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Abstract

We arrange various classes of probabilistic systems studied in the literature in an expressiveness
hierarchy. Our expressiveness criterion is the existence of a system translation, from the less expressive
type into the more expressive type, that preserves and reflects probabilistic bisimilarity. We model the
different system types as coalgebras of suitable behaviour functors and argue that the corresponding
coalgebraic bisimilarity coincides with probabilistic bisimilarity for the classes for which the latter
notion has been proposed in the literature. The theory of coalgebras provides a unified framework
for the presentation of the different classes and the system translations we needed to establish the
hierarchy. All these translations arise in a standard way from natural transformations between the
two behaviour functors involved. Such a translation generally preserves coalgebraic bisimilarity. We
exploit a new result that, under mild assumptions on the behaviour functors, a system translation
induced by a natural transformation with injective components also reflects bisimilarity.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Probabilistic systems of different kinds have been studied as semantic objects since the
early 1990s. Some of them arise from nondeterministic systems by adding probabilistic
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information to all choices; sometimes both types of uncertainty are mixed. The main moti-
vation for considering probabilities is the need for quantitative information, as opposed to
qualitative information, when reasoning about non-functional aspects of systems such as
throughput, resource utilization, etc. A vast amount of research has been conducted in the
area of performance analysis, in which the notion of compositionality typically does not play
a major role. In the area of semantics of programming languages and program verification,
however, compositionality is a central theme. Various different models with different trade-
offs between odds and evens regarding performance analysis and compositionality have thus
been proposed in the literature (see, e.g.,[10,9,3]). A notion of probabilistic bisimulation
that preserves performance metrics is a key ingredient for joint reasoning about qualitative
and quantitative behaviour, and also for this many proposals have been made.

In earlier work comparison is made between a number of probabilistic process equiv-
alences (see, e.g.,[24]) and categorical formulations of Larsen-Skou bisimulation and
stochastic bisimulation are given[5,6]. In recent work[23] we focused on the relation-
ship between these and various related notions and made a taxonomy of the most prominent
types of probabilistic bisimulation. In the present paper we propose a purely coalgebraic
perspective on this matter, which allows us to apply a novel general result for the compari-
son of system types. This way the uniform coalgebraic treatment helps us considerably to
clarify the picture and to organize the setting.

As to the comparison of systems, we say that one class of systems is at most as expressive
as another if we can map every system of the first type into one of the second such that
bisimilarity ispreservedandreflected. For this we require that the transformed system has
the same carrier as the original and that two states are bisimilar in the original system if and
only if they are bisimilar in the translated one.

The system translations we consider all arise in a straightforward way from natural
transformations� between the two coalgebra functors involved. The translations thus ob-
tained always preserve bisimilarity. The reflection of bisimilarity, however, is not guaran-
teed in general. For this we present a sufficient condition on the natural transformation
� and the coalgebra functors involved. Interestingly, in our opinion, the result builds on
cocongruencesas proposed e.g. by Kurz[14]. This notion is similar to that of a bisimula-
tion, but based on cospans instead of spans—a change of direction which comes in handy
in the proof. We exploit the fact that both notions, bisimilation and cocongruence, char-
acterize the same behavioural equivalence in case the coalgebra functor preserves weak
pullbacks.

The expressiveness hierarchy we build with these tools provides a better understanding
of the relationship of the various probabilistic system types. The coalgebraic approach
facilitated its construction significantly. As far as we know, this form of application of the
theory of coalgebras is not reported before in the literature.

The outline of the paper is as follows: Section2 introduces some definitions and notation.
Section3 is the coalgebraic core leading from bisimulation and cocongruences to the result
on reflection of bisimilarity. In Section4 we define the different classes of probabilistic
systems coalgebraically. We argue that coalgebraic bisimilarity coincides with the known
concrete definitions, exemplified for the particular case of simple Segala-type systems, in
Section5. Finally, in Section6we apply the result from Section3to build the expressiveness
hierarchy.
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2. Preliminaries

In this section we lay down the categorical notation used in the sequel. Since we mainly
work with the category of sets and total functions, which we denote bySet, we explain
what the categorical notions amount to in this category.

A spanand acospanbetween two objectsX andY are triples〈S, s1, s2〉 and〈C, c1, c2〉
of objectsSandC and arrows as pictured below.

X S
s1�� s2 �� Y X

c1 ��C Y
c2��

By X × Y , with projections�1 : X × Y → X and�2 : X × Y → Y , andX + Y , with
injections�1 : X → X + Y and �2 : Y → X + Y , we denote the categoricalproduct
andcoproductof the two objectsX andY. This means that, for any span〈S, s1, s2〉 and
cospan〈C, c1, c2〉 betweenX andY, there exist unique functions〈s1, s2〉: S → X × Y and
[c1, c2]:X + Y → C making both parts of the respective diagram below commute.

S

s1

�����������
〈s1,s2〉

��

s2

���
�������� X

�1 ��

c1
���

��
��

��
�� X + Y

[c1,c2]
��

Y
�2��

c2
����

��
��

��
�

X X × Y�1
��

�2
�� Y C

The categorical products and coproducts inSet are simply cartesian products and disjoint
unions. We say that a span〈S, s1, s2〉 between setsX andY is jointly injectiveif 〈s1, s2〉 :
S → X × Y is injective. Dually, the cospan〈C, c1, c2〉 is jointly surjectiveif [c1, c2] :
X + Y → C is surjective. A relationR ⊆ X × Y gives rise to the jointly injective span
〈R,�1,�2〉 betweenX andY.

