
a

s.
res

do

e

ht

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Journal of Algebra 281 (2004) 342–365

www.elsevier.com/locate/jalgebr

Computing Kazhdan–Lusztig cells
for unequal parameters

Meinolf Geck

Institut Girard Desargues, bat. Jean Braconnier, Université Lyon 1, 21 av. Claude Bernard,
F-69622 Villeurbanne cedex, France

Received 20 February 2004

Communicated by Gunter Malle

Abstract

Following Lusztig, we consider a Coxeter groupW together with a weight functionL. This gives
rise to the pre-order relation�L and the corresponding partition ofW into left cells. We introduce an
equivalence relation on weight functions such that, in particular,�L is constant on equivalent classe
We shall work this out explicitly forW of typeF4 and check that several of Lusztig’s conjectu
concerning left cells with unequal parameters hold in this case, even for those parameters which
not admit a geometric interpretation. The proofs involve some explicit computations usingCHEVIE.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

This paper is concerned with the computation of the Kazhdan–Lusztig polynomials, th
left cells and the corresponding representations of a finite Coxeter groupW with respect
to a weight functionL. Following Lusztig [15], a weight function onW is a function
L :W → Z such thatL(ww′) = L(w) + L(w′) wheneverl(ww′) = l(w) + l(w′) where
l is the length function onW . As in most parts of [15], we shall only consider weig
functions such thatL(w) > 0 for all w �= 1.
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The case whereL is constant on the generators ofW is known as the equal paramet
case. If, moreover,W is a finite Weyl group, then there is a geometric interpretation
the Kazhdan–Lusztig polynomials and this leads to many deep properties for wh
elementary proofs are known (see [12,14]). Recently, Lusztig [15] has formulated a n
of precise conjectures in the general case ofunequal parameters. Furthermore, Lusz
proposes a geometric interpretation at least for those weight functions which arise
representation theory of finite groups of Lie type. (The complete list of theseL is given in
[8, Table II, p. 35].)

One of our aims here is to show that some of Lusztig’s conjectures hold forW of typeF4
and any weight function, even for thoseL which do not admit a geometric interpretatio
In typeF4, with generators and diagram given by the diagram below, a weight functiL

is specified by two positive integersa := L(s1) = L(s2) > 0 andb := L(s3) = L(s4) > 0:

F4
s1 s2 s3 s4
� � � �>

By explicit computations using theCHEVIE-system [6], we obtain the following results.

Theorem 1.1. Let W be of typeF4 andL any weight function onW with L(w) > 0 for
w �= 1. Then the left cell representations ofW (with respect toL) are precisely the con
structible representations, as defined by Lusztig[15, Chapter 22].

The above result is conjectured to hold in general by Lusztig [15, §22.29]. As f
the partition ofW into left cells is concerned, we shall see that there are only fou
sentially different cases, according to whetherb = a, b = 2a, 2a > b > a, or b > 2a; see
Corollary 4.8 and Remark 4.9.

Theorem 1.2. Let W be of typeF4 andL any weight function onW with L(w) > 0 for
w �= 1. For w ∈ W , we define∆(w) ∈ Z�0 and0 �= nw ∈ Z by the condition

P ∗
1,w = nwv−∆(w) + strictly smaller powers ofv; see Lusztig[15, 14.1].

Let C be a left cell ofW (with respect toL). Then the functionw �→ ∆(w) reaches its
minimum at exactly one element ofC, denoted bydC ∈ C. We haved 2

C = 1 andndC = ±1.

(For the definition ofP ∗
y,w, see Section 2.) The elementsdC are thedistinguished invo-

lutionswhose existence is predicted by Lusztig [15, Conjectures 14.2 (P1, P6, P13)
following result is also part of those conjectures (P4, P9).

Theorem 1.3. Let W be of typeF4 andL any weight function onW with L(w) > 0 for
w �= 1. For anyy,w ∈ W , we have the following implication:

y �L w and y ∼LR w �⇒ y ∼L w.

(For the definition of the relations�L, ∼L, ∼LR, see Section 2.) The proofs of the abo
three theorems will be given in Section 4 (see Corollary 4.8).
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In typeF4, there is a geometric interpretation for the cases where(a, b) ∈ {(1,1), (1,2),

(1,4)}; see [8, Table II, p. 35]. To deal with arbitrary values fora andb, we have to provide
a theoretical argument which shows that it is enough to consider only thoseL where the
values on the generators are bounded by a constant which can be explicitly computed
terms ofW . More precisely, in Definition 2.13, we introduce (for generalW ) an equiva-
lence relation on the set of weight functions, called “generic equivalence.” Two gener
equivalent weight functions give rise to the same partition ofW into left cells, the same lef
pre-order relation and the same set of left cell representations. In Corollary 3.6, we
that any weight function is generically equivalent to a weight function whose values o
generators are bounded by a constant which can be computed efficiently.

It should be noted that the relation of “generic equivalence” is very strong. As f
applications are concerned, one is interested in a weaker equivalence relation: we s
two weight functions are “cell-equivalent” if they give rise to the same partition ofW into
left cells. The notion of “generic equivalence” merely provides a convenient technica
for proving “cell-equivalence.”

Lusztig’s results [15] on dihedral groups are interpreted in this framework in Ex
ple 2.12. Conjecture 2.17 (found independently by Bonnafé) would yield a com
description of the cell-equivalence classes of weight functions in typeBn. In any case
cell-equivalence classes seem to be organised in a rather smooth way.

Both the results in typeF4 and the evidence for the conjecture on typeBn are based on
CHEVIE-program which we have developed, for computing the Kazhdan–Lusztig po
mials, theM-polynomials, and the pre-order relations�L, �LR for a finite Coxeter group
W and any choice of the parameters (eithergiven by independent indeterminates an
monomial order on them, or given by a weight function). For example, this program
tematically computes the polynomialsP ∗

y,w for all pairsy < w in W ; it also computes al
incidences of the Kazhdan–Lusztig pre-order relationy �L w. The program automaticall
checks some of Lusztig’s conjectures (in particular, the properties expressed in the
three theorems) and computes the characters carried by the various left cells. The
grams have already been used in the computations reported in [7, §11.3] and [5, §
my knowledge, the first such programs (for Kazhdan–Lusztig polynomials in the unequ
parameter case) were written by K. Bremke [3] who used them to computeW -graphs for
the irreducible representations of certain Iwahori–Hecke algebras of typeF4. We only re-
mark that, in the case of equal parameters, there is already a rather sophisticated th
the computation of Kazhdan–Lusztig polynomials; see Alvis [1] and Ducloux [4].

2. Total orderings and weight functions

The basic references for this section are [10] and [15]. In the latter reference, Luszt
studies the left cells of a Coxeter groupW with respect to a weight functionL on W . In
the former reference, Lusztig considers a more abstract setting where left cells are
with respect to an abelian group and a total order on it. We will see in this section th
more abstract setting can be used to show that two given weight functions actuall
rise to the same partition ofW into left cells. (A similar argument has already been use
for example, in [2].) This will provide the theoretical argument for showing that, in o
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to determine the left cells for all possible weight functions onW , it is actually enough to
consider a certain finite number of weight functions.

We begin by recalling the basic setting for the definition of Kazhdan–Lusztig po
mials and left cells. LetW be a Coxeter group, with generating setS. Let Γ be an abelian
group (written multiplicatively) andA = Z[Γ ] be the group algebra ofΓ over Z. Let
{vs | s ∈ S} ⊂ Γ be a subset such thatvs = vt whenevers, t ∈ S are conjugate inW . Then
we have a corresponding generic Iwahori–Hecke algebraH, with A-basis{Tw | w ∈ W }
and multiplication given by the rule

Ts Tw =
{

Tsw, if l(sw) > l(w),

Tsw + (
vs − v−1

s

)
Tw, if l(sw) < l(w); (2.1)

herel :W → N0 denotes the usual length function onW with respect toS. (Note that the
above elementsTw are denoted̃Tw in [10].)

