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Abstract

Following Lusztig, we consider a Coxeter groUptogether with a weight functioh. This gives
rise to the pre-order relatioq; and the corresponag partition of W into left cells. We introduce an
equivalence relation on weight functions such that, in particelaris constant on equivalent classes.
We shall work this out explicitly fo¥ of type F4 and check that several of Lusztig’s conjectures
concerning left cells with unequal parametersdhiol this case, even for those parameters which do
not admit a geometric interpretation. The proofs involve some explicit computationsQsEE.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

This paper is concerned with the computatad the Kazhdan—Lusztig polynomials, the
left cells and the corresponding representations of a finite Coxeter gvowjth respect
to a weight functionL. Following Lusztig [15], a weight function oM is a function
L:W — Z such thatL(ww’) = L(w) + L(w’) whenever (ww’) = l(w) + I[(w") where
[ is the length function orWW. As in most parts of [15], we shall only consider weight
functions such thak (w) > 0 for all w # 1.
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The case wheré is constant on the generatorsWfis known as the equal parameter
case. If, moreovenlV is a finite Weyl group, then there is a geometric interpretation for
the Kazhdan-Lusztig polynomials and this leads to many deep properties for which no
elementary proofs are known (see [12,14]). Recently, Lusztig [15] has formulated a number
of precise conjectures in the general casaioéqual parameters. Furthermore, Lusztig
proposes a geometric interpretation at least for those weight functions which arise in the
representation theory of finite groups of Lie type. (The complete list of theéseayiven in
[8, Table Il, p. 35].)

One of our aims here is to show that some of Lusztig’s conjectures hold fafrtype F4
and any weight function, even for thogewhich do not admit a geometric interpretation.

In type Fy4, with generators and diagram given by the diagram below, a weight funktion
is specified by two positive integetis= L(s1) = L(s2) > 0 andb := L(s3) = L(sg) > O:

S1 52 83 sS4
F4y o —ea=2 o

By explicit computations using theHEVIE-system [6], we obtain the following results.

Theorem 1.1. Let W be of typeF, and L any weight function oW with L(w) > O for
w # 1. Then the left cell representations Bf (with respect toL) are precisely the con-
structible representations, as defined by Lusftisy Chapter 22]

The above result is conjectured to hold in general by Lusztig [15, §22.29]. As far as
the partition of W into left cells is concerned, we shall see that there are only four es-
sentially different cass, according to whethér=a, b =2a, 2a > b > a, or b > 2a; see
Corollary 4.8 and Remark 4.9.

Theorem 1.2. Let W be of typeF, and L any weight function oW with L(w) > O for
w # 1. Forw € W, we defineA(w) € Z>o and0 # n,, € Z by the condition

P, =nyv~ 2" + strictly smaller powers of;  see Luszti§l5, 14.1]

Let C be a left cell of W (with respect toL). Then the functionw — A(w) reaches its
minimum at exactly one element®f denoted byl € C. We havel? = 1 andng. = £1.

(For the definition ofP},,, see Section 2.) The elemenmls are thedistinguished invo-
lutionswhose existence is predicted by Lusztig [15, Conjectures 14.2 (P1, P6, P13)]. The
following result is also part of those conjectures (P4, P9).

Theorem 1.3. Let W be of typeF, and L any weight function oW with L(w) > O for
w # 1. Foranyy, w € W, we have the following implication

y<rw and y~jpw =— y~puw.

(For the definition of the relations; , ~1, ~1 g, See Section 2.) The proofs of the above
three theorems will be given in Section 4 (see Corollary 4.8).
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In type F4, there is a geometric interpretation for the cases wherk) < {(1, 1), (1, 2),
(1,4)}; see [8, Table Il, p. 35]. To deal with arbitrary valuesdaaindb, we have to provide
a theoretical argument which shows that it is enough to consider only thedeere the
values on the generators are bounded by ateohsvhich can be explicitly computed in
terms of W. More precisely, in Definition 23, we introduce (for generd¥) an equiva-
lence relation on the set of weight functions, called “generic equivalence.” Two generically
equivalent weight functions give rise to the same partitiowahto left cells, the same left
pre-order relation and the same set of left cell representations. In Corollary 3.6, we show
that any weight function is generically equivalent to a weight function whose values on the
generators are bounded by a constant which can be computed efficiently.

