as possible, within the 
constraint of achieving a stable factorization. 

A second extended system option that we considered is solution of the 
linear system 

and then setting s = D- ’ r. This has the added advantage that only n 

elements of the matrix change from one iteration to the next, so that the cost 
of adjusting the numerical values of the matrix at each iteration is reduced. 

The two extended matrices are (m + n> X (m + n), but are usually sparser 
than the normal matrix, and thus it was hoped that the time spent in 
factorization and in subsequent solution of the linear system could be 
significantly reduced. We found this to generally be the case in our numeri- 
cal experiments. 

Our implementation employs the MA27 subroutines from Harwell [Duff 
and Reid (1982)] for factorization of the symmetric matrices and solution of 
the linear systems. This collection of subroutines divides the work into three 
phases: (1) an analysis phase, in which a tentative pivot sequence for the 
factorization, based only on the sparsity pattern of the matrix, is identified; 
(2) a numerical factorization phase, in which the actual factorization is 
carried out; and (3) the solution phase, in which the solution to the linear 
system is determined from the factorization obtained in step (2). For either 
the phase-l problem to obtain an initial feasible point or the phase-2 problem 
to find the optimal solution, with or without Todd and Burrell’s dual 
estimates, the Karmarkar projective algorithm requires that the analysis 
phase be executed only once, since the sparsity pattern of the matrix does not 
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change from one iteration to the next. Using the extended matrix with the 
identity in the upper left, for example, we require a single numerical 
factorization and two solves at each iteration: 

I (AD)T 
AD 0 

and 

1 (AD)T 

AD 0 

The step direction for the transformed variable 2 is given by 

c,, = P,T( s - zp), 

and when updates to the dual vector y are required, they are readily 
available from the work already done: 

y=t-zq. 

Numerical experiments reported in this paper are on problems with known 
optimal values, and dual estimates were not used. 

In the course of numerical factorization, the tentative pivot sequence that 
was determined during the analysis step is modified as necessary to maintain 
stability of the factorization. During numerical factorization, 2 X 2 pivots are 
sometimes employed, although they are not identified in the analysis phase. 
Extensive alteration of the tentative pivot sequence during numerical factor- 
ization usually results in a significant loss of sparsity, and hence slower 
execution. In our numerical experiments, we found that the saving in time to 
update the extended matrix with D -’ in the upper left (as compared with 
the extended matrix with the identity in the upper left) was more than offset 
by significant loss of sparsity during numerical factorization. 

In the currently released version of the MA27 subroutines, the analysis 
phase selects a tentative pivot sequence with the implicit assumption that all 
diagonal entries in the matrix are nonzero, and hence every variable is 
admissible from the outset as a singleton pivot. This is certainly not the case 
for our extended matrices. Hence, the tentative pivot sequence determined 
under this erroneous assumption during the analysis phase would be almost 
certain to require modification during numerical factorization. We therefore 
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modified the analysis phase of MA27 to deal with indefinite matrices having 
some zeros on the diagonal. The modified version of MA27 used in the 
numerical experiments reported in this paper used the minimum-degree 
pivot selection criterion, modified to take the possibility of zeros on the 
diagonal of the matrix into account. 

MA27 is based on a multifrontal scheme, described fully by Duff and 
Reid (1983). Briefly, the matrix A is regarded as having the form 

where each matrix B”’ is zero except in a small number of rows and 
columns. At each step, a dense matrix of workspace, called the frontal matrix 
and consisting of the merged collection of those B(l) having nonzeros in the 
pivot row or column, is employed. Elimination is carried out in this full 
matrix. The minimum-degree criterion for selection of a pivot sequence 
consists of identifying each potential pivot with the row for which it is the 
diagonal element, initially assigning as the degree of each variable the 
number of nonzeros in its row, and choosing pivots in turn to minimize 
the degree of the selected pivot in the current reduced problem. At each 
step, the degrees of the variables appearing in the frontal matrix change 
because of the eliminations that are performed and the fill-in that occurs. 
During numerical factorization, stability of the factorization is maintained by 
requiring that singleton pivots satisfy 

where u is a user-specified parameter in the range [0, 0.53. If this condition 
is not satisfied and u > 0, MA27 attempts to use a 2 X 2 pivot that satisfies 
the stability condition 

For matrices with some zero diagonal elements, we extended the mini- 
mum-degree criterion to take into account the possible later use of 2 X2 
pivots. First, we identified zeros on the diagonal of the matrix with defective 
variables, that is, variables which are not eligible to serve as singleton pivots. 
The degree assigned to each nondefective variable was the number of 
nonzeros in its row, just as was done in the library version of MA27. For each 
defective variable, an attempt was made to find a defective partner such that 
the use of the pair as a 2 X2 pivot could be considered within the minimum- 