Let a �→ ā be the involution ofZ[Γ ] which takesg to g−1 for anyg ∈ Γ . We extend it
to a mapH → H, h �→ h, by the formula

∑
w∈W

awTw =
∑
w∈W

āwT−1
w−1

(
aw ∈ Z[Γ ]). (2.2)

Thenh �→ h is in fact a ring involution.
Now assume that we have chosen a total ordering ofΓ . This is specified by a mul

tiplicatively closed subsetΓ+ ⊆ Γ \ {1} such that we haveΓ = Γ+ � {1} � Γ−, where
Γ− = {g−1 | g ∈ Γ+}. Furthermore, we assume that

{vs | s ∈ S} ⊂ Γ+. (2.3)

Given a total ordering ofΓ as above, we have a correspondingKazhdan–Lusztig basi
of H, which we denote by{Cw | w ∈ W }. (Note that this basis is denoted byC′

w in [10].)
The basis elementCw is uniquely determined by the conditions that

Cw = Cw and Cw = Tw +
∑
y∈W
y<w

P∗
y,w Ty, (2.4)

whereP∗
y,w ∈ Z[Γ−] for y < w. Here,� denotes the Bruhat–Chevalley order onW . We

shall also setP∗
w,w = 1 for all w ∈ W . For anyw ∈ W we setvw := vs1 · · ·vsp where

w = s1 · · · sp with si ∈ S is a reduced expression. Then we actually have

Py,w := vwv−1
y P∗

y,w lies inZ
[
v2
t

∣∣ t ∈ S
]

and has constant term 1; (2.5)

see Lemma 3.2 below. We have the following multiplication formulas. Letw ∈ W and
s ∈ S. Then

TsCw =



Csw − vsCw +
∑
y<w
sy<y

Ms
y,w Cy, if sw > w,

(2.6)
vsCw, if sw < w,
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where the coefficientsMs
y,w ∈ A are such thatMs

y,w = Ms
y,w. Giveny,w ∈ W ands ∈ W ,

we writey �L,s w if the following conditions are satisfied:

w = sy > y or sy < y < w < sw and Ms
y,w �= 0. (2.7)

The Kazhdan–Lusztig left preorder�L is the transitive closure of the above relatio
that is, giveny,w ∈ W we havey �L w if y = w or if there exists a sequencey =
y0, y1, . . . , yn = w of elements inW and a sequences1, . . . , sn of generators inS such that
yi−1 �L,si yi for 1 � i � n (See [10, §6].) Thus, we haveH Cw ⊆ ∑

y�Lw ACy for any
w ∈ W . The equivalence relation associated with�L will be denoted by∼L and the corre
sponding equivalence classes are called theleft cellsof W . Similarly, we writey �LR w if
y = w or if there is a chain of elementsy = y0, y1, . . . , yn = w in W such that, for eachi,
we haveyi−1 �L yi or y−1

i−1 �L y−1
i . The equivalence relation associated with�LR will be

denoted by∼LR and the corresponding equivalence classes are called thetwo-sided cells
of W . Each two-sided cell is a union of left cells and a union of right cells. Conside
following statement:

y �L w and y ∼LR w �⇒ y ∼L w. (L)

This is known to be true in certain cases where there is a geometric interpretation
parameters (for example, theequal-parameter case wherevs = vt for all s �= t in S); see
[15, Chapter 14] for more details. The above property plays an important role in c
representation-theoretic constructions; see [11, Chapter 5]. Lusztig [15, 14.2] conje
that (L) holds in the general unequal parametercase. It would imply that the two-sided ce
are theminimalsubsets ofW which are at the same time unions of left cells and unio
right cells.

Each left cellC gives rise to a representation ofH. This is constructed as follows (se
[10, §7]). LetVC be anA-module with a freeA-basis{ew | w ∈ C}. Then the action ofTs

(s ∈ S) is given by the formula

Ts .ew =




esw + vsew −
∑
y<w
sy<y

(−1)l(w)−l(y)Ms
y,wey, if sw > w,

−v−1
s ew, if sw < w,

(2.8)

where we tacitly assume thatey = 0 if y /∈ C. (The formula (2.8) can be related to t
formula (2.6) using a suitable automorphism ofH; see [10, §6].) Assume now thatW is
finite. Upon specializationvs �→ 1 (s ∈ S), we obtain a representation ofW which is called
the representation carried byC. We denote byχC the character of that representation, t
is, the mapw �→ trace(w|VC). On the other hand, let Con(W,Γ+) be the set of so-calle
constructible characters ofW , as defined by Lusztig; see [15, Chapter 22] (and also [5,
for the general setting with respect toΓ+ ⊂ Γ ). Consider the following statement:

Con(W,Γ+) = {χC | C left cell in W with respect toΓ+ ⊂ Γ }. (C)
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It is conjectured by Lusztig [15, 22.29] that (C) always holds.1 This is known to be true
in the equal parameter case (see [13]) and some cases with unequal parameters
example, the explicit results on typeI2(m) in [15], on typeBn in [2], and on typeF4 in [5]).
The important point about (C) is that the constructible characters can be easily dete
by a recursive procedure, using the induction of characters from parabolic subgroupW .

Summary. Given an abelian groupΓ with a total order specified byΓ+ ⊂ Γ and a choice
of parameters{vs | s ∈ S} ⊂ Γ+, we obtain

• a collection of polynomialsP∗
y,w ∈ Z[Γ−] for all y < w in W ;

• a collection of polynomialsMs
y,w ∈ Z[Γ ] wheneversy < y < w < sw.

These data determine, in a purely combinatorial way, a pre-order relation�L onW and
the corresponding partition ofW into left cells and two-sided cells. Finally, we obtain a
of characters ofW (the characters carried by the left cells).

Now let us specialise the above setting to the case where the parameters of the Iw
Hecke algebra are given by a weight function. Following [15], a weight function oW

is a functionL :W → Z such thatL(ww′) = L(w) + L(w′) for all w,w′ ∈ W such that
l(ww′) = l(w) + l(w′). Such a function is determined by its valuesL(s) on S which are
subject only to the condition thatL(s) = L(s′) for anys �= s′ in S such that the order ofss′
is finite and odd. (See Matsumoto’s lemma [7, §1.2].) We shall only consider weight
tionsL such thatL(s) > 0 for all s ∈ S. Let A = Z[v, v−1] wherev is an indeterminate
We have a corresponding Iwahori–Hecke algebraH with parameters{vL(s) | s ∈ S}. Thus,
H has anA-basis{Tw | w ∈ W } and the multiplication is determined by the formula

Ts Tw =
{

Tsw, if l(sw) > l(w),

Tsw + (
vL(s) − v−L(s)

)
Tw, if l(sw) < l(w).

(2.10)

Now consider the abelian group{vn | n ∈ Z} with the total order specified by{vn | n > 0}.
Thus, as above, we have a corresponding Kazhdan–Lusztig basis{Cw | w ∈ W } of H .
Consequently, we obtain

• a collection of polynomialsP ∗
y,w ∈ v−1Z[v−1] for all y < w in W ;

• a collection of polynomialsMs
y,w ∈ Z[v, v−1] wheneversy < y < w < sw.