A pullbackof a cospan〈C, c1, c2〉 is a span〈P, p1, p2〉 as in the left diagram below
satisfyingc1 � p1 = c2 � p2 and such that for every span〈S, s1, s2〉 with c1 � s1 = c2 � s2
there exists a unique mediating arrowm : S → P satisfyings1 = p1 �m ands2 = p2 �m.
Dually, apushoutof a span〈S, s1, s2〉 is a cospan〈P, p1, p2〉 as in the right diagram below,
such that for every cospan〈C, c1, c2〉 with c1 � s1 = c2 � s2 there exists a unique mediating
arrowm : P → C satisfyingc1 = m � p1 andc2 = m � p2.

We also need the notion of aweak pullback, for which the mediating arrowmneed not be
unique. A functorF is said topreserve weak pullbacksif it maps a weak pullback square
to a weak pullback square, i.e. if〈P, p1, p2〉 is a weak pullback of the cospan〈C, c1, c2〉,
then〈FP,Fp1,Fp2〉 is a weak pullback of〈FC,Fc1,Fc2〉.
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A pullback of a cospan〈C, c1, c2〉 between setsX andY is the span arising from the
relation

Q := {〈x, y〉 ∈ X × Y | c1(x) = c2(y)}.
The characterization of a pushout is a bit more complicated, and we omit it because we shall
not need it. However we note that all pullbacks and pushouts exist inSet. A weak pullback
based on a relationR ⊆ X × Y is also an ordinary pullback, as one can derive from the
joint injectivity of the two projections. Moreover, inSet pullbacks are jointly injective and
pushouts are jointly surjective.

An object 1 of a category is calledfinal if for every objectX there exists precisely one
arrow ! : X → 1. In Set the final objects are the singleton sets. When we talk about an
arbitrary final set, we denote its single element by a star, i.e. 1= {∗}.

3. Translation of coalgebras

We are going to model probabilistic transition systems formally as coalgebras of a suitable
type functorB on Set. In this section we will recall the necessary definitions and prove a
technical result about translations of coalgebras. For a more detailed introduction into the
theory of coalgebras we refer the interested reader to, e.g., the articles of Jacobs and Rutten
[11,19].

Definition 1. Let B be aSet-functor. AB-coalgebrais a pair〈X, �〉 whereX is a carrier
set and� : X → BX is a transition function. Ahomomorphismbetween twoB-coalgebras
〈X, �〉 and〈Y,�〉 is a functionh : X → Y satisfyingBh � � = � � h. TheB-coalgebras
together with their homomorphisms form a category, which we denote byCoalgB.

One is often interested in the states of a coalgebra, i.e. the elements of its carrier set, only
up to some sort of behavioural equivalence. The most common behavioural equivalence is
bisimilarity.

Definition 2. A bisimulation between twoB-coalgebras〈X, �〉 and 〈Y,�〉 is a relation
R ⊆ X×Y such that there exists a coalgebra structure� : R → BR making the projections
�1 : R → X and�2 : R → Y coalgebra homomorphisms between the respective coalge-
bras, i.e. the two squares in the following diagram commute:

X

�
��

R
�1�� �2 ��

∃�
���
�
� Y

�
��

BX BRB�1

��
B�2

�� BY

Occasionally we refer to� as the mediating coalgebra structure. We say that two states
x ∈ X andy ∈ Y arebisimilar , and writex ∼ y, if they are related by some bisimulation
between〈X, �〉 and〈Y,�〉.
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To compare the expressiveness of coalgebras for different functors, sayF andG, we
will study translations ofF-coalgebras intoG-coalgebras. Such a translation can easily be
obtained from a natural transformation between the two functors under consideration.

Definition 3 (cf. [19, Theorem 15.1]). A natural transformation� : F ⇒ G gives rise to a
functor T� : CoalgF → CoalgG defined for an F-coalgebra 〈X, �〉 and an
F-homomorphismh as

T�〈X, �〉 := 〈X, �X � �〉 and T�h := h.

To see that the above definition really defines a functor, we need to check that a homo-
morphismhbetween twoF-coalgebras〈X, �〉 and〈Y,�〉 is also a homomorphism between
theG-coalgebrasT�〈X, �〉 andT�〈Y,�〉. This follows easily from the naturality of�:

X
h ��

� �� assumptionh
Y

���
FX Fh ��

�X �� naturality�
FY

�Y��
GX Gh

�� GY

SinceT� preserves homomorphisms, it also preserves bisimulations. This implies that if
two statesx ∈ X andy ∈ Y are bisimilar in theF-coalgebras〈X, �〉 and〈Y,�〉 then they
are also bisimilar in theG-coalgebrasT�〈X, �〉 andT�〈Y,�〉.

In order to establish thatG-coalgebras are at least as expressive asF-coalgebras, we shall
use translationsT� for which the converse holds as well, i.e. wherexandyare bisimilar in the
G-coalgebrasT�〈X, �〉 andT�〈Y,�〉 only if they are bisimilar in the originalF-coalgebras
〈X, �〉 and〈Y,�〉. In this case we say thatT� reflectsbisimilarity.

To this end it appears reasonable to ask that the components of� : F ⇒ G should be
injective:Assume that for some setX the component�X is not injective, because it identifies
two distinct elements�,� ∈ FX, i.e. �X(�) = �X(�). Usually it should not be difficult
to find anF-coalgebra structure� onX such that, for two statesx, y ∈ X, �(x) = � and
�(y) = � butx �∼ y in 〈X, �〉. Since we get�X(�(x)) = �X(�) = �X(�) = �X(�(y)), we
havex ∼ y in T�〈X, �〉 = 〈X, �X � �〉, which means thatT� does not reflect bisimilarity.
(Note though that the above approach does not work in the degenerate case of a functorF
that does not allow non-bisimilar behaviour at all, likeF = Id. We shall come back to this
example at the end of the section.)

