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Abstract

We arrange various classes of probabilistic systems studied in the literature in an expressiveness
hierarchy. Our expressiveness criterion is the existence of a system translation, from the less expressive
type into the more expressive type, that preserves and reflects probabilistic bisimilarity. We model the
different system types as coalgebras of suitable behaviour functors and argue that the corresponding
coalgebraic bisimilarity coincides with probabilistic bisimilarity for the classes for which the latter
notion has been proposed in the literature. The theory of coalgebras provides a unified framework
for the presentation of the different classes and the system translations we needed to establish the
hierarchy. All these translations arise in a standard way from natural transformations between the
two behaviour functors involved. Such a translation generally preserves coalgebraic bisimilarity. We
exploit a new result that, under mild assumptions on the behaviour functors, a system translation
induced by a natural transformation with injective components also reflects bisimilarity.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Probabilistic systems of different kinds have been studied as semantic objects since the
early 1990s. Some of them arise from nondeterministic systems by adding probabilistic
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information to all choices; sometimes both types of uncertainty are mixed. The main moti-
vation for considering probabilities is the need for quantitative information, as opposed to
qualitative information, when reasoning about non-functional aspects of systems such as
throughput, resource utilization, etc. A vast amount of research has been conducted in the
area of performance analysis, in which the notion of compositionality typically does not play

a major role. In the area of semantics of programming languages and program verification,
however, compositionality is a central theme. Various different models with different trade-
offs between odds and evens regarding performance analysis and compositionality have thus
been proposed in the literature (see, §1,9,3). A notion of probabilistic bisimulation

that preserves performance metrics is a key ingredient for joint reasoning about qualitative
and quantitative behaviour, and also for this many proposals have been made.

In earlier work comparison is made between a number of probabilistic process equiv-
alences (see, e.g24]) and categorical formulations of Larsen-Skou bisimulation and
stochastic bisimulation are givgh,6]. In recent work[23] we focused on the relation-
ship between these and various related notions and made a taxonomy of the most prominent
types of probabilistic bisimulation. In the present paper we propose a purely coalgebraic
perspective on this matter, which allows us to apply a novel general result for the compari-
son of system types. This way the uniform coalgebraic treatment helps us considerably to
clarify the picture and to organize the setting.

As to the comparison of systems, we say that one class of systems is at most as expressive
as another if we can map every system of the first type into one of the second such that
bisimilarity is preservedandreflected For this we require that the transformed system has
the same carrier as the original and that two states are bisimilar in the original system if and
only if they are bisimilar in the translated one.

The system translations we consider all arise in a straightforward way from natural
transformationg between the two coalgebra functors involved. The translations thus ob-
tained always preserve bisimilarity. The reflection of bisimilarity, however, is not guaran-
teed in general. For this we present a sufficient condition on the natural transformation
7 and the coalgebra functors involved. Interestingly, in our opinion, the result builds on
cocongruenceas proposed e.g. by Kufz4]. This notion is similar to that of a bisimula-
tion, but based on cospans instead of spans—a change of direction which comes in handy
in the proof. We exploit the fact that both notions, bisimilation and cocongruence, char-
acterize the same behavioural equivalence in case the coalgebra functor preserves weak
pullbacks.

The expressiveness hierarchy we build with these tools provides a better understanding
of the relationship of the various probabilistic system types. The coalgebraic approach
facilitated its construction significantly. As far as we know, this form of application of the
theory of coalgebras is not reported before in the literature.

The outline of the paper is as follows: Sectimtroduces some definitions and notation.
Section3 is the coalgebraic core leading from bisimulation and cocongruences to the result
on reflection of bisimilarity. In Sectiod we define the different classes of probabilistic
systems coalgebraically. We argue that coalgebraic bisimilarity coincides with the known
concrete definitions, exemplified for the particular case of simple Segala-type systems, in
Sectiorb. Finally, in Sectioré we apply the result from Secti@to build the expressiveness
hierarchy.
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2. Preliminaries

In this section we lay down the categorical notation used in the sequel. Since we mainly
work with the category of sets and total functions, which we denot8dty we explain
what the categorical notions amount to in this category.

A spanand acospanbetween two objectX andY are triples(S, s1, s2) and(C, c1, ¢2)
of objectsSandC and arrows as pictured below.

X<t 525y X—2>Cc<2y

By X x Y, with projectionsny : X x Y — X andn, : X x Y — Y, andX + Y, with
injectionsi1 : X — X+ Y andix : Y — X + Y, we denote the categoricpfoduct
and coproductof the two objectsX andY. This means that, for any spd8s, s1, s2) and
cospan(C, c1, c2) betweenX andY, there exist unique functionss, s2): S — X x Y and
[c1, c2]: X + Y — C making both parts of the respective diagram below commute.

S X—2>X+Y<2—y
. . |
X C

The categorical products and coproductSat are simply cartesian products and disjoint
unions. We say that a spd#, s1, s2) between setX andY is jointly injectiveif (s1, s2) :

S — X x Y is injective. Dually, the cospatC, c1, c2) is jointly surjectiveif [c1, c2] :

X +Y — C is surjective. A relatiorR € X x Y gives rise to the jointly injective span
(R, m1, m2) betweenX andY.