As before, these data determine a pre-order relation�L onW and the corresponding par
tion of W into left cells and two-sided cells; furthermore, we obtain the characters carr
by the left cells ofW .

The following result establishes a link between the above two situations, where w
an abelian groupΓ with a total order specified byΓ+ ⊂ Γ and a choice of paramete
{vs | s ∈ S} ⊂ Γ+ on the one hand, and a weight functionL on the other hand. As abov

1 In a recent preprint, “Left cells and constructible representations” (available at http://arXiv.org/ma
0404510), the author has shown that (C) follows from the general conjectures of Lusztig [15, 14.2].
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denote byP∗
y,w andMs

y,w the polynomials inZ[Γ ] arising in the first case, and denote

P ∗
y,w andMs

y,w the polynomials inZ[v, v−1] arising in the second case.

We now define two subsetsΓ (a)
+ (W),Γ

(b)
+ (W) ⊆ Γ+. First, let Γ (a)

+ (W) be the set
of all γ ∈ Γ+ such thatγ −1 occurs with non-zero coefficient in a polynomialP∗

y,w for
somey < w in W . Next, for anyy,w ∈ W and s ∈ S such thatMs

y,w �= 0, we write

Ms
y,w = n1γ1 + · · · + nrγr where 0�= ni ∈ Z, γi ∈ Γ and γ −1

i−1γi ∈ Γ+ for 2 � i � r.

We letΓ (b)
+ (W) be the set of all elementsγ −1

i−1γi ∈ Γ+ arising in this way, for anyy,w, s

such thatMs
y,w �= 0. Finally, we setΓ+(W) := Γ

(a)
+ (W) ∪ Γ

(b)
+ (W).

Proposition 2.10. Assume that we have a ring homomorphism

σ :Z[Γ ] → Z
[
v, v−1], vs �→ vL(s) (s ∈ S)

such that

σ
(
Γ+(W)

) ⊆ {
vn

∣∣ n > 0
}
. (∗)

Thenσ(P∗
y,w) = P ∗

y,w for all y < w in W andσ(Ms
y,w) = Ms

y,w for any s ∈ S such that
sy < y < w < sw. Furthermore, the relations�L, ∼L, �LR, and�LR onW defined with
respect to the weight functionL are the same as those with respect toΓ+ ⊂ Γ , and so are
the corresponding representations ofW .

Proof. The mapσ induces a ring homomorphism

σ̂ : H → H,
∑
w

aw Tw �→
∑
w

σ(aw)Tw.

We haveσ̂ (h) = σ̂ (h) for all h ∈ H. Thus, applyinĝσ to (2.4), we obtain

σ̂ (Cw) = σ̂ (Cw) and σ̂ (Cw) = Tw +
∑
y∈W
y<w

σ
(
P∗

y,w

)
Ty

for any w ∈ W . Now condition (∗) implies thatσ(Γ−) ⊆ {vn | n < 0} and soσ(P∗
y,w)

is either 0 or an integral linear combination of termsvn with n < 0. Thus, the element
σ̂ (Cw) satisfy the defining properties for the Kazhdan–Lusztig basis ofH and so we mus
haveσ̂ (Cw) = Cw for all w ∈ W . This also shows thatσ(P∗

y,w) = P ∗
y,w for all y < w. Now

applyσ̂ to (2.6). This yields the equation

TsCw = Csw − vL(s)Cw +
∑
y<w
sy<y

σ
(
Ms

y,w

)
Cy if sw > w.

Thus, we haveMs
y,w = σ(Ms

y,w) if sy < y < w < sw. Finally, we claim that

Ms
y,w �= 0 �⇒ Ms

y,w = σ
(
Ms

y,w

) �= 0. (†)
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Indeed, ifMs
y,w �= 0, we writeMs

y,w = n1γ1 + · · · + nrγr where 0�= ni ∈ Z andγ −1
i−1γi ∈

Γ
(b)
+ (W). By condition (∗), we haveσ(γ −1

i−1γi) = vai with ai > 0 for all i. Consequently
Ms

y,w = σ(Ms
y,w) is a combination of pairwise different powers ofv and, hence, non-zero

Thus, (†) holds.
So we conclude that two elements satisfyy �L w with respect toΓ+ ⊂ Γ if and only if

they satisfy the analogous relation with respect to the weight functionL. Thus, the relations
�L, ∼L, �LR and∼LR are the same in the two situations, and so are the correspo
representations ofW . �

In order to deal with “distinguished involutions” as in Theorem 1.2, we shall nee
following remark.

Remark 2.11. In the above setting, letw ∈ W and write

(a) P∗
1,w = δ−1

w (nw + Z-combination ofγ ∈ Γ−),

whereδw ∈ Γ+ and 0�= nw ∈ Z. Thus,δ−1
w is the highest monomial (with respect to t

total order specified byΓ+ ⊂ Γ ) occurring inP∗
1,w. Thenδ1 = 1 andδw ∈ Γ+(W) for

w �= 1.
Furthermore, given a left cellC (with respect toΓ+ ⊂ Γ ), we write

(b) {δw | w ∈ C} = {γ1, γ2, . . . , γm}, whereγ −1
i−1γi ∈ Γ+ for 2� i � m.

Let Γ ′+(W) be the union ofΓ+(W), the set of all elementsγ −1 whereγ occurs in a
Z-combination as in (a) (for anyw ∈ W ), and the set of all elementsγ −1

i−1γi (2� i � m) as
in (b) (for any left cellC wherem � 2). Assume that

σ
(
Γ ′+(W)

) ⊆ {
vn

∣∣ n > 0
}
. (∗′)

Then, writingσ(δw) = v∆(w) where∆(w) ∈ Z�0, we have

P ∗
1,w = nwv−∆(w) + strictly smaller powers ofv.

Furthermore, if the functionw �→ δw reaches its minimum at exactly one element in a
cell C, then so does the functionw �→ ∆(w).

Example 2.12. Let W = 〈s, t〉 be a dihedral group of orderm � 4, wherem is even. Let
vs andvt be two independent indeterminates and consider the ring of Laurent polyno
A = Z[v±1

s , v±1
t ]. Let Γ = {vi

sv
j
t | i, j ∈ Z} and consider the total order specified by

Γ+ = {
vi
sv

j
t

∣∣ i > 0
} ∪ {

v
j
t

∣∣ j > 0
}
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(a lexicographic order wherevs > vt ). The polynomialsPy,w have been determined in
dependently in [7, Exercise 11.4] and in [15, Chapter 7]. Lety < w and writevwv−1

y =
v

ms
s v

mt
t wherems,mt � 0. Then

Py,w =




mt∑
i=0

(−1)iv2i
t , if w < tw,w < wt, andy � tsw < sw,

1+ v2
t , if w < sw,w < ws, andy � stw < tw,

1, otherwise.

TheM-polynomials are given by

Ms
y,w =

{
vsv

−1
t + v−1

s vt , if l(w) = l(y) + 1, sy < y < w < sw,

1, if l(w) = l(y) + 3, sy < y < w < sw.

All other M-polynomials are 0. Now consider a weight functionL onW such that

L(s) > L(t) > 0.

Let v be another indeterminate; then we have a ring homomorphism

σ :Z[Γ ] → Z
[
v, v−1], vi

sv
j
t �→ vL(s)i+L(t)j .