In the following we show that componentwise injectivity of� implies thatT� reflects
a notion of behavioural equivalence defined not in terms of bisimulations but in terms of
cocongruences. Then we explain that this notion coincides with bisimilarity for coalgebras
of functors which preserve weak pullbacks. All coalgebra functors we shall consider have
this property.

Definition 4. A cocongruencebetween twoB-coalgebras〈X, �〉 and 〈Y,�〉 is a cospan
〈U, u1, u2〉 betweenXandY, which is jointly surjective, such that there exists aB-coalgebra
structure� : U → BU makingu1 andu2 coalgebra homomorphisms. This means that the
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two squares in the following diagram commute:

X

�
��

u1 ��U

∃�
���
�
� Y

u2��

�
��

BX Bu1

�� BU BYBu2

��

We say thatx ∈ X and y ∈ Y are behavioural equivalent, and writex ≈ y, in the
B-coalgebras〈X, �〉 and 〈Y,�〉, if they are identified by some cocongruence between
them.

We took the namecocongruencefrom Kurz[14, Definition1.2.1]. Wolter[26] calls these
structurescompatible correlations.

Theorem 5. Let F andG be twoSet functors. For a natural transformation�: F ⇒ G
with injective components we have thatT� : CoalgF → CoalgG reflects behavioural
equivalence.

For the proof of the theorem we need the following elementary fact.

Lemma 6. The categorySet has the diagonal fill-in property for surjective and
injective functions: Assume that the outer square in the setting depicted below
commutes, where e is surjective and m is injective. Then there exists a unique diagonal
arrow d making both of the resulting triangles commute.

A
e �� ��

f

��

B

g

��

∃!d
���

�
�

�
�

C �� m
��D

We proceed with the proof of Theorem5.

Proof. Let 〈X, �〉 and〈Y,�〉 be twoF-coalgebras with statesx ∈ X andy ∈ Y such that
x ≈ y in theG-coalgebrasT�〈X, �〉 andT�〈Y,�〉. So there exists a cocongruence〈U, u1, u2〉
between the latter coalgebras identifyingxandy. We shall show below that the same cospan
is also a cocongruence between theF-coalgebras〈X, �〉 and〈Y,�〉, so that also for them
we havex ≈ y.

Let �:U → GU be the transition structure witnessing the cocongruence property of
〈U, u1, u2〉, i.e. both parts of the diagram below commute.

X
� ��

u1 ��U

�

��

Y
u2��

���
FX� �

�X ��

FY��
�Y��

GX Gu1

�� GU GYGu2

��

(1)
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Using this and the naturality of� in step(∗), we compute

� � [u1, u2] = [� � u1, � � u2]
(1)= [Gu1 � �X � �, Gu2 � �Y � �]
(∗)= [�U � Fu1 � �, �U � Fu2 � �]
= �U � [Fu1 � �, Fu2 � �].

This means that the outer square of the diagram below commutes. By the definition of
a cocongruence,[u1, u2] is surjective and, by assumption,�U is injective, so Lemma6
provides a diagonal fill-in, saỹ� : U → FU .

X + Y
[u1,u2] �� ��

[Fu1��,Fu2��]
��

U

�
��

�̃

��� � � � � �

FU �� �U
�� GU

This shows that� factors as�U � �̃, and we can refine picture (1) into the one below. It follows
from the commutativity of the upper left triangle in the diagram above that the two upper
squares in the diagram below indeed commute. So�̃witnesses that—as wanted—〈U, u1, u2〉
is a cocongruence between the originalF-coalgebras〈X, �〉 and〈Y,�〉.

X
� ��

u1 ��U
�̃ ��

Y
u2��

���
FX

Fu1 ��� �
�X ��

FU� �
�U ��

FY
Fu2�� � �

�Y ��
GX Gu1

�� GU GYGu2

�� �

We shall show that behavioural equivalence and bisimilarity coincide for coalgebras of a
weak-pullback-preserving functor, so that the above theorem implies thatT� also reflects
bisimilarity under appropriate assumptions.

We first demonstrate that we can use pullbacks and pushouts to switch between bisimu-
lations and cocongruences. The argument is standard.

Lemma 7. Let 〈X, �〉 and〈Y,�〉 beB-coalgebras.
(i) If R ⊆ X×Y is a bisimulation between〈X, �〉 and〈Y,�〉 then the pushout〈P, p1, p2〉

according to the diagram below is a cocongruence between〈X, �〉 and〈Y,�〉.
R

�1
		��

�� �2


�

��
�

X

p1 ���
� Y

p2��	
	

P

/\

(ii) If B preserves weak pullbacks and〈U, u1, u2〉 is a cocongruence between〈X, �〉 and
〈Y,�〉 then the pullbackQ = {〈x, y〉 ∈ X × Y | u1(x) = u2(y)} is a
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bisimulation between〈X, �〉 and〈Y,�〉.

Q
�1

��	
	 �2








\/
X

u1 ���
��

� Y

u2				
		

U

Proof. (i) Let � : R → BR be the coalgebra structure witnessing the bisimulation prop-
erty. Applying the functorB to the pushout square we obtainBp1 � B�1 = Bp2 � B�2.
Together with the bisimulation property this implies that the outer hexagon in the left di-
agram below commutes. So, by the property of the pushout, there is a unique mediating
arrowm : P → BP such thatm � p1 = Bp1 � � andm � p2 = Bp2 � �, i.e.〈P, p1, p2〉 is
a cocongruence between〈X, �〉 and〈Y,�〉.