A pullbackof a cospanC, c1, ¢2) is a span(P, p1, p2) as in the left diagram below
satisfyingcy o p1 = ¢2 o p2 and such that for every spd#, s1, s2) With ¢1 0 s1 = c2 052
there exists a unique mediating arrow: S — P satisfyings; = p1 om andsy = p2 om.
Dually, apushoubf a span(s, s1, sp) is a cospan P, p1, p2) as in the right diagram below,
such that for every cospdaq’, c1, c2) with ¢1 0 s1 = ¢2 o s2 there exists a unique mediating
arrowm : P — C satisfyingcy = m o p1 andcy = m o p».

/\

We also need the notion ofveeak pullbackfor which the mediating arrom need not be
unique. A functorF is said topreserve weak pullbacksit maps a weak pullback square
to a weak pullback square, i.e.(iP, p1, p2) is a weak pullback of the cospaa, ci, c2),
then(F P, Fp1, F p2) is aweak pullback of FC, Fc1, Fca).
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A pullback of a cospanC, c1, ¢2) between setX andY is the span arising from the
relation

Q:={{x,y) e X xY | c1(x) = c2(0)}-

The characterization of a pushout is a bit more complicated, and we omit it because we shall
not need it. However we note that all pullbacks and pushouts ex@sttimA weak pullback
based on arelatioR € X x Y is also an ordinary pullback, as one can derive from the
joint injectivity of the two projections. Moreover, Bet pullbacks are jointly injective and
pushouts are jointly surjective.

An object 1 of a category is calldihal if for every objectX there exists precisely one
arrow! : X — 1. In Set the final objects are the singleton sets. When we talk about an
arbitrary final set, we denote its single element by a star, i-2.{}.

3. Translation of coalgebras

We are going to model probabilistic transition systems formally as coalgebras of a suitable
type functor5 on Set. In this section we will recall the necessary definitions and prove a
technical result about translations of coalgebras. For a more detailed introduction into the
theory of coalgebras we refer the interested reader to, e.g., the articles of Jacobs and Rutten
[11,19]

Definition 1. Let B be aSet-functor. A5-coalgebrais a pair(X, o) whereXis a carrier
setandx : X — BX is atransition function. Aomomorphismbetween twd3-coalgebras
(X, o) and(Y, f) is a functionh : X — Y satisfyingBh o « = f§ o h. The B-coalgebras
together with their homomorphisms form a category, which we deno@dayy;.

One is often interested in the states of a coalgebra, i.e. the elements of its carrier set, only
up to some sort of behavioural equivalence. The most common behavioural equivalence is
bisimilarity.

Definition 2. A bisimulation between twoB-coalgebrag X, «) and (Y, ) is a relation

R C X x Y such that there exists a coalgebra strucpur® — 5 R making the projections
m1: R — X andrny : R — Y coalgebra homomorphisms between the respective coalge-
bras, i.e. the two squares in the following diagram commute:

1 2

X II? Y
ocl Iyl J{[f
\l
BX =g, BR gz, BY

Occasionally we refer tg as the mediating coalgebra structure. We say that two states
x € X andy € Y arebisimilar, and writex ~ y, if they are related by some bisimulation
between( X, o) and(Y, f).
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To compare the expressiveness of coalgebras for different functors; send G, we
will study translations ofF-coalgebras intgj-coalgebras. Such a translation can easily be
obtained from a natural transformation between the two functors under consideration.

Definition 3 (cf. [19, Theorem 15.1]). A natural transformation 7 = G gives rise to a
functor 7; : Coalgr — Coalgg defined for anF-coalgebra(X,«) and an
F-homomorphisnh as

Te(X,0) :=(X,1x o) and T;h:=h.

To see that the above definition really defines a functor, we need to check that a homo-
morphismh between twaF-coalgebragX, o) and(Y, f§) is also a homomorphism between
theG-coalgebrag; (X, o) and7;(Y, ). This follows easily from the naturality af

X h Y

=, assumption |p
FX —Fh—>FY
wy naturality: |
GX ———>GY

Gh

Since7; preserves homomorphisms, it also preserves bisimulations. This implies that if
two statest € X andy < Y are bisimilar in theF-coalgebragX, «) and(Y, ) then they
are also bisimilar in thg-coalgebrag; (X, o) and7.(Y, p).

In order to establish th&t-coalgebras are at least as expressivE-apalgebras, we shall
use translationg; for which the converse holds as well, i.e. wheesndy are bisimilar in the
G-coalgebrag; (X, o) and7.(Y, ) only if they are bisimilar in the originaF-coalgebras
(X, o) and(Y, B). In this case we say th&t reflectsbisimilarity.

To this end it appears reasonable to ask that the components &f = G should be
injective: Assume that for some 9€the componenty is not injective, because it identifies
two distinct elementg, v € FX, i.e.tx(¢) = tx (). Usually it should not be difficult
to find anF-coalgebra structure on X such that, for two states, y € X, a(x) = ¢ and
a(y) = Y butx % yin (X, ). Since we getx (a(x)) = tx(P) = tx () = tx(2(y)), we
havex ~ yin T:(X, «) = (X, tx o a), which means thal; does not reflect bisimilarity.
(Note though that the above approach does not work in the degenerate case of afunctor
that does not allow non-bisimilar behaviour at all, like= Zd. We shall come back to this
example at the end of the section.)