We claim that condition (∗) in Proposition 2.10 is satisfied. For this purpose, we first hav
determine the monomials which can occur in a polynomialP∗

y,w for y < w. Writevwv−1
y =

v
ms
s v

mt
t as above. Sincey < w, we havems > 0 or mt > 0. If w < tw, w < wt , and

y � tsw < sw, thenw has a reduced expression which starts and ends withs. Sincey

is a subexpression ofw, we conclude thatms � mt . HenceP∗
y,w is a linear combination

of monomialsv−ms
s v

j
t wherej � mt � ms . On the other hand, ifw < sw, w < ws, and

y � stw < tw, thenms � 1 andmt � 1. SoP∗
y,w is a linear combination of monomia

v
−ms
s v

j
t wherej � 1. Finally, in the cases wherePy,w = 1, we haveP∗

y,w = v
−ms
s v

−mt
t .

Thus, we find that

Γ+(W) ⊆ {
vi
sv

j
t

∣∣ i � 0, i + j � 0, (i, j) �= (0,0)
}
.

Now, if i � 0 and i + j � 0, thenL(s)i + L(t)j � L(t)i + L(t)j = L(t)(i + j) � 0.
Furthermore, ifi > 0, then the first inequality is strict and soL(s)i + L(t)j > 0; while if
i = 0, thenj > 0 and soL(s)i + L(t)j > 0. Next, we also see that the required condit
holds for the monomials occurring in the polynomialsMt

y,w. Thus, (∗) holds.
We conclude thatP ∗

y,w = σ(P∗
y,w) for all y < w in W . Thus, for any weight function

such thatL(s) > L(t) > 0, the corresponding polynomialsP ∗
y,w are obtained by specia

isation from the polynomialsP∗
y,w which have been determined for one fixed choice

Γ+ ⊂ Γ . Furthermore, the partition ofW into left cells is the same for all weight fun
tions such thatL(s) > L(t) > 0 (and it is given by the partition into left cells with respe
to Γ+ ⊂ Γ ). An explicit description of these left cells is given in [15, Chapter 8]. T
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distinguished involutions are 1,s, t , tst , tw0, w0. For the left cell representations a
constructive representations, see also [5, §6].

Definition 2.13. Let L,L′ be two weight functions onW . We say thatL,L′ are Γ+-
equivalentif there exists an abelian groupΓ , a total order specified byΓ+ ⊂ Γ and a
set of parameters{vs | s ∈ S} ⊂ Γ+ such that the following holds:

(a) There exist ring homomorphismsσ,σ ′ :Z[Γ ] → Z[v, v−1] such thatσ(vs) = vL(s)

andσ ′(vs) = vL′(s) for all s ∈ S.
(b) Condition (∗) in Proposition 2.10 is satisfied for bothσ andσ ′.

We say thatL,L′ are generically equivalentif L = L′ or if there exists a sequenc
of weight functionsL = L0,L1, . . . ,Ln = L′ and abelian groupsΓ1, . . . ,Γn such that
Li−1,Li are (Γi)+-equivalent with respect to a total order specified by(Γi)+ ⊂ Γi for
1 � i � n. In particular, generically equivalent weight functions arecell-equivalent, that is,
they give rise to the same partition ofW into left cells.

Proposition 2.14. Assume thatW is finite and letw0 ∈ W be the longest element. Th
there exists a constantN � 8l(w0)

3 such that any weight function onW is generically
equivalent to a weight functionL such that1 � L(s) � N for all s ∈ S.

The proof will be given in Section 3 (see Corollary 3.6). Note that, sinceW is finite,
there clearly exists some constantN having the above property. The point about Prop
tion 2.14 is that we can give an explicit bound forN . We have not tried to obtain an optim
bound theoretically. However, the proofs of Proposition 3.5 and Corollary 3.6 will s
how to determine such a bound efficiently.

Remark 2.15. Let L :W → Z be a weight function such thatL(s) > 0 for all s ∈ S. Let
d > 0 be a positive integer. Then the functionLd :W → Z defined byLd(w) := dL(w)

also is a weight function, and we leave it asan (easy) exercise to the reader to ch
that L,Ld are generically equivalent. Thus, in order to classify weight functions u
generic equivalence, it will be sufficient to consider only those weight functionsL such
that gcd({L(s) | s ∈ S}) = 1.

Example 2.16. In practice, the cell-equivalence classes will be determined by a s
weight functions whose values are bounded by a constantN which is much smaller tha
the value given in Proposition 2.14. For example, ifW = 〈s, t〉 is a dihedral group of type
I2(m) (with m � 4 even), then we may takeN = 2. Indeed, let us specify a weight functio
L :W → Z by the pair(a, b) such thatL(s) = a andL(t) = b. Then, by Example 2.12
there are exactly three cell-equivalence classes of weight functions:

L1 = {
(a, b) | a = b > 0

}
, representative:(1,1),

L2 = {
(a, b) | a > b > 0

}
, representative:(2,1),

L = {
(a, b) | b > a > 0

}
, representative:(1,2).
3
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In fact, the above computations show that these are even the generic equivalence class
If W is of typeF4, we will see in Section 4 that there are 7 cell-equivalence class

weight functions.
Now letW be of typeBn, with diagram given as follows:

Bn � < � � � � � �

t s1 s2 sn−1

Here, the generatorssi are all conjugate, whilet ands1 are not conjugate. Thus, a weig
functionL :W → Z is uniquely specified by the values

b := L(t) > 0 and a := L(s1) = L(s2) = · · · = L(sn−1) > 0.

The best bound does not yet seem to be known. Recently, Bonnafé and Iancu have
that all weight functions such thata/b > n − 1 are cell-equivalent. Experiments wi
CHEVIE lead to the following general conjecture.

Conjecture 2.17. In typeBn with diagram and weight function as specified above, we h
the following cell-equivalence classes of weight functions:

L1 = {
(a, a, a, . . . , a) | a > 0

}
(equal parameter case),

Li = {
(ia, a, a, . . . , a) | a > 0

}
(where2 � i � n − 1),

Li,i−1 = {
(b, a, a, . . . , a) | ia > b > (i − 1)a � 0

}
(where1 � i � n − 1),

Lasymp=
{
(b, a, a, . . . , a) | b > (n − 1)a > 0

}
.

(The functions inLasympcorrespond to the case treated by Bonnafé–Iancu[2].)

Furthermore, if (C) in Section 2 holds, then all left cell representations with respe
L will be irreducible, unless we haveL ∈ Li for some 1� i � n − 1 (see [15, 22.25]); if
L ∈ Li for somei, then the left cell representations will be given as in [15, 22.24].

The above conjecture is a slightly different version of a part of several conjectures th
were formulated by Bonnafé (private communication). Using ourCHEVIE-program, we
have verified that Conjecture 2.17 holds forB3 andB4.

The above results are only concerned with finite Coxeter groups. It would be inter
to study equivalence classes of weight functions for affine Weyl groups.

3. On the generic equivalence classes of weight functions

We place ourselves in the general setting whereW is any Coxeter group with gener
torsS and where we are given an abelian groupΓ , a total order specified byΓ+ ⊂ Γ and
a set of parameters{vs | s ∈ S} ⊂ Γ+ for the corresponding Iwahori–Hecke algebra ofW .
One of the aims of this section is to provide a proof of Proposition 2.14. Our first tas
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be to get some control on the degrees of the monomials that might occur in the poly
alsP∗

y,w andMs
y,w. Now, Lusztig gives some rather explicit such bounds, but only in

setting involving a weight function, and these are not entirely sufficient for our purp
To illustrate our point, consider the following example.