(ii) SinceB preserves weak pullbacks,〈BQ,B�1,B�2〉 is a weak pullback of〈BU,Bu1,Bu2〉.
Using this and an argument dual to the one for item (i), we get a (not necessarily unique)
mediating arrowm : Q → BQ in the situation pictured in the right diagram above, which
witnesses thatQ is a bisimulation between〈X, �〉 and〈Y,�〉. �

In Section2 we have not given a concrete description of pushouts inSet, because the fol-
lowing observation about them suffices for our comparison of bisimularity and behavioural
equivalence: the pushout of a relationR ⊆ X×Y identifies all elements related byR. With
this we get the following corollary.

Corollary 8. Let 〈X, �〉 and〈Y,�〉 be twoB coalgebras with statesx ∈ X andy ∈ Y .
(i) If x ∼ y thenx ≈ y, i.e. bisimilarity implies behavioural equivalence.

(ii) If B preserves weak pullbacks, thenx ≈ y also impliesx ∼ y, i.e. bisimilarity and
behavioural equivalence coincide.

Proof. If x ∼ y then there exists a bisimulationR ⊆ X × Y with 〈x, y〉 ∈ R. With
Lemma7(i) the pushout ofRis a cocongruence. Since the pushout identifies all pairs related
by R, we getx ≈ y. For item (ii), letx ≈ y. This means that there exists a cocongruence
〈U, u1, u2〉 identifyingx andy. According to Lemma7 (ii), the set of all pairs identified by
〈U, u1, u2〉 is a bisimulation, sox ∼ y. �

From Theorem5 and Corollary 8 we easily get our result aboutT� reflecting
bisimilarity.



F. Bartels et al. / Theoretical Computer Science 327 (2004) 3–22 11

Theorem 9. Let �: F ⇒ G be a natural transformation between theSet-functorsF and
G. If F preserves weak pullbacks and all components of� are injective then the functorT�
from Definition3 reflects bisimilarity.

Proof. Let 〈X, �〉 and〈Y,�〉 beF-coalgebras with statesx ∈ X andy ∈ Y . If x ∼ y in
theG-coalgebrasT�〈X, �〉 andT�〈Y,�〉 thenx ≈ y in the same coalgebras according to
Corollary8 (i). By Theorem5 this impliesx ≈ y in the originalF-coalgebras〈X, �〉 and
〈Y,�〉. SinceF was assumed to preserve weak pullbacks, we can apply Corollary8 (ii) to
obtainx ∼ y in 〈X, �〉 and〈Y,�〉 as needed. �

The following example demonstrates that Theorem9 does not hold without the assump-
tion on weak pullback preservation. It is built on a classical example[1] of a functor not
preserving weak pullbacks, which is treated in detail also by Gumm and Schröder[7].

Consider the functors

FX := {〈x, y, z〉 ∈ X3 | |{x, y, z}|�2} and GX := X3

and the obvious inclusion natural transformation� : F ⇒ G, all components of which are
clearly injective. The functorF does not preserve weak pullbacks. To see that the translation
T� does not reflect bisimilarity, consider theF-coalgebra〈X, �〉 with

X := {s, t}, �(s) := 〈s, s, t〉, �(t) := 〈s, t, t〉.
The two statessandt are bisimilar inT�〈X, �〉 but not in〈X, �〉. For the first claim, note that
X×X is a bisimulation onT�〈X, �〉. For the second claim, assume there was a bisimulation
R ⊆ X ×X on 〈X, �〉 with 〈s, t〉 ∈ R. For the mediating coalgebra structure� : R → FR

let �(〈s, t〉) = 〈z1, z2, z3〉. The homomorphism condition implies

〈�1(z1),�1(z2),�1(z3)〉 = 〈s, s, t〉 and〈�2(z1),�2(z2),�2(z3)〉 = 〈s, t, t〉.
From this we conclude�(〈s, t〉) = 〈〈s, s〉, 〈s, t〉, 〈t, t〉〉, but, since all three pairs are different,
this is not an element ofFR.

The example suggests that the assumption on the coalgebra functor in Theorem9 is not
to be seen as a limitation of the result. It is rather reflecting a limitation of the standard
notion of a bisimulation to express behavioural equivalence: it fails in this case to relates
andt, although they cannot be distinguished by external observations.

Coming back to an earlier remark, we mention that componentwise injectivity of the
natural transformations� in Theorem9 is not a necessary condition for the reflection of
bisimilarity. An example of a natural transformation� with noninjective components such
that T� still reflects bisimilarity is the natural transformation! : Id ⇒ 1, whereId is
the identity functor, with the unique maps!X : X → 1 into a singleton set 1= {∗}
as components. The translationT! trivially reflects bisimilarity, because all states inId-
coalgebras are bisimilar. As it were, the natural transformation forgets only information
that is not relevant for bisimilarity. We can give more interesting examples of that kind,
such as the natural transformation that maps probability distributions on their set of support
(see Section4). But we are not aware of any examples involving a functorF such that there
areF-coalgebras with non-bisimilar states.
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4. Probabilistic systems

In this section we introduce thirteen types of probabilistic systems from the literature
on probabilistic modelling. A considerable amount of research has been done on each of
these types of systems. They are used as mathematical models of real systems so that formal
verification methods based e.g. on temporal logic or process algebra can be applied. Most of
the types arose independently in order to better model one or another property of a system.
One motivating issue is the need to model both non-deterministic and probabilistic choice.
Another issue is the compositional modelling for which operators like hiding (restrictions
by the environment) and parallel composition play a major role. Therefore some more
complex models were proposed that support a definition of these operators. For example,
generative systems were extended to bundle probabilistic systems because the former type
did not allow for a definition of a natural asynchronous parallel composition operator. In a
preceding paper[23] we gave a wider overview of these models. Here, we just note that the
different classes are not defined as coalgebras in the literature. Moreover, in few cases our
functorial definition varies from the original one in that we abstract from certain features
that are not essential, in our understanding, to the nature of the model under consideration.