It should be noted that the relation of “generic equivalence” is very strong. As far as
applications are concerned, one is interested in a weaker equivalence relation: we say that
two weight functions are “cell-equivalent” if they give rise to the same partitioWw afto
left cells. The notion of “generic equivalence” merely provides a convenient technical tool
for proving “cell-equivalence.”

Lusztig's results [15] on dihedral groups are interpreted in this framework in Exam-
ple 2.12. Conjecture 2.17 (found independently by Bonnafé) would yield a complete
description of the cell-equivalence classes of weight functions in Bjpdn any case,
cell-equivalence classes seem to be organised in a rather smooth way.

Both the results in typ&, and the evidence for the conjecture on tyfeare based on a
CHEVIE-program which we have developed, for computing the Kazhdan—Lusztig polyno-
mials, theM-polynomials, and the pre-order relatiods, <z for a finite Coxeter group
W and any choice of the parameters (eitgaren by independent indeterminates and a
monomial order on them, or given by a weight function). For example, this program sys-
tematically computes the polynomiafy’, for all pairsy < w in W; it also computes all
incidences of the Kazhdan—Lusztig pre-order relatic, w. The program automatically
checks some of Lusztig's conjectures (in particular, the properties expressed in the above
three theorems) and computes the characters carried by the various left cells. These pro-
grams have already been used in the computations reported in [7, §11.3] and [5, §7]. To
my knowledge, the first such programs (foaxhdan—Lusztig polynomials in the unequal
parameter case) were written by K. Bremke [3] who used them to comtgeaphs for
the irreducible representations of certain lwahori-Hecke algebras offyp&fe only re-
mark that, in the case of equal parameters, there is already a rather sophisticated theory for
the computation of Kazhdan—Lusztig polynomials; see Alvis [1] and Ducloux [4].

2. Total orderingsand weight functions

The basic references for this section at8é][and [15]. In the latter reference, Lusztig
studies the left cells of a Coxeter groip with respect to a weight functioh on W. In
the former reference, Lusztig considers a more abstract setting where left cells are defined
with respect to an abelian group and a total order on it. We will see in this section that the
more abstract setting can be used to show that two given weight functions actually give
rise to the same partition d¥ into left cells. (A similar agument has already been used,
for example, in [2].) This will provide the theoretical argument for showing that, in order
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to determine the left cells for all possible weight functionsWinit is actually enough to
consider a certain finite number of weight functions.

We begin by recalling the basic setting for the definition of Kazhdan—Lusztig polyno-
mials and left cells. LeW be a Coxeter group, with generating SeLet I" be an abelian
group (written multiplicatively) and\ = Z[I'] be the group algebra aof' over Z. Let
{vs | s € §} C I be a subset such that = v, whenever, r € S are conjugate iW. Then
we have a corresponding generic lwahori-Hecke algehravith A-basis{T,, | w € W}
and multiplication given by the rule

| Tsw, if [(sw) > [(w),
TsTw= {Tm + (vs - v;l)Tw, if [(sw) <Il(w); (2.1)
herel: W — N denotes the usual length function 8hwith respect taS. (Note that the
above element§,, are denoted;, in [10].)
Leta > a be the involution ofZ[I"] which takesg to g Lforanyg e I'. We extend it
toamapH — H, A — h, by the formula

doawTy=)Y auT b (aweZIl). (2.2)

weW weW

Thenh — h is in fact a ring involution.