Example 3.1. Let W = 〈s, t〉 be a dihedral group as in Example 2.12. Consider a we
functionL whereL(s) = a > 1 is a big number andL(t) = 1. Then [15, Proposition 6.4
tells us thatMs

y,w is a Z-linear combination of powersvn with −a + 1 � n � a − 1 and
n ≡ L(w)−L(y)−L(s) mod 2. So, a priori,Ms

y,w could be a polynomial involving man
non-zero terms. However, from the formula given in Example 2.12 and Proposition
we see thatMs

y,w only involves very few terms:

Ms
y,w = σ

(
Ms

y,w

) =
{

va−1 + v1−a, if l(w) = l(y) + 1, sy < y < w < sw,

1, if l(w) = l(y) + 3, sy < y < w < sw.

To explain this behaviour, we need to establish some bounds in the general framewo
respect to an abelian groupΓ and a total order on it.

Lemma 3.2. Let y,w ∈ W be such thaty � w. Then the following hold:

(a) vwv−1
y P∗

y,w is a polynomial in{v2
s | s ∈ S}, with constant term1.

(b) vwv−1
y P∗

y,w is a polynomial in{v2
s | s ∈ S}, with constant term0.

Proof. The following proof is more or less a copy of that of [15, Proposition 5.4]. Howe
in [15], Lusztig exclusively considers the situation involving a weight function. Thu
order to show that all the arguments go through in the general case, we include the
here. First, we shall need theR-polynomials in the general setting, as defined in [10].
y ∈ W , we have

Ty = T−1
y−1 =

∑
x∈W

Rx,yTx, whereRx,y ∈ Z[Γ ].

We have the following recursion formula. Ifsy < y for somes ∈ S, then

Rx,y = Rsx,sy + (
vs − v−1

s

)
Rx,sy, if sx > x,

Rx,y = Rsx,sy, if sx < x.

(Same proof as in [15, Lemma 4.4].) Using the above recursion formula, one easily
thatRy,y = 1 andRx,y = 0 unlessx � y. Furthermore,

vyv−1
x Rx,y ∈ Z

[
v2
s

∣∣ s ∈ S
]
, with constant term(−1)l(y)−l(x). (∗)

(Same proof as in [15, Lemma 4.7].) The Kazhdan–Lusztig polynomials and theR-poly-
nomials are related by the followingidentity (see [10, Proposition 2]). We have
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P∗
x,w − P∗

x,w =
∑

x<y�w

Rx,yP∗
y,w for all x < w in W.

Now, for the proof of (a) and (b), we proceed by induction onl(w) − l(y). If y = w, then
P∗

w,w = 1 and there is nothing to prove. Now assume thaty < w. Multiplying both sides of
the identity relating Kazhdan–Lusztig polynomials andR-polynomials withvwv−1

y yields

vwv−1
y P∗

y,w − vwv−1
y P∗

y,w =
∑

y<x�w

(
vxv−1

y Ry,x

)(
vwv−1

x P∗
x,w

)
.

By induction and (∗), all terms on the right-hand side are polynomials in{v2
s | s ∈ S}. Hence

so is the left-hand side. SinceP∗
y,w andP∗

y,w have no terms in common, we conclude t

bothvwv−1
y P∗

y,w andvwv−1
y P∗

y,w are polynomials in the variablesv2
s (s ∈ S). Now consider

the constant terms on both sides of the above equation. We begin with the right-han
By induction and (∗), it has constant term

∑
y<x�w

(−1)l(x)−l(y) · 1 = −1+ (−1)l(y)
∑

y�x�w

(−1)l(x) = −1,

where the last equality holds by [15, Proposition 4.8] (an identitydue to D.N. Verma)
It remains to observe thatvwv−1

y P∗
y,w ∈ Z[Γ+] and so the constant term is 0. Hence

constant term of−vwv−1
y P∗

y,w equals−1, as required. �
Lemma 3.3. Let y,w ∈ W ands ∈ S be such thatsy < y < w < sw. Thenvsvwv−1

y Ms
y,w

is a polynomial in{v2
t | t ∈ S}, with constant term0.

Proof. As in the proof of [10, Proposition 4], one considers the identity (aris
from (2.6)):

TsCw − Csw + vsCw −
∑
y<w
sy<y

Ms
y,w Cy = 0.

Expressing all terms in the basis{Ty | y ∈ W } of H, the coefficient of everyTy must be
zero. That coefficient is given by

fy = vsP∗
y,w + P∗

sy,w − P∗
y,sw −

∑
y�z<w
sz<z

P∗
y,zMs

z,w.

Hence, given thatfy = 0, we obtain

Ms
y,w = P∗

sy,w − P∗
y,sw + vsP∗

y,w −
∑

y<z<w

P∗
y,zMs

z,w.
sz<z
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Sincesy < y and sw > w, we havevy = vsvsy andvsw = vsvw . Thus, multiplying the
above equation byvsvwv−1

y yields that

vsvwv−1
y Ms

y,w = Psy,w − Py,sw + v2
s Py,w −

∑
y<z<w
sz<z

Py,z

(
vsvwv−1

z Ms
z,w

)
.

Hence, the assertion follows by induction onl(w) − l(y) and using Lemma 3.2.�
From now on, we assume thatW is finite and letw0 ∈ W be the longest element. The

by the classification of finite Coxeter groups, unequal parameters can only occurW

of typeI2(m) (with m even),Bn (anyn � 3) or F4. Furthermore, in these cases, a wei
function onW may take at most 2 different values on the generators ofW . Thus, we will
now consider an abelian groupΓ = {xiyj | i, j ∈ Z} wherex andy are independent inde
terminates and whereΓ+ ⊂ Γ is any total order. Furthermore, letS = Sx �Sy be a partition
(whereSx,Sy �= ∅) such that no generator inSx is conjugate to any generator inSy . The
parameters of the corresponding Iwahori–Hecke algebra will be assumed to be give

vs = x (if s ∈ Sx) and vt = y (if t ∈ Sy).

Lemma 3.4. The monomials involved in any polynomialP∗
y,w or in any polynomialMs

y,w

are of the formxiyj where−l(w0) < i, j < l(w0). In particular, we haveΓ+(W) ⊆ {xiyj |
−l(w0) < i, j < l(w0)}.

Proof. Let y,w ∈ W , y � w. Thus, sincey is a subexpression ofw, we havevwv−1
y =

xayb wherea, b � 0. Furthermore, let us writeP∗
y,w = ∑

(i,j)∈I nij x
iyj whereI ⊆ Z × Z

is a finite subset andnij ∈ Z. Thus, using Lemma 3.2, we have

vwv−1
y P∗

y,w = ∑
(i,j)∈I nij xa+iyb+j ∈ Z

[
x2, y2

]
,

vwv−1
y P∗

y,w = ∑
(i,j)∈I nij xa−iyb−j ∈ Z

[
x2, y2

]
.

Now let (i, j) ∈ I . We certainly have 0� a, b < l(w0). This yields 0� a + i < l(w0) + i

and 0� a− i < l(w0)− i. Consequently, we have−l(w0) < i < l(w0). A similar argument
shows that we also have−l(w0) < j < l(w0).

Now assume thatsy < y < w < sw and writeMs
y,w = f + c + f wherec ∈ Z and

f ∈ Z[x±1, y±1]. Letf = ∑
(i,j)∈J fij xiyj whereJ ⊆ Z×Z is a finite subset andfij ∈ Z.

As above, we see thatvsvwv−1
y = xayb where 0� a, b < l(w0). (Note thaty < w < w0.)

Using Lemma 3.4, this yields

vsvwv−1
y Ms

y,w = xaybf + cxayb + xaybf

= cxayb +
∑

(i,j)∈J

fij

(
xa+iyb+j + xa−iyb−j

) ∈ Z
[
x2, y2].