In the following we show that componentwise injectivity ofmplies that7; reflects
a notion of behavioural equivalence defined not in terms of bisimulations but in terms of
cocongruences hen we explain that this notion coincides with bisimilarity for coalgebras
of functors which preserve weak pullbacks. All coalgebra functors we shall consider have
this property.

Definition 4. A cocongruencebetween twoB-coalgebrag X, o) and (Y, 5) is a cospan
(U, u1, up) betweernX andy, which is jointly surjective, such that there exist8-zoalgebra
structurey : U — BU makingu; anduy coalgebra homomorphisms. This means that the
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two squares in the following diagram commute:
X—2s>Uy<"2—y

|
ocl Iy | i[)’
\

BX By

We say thatr € X andy e Y are behavioural equivalentand writex ~ vy, in the
B-coalgebras(X, o) and (Y, ), if they are identified by some cocongruence between
them.

We took the nameocongruencérom Kurz[14, Definition1.2.1]Wolter[26] calls these
structurecompatible correlations

Theorem 5. Let F andG be two Set functors. For a natural transformatian? = G
with injective components we have th@t : Coalgr — Coalgg reflects behavioural
equivalence.

For the proof of the theorem we need the following elementary fact.

Lemma 6. The categorySet has the diagonal fill-in property for surjective and
injective functions Assume that the outer square in the setting depicted below
commuteswhere e is surjective and m is injective. Then there exists a unique diagonal
arrow d making both of the resulting triangles commute

We proceed with the proof of Theorebn

Proof. Let (X, «) and(Y, f§) be twoF-coalgebras with statese X andy € ¥ such that
x ~ yintheG-coalgebra§; (X, «) and7; (Y, ). So there exists a cocongruerf€g u1, u2)
between the latter coalgebras identifyingndy. We shall show below that the same cospan
is also a cocongruence between fReoalgebrag X, o) and(Y, /), so that also for them
we haver ~ y.

Let y:U — GU be the transition structure witnessing the cocongruence property of
(U, u1, up), i.e. both parts of the diagram below commute.

X U Y
a¢ W
F Y FY (1)
TX /lTY
gx Guy gu Guz 24
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Using this and the naturality afin step(x), we compute

yolur, uz]l =[yous,youz]
D Guy oty o, Guz oty o ff]
[ty o Fuson, 1y o Fuz o fl
=1y o[Furoa, Fuzof].
This means that the outer square of the diagram below commutes. By the definition of

a cocongruencdus, u2] is surjective and, by assumptioty is injective, so Lemma&
provides a diagonal fill-in, say: U — FU.

[u1,uz]

X 4y lael g
] 7
[}'Mloa,fuzoﬁ]l g l”}’

-

~
FU———>06U

This shows that factors agy o7, and we can refine picture (1) into the one below. It follows
from the commutativity of the upper left triangle in the diagram above that the two upper
squaresinthe diagram below indeed commuté.\Bitnesses that—as wanted£5 u1, uz)

is a cocongruence between the origiffatoalgebrasX, o) and(Y, f).

uz

N A

a 1 B

F Fur F Fuo F

Tx U Ty

gx Guy gu Guz gy O

We shall show that behavioural equivalence and bisimilarity coincide for coalgebras of a
weak-pullback-preserving functor, so that the above theorem implie§iteso reflects
bisimilarity under appropriate assumptions.

We first demonstrate that we can use pullbacks and pushouts to switch between bisimu-
lations and cocongruences. The argument is standard.

Lemma 7. Let (X, «) and (Y, ) be B-coalgebras
(i) If R C X x Y is abisimulation betwee(X, «) and(Y, ) then the pushoutP, p1, p2)
according to the diagram below is a cocongruence betwéen) and (Y, f).

NG
X Y
AN /

P11\ £ p2
P

(ii) If B preserves weak pullbacks akd, u1, u2) is a cocongruence betweéh, o) and
(Y, p) then the pullbackQ = {(x,y) € X x Y | ur(x) = uzy)} is a
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bisimulation betweeX, o) and (Y, f3).

L, N M2
£\ A

N A
U

Proof. (i) Lety: R — BR be the coalgebra structure witnessing the bisimulation prop-
erty. Applying the functo3 to the pushout square we obtdip; o By = Bp2 o Bno.
Together with the bisimulation property this implies that the outer hexagon in the left di-
agram below commutes. So, by the property of the pushout, there is a unique mediating
arrowm : P — BP suchthain o p; = Bpioaandm o po = Bpao f8,i.e.(P, p1, p2) IS

a cocongruence betweéH, o) and(Y, f3).

\/ \/

(ii) SinceB preserves weak pullback® O, Br1, Brp) isaweak pullback ofBU, Bu1, Buy).
Using this and an argument dual to the one for item (i), we get a (not necessarily unique)
mediating arrown : Q@ — BQ in the situation pictured in the right diagram above, which
witnesses tha is a bisimulation betweetX, «) and(Y, ). O

In Section2 we have not given a concrete description of pushouBeinbecause the fol-
lowing observation about them suffices for our comparison of bisimularity and behavioural
equivalence: the pushout of arelatiBnC X x Y identifies all elements related R/ With
this we get the following corollary.