KARMARKAR ALGORITHM 149 

degree framework. We considered only the use of 2 x 2 pivots of the form 

0 x ( 1 x 0’ 

pairing defective variable i with defective variable j for some nonzero 
matrix element aij = aji. The degree assigned to such a 2 X2 pivot was the 
larger of the number of nonzeros in row i or row j, plus 1. Among the 
candidate partners for a defective variable, we chose the one that gave the 
smallest degree for the resulting 2X2 pivot. We did not consider the use of 

2 x 2 pivots of the form 

where y is nonzero, since the amount of fill-in resulting from the use of such 
a pivot would be at least as much as would occur by using the nondefective 
variable as a singleton pivot. In the event that no partner could be found for 
a defective variable, we initially assigned its degree as n, the size of the 
matrix, so that the variable would not be chosen as a pivot until after fill-in 
had occurred on the diagonal, at which time the variable would no longer be 
defective and would have its degree recomputed as in the unmodified code. 

Having thus assigned an initial degree to each variable, we proceeded 
with determination of a tentative pivot sequence, selecting pivot candidates 
based on the minimum-degree criterion. Modification of the strategy was 
necessary only in dealing with the defective variables, which was carried out 
as follows: When a defective variable is a pivot candidate, 

if its partner is still defective 
then 

select this variable as the current pivot 
force its partner to be placed next in the pivot sequence 

else 
determine a new partner 
if the degree of the new 2 X 2 pivot = the current minimum degree 
then 

select this variable as the current pivot 
force its (new) partner to be placed next in the pivot sequence 

else 
reject the pivot candidate 

end if 
end if 
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This modification was made to deal with general matrices having some 
zeros on the diagonal. Note that for the extended matrices of interest here, 
the defective variables are associated with the diagonal entries of the zero 
block, and none of them could have a partner. This is because no two 
defective variables can be paired, there being no case in which the coeffi- 
cient of a defective variable in the row of another defective variable is 
nonzero. Thus the effect of the modified analysis phase on these matrices was 
simply to defer selection of variables that began as defective until fill-in had 
occurred in the corresponding diagonal position. 

Our technicme for obtaining an initial feasible point by solving a phase-l 
problem introduces a dense column into the constraint matrix for the phase-l 
problem. Since a dense column results in a dense normal matrix, fairness to 
the normal-matrix approach required that we split off the dense column in 
phase 1 and use the correction provided by the Sherman-Morrison-Wood- 
bury formula. The normal matrix that was factored thus had the same 
number of nonzeros in phase 1 as in phase 2. We did not, however, make any 
attempt to treat other dense columns separately. The most dramatic differ- 
ence in sparsity occurs in problems for which dense columns appear in the 
original problem formulation. We also experimented with splitting off the 
dense column in phase 1 for the extended matrices, but it made very little 
difference, since a dense column in the extended matrix is handled nicely by 
the minimum-degree pivot selection strategy. We concluded that the addi- 
tional work associated with coding special treatment of dense columns for the 
extended matrices was not worthwhile. The numerical results reported here 
were obtained with no special treatment of dense columns in the extended 
matrices. Table 1 gives the problem statistics for twelve test problems in the 
Netlib test set which we obtained from David Gay. The number of nonzeros 
in the matrices is given for the phase-2 problem. To obtain the number of 
nonzeros in the phase-l problem in the matrix A, add to the given number of 
phase-2 nonzeros the number of constraints, m, and in the extended matri- 
ces, add m + 1 to the number of phase-2 nonzeros. Note in Table 1 that the 
extended matrices have fewer nonzeros than the normal matrix in all but the 
smallest test problem. The last column in Table 1 gives the number of 
correct digits obtained in the final objective value. These vary among 
problems because an absolute, rather than a relative, stopping criterion was 
used. The problems were solved to the same accuracy using each strategy for 
computing step directions. 

Table 2 shows total execution times in seconds on an IBM 3084. The 
normal-matrix approach failed on four of the problems, probably due to 
ill-conditioning of the normal matrix. Our experimental code did not provide 
condition estimates, but did attempt to control the size of the residuals by 
iterative refinement. These four failures occurred when the iterative refine- 
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TABLE 1 
PROBLEM STATISTICS 

Non-zeros, phase 2 Iterations Obj. 
Problem m n A Normal Extend. (ph. 1, ph. 2) digits 

AI+0 28 53 162 138 215 7,9 4 

ADLittle 57 140 601 1045 741 6,18-19 6-7 
Share 2b 97 164 965 1240 1129 10,ll 4 
Share lb 118 255 1537 5709 1792 9,22 7 

Beaconfd 174 297 3772 5227 4069 16,21 7 
Israel 175 318 2932 14998 3250 9,25-27 7 

Brand Y 194 305 2561 4289 2866 16,22 5 
E 226 224 474 3341 7366 3815 19,17 3 
Bandm 306 474 3086 10725 3560 18,24 4 
FIRI 525 1030 7635 29013 8665 21,26 6-7 
Shell 654 1646 5314 73111 6960 11,35 9 
25 fv 47 821 1878 12870 52996 14748 14,37 5 

ment was not successful. The normal-matrix solution was fastest on two of 

the smaller problems, Afiro and Share 2b, by 0.1 second or less. The 

extended matrix with D-” in the upper left was fastest only for the problem 

ADLittle, and its margin of victory was slim. Use of the extended matrix with 

the identity in the upper left gave faster execution in 9 of the I2 problems, 

with the most dramatic differences occurring in the larger problems. 