In this paper we define the systems as coalgebras of suitable behaviour functorsB. The
functors are built using the following syntax

B ::= A | Id | P | D	 | B + B | B × B | BA | BB,
whereAdenotes a constant functor for a setA,P is the powerset functor, and the composition
of two functorsF andG is denoted byFG. ByD	 we denote the probability functor, defined
by

D	S = {
: S → [0,1] | 
[S] = 1, spt (
) finite} D	f (
) = 
 ◦ f−1

using the notation
[X] = ∑
x∈X 
(x) for X ⊆ S, spt (
) = {x ∈ S | 
(x)〉0} is the

support set of
 and for
 ∈ D	X, 
 ◦ f−1(y) = 
[f−1({y})].
For the proof of bisimulation correspondence (Section5), as well as for the hierarchy

results (Section6) preservation of weak pullbacks is important. We note that
(i) the functorsA, Id, P andD	

3 onSet preserve weak pullbacks,
(ii) if the Set-functorsF andG preserve weak pullbacks, then so doF + G, F × G, F A

andFG.
It follows that all functors involved have the desired property.
Recall thatCoalgB denotes the category of coalgebras of the functorB. We fix a setA

to serve as a set of actions throughout this section.
We now present the probabilistic system types and the functors defining them via Fig. 1.

For each system type the table lists the notation, the functor and the name. For some systems
we also include a reference to the bibliographic source of the system. The names used for
these systems follow the overview paper[23]. Some of them are otherwise not present
in the literature. For the Vardi systems sometimes the termconcurrent Markov chainsis
used, for the Segala systems the name (simple) probabilistic automatais used while the

3 The preservation of weak pullbacks forD	 was shown by De Vink and Rutten[6] and by Moss[17].
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CoalgB B name/reference

MC D	 Markov chains

DA (Id + 1)A deterministic automata

NA P(A× Id) ∼= PA non-deterministic automata, LTSs

React (D	 + 1)A reactive systems[15,24]

Gen D	(A× Id)+ 1 generative systems[24]

Str D	 + (A× Id)+ 1 stratified systems[24]

Alt D	 + P(A× Id) alternating systems[8]

Var (D	(A× Id)+ P(A× Id))/�� Vardi systems[25]

SSeg P(A× D	) simple Segala systems[22,21]

Seg PD	(A× Id) Segala systems[22,21]

Bun D	P(A× Id) bundle systems[4]

PZ PD	P(A× Id) Pnueli-Zuck systems[18]

MG PD	P(A× Id + Id) most general systems

Fig. 1. Probabilistic system types.

systems introduced by Pnueli and Zuck are calledprobabilistic finite state programs. We
use the name alternating systems following Hansson[8], although we do not require strict
alternation. We introduce the last type of systems ourselves as a generalization of the class
PZ in order to have a top element in our hierarchy.

Basically, every type of probabilistic system arises from the plain definition of a transition
system with or without labels. Probabilities can then be added either to every transition, or to
transitions labelled with the same action, or there can be a distinction between probabilistic
and ordinary (non-deterministic) states, where only the former ones include probabilistic
information, or the transition function can be equipped with structure that provides both
non-determinism and probability distributions.

The simplest kind of probabilistic systems that we consider are discrete time, finitely
branching Markov chains. Two other classical basic models of probabilistic systems are
the reactive and the generative systems. They arise from LTSs when changing the powerset
functorP to the distribution functorD	.At this point we can mention a distinction between
systems, the one betweeninput type andoutput type of systems. An input system is one
defined by a functor of the kindBA while an output system has a functor of the form
BP(A × B). Note that LTSs can be viewed as both input and output type of systems, due
to the isomorphismP(A× Id) ∼= PA. In the probabilistic case this is not the case. As the
names already suggest, a reactive system is a probabilistic input system, reacting to the input
by the environment, while a generative system is a typical output system, producing output
depending on the probability distribution. A reactive system can transit from a given state
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with a given action to any other state according to the probability distribution that governs
this transition. On the other hand in a generative system the distributions involve actions.
The generative systems arefully probabilistic in the sense that it is enough to erase the
action labels on the transitions in order to obtain a Markov chain from a generative system.

Some of the system types introduced above make a distinction between types of states.
Such are the stratified, the alternating and the Vardi systems. If a state in such a system
allows a probabilistic transition, then it is a probabilistic state. If, on the other hand, it
allows a (non-)deterministic transition, then it is a (non-)deterministic state. The functor
defining the Vardi systems needs more explanation. In a Vardi system〈X, �〉, the states can
be divided into two sets, a set of non-deterministic statesx ∈ X such that�(x) ∈ P(A×X)

and a set of probabilistic statesx ∈ X for which �(x) ∈ D	(A × X). The probabilistic
states show a generative behaviour. Furthermore, by�� we identify some degenerate steps.
If from a statex ∈ X the system can only move, via an actiona, to a statey ∈ X,
then it is the same as saying that fromx, via a, with probability 1 the system moves toy.
Therefore, the equivalence�� identifies the Dirac distribution
1〈a,x〉 ∈ D	(A × X), for


1〈a,x〉(〈a, x〉) = 1 and the singleton set{〈a, x〉} ∈ P(A×X). This way, there are states in a
Vardi system that are both non-deterministic, with one outgoing transition, and probabilistic
with a Dirac outgoing transition. By considering(D	(A× Id)+ P(A× Id))/�� instead
of D	(A× Id)+ P(A× Id), the functorial properties are still preserved.

Unlike reactive and generative ones, systems with the above distinction between states
can simulate full non-determinism. When drawing diagrams of these types of systems, we
use curly arrows for probabilistic transitions, and ordinary arrows for non-deterministic
transitions. Furthermore, a circle represents a probabilistic state and a bullet stands for a
non-deterministic state.