Corollary 8. Let(X, a) and(Y, 5) be twol5 coalgebras with states € X andy € Y.

(i) If x ~ ythenx ~ y, i.e. bisimilarity implies behavioural equivalence

(i) If B preserves weak pullbackihenx =~ y also impliesx ~ y, i.e. bisimilarity and
behavioural equivalence coincide

Proof. If x ~ y then there exists a bisimulatioR € X x Y with (x, y) € R. With
Lemma (i) the pushout oRis a cocongruence. Since the pushout identifies all pairs related
by R, we getx ~ y. For item (ii), letx ~ y. This means that there exists a cocongruence
(U, u1, up) identifyingx andy. According to Lemm# (ii), the set of all pairs identified by
(U, u1, u2) is a bisimulation, sa ~ y. 0O

From Theorem5 and Corollary 8 we easily get our result abouf; reflecting
bisimilarity.
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Theorem 9. Lett: F = G be a natural transformation between tBet-functorsF and
G. If F preserves weak pullbacks and all componentsart injective then the functor;
from Definition3 reflects bisimilarity

Proof. Let(X, o) and(Y, ) be F-coalgebras with statese X andy € Y. If x ~ y in
the G-coalgebras/; (X, o) and 7 (Y, ) thenx ~ y in the same coalgebras according to
Corollary8 (i). By Theorem5 this impliesx ~ y in the original F-coalgebrag X, «) and
(Y, ). SinceF was assumed to preserve weak pullbacks, we can apply Cor8l{&)yo
obtainx ~ yin (X, o) and(Y, ) as needed. [J

The following example demonstrates that Theofdwoes not hold without the assump-
tion on weak pullback preservation. It is built on a classical exarfijlef a functor not
preserving weak pullbacks, which is treated in detail also by Gumm and Sclirgder

Consider the functors

FX :={(x.y.2) € X*| l{x,y,2}|<2) and GX := X3

and the obvious inclusion natural transformation” = ¢, all components of which are
clearly injective. The functaF does not preserve weak pullbacks. To see that the translation
T: does not reflect bisimilarity, consider tifecoalgebra X, o) with

X = {s,t}, oals):={(s,s,1), oft):= (s, t,1).

The two statesandt are bisimilar in7; (X, «) but not in(X, «). For the first claim, note that

X x X is a bisimulation oi7; (X, «). For the second claim, assume there was a bisimulation
R C X x X on (X, «) with (s, t) € R. For the mediating coalgebra structgreR — FR
lety({s, t)) = (z1, z2, z3). The homomorphism condition implies

(m1(z1), m1(z2), ®1(23)) = (s, 5, 1) and(mz(z1), m2(z2), m2(23)) = (s, £, 1).

Fromthiswe conclude((s, t)) = ((s, s), (s, t), (¢, t)), but, since all three pairs are different,
this is not an element oF R.

The example suggests that the assumption on the coalgebra functor in Tt8isreat
to be seen as a limitation of the result. It is rather reflecting a limitation of the standard
notion of a bisimulation to express behavioural equivalence: it fails in this case toselate
andt, although they cannot be distinguished by external observations.

Coming back to an earlier remark, we mention that componentwise injectivity of the
natural transformations in Theorem9 is not a necessary condition for the reflection of
bisimilarity. An example of a natural transformationvith noninjective components such
that 7; still reflects bisimilarity is the natural transformation Zd = 1, whereZd is
the identity functor, with the unique mapg : X — 1 into a singleton set &= {x}
as components. The translatigntrivially reflects bisimilarity, because all states -
coalgebras are bisimilar. As it were, the natural transformation forgets only information
that is not relevant for bisimilarity. We can give more interesting examples of that kind,
such as the natural transformation that maps probability distributions on their set of support
(see Sectiod). But we are not aware of any examples involving a fun@auch that there
are F-coalgebras with non-bisimilar states.
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4. Probabilistic systems

In this section we introduce thirteen types of probabilistic systems from the literature
on probabilistic modelling. A considerable amount of research has been done on each of
these types of systems. They are used as mathematical models of real systems so that formal
verification methods based e.g. on temporal logic or process algebra can be applied. Most of
the types arose independently in order to better model one or another property of a system.
One motivating issue is the need to model both non-deterministic and probabilistic choice.
Another issue is the compositional modelling for which operators like hiding (restrictions
by the environment) and parallel composition play a major role. Therefore some more
complex models were proposed that support a definition of these operators. For example,
generative systems were extended to bundle probabilistic systems because the former type
did not allow for a definition of a natural asynchronous parallel composition operator. In a
preceding papd@3] we gave a wider overview of these models. Here, we just note that the
different classes are not defined as coalgebras in the literature. Moreover, in few cases our
functorial definition varies from the original one in that we abstract from certain features
that are not essential, in our understanding, to the nature of the model under consideration.