Arguing as above, we see that−l(w0) < i, j < l(w0) for all (i, j) ∈ J . �
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Now, a weight functionL :W → Z is uniquely specified by the values

a := L(s) > 0 (wheres ∈ Sx) and b := L(t) > 0 (wheret ∈ Sy).

We shall writeL = La,b. Let us consider the set

E := {
x ∈ Q>0 | x = ±i/j wherei, j �= 0 and − 2l(w0) < i, j < 2l(w0)

}
and writeE = {x1, . . . , xn} where 0< x1 < x2 < · · · < xn. By convention, we setx0 = 0
andxn+1 = ∞. For any 0� k � n, we consider the set of weight functions

Lk := {La,b | a, b > 0 such thatxk < b/a < xk+1}.

Let us fix 0� k � n and writexk = d/c wherec, d are integers such that 0� c, d < 2l(w0)

andc �= 0. Then we consider the total order inΓ specified by

Γ
(k)
+ = {

xiyj
∣∣ ci + dj > 0

} ∪ {
xiyj

∣∣ ci + dj = 0 andi > 0
}

if d � c, or

Γ
(k)
+ = {

xiyj
∣∣ ci + dj > 0

} ∪ {
xiyj

∣∣ ci + dj = 0 andj > 0
}

if d < c

(a weighted lexicographic order). Note that, ifk = d = 0, then

Γ
(0)
+ = {

xiyj
∣∣ i > 0, j ∈ Z

} ∪ {
yj

∣∣ j > 0
}

(a pure lexicographic order).

Proposition 3.5. In the above setting, all the weight functions inLk are Γ
(k)
+ -equivalent.

Proof. Let a, b > 0 be such thatxk < b/a < xk+1. The idea is to get some control on t
setΓ+(W) ⊆ Γ+ and to show that condition (∗) in Proposition 2.10 is satisfied for the rin
homomorphism

σa,b :Z[Γ ] → Z
[
v, v−1], xiyj �→ vai+bj

and the total orderΓ (k)
+ ⊂ Γ specified above. Now, by Lemma 3.4, we have

Γ+(W) ⊆ {
xiyj

∣∣ xiyj ∈ Γ+ and−2l(w0) < i, j < 2l(w0)
}
.

To check condition (∗), assume first thatc < d . Let xiyj ∈ Γ
(k)
+ (W). In particular, this

means thatci + dj � 0. Furthermore, we have−2l(w0) < i, j < 2l(w0) and so±i/j ∈ E .
Now, we must show thatai + bj > 0. If i = 0 or j = 0, this is clear. Ifj > 0, then we have

ai + bj = a(i + jb/a) > a(i + xkj) = a(i + jd/c) = (a/c)(ci + dj) � 0,
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as required. Next assume thatj < 0. Then, by the definition ofΓ (k)
+ (recall that we are

assumingc < d), we must haveci + dj > 0 and so−i/j > d/c = xk . Now, if we had
ai + bj � 0, then we would obtain

xk < −i/j � b/a < xk+1

and so−i/j /∈ E , a contradiction. Thus, condition (∗) holds. The argument for the ca
whered � c is completely analogous.�
Corollary 3.6. Let E = {x1, . . . , xn} as above. LetL = La,b be any weight function onW
wherea, b > 0.

(1) If b/a = xk for some1 � k � n, thenLa,b is generically equivalent toLc,d where
0 < c,d < 2l(w0) are such thatb/a = d/c.

(2) If b/a /∈ E , then there exist integers1 � a′, b′ � 8l(w0)
3 such thatLa,b is generically

equivalent toLa′,b′ .

Proof. Recall thatx0 = 0 andxn+1 = ∞. Hence there exists somek ∈ {0,1, . . . , n} such
thatxk � b/a < xk+1. We writexk = d/c where 0� c, d < 2l(w0) andc �= 0. If xk = b/a,
then La,b,Lc,d are equivalent by Remark 2.15. Thus, (1) is proved. Now assume
xk < b/a < xk+1. Since bothxk andxk+1 are rational numbers where the numerator
the denominator are strictly bounded by 2l(w0), we certainly have 1/4l(w0)

2 < xk+1 −xk.
Furthermore, note thatxn < 2l(w0). Thus, we can find some integersa′, b′ such that
1 � a′, b′ � 8l(w0)

3 andxk < b′/a′ < xk+1. ThenLa,b andLa′,b′ are equivalent by Propo
sition 3.5. Thus, (2) is proved.�
Example 3.7. Assume thata, b > 0 are such thata/b � 2l(w0). ThenLa,b is generically
equivalent to the weight functionL2l(w0),1.

To see this, note that 1/2l(w0) < x1. Hence, we are in the case whereb/a �
1/2l(w0) < x1. Thus, we haveLa,b ∈ L0. By Proposition 3.5, all weight functions inL0

are generically equivalent. It remains to note thatL2l(w0),1 also belongs toL0.
This example provides a more formal justification for [2, Remark 6.1].

4. Kazhdan–Lusztig polynomials and left cells in type F4

Our aim is to work out the cell-equivalence classes of weight functions on a Co
group of typeF4. Throughout this section, letW be a Coxeter group of typeF4, with
generating setS = {s1, s2, s3, s4} and Dynkin diagram given as follows:

F4
s1 s2 s3 s4
� � � �>
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There are 25 irreducible representations ofW , denoted by

11,12,13,14,21,22,23,24,41,42,43,44,45,61,62,81,82,83,84,91,92,93,94,121,161;
see [11, 4.10] or [7, 5.3.6 and Table C.3]. The generatorss1, s2 are conjugate inW , and
so are the generatorss3, s4 (while s2 ands3 are not conjugate). Thus, a weight functi
L:W → Z is uniquely determined by

L(s1) = L(s2) = a > 0 and L(s3) = L(s4) = b > 0.

We shall denote such a weight function byL = La,b. By the symmetry of the above dia
gram, we may assume throughout thata � b.

Let x, y be independent indeterminates overZ and consider the abelian group

Γ = {
xiyj

∣∣ i, j ∈ Z
}
.

Let v be another indeterminate. Then we have a ring homomorphism

σa,b :Z[Γ ] → Z
[
v, v−1], xiyj �→ vai+bj .

Now, in typeF4, we havel(w0) = 24 and so, by Corollary 3.6, we know thatLa,b is
generically equivalent to a weight functionLc,d where 1� c � d � 483 = 110592. In
principle, we could just go through all these possibilities, determine the corresponding lef
cell representations and so on—but these are far too many cases! However, now
use ourCHEVIE-program to compute explicitly all the polynomialsP∗

y,w andMs
y,w for any

total order onΓ . The explicit knowledge of these polynomials will yield much shar
bounds than the general bounds obtained in Lemma 3.4.

As a first illustration of this idea, we consider the following case.

Lemma 4.1. Consider the total order onΓ specified by

Γ+ = {
xiyj

∣∣ j > 0, i ∈ Z
} ∪ {

xi
∣∣ i > 0

}
.

Then condition(∗) in Proposition2.10 is satisfied for all weight functionsLa,b such that
b/a > 4. In particular, all these weight functions areΓ+-equivalent.

Proof. The idea is basically the same as in the proof of Proposition 3.5. In fact
general strategy in Corollary 3.6 shows that allLa,b are Γ+-equivalent, provided tha
b/a > 2l(w0) = 48. But now we use ourCHEVIE-program to compute explicitly all th
polynomialsP∗

y,w andM∗
y,w (with respect toΓ+ ⊂ Γ ). By inspection of all these polyno

mials, we find that

Γ+(W) ⊆ {
xi

∣∣ i > 0
} ∪ {

xiyj
∣∣ j > 0, i + 4j � 0

}
.