Now assume that we have chosen a total ordering ofrhis is specified by a mul-
tiplicatively closed subsef’y € I' \ {1} such that we havé” = Iy 11 {1} LI I"_, where
I'_={g~'|g eI} Furthermore, we assume that

{vg |seS}C Iy (2.3)

Given a total ordering of" as above, we have a correspondifaghdan—Lusztig basis
of H, which we denote byC,, | w € W}. (Note that this basis is denoted by, in [10].)
The basis elemeri,, is uniquely determined by the conditions that

Cy=Cy, and C,=Ty+ Y P;,T,. (2.4)

yeW
y<w

whereP} € Z[I'_] for y < w. Here,< denotes the Bruhat—Chevalley order ¥h We

shall also se®;, , =1 for all w € W. For anyw € W we setv,, := vy, ---v5, Where
w=ys1---5, With 5; € S is a reduced expression. Then we actually have
Pyw:=vyv; P}, liesinZ[v? |1 € S] and has constantterm 1 (2.5)

see Lemma 3.2 below. We have the following multiplication formulas..et W and
s € S.Then

Csw —vsCy + Z Mi‘,w C,, ifsw>uw,

Ts Cw = i}y<<u))1 (26)
v;Cy, if sw<w,
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where the coefficients!$, , € A are such thall$, , =M . Giveny,w € W ands € W,

we writey <, s w if the following conditions are satisfied:
w=sy>y Or sy<y<w<sw and Mj, #0. (2.7)

The Kazhdan-Lusztig left preordeg; is the transitive closure of the above relation,
that is, giveny, w € W we havey <, w if y = w or if there exists a sequenge=
Y0, Y1, - - -» yn = w Of elements il and a sequenas, ..., s, of generators ir§ such that
yi-1 <L, yi for 1<i <n (See [10, 86].) Thus, we haweC, < > . , AC, for any

w € W. The equivalence relation associated with will be denoted by~; and the corre-
sponding equivalence classes are calleddfieellsof W. Similarly, we writey <p g w if

y = w or if there is a chain of elements= yq, y1, ..., y» = w in W such that, for each

we havey;_1 < y; or yf_ll <L yfl. The equivalence relation associated withg will be
denoted by~ g and the corresponding equivalence classes are callddithsided cells
of W. Each two-sided cell is a union of left cells and a union of right cells. Consider the
following statement:

y<rw and y~ppw = y~pw. (L)

This is known to be true in certain cases where there is a geometric interpretation for the
parameters (for example, tlegual-parameter case whare= v, for all s ¢ in S); see
[15, Chapter 14] for more details. The above property plays an important role in certain
representation-theoretic constructions; see [11, Chapter 5]. Lusztig [15, 14.2] conjectures
that (L) holds in the general unequal parametege. It would imply that the two-sided cells
are theminimalsubsets oW which are at the same time unions of left cells and union of
right cells.

Each left celle gives rise to a representation idf This is constructed as follows (see
[10, 87]). LetVe be anA-module with a freeA-basis{e,, | w € €}. Then the action oT
(s € S) is given by the formula

esw +vsew — Y (=DIWTOMS ey if sw > w,

Ty.ew = P4 (2.8)

—v;lew, if sw<w,

where we tacitly assume that =0 if y ¢ €. (The formula (2.8) can be related to the
formula (2.6) using a suitable automorphismhtif see [10, 86].) Assume now th#t is
finite. Upon specialization; — 1 (s € S), we obtain a representation Bf which is called

the representation carried ky We denote by the character of that representation, that
is, the mapw — tracgw|Vy). On the other hand, let CoW, I'}.) be the set of so-called
constructible characters @, as defined by Lusztig; see [15, Chapter 22] (and also [5, §3],
for the general setting with respectfg C I"). Consider the following statement:

Con(W, I'y) = {xe | € left cell in W with respect ta,. C I'}. ©
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It is conjectured by Lusztig [15, 22.29] that (C) always holdEhis is known to be true

in the equal parameter case (see [13]) and some cases with unequal parameters (see, for
example, the explicit results on tygg(m) in [15], on typeB,, in [2], and on typeF, in [5]).