In this paper we define the systems as coalgebras of suitable behaviour fubCitues
functors are built using the following syntax

B:=A|Zd|P|Dy|B+B|BxB|B*|BB,

whereA denotes a constant functor for a8gP is the powerset functor, and the composition
of two functorsF andg is denoted byFG. By D,, we denote the probability functor, defined

by
DS = {1: S — [0, 1] | u[S1 =1, spt(p) finite} Do, f (1) = o f*

using the notationu[X] = " .y u(x) for X € S, spt(p) = {x € S | u(x))0} is the
support set ofand foru € D, X, o f~H(y) = ulf ()]

For the proof of bisimulation correspondence (Sectpnas well as for the hierarchy
results (Sectiot®) preservation of weak pullbacks is important. We note that

(i) the functorsA, Zd, P andD,, 3 on Set preserve weak pullbacks,

(ii) if the Set-functorsF andg preserve weak pullbacks, then sofle- G, F x G, F4
andFg.

It follows that all functors involved have the desired property.

Recall thatCoalgyg denotes the category of coalgebras of the funBtdive fix a setA
to serve as a set of actions throughout this section.

We now present the probabilistic system types and the functors defining them via Fig. 1.
For each system type the table lists the notation, the functor and the name. For some systems
we also include a reference to the bibliographic source of the system. The names used for
these systems follow the overview pag2B]. Some of them are otherwise not present
in the literature. For the Vardi systems sometimes the wonturrent Markov chaing
used, for the Segala systems the nasimgle probabilistic automatas used while the

3 The preservation of weak pullbacks fBr, was shown by De Vink and Ruttd6] and by Mosg17].
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Coalgp B name/reference

MC D, Markov chains

DA (Zd + D4 deterministic automata
NA P(A x Td) = PA non-deterministic automata, LTS$s
React (Do + DA reactive systemfd5,24]
Gen Dy(AxId)+1 generative systenj24]

Str Dy + (A xZd)+ 1 stratified systemf24]

Alt Dy, + P(A x Zd) alternating system(8]
Var (Dy(A x Zd) + P(A x Zd)) /< Vardi systemg25]
SSeg P(A x D) simple Segala systenfi22,21]
Seg PD,(A x Id) Segala systen|22,21]
Bun DyP(A x Zd) bundle systempt]

PZ PD,P(A x Id) Pnueli-Zuck systemf 8]
MG PD,P(A x Td + Id) most general systems

Fig. 1. Probabilistic system types.

systems introduced by Pnueli and Zuck are cafiezbabilistic finite state programaVe

use the name alternating systems following Han¢8bralthough we do not require strict
alternation. We introduce the last type of systems ourselves as a generalization of the class
PZ in order to have a top element in our hierarchy.

Basically, every type of probabilistic system arises from the plain definition of a transition
system with or without labels. Probabilities can then be added either to every transition, or to
transitions labelled with the same action, or there can be a distinction between probabilistic
and ordinary (non-deterministic) states, where only the former ones include probabilistic
information, or the transition function can be equipped with structure that provides both
non-determinism and probability distributions.

The simplest kind of probabilistic systems that we consider are discrete time, finitely
branching Markov chains. Two other classical basic models of probabilistic systems are
the reactive and the generative systems. They arise from LTSs when changing the powerset
functorP to the distribution functoP,,. At this point we can mention a distinction between
systems, the one betwe@put type andoutputtype of systems. An input system is one
defined by a functor of the kin#84 while an output system has a functor of the form
BP(A x B). Note that LTSs can be viewed as both input and output type of systems, due
to the isomorphisnP(A x Zd) = P4. In the probabilistic case this is not the case. As the
names already suggest, a reactive system is a probabilistic input system, reacting to the input
by the environment, while a generative system is a typical output system, producing output
depending on the probability distribution. A reactive system can transit from a given state
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with a given action to any other state according to the probability distribution that governs
this transition. On the other hand in a generative system the distributions involve actions.
The generative systems dily probabilistic in the sense that it is enough to erase the

action labels on the transitions in order to obtain a Markov chain from a generative system.

g I VAT
1 v
[ ] [ ] ® ® [ J o
b[llé éa[ll 0[11% éC[ll
[ ]

Reactive system Generative system

Some of the system types introduced above make a distinction between types of states.
Such are the stratified, the alternating and the Vardi systems. If a state in such a system
allows a probabilistic transition, then it is a probabilistic state. If, on the other hand, it
allows a (non-)deterministic transition, then it is a (non-)deterministic state. The functor
defining the Vardi systems needs more explanation. In a Vardi systen), the states can

be divided into two sets, a set of non-deterministic statesX such thatu(x) € P(A x X)

and a set of probabilistic statese X for which a(x) € D, (A x X). The probabilistic

states show a generative behaviour. Furthermoreqbye identify some degenerate steps.

If from a statex € X the system can only move, via an actianto a statey € X,

then it is the same as saying that fregvia a, with probability 1 the system moves yo
Therefore, the equivalence: identifies the Dirac distributiom%am € Dy(A x X), for

u%uw((a, x)) = 1 and the singleton séta, x)} € P(A x X). This way, there are states in a
Vardi system that are both non-deterministic, with one outgoing transition, and probabilistic
with a Dirac outgoing transition. By consideriti@,,(A x Zd) + P(A x Zd)) /=< instead

of D, (A x Zd) + P(A x Zd), the functorial properties are still preserved.