Another way of allowing both full non-determinism and probabilities, without distinguish-
ing between states, is by equipping the transition function with a structure, as in the case
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of Segala, simple Segala, bundle and Pnueli–Zuck systems. The simple Segala model is of
input type, enriching the reactive model with full non-determinism, and the other models
are of output type, allowing non-determinism in the generative setting.

5. Concrete vs. categorial bisimulation

For most of the probabilistic system types introduced above, a concrete definition of
bisimulation is given in the literature. A cornerstone of the coalgebraic approach to bisimu-
lation is the correspondence of bisimilarity of deterministic and non-deterministic transition
systems given in concrete terms of transfer conditions[16] or given in categorial terms of
a mediating coalgebra[1] (see also[20]). De Vink and Rutten have shown[6], following
Jones’ use of the graph-theoretical max-min theorem[12], that the concrete notion of bis-
mulation for Markov chains coincides with the coalgebraic notion. The proof technique
extends to most other systems involving the functorD	 in their definition, viz.Str, Alt ,
React, SSeg, Seg, andGen. As an example, in[2], we sketched the correspondence of
concrete bisimulation and coalgebraic bisimulation for the general Segala-type systems (cf.
[22,21]) which we modelled as coalgebras of the functorPD	(A×Id). The bundle proba-
bilistic transition systems[4] do not come equipped with a concrete notion of bisimulation.
Equivalence of bundle probabilistic transition systems is defined in terms of the underlying
generative probabilistic transitions systems, for which concrete bisimulation coincides with
the coalgebraic bisimulation. The approach of Vardi[25] and Pnueli and Zuck[18] involves
temporal logics. We do not unravel the explicit relationship of logically indistinguishable
systems vs. bisimilar ones[15]. However, familiarity with coalgebraic bisimulation makes
it easy to formulate concrete definitions of bisimulation in the cases of bundle, Vardi and
Pnueli–Zuck systems (cf.[23]).

Here we present a new and more modular proof of the correspondence of concrete proba-
bilistic bisimulation with the coalgebraic bisimulation in the case of simple Segala systems.
At the same time, it is a proof of the correspondence for reactive systems. The same tech-
nique can be used in all the other cases. Hence, it is an alternative to the proof of de Vink
and Rutten[6] for Markov chains.

Definition 10. Let 〈S, �〉 be a simple Segala system. An equivalence relationR onS is a
simple Segala bisimulation[22,21] if for all 〈s, t〉 ∈ R and for all actionsa ∈ A:

if s
a→�
 thent

a→�
′ and
 ≡R∗ 
′ for some distribution
′
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where
 ≡R∗ 
′ if and only if ∀C ∈ S/R: 
[C] = 
′[C], and the notations
a→�
 stands

for 〈a,
〉 ∈ �(s).
Two statessandt of a simple Segala system〈S, �〉 are bisimilar, denoted bys ∼ssegt if

and only if there exists a simple Segala bisimulationRonSwith 〈s, t〉 ∈ R.

Let F = P(A×D	) be the functor defining the simple Segala systems. Let∼F denote
the bisimilarity relation forCoalgF = SSeg. Let 〈S, �〉, 〈T ,�〉 ∈ CoalgF . By definition,
s ∼F t for s ∈ S, t ∈ T if and only if there exists a (coalgebraic) bisimulationR ⊆ S × T

with 〈s, t〉 ∈ R.
In order to relate the concrete and coalgebraic notion of bisimulation in the case of simple

Segala systems we lift a relation on sets to a relation on distributions on sets[13].

Definition 11. LetR ⊆ S×T be a relation and let
 ∈ D	S and
′ ∈ D	T be distributions.
Define
 ≡R 
′ if and only if there exists a distribution� ∈ D	R such that

(D	�1)(�) = 
 and (D	�2)(�) = 
′.

The relation≡R ⊆ D	S × D	T is called the lifting ofR to D	.

By Definition 11 there exists a surjective map� : D	R → ≡R defined by�(�) =
〈D	�1(�),D	�2(�)〉 such that the following diagram commutes.

≡R

�1

�����
��

��
�� �2



�
��

��
��

��

D	S D	R

�

����

D	�1

��
D	�2

��D	S

(2)

With the notion of lifting, the following characterization of coalgebraic bisimulation forF
in terms of a relation and transfer conditions can be formulated.

Lemma 12. A relationR ⊆ S×T is a coalgebraic bisimulation(cf. Definition2)between
the simple Segala systems〈S, �〉 and 〈T ,�〉 if and only if for all 〈s, t〉 ∈ R, and for all
a ∈ A:
(1) if s

a→�
 then there exists
′ ∈ D	T such thatt
a→�
′ and
 ≡R 
′.

(2) if t
a→�
 then there exists
′ ∈ D	S such thats

a→�
′ and
 ≡R 
′.

Proof. The proof follows the same reasoning used in the proof of coincidence of coalge-
braic and concrete bisimulation for labelled transition systems (cf.[20,19]). Let〈S, �〉, 〈T ,�〉
∈ SSegand letR ⊆ S × T be a coalgebraic bisimulation with mediating coalgebra
structure�. Assume〈s, t〉 ∈ R and s

a→ �
. Hence〈a,
〉 ∈ � ◦ �1(〈s, t〉) and since
�1 is a homomorphism from〈R, �〉 to 〈S, �〉 we get〈a,
〉 ∈ F�1◦�(〈s, t〉), i.e. there exists
� ∈ D	R such that〈s, t〉 a→�� in 〈R, �〉andD	�1(�) = 
. Put
′ = D	�2(�).Then
 ≡R