The important point about (C) is that the constructible characters can be easily determined
by a recursive procedure, using the induction of characters from parabolic subgravips of

Summary. Given an abelian group’ with a total order specified by, c I and a choice
of parametersv, | s € S} C 'y, we obtain

e acollection of polynomial®y , € Z[I-] forall y <w in W;
e acollection of polynomial#1y , € Z[I"] whenevesy <y <w < sw.

These data determine, in a purely condibrial way, a pre-order relaticg, on W and
the correspondig partition of W into left cells and two-sided cells. Finally, we obtain a set
of characters o (the characters carried by the left cells).

Now let us specialise the above setting to the case where the parameters of the lwahori—
Hecke algebra are given by a weight function. Following [15], a weight functiof/on
is a functionL : W — Z such thatL (ww’) = L(w) + L(w’) for all w, w’ € W such that
[(ww") =1(w) + [(w’). Such a function is determined by its value&) on S which are
subject only to the condition thdt(s) = L(s") for anys # s’ in S such that the order aof’
is finite and odd. (See Matsumoto’s lemma [7, §1.2].) We shall only consider weight func-
tions L such thatL(s) > O for all s € S. Let A = Z[v, v_1] wherev is an indeterminate.
We have a corresponding Iwahori-Hecke algeirwith parametergv™®) | s € §}. Thus,
H has anA-basis{T,, | w € W} and the multiplication is determined by the formula

TSU}a if l(sw) >l(w),
T, Ty = { Tow + (UL(S) _ U_L(S))Tw, if 1(sw) < I(w). (210)
Now consider the abelian groyp” | n € Z} with the total order specified biy” | n > 0}.
Thus, as above, we have a corresponding Kazhdan—Lusztig {#asisw € W} of H.
Consequently, we obtain

« acollection of polynomial®; , v1zZv 1 forall y < win W;
e a collection of polynomialM;)w € Z[v, v_1] whenevesy < y < w < sw.
As before, these data determine a pre-order relatipon W and the corresponding parti-
tion of W into left cells and two-sided cells; furthmore, we obtain the characters carried
by the left cells ofW.
The following result establishes a link between the above two situations, where we have
an abelian groug™ with a total order specified by ¢ I and a choice of parameters
{vs | s € S} C I't on the one hand, and a weight functibron the other hand. As above,

1 In a recent preprint, “Left cells and constructible representations” (available at http://arXiv.org/math.RT/
0404510), the author has shown that (C) follows fréva general conjectures of Lusztig [15, 14.2].
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denote byP} , andM} , the polynomials irZ[I"] arising in the first case, and denote by
Py, andM; , the polynomials irZ[v, v~1] arising in the second case.
We now define two subsetEJ(r“)(W), FJ(rb)(W) C I',. First, let FJE“)(W) be the set

of all y € I'y such thaty 1 occurs with non-zero coefficient in a polynomRy ,, for
somey < w in W. Next, for anyy,w € W ands € § such thatM§ , # 0, we write

M3, =niyi+---+n-y, where O#n; € Z, y € I' and yijyi el for2<i<r.
We Ieth’)(W) be the set of all elemen§§‘_11y,~ € I'; arising in this way, for any, w, s
such thaM, ,, # 0. Finally, we set™y (W) := I\ (W) U I ().

Proposition 2.10. Assume that we have a ring homomorphism
o:Z['— Z[v, vil], v > vE® (s e8)
such that
o (M (W)) < {v" |n>0}. (*)

Theno (P} ) = Py, forall y <win W ando (M3 ) = M3, for anys € § such that
sy <y < w < sw. Furthermore, the relations ., ~1, <pg, and<yg on W defined with
respect to the weight functiah are the same as those with respecitpc I', and so are
the corresponding representationswft