Unlike reactive and generative ones, systems with the above distinction between states
can simulate full non-determinism. When drawing diagrams of these types of systems, we
use curly arrows for probabilistic transitions, and ordinary arrows for non-deterministic
transitions. Furthermore, a circle represents a probabilistic state and a bullet stands for a
non-deterministic state.

by e
A D U AN

N

alternating system Vardi system

Another way of allowing both full non-determinism and probabilities, without distinguish-
ing between states, is by equipping the transition function with a structure, as in the case
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of Segala, simple Segala, bundle and Pnueli-Zuck systems. The simple Segala model is of
input type, enriching the reactive model with full non-determinism, and the other models
are of output type, allowing non-determinism in the generative setting.

¢ 1 ® 3
VN oM
\
1 1 3
SN R SN PN
‘ N\ N\
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] ® [ ]
simple Segala system bundle probabilistic automaton

5. Concrete vs. categorial bisimulation

For most of the probabilistic system types introduced above, a concrete definition of
bisimulation is given in the literature. A cornerstone of the coalgebraic approach to bisimu-
lation is the correspondence of bisimilarity of deterministic and non-deterministic transition
systems given in concrete terms of transfer condit[@®$ or given in categorial terms of
a mediating coalgebrd] (see alsd20]). De Vink and Rutten have show#], following
Jones’ use of the graph-theoretical max-min theof&ay, that the concrete notion of bis-
mulation for Markov chains coincides with the coalgebraic notion. The proof technique
extends to most other systems involving the fun@y in their definition, viz.Str, Alt,

React, SSeg Seg andGen. As an example, 2], we sketched the correspondence of
concrete bisimulation and coalgebraic bisimulation for the general Segala-type systems (cf.
[22,21) which we modelled as coalgebras of the fun@@,, (A x Zd). The bundle proba-
bilistic transition systempl] do not come equipped with a concrete notion of bisimulation.
Equivalence of bundle probabilistic transition systems is defined in terms of the underlying
generative probabilistic transitions systems, for which concrete bisimulation coincides with
the coalgebraic bisimulation. The approach of V§2&i and Pnueli and ZucKkL.8] involves
temporal logics. We do not unravel the explicit relationship of logically indistinguishable
systems vs. bisimilar ong¢$5]. However, familiarity with coalgebraic bisimulation makes

it easy to formulate concrete definitions of bisimulation in the cases of bundle, Vardi and
Pnueli-Zuck systems (cf23]).

Here we present a new and more modular proof of the correspondence of concrete proba-
bilistic bisimulation with the coalgebraic bisimulation in the case of simple Segala systems.
At the same time, it is a proof of the correspondence for reactive systems. The same tech-
nigue can be used in all the other cases. Hence, it is an alternative to the proof of de Vink
and Rutterj6] for Markov chains.

Definition 10. Let (S, ) be a simple Segala system. An equivalence reldfa@m Sis a
simple Segala bisimulatidi22,21]if for all (s, r) € R and for all actions € A:

if s > ~spthensr = ~»p andpu =g« i for some distribution/
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whereu =g+ u’ if and only if VC € S/R: u[C] = u/[C], and the notation 5 ~ 1t stands
for (a, n) € a(s).

Two statess andt of a simple Segala syste(S, «) are bisimilar, denoted by ~sseqg? if
and only if there exists a simple Segala bisimulatoon Swith (s, t) € R.

LetF = P(A x Dy,) be the functor defining the simple Segala systems~Letdenote
the bisimilarity relation foiCoalg = SSeg Let (S, a), (T, ) € Coalg . By definition,
s ~rtfors € S, ¢t €T ifand only if there exists a (coalgebraic) bisimulatiBnc § x T
with (s, 7) € R.
In order to relate the concrete and coalgebraic notion of bisimulation in the case of simple
Segala systems we lift a relation on sets to a relation on distributions of18gts

Definition 11. LetR € Sx T bearelationandlet € D,,Sandu’ € DT be distributions.
Defineu =g 1 if and only if there exists a distributione D, R such that

Dyr1)(v) = u and (Dym2)(v) = :u/~
The relation=g € D, S x D, T is called the lifting ofRto D,.

By Definition 11 there exists a surjective map: D,R — =g defined byy(v) =
(Dgpm1(v), Deym2(v)) such that the following diagram commutes.

R (2)

WK

~DoR 5—>Doy$

1

——

DoS 35—

With the notion of lifting, the following characterization of coalgebraic bisimulationfor
in terms of a relation and transfer conditions can be formulated.

Lemma 12. ArelationR C S x T is a coalgebraic bisimulatiofcf. Definition2) between
the simple Segala systeni§ «) and (T, f) if and only if for all (s,7) € R, and for all
ac€A:

(1) if s > ~~pu then there exista’ € D,,T such that —> ~x/ andp =g 1.

(2) if t > ~~p then there existg’ € D,,S such thats > ~»/ andu =g 1.