′. Since�2 is a homomorphism from〈R, �〉 to 〈T ,�〉 we get that〈a,
′〉 ∈ � ◦ �2(〈s, t〉)
i.e. t

a→ �
′. Clause 2 can be proven symmetrically. For the opposite direction, assume
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R ⊆ S × T satisfies the clauses 1 and 2. Then� : R → FR with

�(〈s, t〉) = {〈a, �〉 | 〈a,
〉 ∈ �(s), 〈a,
′〉 ∈ �(t) and� witnessesthat
 ≡R 
′}

is well defined. By Definition11it follows that�1 and�2 are homomorphisms from〈R, �〉
to 〈S, �〉 and〈T ,�〉, respectively, which completes the proof.�

A simple Segala bisimulation is a relation on the states of one system, while a coalgebraic
bisimulation is a relation between the state sets of two systems.We will restrict to coalgebraic
bisimulations on the state set of one system and show that two states are related with some
coalgebraic bisimulation if and only if they are related with some simple Segala bisimulation,
which gives us the correspondence of simple Segala and coalgebraic bisimilarity. Note
that restricting to the state set of one system is without loss of generality. It can be shown
(provided thatF preserves weak pullbacks) that two statess ∈ S andt ∈ T of twoF-systems
〈S, �〉 and〈T ,�〉 are related by a bisimulation betweenSandT if and only if they are related
by a bisimulation on the coproduct of the two systems, i.e.,〈S + T , [F�1,F�2] ◦ (�+ �)〉.

The lifting of an equivalence relation on a set to a relation on distributions can be
characterized nicely with the following statement[13].

Lemma 13. If R is an equivalence relation, then≡R = ≡R∗ .

An elementary proof of this property is given by Jonsson et al.[13], and a similar con-
struction was already used by De Vink and Rutten[6]. However, we give a more abstract
proof here in order to emphasize that this property follows directly from the weak pullback
preservation of the functorD	.
Proof (Lemma 13). LetRbe an equivalence relation on a setS. Then the following diagram
commutes

R
�1

����
��

� �2

��









S

c ���
���

� S

c�����
��

S/R

(3)

wherec is the canonical morphism, mapping each element ofS to its equivalence class
underR.

In order to prove the equality of≡R and≡R∗ , we show that both relations are pullbacks
of the cospan〈D	(S/R),D	c,D	c〉.

For≡R∗ this follows directly from the characterization of pullbacks inSet (cf. Section
2) and the fact that
 ≡R∗ 
′ is equivalent toD	c(
) = D	c(
′), as one easily verifies.

To show that≡R is a pullback of the same cospan note that, in (3),〈R,�1,�2〉 is a
pullback of〈S/R, c, c〉. Having thatD	 preserves weak pullbacks, the following is a weak
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pullback diagram.

D	RD	�1

���������� D	�2

����������

D	S

D	c ���������� D	S

D	c�����
���

��

D	(S/R)

(4)

From (2) and (4) and the surjectivity of�, we get that〈≡R,�1,�2〉 is a weak pullback
of 〈D	(S/R),D	c,D	c〉 as well, and since it is based on a relation,〈≡R,�1,�2〉 is a
pullback of〈D	(S/R),D	c,D	c〉. �

Having Lemma12 and Lemma13, for the correspondence theorem we only need to
restrict to coalgebraic bisimulations which are equivalences. This can be done because
∼ is an equivalence for weak-pullback-preserving functors (cf.[19, Corollary5.6]).

Theorem 14. Let 〈S, �〉 ∈ SSegands, t ∈ S. Thens ∼ssegt if and only ifs ∼F t .

6. A hierarchy of probabilistic system types

We will exploit Theorem9 of Section3 to achieve the primary goal of this paper, viz.
establishing a hierarchy of probabilistic system types.

Let F andG be functors onSet. If there exists a translation functor fromCoalgF to
CoalgG that both preserves and reflects bisimilarity then we say that the classCoalgF
is coalgebraically embeddedin the classCoalgG . This relation is clearly reflexive and
transitive.

The expressiveness criterion makes sure that if a class of systemsA is coalgebraically
embedded in a classB then a “copy” of any system belonging toA exists inB, and therefore
we consider the classB at least as expressive as the classA.Another hierarchy result, using a
different expressiveness criterion is given for the reactive, generative and stratified systems
by Van Glabbeek et al.[24]. According to the expressiveness criterion of Van Glabbeek et
al. the classA is at least as expressive as the classB if there exists a translation functor from
A to B that preserves bisimilarity. Their expressiveness criterion is local: any system ofA
can be considered as expressing at least as much as its image inB, while our expressiveness
criterion is global: each system inA expresses exactly the same as its image, but the class
B may be “bigger”.

The next theorem lists some coalgebraic embeddings between the probabilistic system
types introduced in Fig. 1.

Theorem 15. The coalgebraic embeddings presented in Fig.2 hold among the probabilis-
tic system types, where an arrowA → B expresses that the classA is coalgebraically
embeddable in the classB.

Proof. By Theorem9, if F,G are functors onSet such thatF preserves weak pullbacks
and there is a componentwise injective natural transformation fromF to G, thenCoalgF
is coalgebraically embeddable inCoalgG .
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MG

PZ

�������

Seg

������
Bun

�������

SSeg

�������
Var

�������
�������

Alt

�����������������

React

�������
NA

�������
�������

Gen

�������
Str

��

DA

�������
�������

MC

��

Fig. 2. Hierarchy of probabilistic system types.

Having the weak pullback preservation for all functors from Fig. 1, it is enough to
construct a componentwise injective natural transformation for each embedding. We start
by defining some elementary natural transformations and collecting some simple properties.
Let F,G,H be functors onSet.
• We define theemptynatural transformation 1

�⇒P, for �X(∗) = ∅.

• The left and right coproduct injections�1 and�2 are natural transformationsF �1⇒F +G,
G �2⇒F + G with injective components.