Proof. The mapo induces a ring homomorphism

6:H— H, ZawTw N Za(aw)Tw.
w w

We haves (h) = 6 (h) for all h € H. Thus, applying to (2.4), we obtain

6(Cy)=6(Cy) and 6(Cyp) =T, + Z o(Psw) Ty

yew

y<w
for any w € W. Now condition &) implies thato (I'~) C {v" | n < 0} and SOcr(P;w)
is either 0 or an integral linear combination of terifswith n < 0. Thus, the elements
6 (C,) satisfy the defining properties for the Kazhdan—Lusztig basi$ ahd so we must
haves (C,) = C,, forall w € W. This also shows tha;t(P;w) = Py*)w forall y < w. Now
applys to (2.6). This yields the equation

Tscw =Csu) —UL(S)Cw+ Z U(M;)w) Cy if sw>w.
y<w

sy<y

Thus, we have/y ,, =o(MJ ) if sy <y <w < sw. Finally, we claim that

M;’w;éO — M;,w:U(M;,w) 750 (T)
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Indeed, itM{ ,, # 0, we writeM}, |, =niy1+ - +n,y, where O#n; € Z andyf_lly,' €

r (w). By condition §), we haveo (y,~1y;) = v with a; > 0 for all i. Consequently,
M; , =o(Mj ) is a combination of pairwise different powerswénd, hence, non-zero.
Thus, (1) holds.

So we conclude that two elements satigfy; w with respectta’y c I" if and only if
they satisfy the analogous relation with respect to the weight funétidmus, the relations
<r, ~r, <L and~p g are the same in the two situations, and so are the corresponding
representationsdV. 0O

In order to deal with “distinguished involutions” as in Theorem 1.2, we shall need the
following remark.

Remark 2.11. In the above setting, leb € W and write

(@) Pi ,, =8, (ny + Z-combination ofy € I"),

wheres,, € I'y and 0# n,, € Z. Thus,s;,! is the highest monomial (with respect to the
total order specified by", C I') occurring inPf . Thend; =1 andé,, € I't.(W) for

! T:L}r.thermore, given a left cell (with respect tay. C I'), we write

(b) (8w |weCY=1{y1,y2, .., vm}, Wherey, Ly; € I'y for 2<i <m.

Let I'{ (W) be the union ofl", (W), the set of all elementg—1 wherey occurs in a

Z-combination as in (a) (for any € W), and the set of all elemenp,{llyi (2<i<m)as
in (b) (for any left cellC wherem > 2). Assume that

G(FL(W))Q{U" |n>0}. ()
Then, writingo (8,,) = v4™) whereA(w) € Zxo, we have
Py, =nyv~ 2™ + strictly smaller powers of.

Furthermore, if the functiow — §,, reaches its minimum at exactly one element in a left
cell C, then so does the functian— A(w).

Example 2.12. Let W = (s, ¢t) be a dihedral group of ordex > 4, wherem is even. Let

vs andv; be two independent indeterminates and consider the ring of Laurent polynomials
A =7Z[vF, v Let I = {(vv] | i, j € Z} and consider the total order specified by

F+={v§v,j‘i>0}u{v,j|j>0}
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(a lexicographic order whereg; > v;). The polynomialsP, ,, have been determined in-
dependently in [7, Exercise 11.4] and in [15, Chapter 7]. y.et w and Writevwv;l =

mg  my;

vs v, ' wheremg, m; > 0. Then

mig

Z(—l)’vzz, if w<rtw,w<wr, andy <rtsw < sw,
Py,w = i=0
1+v12, if w<sw,w<ws, andy <stw < tw,
1, otherwise

The M-polynomials are given by

M — vsv,_l—i—v;lvt, ifl(w)=I()+1Lsy<y<w<sw,
W 1, if [(w)=I()+3,sy<y<w<sw.