Proof. The proof follows the same reasoning used in the proof of coincidence of coalge-
braic and concrete bisimulation for labelled transition system@f19). Let(S, «), (T, )

€ SSegand letR € S x T be a coalgebraic bisimulation with mediating coalgebra
structurey. Assume(s,t) € R ands 5 ~u. Hence(a, u) € o o m1({s, t)) and since

71 is @ homomorphism fromi, y) to (S, a) we get{a, ) € Fri109({s, ), i.e. there exists

v € Dy R suchthats, t) 5 ~svin (R, pyandDy,m1(v) = u. Puty' = Dy,ma(v). Thenu =¢

1. Sincemny is a homomorphism froniR, y) to (T, ) we get that(a, /) € f o na({(s, t))

i.e.r = ~~/. Clause 2 can be proven symmetrically. For the opposite direction, assume
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R C S x T satisfies the clauses 1 and 2. ThenkR — F R with

(s, 1)) = {{a, V) | (a, p) € a(s), {a, ') € B(¢) andv witnessesthatt =x '}

is well defined. By Definitiori1 it follows thatn; andzn, are homomorphisms frogR, )
to (S, o) and(T, ), respectively, which completes the proof]

A simple Segala bisimulation is a relation on the states of one system, while a coalgebraic
bisimulation is a relation between the state sets of two systems. We will restrict to coalgebraic
bisimulations on the state set of one system and show that two states are related with some
coalgebraic bisimulation if and only if they are related with some simple Segala bisimulation,
which gives us the correspondence of simple Segala and coalgebraic bisimilarity. Note
that restricting to the state set of one system is without loss of generality. It can be shown
(provided thatF preserves weak pullbacks) that two statesS andr € T of two F-systems
(S, o) and(T, f) are related by a bisimulation betweBandT if and only if they are related
by a bisimulation on the coproduct of the two systems, {&+ T, [F11, Fiz] o (a+ f3)).

The lifting of an equivalence relation on a set to a relation on distributions can be
characterized nicely with the following statem¢&h3].

Lemma 13. If R is an equivalence relatigthen= = =g-+.

An elementary proof of this property is given by Jonsson €18}, and a similar con-
struction was already used by De Vink and Ruti@h However, we give a more abstract
proof here in order to emphasize that this property follows directly from the weak pullback
preservation of the functdp,,.

Proof (Lemma 13). LeR be an equivalence relation on a SeThen the following diagram
commutes

S 3)

/™
\ A

S/R

wherec is the canonical morphism, mapping each elemert tif its equivalence class
underR.

In order to prove the equality atg and=p+, we show that both relations are pullbacks
of the cospanD,(S/R), Dy, Dyc).

For =g+ this follows directly from the characterization of pullbacks3at (cf. Section
2) and the fact that =g+ ' is equivalent taD,c(u) = Dy,c(i'), as one easily verifies.

To show that=g is a pullback of the same cospan note that, in (&), 71, 7o) is a
pullback of(S/R, ¢, ¢). Having thatD, preserves weak pullbacks, the following is a weak
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pullback diagram.

DyR
Dmﬂfl D(l,ﬂjz

DS DS (4)

Doe D,
Dy(S/R)

From (2) and (4) and the surjectivity gf we get that(=g, n1, 72) is a weak pullback
of (Dy,(S/R), Dy, D) as well, and since it is based on a relati¢ag, 71, 72) is a
pullback of(D,(S/R), Dyc, Dye). O

Having Lemmal2 and Lemmal3, for the correspondence theorem we only need to
restrict to coalgebraic bisimulations which are equivalences. This can be done because
~ is an equivalence for weak-pullback-preserving functorg[{&, Corollary5.6).

Theorem 14. Let (S, «) € SSegands, t € S. Thens ~ssegt if and only ifs ~x ¢.

6. A hierarchy of probabilistic system types

We will exploit Theorem9 of Section3 to achieve the primary goal of this paper, viz.
establishing a hierarchy of probabilistic system types.

Let F andG be functors oret. If there exists a translation functor fro@oalg » to
Coalgg that both preserves and reflects bisimilarity then we say that the Claaig -
is coalgebraically embeddeih the classCoalgg. This relation is clearly reflexive and
transitive.

The expressiveness criterion makes sure that if a class of systemesoalgebraically
embedded in a clagthen a “copy” of any system belongingAocexists inB, and therefore
we consider the clagsat least as expressive as the clasAnother hierarchy result, using a
different expressiveness criterion is given for the reactive, generative and stratified systems
by Van Glabbeek et aJ24]. According to the expressiveness criterion of Van Glabbeek et
al. the clas4\ is at least as expressive as the cB#there exists a translation functor from
A to B that preserves bisimilarity. Their expressiveness criterion is local: any systdm of
can be considered as expressing at least as much as its intagehile our expressiveness
criterion is global: each system & expresses exactly the same as its image, but the class
B may be “bigger”.

The next theorem lists some coalgebraic embeddings between the probabilistic system
types introduced in Fig. 1.

Theorem 15. The coalgebraic embeddings presented in Eigold among the probabilis-
tic system typesvhere an arrowA — B expresses that the clagsis coalgebraically
embeddable in the clag

Proof. By Theorem, if F, G are functors orset such thatF preserves weak pullbacks
and there is a componentwise injective natural transformation #fam G, thenCoalg »
is coalgebraically embeddable @oalgg.
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SSe Var Alt

React NA Gen Str
\ /

DA MC

Fig. 2. Hierarchy of probabilistic system types.