• For every setX, the injective functions
X : X → PX where
X(x) = {x} form a
natural transformationId 
⇒P, thesingletonnatural transformation.

• For every setX, the injective functions�X : X → D	X where�X(x) = 
1
x, 
1

x(x) = 1

form theDirac natural transformationId �⇒D	.
• For any setX, the injective functions�X : (X+1)A → P(A×X) defined by�X(f ) =
Graph(f ) = {〈a, f (a)〉 | f (a) ∈ X} for f : A → X+ 1, form a natural transformation

(Id + 1)A
�⇒P(A× Id)

• FromF �1⇒H andG �2⇒H we get a natural transformationF + G [�1,�2]⇒ H.
• If F1

�1⇒G1 andF2
�2⇒G2 are componentwise injective, then so is the natural transfor-

mationF1 + F2
�1+�2⇒ G1 + G2.

• If F �⇒G is componentwise injective, then so isFH �H⇒ GH, where(�H)X = �HX.

• FromF �⇒G we get a natural transformationHF H�⇒HG with (H�)X = H(�X). If the
functor H preserves injectivity and all components of� are injective, then so are the
components ofH�. For the first condition, since everySet-functor preserves injectives
with nonempty domain, we just need to check thatH maps functions from the empty set
to injective functions. This is the case forP, D	, and the other functors we use below,
as one easily verifies.

Now we prove all the coalgebraic embeddings, by building the needed natural transforma-
tions from the elementary ones mentioned above.
MC → Str: D	

�1⇒D	 + (A× Id)+ 1
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DA → NA: (Id + 1)A
�⇒P(A× Id)

DA → React: (Id + 1)A
F�⇒ (D	 + 1)A, for F = (Id + 1)A.

React→ SSeg: (D	 + 1)A
�D	⇒ P(A× D	)

NA → SSeg: P(A× Id)F�⇒P(A× D	), for F = P(A× Id).
NA → Var : P(A× Id) �◦�2⇒ (D	(A× Id)+P(A× Id))/�� for D	(A× Id)+P(A×

Id) �⇒ (D	(A× Id)+P(A× Id))/�� being the canonical natural transformation, that
maps every element to its class. Although� is not injective,� ◦ �2 is.

Gen→ Var : D	(A×Id)+1
�◦(id+�F)⇒ (D	(A×Id)+P(A×Id))/��, for F = A×Id.

The transformation� ◦ (id + �F) is componentwise injective, sinceid + �F does not
reach��-identifiable elements inD	(A× Id)+ P(A× Id).

Var → Seg: (D	(A×Id)+P(A×Id))/�� [
D	,P�]F⇒ PD	(A×Id) for F = A×Id.
Note that the natural transformation factors through the equivalence classes, because the
��-identified elements are mapped to the same Segala behaviour. The transformation is
injective.

Var → Bun: (D	(A×Id)+P(A×Id))/�� [D	
,�P]F⇒ D	P(A×Id) for F = A×Id.
As in the caseVar → Seg, the��-identified elements are mapped to the same bundle
behaviour, and the transformation is injective.

SSeg→ Seg: P(A × D	)
P�⇒PD	(A × Id) where(A × D	)

�⇒D	(A × Id) is given
by �X(〈a,
〉) = 
1

a × 
, where
 × 
′(〈x, x′〉) = 
(x) · 
′(x′) and
1
a is the Dirac

distribution fora. All components of� are injective.

Str → Alt : D	+(A×Id)+1
id+[
,�]F⇒ D	+P(A×Id), forF = A×Id. Componentwise

injectivity holds.

Seg→ PZ: PD	(A× Id)PD	
F⇒ PD	P(A× Id), for F = A× Id.

Bun → PZ: D	P(A× Id) 
F⇒ PD	P(A× Id), for F = D	P(A× Id).
PZ → MG : PD	P(A× Id)PD	P�1⇒ PD	P(A× Id + Id)
Alt → MG : D	+P(A×Id) 
H◦[D	(
F◦�2),�G◦P�1]⇒ PD	P(A×Id+Id). Here injections

go toA × Id + Id andF = A × Id + Id, G = PF , H = D	G = D	PF . Again,
there is no overlap between the images in the two cases.�
We note here that we are not yet able to prove absence of arrows in the hierarchy presented.

Some more arrows than those presented in Fig. 2 may exist. For instance in case of a finite
label setA, we getReact→ Genby the transformation� : (D	+1)A ⇒ D	(A×Id)+1
defined in the following way. Fix a distribution
 ∈ D	A such thatspt(
) = A. For any
setX and any� : A → D	X + 1 , define�X(�) = ∗ if and only if �(a) = ∗ for all a ∈ A

and otherwise,�X(�) = � ∈ D	(A× Id) where fora ∈ A, x ∈ X

�(a, x) =
{

0 if �(a) = ∗,
�(a)(x)·
(a)


[{b∈A|�(b) �=∗}] otherwise.

The transformation� is natural and its components are injective.
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7. Conclusions and future work

We study a relation between the classes of coalgebras of severalSet-functors that arise
naturally from the literature on probabilistic and nondeterministic systems. We prove a
general embeddability result and use it to establish a hierarchy of probabilistic system
types. The hierarchy pictures the expressive power of system behaviour types that differ
mainly in the combination of indeterminacy and probability.

However, we did not yet manage to prove that one class is strictly more expressive than
another. A deeper study of expressiveness should try to find the boundaries by also estab-
lishing negative embeddability results. We leave this task for future work. Some alternative
characterization of what it means that one class of systems is embeddable in another may be
helpful here. Another direction for future research is a similar classification of essentially
continuous systems, in addition to the discrete systems that we have focused on so far.
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