TABLE 2 
EXECUTION TIMES IN SECONDS, IBM 3084 

Normal De2 extended I extended 

Problem matrix Unmodified Modified Unmodified Modified 

Afro 
ADLittle 
Share 2b 
Share lb 
Beaconfd 
Israel 
Brand Y 
E 226 
Bandm 
FfRf-800 
Shell 
25fv47 

0.24 
1.66 
1.68 

11.73 
24.19 
44.03 

* 

21.19 
41.87 

* 
* 
* 

0.30 0.31 0.29 0.30 
1.35 1.44 1.40 1.45 
1.80 1.86 1.78 1.80 
4.66 4.22 4.50 4.16 

25.01 26.52 16.79 18.31 
10.24 10.31 9.96 10.01 
19.36 18.50 16.46 14.39 
42.25 47.31 15.42 15.68 
31.51 31.28 17.54 17.46 

121.15 100.22 80.90 67.95 
53.66 54.87 46.19 49.07 

701.41 837.72 214.21 184.24 
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TABLE 3 
A\‘ERAC,E NONZEROS IN FACTORS, PHASE 2 

Normal De2 extended I extended 

Problem matrix Unmodified Modified Unmodified Modified 

Afiro 166 356 354 344 344 
ADLittle 1163 1197 1197 1193 1193 
Share 2b 1271 2208 2243 2177 2206 
Share lb 5711 3856 3250 3715 3189 
Beaconfd 6350 10461 10666 8573 8457 
Israel 14998 5902 5902 5721 5721 
Brand Y 6358” 9241 8729 7987 7527 
E 226 8298 18521 19084 9370 9219 
Bandm 14266 14830 13963 9645 9051 
FffffSOO 41722” 43718 37904 29998 25796 
Shell 76649* 14545 14002 12910 12367 
25 fv 47 69224* 138818 129021 63358 55777 

We focus on the issue of sparsity in Table 3. Some difference in execution 
time is also attributable to the work involved in forming the normal matrix. 
We used the Harwell subroutine MC35, without modification, for this 
purpose. Savings might have been realized in the time required to form the 
norma matrix in the second and subsequent iterations by saving and using 
knowledge of the locations of the nonzero entries that would arise, but we 
did not attempt to do so. 

We feel that the largest contributing factor to the differences in execution 
times between the two different extended matrices is the superior preserva- 
tion of sparsity exhibited when the diagonal elements of the factored matrix 
are not changed. Table 3 shows a comparison of the average number of 
nonzeros in the factors, taken over all iterations in phase 2, for each problem, 
using the following five options: factor the normal matrix, or factor the 
extended matrix with ZI-’ or I in the upper left block, using the unmodified 
analysis phase of MA27 or the modified analysis phase. The modified analysis 
phase was not used in factoring the normal matrix, since this matrix does not 
have zeros on its diagonal. When the extended matrix with De2 in the upper 
left was used, the modified as compared to the unmodified MA27 analysis 
phase resulted in sparser factors for seven of the problems and the same 
average number of nonzeros in the factors in three of the problems. Using 
the extended matrix with I in the upper left, the modified analysis phase 
produced sparser factors for eight problems and equally sparse factors for 
three problems, compared to the unmodified code. For all of these problems, 
sparser factors were obtained with the identity in the upper left of the 
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extended matrix than with De2 in that position. The tentative pivot se- 
quences determined during the analysis phase are, of course, identical for the 
two extended matrices. The differences in the average number of nonzeros in 
the factors over all iterations arise because of changes to the pivot sequence 
that are required to maintain stability in the numerical factorizations. 

These numerical experiments indicate that computing projections using 
an extended matrix, rather than forming and factoring the normal matrix, 
offers significant advantages. The matrices are better conditioned, and the 
larger but sparser matrices result in faster overall execution times when both 
approaches succeed. Comparing the two extended matrices, the objective of 
preserving sparsity is much better met if the diagonal elements of the 
extended matrix are not changed. Overall execution times, as shown in Table 
2, indicate a significant computational advantage for factoring the extended 
matrix with the identity in the upper left block. The minor modification to 
the analysis phase of MA27 did not produce a significant improvement in 
overall execution times for these problems. While some gains were made in 
the sparsity of the factors using the strategy outlined here, further improve- 
ments in this area are possible. For further discussion of alternative ways of 
choosing pivot sequences, see Duff, Gould, Reid, Scott, and Turner (1989). 

Helpful discussions with Nick Gould, lain Dufi and John Reid are 

gratefully acknowledged, as is the support of AERE Harwell. 
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