Having the weak pullback preservation for all functors from Fig. 1, it is enough to
construct a componentwise injective natural transformation for each embedding. We start
by defining some elementary natural transformations and collecting some simple properties.
Let F, G, H be functors orbet.

e We define themptynatural transformation & p, for Ny (x) = 0.
e The left and right coproduct injectionsand:» are natural transformatiods = F + G,

G =2 F + G with injective components.

e For every se, the injective functionsry : X — PX whereox(x) = {x} form a
natural transformatiofid = P, thesingletonnatural transformation.
o For every seX, the injective functionsy : X — D, X wheredy (x) = ul, pl(x) =1

form theDirac natural transformatioid =()> D).

e For any sek, the injective functiong : (X +1)4 — P(A x X) defined by (f) =
Graph(f) = {{a, f(a)) | f(a) € X}for f : A — X + 1, form a natural transformation
(Td+ DAL Pa x Td)

e FromF 3 H andG =2 H we get a natural transformatiohi + G [11:’?] H.

o If 712Gy andFo =2 Gy are componentwise injective, then so is the natural transfor-
mationF1 + F2 “52G1 + Go.

e f FGis componentwise injective, then saf§{ 2; GH, where(tH)x = tyx-

e FromF =G we get a natural transformatidm}"g?-tg with (Ht)x = H(tx). If the
functor H preserves injectivity and all componentswoére injective, then so are the
components of{z. For the first condition, since eveBet-functor preserves injectives
with nonempty domain, we just need to check tHainaps functions from the empty set
to injective functions. This is the case &, D,, and the other functors we use below,
as one easily verifies.

Now we prove all the coalgebraic embeddings, by building the needed natural transforma-

tions from the elementary ones mentioned above.

MC — Str: Dy 2Dy + (A x Zd) + 1
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DA — NA: (Zd + 14 2 P(A x Td)

DA — React (Zd + DAL (D, + DA, for F = (Td + DA,

React— SSeg (Do + 14 "2 P(A x Do)

NA — SSeg P(A x Zd) ZLP(A x D), for F = P(A x Td).
NA — Var: P(A x Zd) 2? (Do(A x Id) + P(A x Td))/s< for Dy,(A x Id) + P(A x

Zd) =C> (Dy(A x Zd) + P(A x Zd)) /=< being the canonical natural transformation, that
maps every element to its class. Althougis not injective,¢ o 12 is.

Gen — Var: Dy (A xZd)+1°"S"™) (D, (A x Td)+P(A x Td)) /o<, for F = A x Td.
The transformatiorf o (id + nF) is componentwise injective, sinéé + nF does not
reache<-identifiable elements i, (A x Zd) + P(A x Zd).

Var — Seg (Do (A x Id) + P(A x Td)) o< "2 2LV pD (A x Td) for F = A x Td.
Note that the natural transformation factors through the equivalence classes, because the
>a-identified elements are mapped to the same Segala behaviour. The transformation is
injective.

Var — Bun: (D, (A x Zd)+P(A x Id))/>< Dy, P(AxZd)for F = AxZd.
As in the casé/ar — Seg thes<-identified elements are mapped to the same bundle
behaviour, and the transformation is injective.

SSeg— Seg P(A x Dw)ziPDw(A x Td) where(A x D) = Do (A x Id) is given
by tx({a, u)) = /J;‘ x u, wherep x (' ((x,x")) = u(x) - @' (x) andug is the Dirac
distribution fora. All components of are injective.

Str — Alt: Dy+(AxZd)+1" TS D 4 P(AxTd),for F = AxTd.Componentwise
injectivity holds.

Seg— PZ: PDy(A x Id) PDoP(A x Id), for F = A x Id.

Bun — PZ: Dy,P(A x Zd) 2 PD,P(A x Zd), for F = Do, P(A x Zd).

PZ - MG: PD,P(A x Id) 22" PD,P(A x Td + Id)

Alt — MG: Do+ P(AxTd) " P 73209 Plppy b (AxTd+Id). Here injections
gO0t0A xZd +Id andF = A x Zd +1d,G = PF, H = D,G = D,P.F. Again,

there is no overlap between the images in the two cades.

We note here that we are notyet able to prove absence of arrows in the hierarchy presented.
Some more arrows than those presented in Fig. 2 may exist. For instance in case of a finite
label setd, we getReact — Genby the transformation : (D, +1)4 = Dy, (A x Zd) +1
defined in the following way. Fix a distribution € D, A such thaspt(u) = A. For any
setXand anyp : A — D, X + 1, definetx(¢) = xifand only if p(a) = xforalla € A
and otherwisetx (¢) = v € Dy, (A x Zd) wherefora € A, x € X

[Dyo,0P1F
=

’PD:(O;]-"

(a, x) io if pa) =,
@, x) =1 @ ua@ .
AbeAB)Z)] otherwise

The transformation is natural and its components are injective.
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7. Conclusions and future work

We study a relation between the classes of coalgebras of s8edrnctors that arise
naturally from the literature on probabilistic and nondeterministic systems. We prove a
general embeddability result and use it to establish a hierarchy of probabilistic system
types. The hierarchy pictures the expressive power of system behaviour types that differ
mainly in the combination of indeterminacy and probability.

However, we did not yet manage to prove that one class is strictly more expressive than
another. A deeper study of expressiveness should try to find the boundaries by also estab-
lishing negative embeddability results. We leave this task for future work. Some alternative
characterization of what it means that one class of systems is embeddable in another may be
helpful here. Another direction for future research is a similar classification of essentially
continuous systems, in addition to the discrete systems that we have focused on so far.
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