Now let us check that condition (∗) in Proposition 2.10 holds forσa,b provided thatb > 4a.
Let i, j ∈ Z be such thatxiyj ∈ Γ+(W). We must show thatai + bj > 0. If j = 0, then



M. Geck / Journal of Algebra 281 (2004) 342–365 359

s
1.

ht

f
nt of
i > 0 and soai + bj = ai > 0. On the other hand, ifj > 0 andi + 4j � 0, thenai + bj =
a(i + jb/a) > a(i + 4j) � 0, as required.

We can now apply Proposition 2.10 and conclude that all weight functionsLa,b such
thatb/a > 4 areΓ+-equivalent. �

In order to deal with weight functionsLa,b such thatb/a < 4, we now proceed a
follows. We look again at the elements inΓ+(W) computed in the proof of Lemma 4.
Let

E = {
x ∈ Q>0

∣∣ x = ±i/j wherej �= 0, xiyj ∈ Γ+(W)
}
.

Then we note that the largest element ofE below 4 is 3. This leads us to consider weig
functionsLa′,b′ whereb′/a′ > 3.

Lemma 4.2. Consider the total order onΓ specified by

Γ+ = {
xiyj

∣∣ i + 3j > 0
} ∪ {

x−3j yj
∣∣ j > 0

}
.

Then condition(∗) in Proposition2.10 is satisfied for all weight functionsLa,b such that
4 > b/a > 3. In particular, all these weight functions areΓ+-equivalent.

Proof. This is completely analogous to that of Lemma 4.1. Now we find that

Γ+(W) ⊆ {
xi

∣∣ i > 0
} ∪ {

xiyj
∣∣ j > 0, i + j � 0

}
∪ {

xiyj
∣∣ i > −j > 0, −i/j � 4

} ∪ {
xiyj

∣∣ −i > j > 0, −i/j � 3
}
.

As before, we see that condition (∗) in Proposition 2.10 holds, provided that 4a > b > 3a.
Indeed, leti, j be such thatxiyj ∈ Γ+(W). If j = 0, theni > 0 and soai + bj = ai > 0. If
j > 0 andi + j � 0, thenai + bj > ai + 3aj > a(i + j) � 0. If i > −j > 0 and−i/j � 4,
thenai + bj = i(a + bj/i) > ia(1+ 4j/i) � 0. Finally, if −i > j > 0 and−i/j > 3, then
ai + bj = j (ai/j + b) > aj (i/j + 3) � 0, as required. �

As before, we now look again at the elements inΓ+(W) computed in the proof o
Lemma 4.2. DefineE in a similar way as above. Then we note that the largest eleme
E below 3 is 5/2. This leads us to the following case.

Lemma 4.3. Consider the total order onΓ specified by

Γ+ = {
xiyj

∣∣ 2i + 5j > 0
} ∪ {

x−5j y2j
∣∣ j > 0

}
.

Then condition(∗) in Proposition2.10 is satisfied for all weight functionsLa,b such that
3 > b/a > 5/2. In particular, all these weight functions areΓ+-equivalent.
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Proof. Again, this is completely analogous to that of Lemma 4.1. Now we find that

Γ+(W) ⊆ {
xi

∣∣ i > 0
} ∪ {

xiyj
∣∣ j > 0, i + j � 0

}
∪ {

xiyj
∣∣ i > 0, i + 3j � 0

} ∪ {
xiyj

∣∣ −i > j > 0, −i/j � 5/2
}
.

We omit further details. �
We now continue the above procedure. This yields the following cases.

Lemma 4.4. Consider the total order onΓ specified by

Γ+ = {
xiyj

∣∣ i + 2j > 0
} ∪ {

x−2j yj
∣∣ j > 0

}
.

Then condition(∗) in Proposition2.10 is satisfied for all weight functionsLa,b such that
5/2> b/a > 2. In particular, all these weight functions areΓ+-equivalent.

Proof. Again, this is completely analogous to that of Lemma 4.1. Now we find that

Γ+(W) ⊆ {
xi

∣∣ i > 0
} ∪ {

xiyj
∣∣ j > 0, i + j � 0

}
∪ {

xiyj
∣∣ i > −j > 0, −i/j � 5/2

} ∪ {
xiyj

∣∣ −i > j > 0, −i/j � 2
}
.

We omit further details. �
Lemma 4.5. Consider the total order onΓ specified by

Γ+ = {
xiyj

∣∣ 2i + 3j > 0
} ∪ {

x−3j y2j
∣∣ j > 0

}
.

Then condition(∗) in Proposition2.10 is satisfied for all weight functionsLa,b such that
2 > b/a > 3/2. In particular, all these weight functions areΓ+-equivalent.

Proof. Again, this is completely analogous to that of Lemma 4.1. Now we find that

Γ+(W) ⊆ {
xi

∣∣ i > 0
} ∪ {

xiyj
∣∣ j > 0, i + j � 0

}
∪ {

xiyj
∣∣ i > −j > 0, −i/j � 2

} ∪ {
xiyj

∣∣ −i > j > 0, −i/j � 3/2
}
.

We omit further details. �
Lemma 4.6. Consider the total order onΓ specified by

Γ+ = {
xiyj

∣∣ 3i + 4j > 0
} ∪ {

x−4j y3j
∣∣ j > 0

}
.

Then condition(∗) in Proposition 2.10is satisfied for all weight functionsLa,b such that
3/2> b/a > 4/3. In particular, all these weight functions areΓ+-equivalent.
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Proof. Again, this is completely analogous to that of Lemma 4.1. Now we find that

Γ+(W) ⊆ {
xi

∣∣ i > 0
} ∪ {

xiyj
∣∣ j > 0, i + j � 0

}
∪ {

xiyj
∣∣ i > −j > 0, −i/j � 3/2

} ∪ {
x−4jy3j

∣∣ j > 0
}
.

We omit further details. �
Lemma 4.7. Consider the total order onΓ specified by

Γ+ = {
xiyj

∣∣ i + j > 0
} ∪ {

x−j yj
∣∣ j > 0

}
.

Then condition(∗) in Proposition2.10 is satisfied for all weight functionsLa,b such that
4/3> b/a > 1. In particular, all these weight functions areΓ+-equivalent.

Proof. Again, this is completely analogous to that of Lemma 4.1. Now we find that

Γ+(W) ⊆ {
xi

∣∣ i > 0
} ∪ {

xiyj
∣∣ j > 0, i + j � 0

} ∪ {
xiyj

∣∣ i > 0, 3i + 4j � 0
}
.

We omit further details. �
Thus, we have finally covered all cases of unequal parameters. A detailed anal

the partition of left cells obtained in each case leads us to the following result.

Corollary 4.8. Let L = La,b and L′ = La′,b′ be two weight functions onW such that
b � a > 0 and b′ � a′ > 0. ThenL,L′ are cell-equivalent if and only ifL,L′ ∈ Li for
i ∈ {0,1,2,3}, whereLi are defined as follows:

L0 = {
(c, c, c, c) | c > 0

}
,

L1 = {
(c, c,2c,2c) | c > 0

}
,

L2 = {
(c, c, d, d) | 2c > d > c > 0

}
,

L3 = {
(c, c, d, d) | d > 2c > 0

}
.

In all cases, the left cell representations are precisely the constructible representatio
defined in[15, Chapter 22];in particular, if two weight functions define the same partit
of W into left cells, then they also give rise to the same set of left cell representation
partial order relation�LR on two-sided cells and the left cell representations are give
Tables1 and2. Furthermore, the statements in Theorems1.2and1.3hold for any weight
functionL.

Note that the list of constructible representations given in [15, §22.27, Case 1],
be corrected as specified in Table 2; see Remark 4.10 below.

Proof. Let L = Lc,d be any weight function onW whered � c > 0. In addition to the re
sults obtained in Lemmas 4.1–4.7, we use ourCHEVIE program to compute all the require
data in the cases where
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Table 1
Partial order on two-sided cells in typeF4

a = b

�14

� 45

�94
�
�

�
�
�82

�84
�
�

�
�
�121
�
�

�
�
�81

�83
�
�

�
�
�91

� 42

�11

b = 2a

�14

�24

�45

�12
���

��
�43

�92
�82

���
��

�161
���

��
�93

�44
�81

���
��

�13

�42

�23

�11

2a > b > a

�14

�24

�45

�22

�94
��

�84

�12

�43

�92

�161 ��

�82
�
�
�

�
�
�

��
�93

�44

�13

�83

�91 ��

�81
�
�
�

�
�
�

�21

�42

�23

�11

b > 2a

�14

�24
����

�12
�45

����

� 84
���

� �94
	

	
		 �22

�82

��
�161

�43

�92

�
�

���
� �81

�21

�91








��
� 83

�93

�44

�
�

����
�13

�42

����

�23

�11

A box indicates a two-sided cell with several constructible representations, see Table 2. Otherwise, the two-s
cell has only one irreducible, constructible res presentation.

Table 2
Left cell representations in typeF4

a = b

42 : 23+42,

21+42

121 : 93+61+121+44+161,

92+61+121+43+161,

41+92+93+62+121+2 · 161,

13+2 · 93+62+121+44+161,

12+2 · 92+62+121+43+161,

44 : 24+45,

22+45

b = 2a

13 : 13+83,

21+91,

91+83

161 : 61+121+161

62+121+161

41+161

12 : 12+84,

22+94,

94+84

b /∈ {a,2a}
161 : 61+121+161,

62+121+161,

41+161



M. Geck / Journal of Algebra 281 (2004) 342–365 363

nctions
he
y in-
e four
ft

repre-
sztig’s

ed in-
a total
r set
,

more
ils.

one

ws

:

e
ft

-
s

(1) {c, d} ∈ {(1,4), (1,3), (2,5), (1,2), (2,3), (3,4), (1,1)}.

Then, by Remark 2.15, we have covered all generic equivalence classes of weight fu
on W . In each of the above cases, ourCHEVIE program has automatically computed t
preorder relations�L and�LR and checked that Theorem 1.3 holds. Furthermore, b
spection of the partitions into left cells obtained in the various cases, we find the abov
cell-equivalence classes of weight functionsLi (0� i � 3). The decompositions of the le
cell representations are determined by explicit computations using the character table ofW .
By inspection, we see that the left cell representations are precisely the constructible
sentations as determined by Lusztig [15, §22.27] (modulo the error in Case 1 in Lu
list).

It remains to prove the statements in Theorem 1.2, concerning the distinguish
volutions. For this purpose, we use a similar procedure as before, beginning with
orderΓ+ ⊂ Γ as specified in Lemma 4.1. But now we have to work with the large
Γ ′+(W) defined in Remark 2.11 in each step and make sure that (∗′) holds. For example
the analogue of Lemma 4.1 now reads:

Let Γ+ ⊂ Γ be a pure lexicographic order as in Lemma4.1. Then condition(∗′) in
Remark2.11holds provided thatb/a > 9.

Then we continue with an analogue of Lemma 4.2 and so on. Thus, there will be
cases to be considered, but the whole argument is basically the same. We omit the deta
Once this is done, one can argue as follows. LetC be a left cell ofW (with respect to a
total orderΓ+ ⊂ Γ similar to one of the cases in Lemmas 4.1–4.7). By inspection,
checks that the following holds:

There exists a(unique) d0 ∈ C such thatδ−1
d0

δw ∈ Γ+ for everyw ∈ C \ {d0}.
(Here,δw is defined as in Remark 2.11.) Thus, we may regardd0 as adistinguished invo-
lution in C. Now, the fact that condition (∗′) in Remark 2.11 holds in these cases sho
that the functionw �→ ∆(w) restricted toC also reaches its minimum atd0 ∈ C and that
∆(w) > ∆(d0) for all w ∈ C \ {d0}. �
Remark 4.9. Let L,L′ be two weight functions such thatL(w) > 0 andL′(w) > 0 for
all 1 �= w ∈ W . Assume thatL,L′ give rise to the same partition ofW into left cells. By
inspection of the results obtained in Corollary 4.8 and its proof, we find the following

(a) LetD be the set of distinguished involutions with respect toL andD′ the analogous
set with respect toL′ (see Theorem 1.2). Then, quite remarkably, we haveD =D′. In
fact, we even have thatD = D′ if we just assume thatL andL′ give rise to the sam
set of left cell representations. (For example,L2,3 andL1,3 define the same set of le
cell representations, but the partitions into left cells are different.)

(b) As already implicitly stated in Corollary 4.8, the pre-order relation�LR defined with
respect toL is the same as that defined with respect toL′. (However, this is not nec
essarily the case for the left pre-order relation�L; for example, the weight function
L1,3 andL1,4 give rise to different pre-order relations�L.)
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Remark 4.10. Consider the case whereb = 2a > 0. Lusztig states in [15, 22.27, Case
that 13 ⊕ 21 and 12 ⊕ 22 are constructible. However, these representations are not
structible. (In fact, we just have to omit them from the list given by Lusztig.) Let us
some details about this. Thea-invariants of the irreducible representations ofW are given
by

a 0 a 2a 3a 5a 6a 7a 10a 11a 12a 15a 20a 25a 36a

ρ 11 23 42 13 44 93 41 92 43 82 12 45 24 14
21 81 61 22
91 62 94
83 121 84

161

For i ∈ {1,2,3,4}, let Wi be the parabolic subgroup ofW generated byS \ {si}. The max-
imal a-invariant of a representation ofWi (for i = 1,2,3,4) is given by 15a, 7a, 6a, or
12a, respectively. Furthermore, that maximal value is reached only at the sign represen
tion. Thus, since the restriction of 12 to Wi is not the sign representation, we conclude t
12 cannot occur in theJ -induction of any representation of anyWi . Hence 13 (obtained
from 12 by tensoring with sign) must occur in theJ -induction from some proper parabo
subgroup. Now, the restriction of 13 to W1 (typeC3) is given by(∅,3). Furthermore, this
representation is constructible. The restriction of 13 to W2 (type A1 × A2) is given by
(11) � (3). Furthermore, this representation is constructible. The restriction of 13 to W3
(typeA2 × A1) is given by(111) � (2). Furthermore, this representation is constructi
The restriction of 13 to W4 (typeB3) is given by(111,∅). Furthermore, the representati
(111,∅)+ (11,1) is constructible, and this is the only constructible representation in w
(111,∅) occurs; see [15, Chapter 22]. We have

JWW1

(
(∅,3)

) = 23, JWW3

(
(111) � (2)

) = 13 ⊕ 83,

JW
W2

(
(11) � (3)

) = 23, JWW4

(
(111,∅) + (11,1)

) = 13 ⊕ 83.

Thus, 13 ⊕ 83 is the only constructible representation ofW in which 13 occurs.

Remark 4.11. The caseb = 2a in typeF4 also shows that, in general, there no longer e
representations which would have similar properties as the “special” representati
the equal parameter case (see [9, §12]). Indeed, consider the two-sided cell containing 13.
Then the three constructible representations belonging to that two-sided cell do no
an irreducible constituent in common.
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