All other M-polynomials are 0. Now consider a weight functibron W such that
L(s)> L) >0.
Let v be another indeterminate; then we have a ring homomorphism
Z[I'l — Z[v, vil], vév‘,j > pL@IHL@O]

We claim that condition«) in Proposition 2.10 is satisfied. For this purpose, we first have to
determine the monomials which can occur in a polynoijg], for y < w. Write vy, u;l =

vs“ vy as above. Since < w, we havem; > 0 orm; > 0. If w < tw, w < wt, and

y < tsw < sw, thenw has a reduced expression which starts and endsswiBincey

is a subexpression ab, we conclude thati; > m;. HenceP* is a linear combination

of monomialsv; ™ ’ wherej < m; < mg. On the other hand i <sw, w < ws, and

y < stw < tw, thenmS >1 andm; > 1. SoP* is a linear combination of monomials

—myg _ —m;

vy " ’ wherej < 1. Finally, in the cases wheﬁé} w =1, we haveP] , = v, v,
Thus, we find that

(W) S {viv! [i >0, i+j>0. (. j)#(0.0)}.

Now, if i > 0 andi + j > 0, thenL(s)i + L(t)j > L(t)i + L(t)j = L)@ + j) >0
Furthermore, ifi > 0, then the first inequality is strict and €ds)i + L(¢)j > 0; while if

i =0, thenj > 0 and soL(s)i + L(t)j > 0. Next, we also see that the required condition
holds for the monomials occurring in the polynomimgw. Thus, ) holds.

We conclude tha#} , = o (P} ) for all y < w in W. Thus, for any weight function
such thatL(s) > L(z) > 0, the corresponding polynomial’ , are obtained by special-
isation from the polynomial®y ,, which have been determined for one fixed choice of
'y c I'. Furthermore, the partition d¥ into left cells is the same for all weight func-
tions such thaL(s) > L(¢) > 0 (and it is given by the partition into left cells with respect
to Iy C I'). An explicit description of these left cells is given in [15, Chapter 8]. The
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distinguished involutions are %, ¢, tst, twg, wo. For the left cell representations and
constructive representations, see also [5, §6].

Definition 2.13. Let L, L’ be two weight functions orw. We say thatL, L’ are I'}-
equivalentif there exists an abelian group, a total order specified by, c I" and a
set of parameterg; | s € S} C I'y such that the following holds:

(a) There exist ring homomorphismse’: Z[I"'] — Z[v, v—1] such thato (vy) = vE®)
ando’(vy) = vL'® forall s € S.
(b) Condition §&) in Proposition 2.10 is satisfied for bathando’.

We say thatL, L’ are generically equivalentf L = L’ or if there exists a sequence
of weight functionsL = Lo, L1, ..., L, = L' and abelian group$?, ..., I, such that
L;_1, L; are (I;)+-equivalent with respect to a total order specified(By),. c I for

1 <i < n. Inparticular, generically equivalent weight functions eed-equivalentthat is,
they give rise to the same partition Bf into left cells.

Proposition 2.14. Assume thatv is finite and letwg € W be the longest element. Then
there exists a constart < 8/(wp)3 such that any weight function oi is generically
equivalent to a weight functioh such thatl < L(s) < N forall s € S.

The proof will be given in Section 3 (see Corollary 3.6). Note that, siices finite,
there clearly exists some constavithaving the above property. The point about Proposi-
tion 2.14 is that we can give an explicit bound fér We have not tried to obtain an optimal
bound theoretically. However, the proofs of Proposition 3.5 and Corollary 3.6 will show
how to determine such a bound efficiently.

Remark 2.15. Let L : W — Z be a weight function such thdt(s) > O for all s € S. Let

d > 0 be a positive integer. Then the functiap : W — Z defined byL;(w) := d L(w)

also is a weight function, and we leave it as (easy) exercise to the reader to check
that L, L; are generically equivalent. Thus, in order to classify weight functions up to
generic equivalence, it will be sufficient to consider only those weight functiosach
that gcd{L(s) | s € S}) = 1.

Example 2.16. In practice, the cell-equivalence classes will be determined by a set of
weight functions whose values are bounded by a con®fawhich is much smaller than

the value given in Proposition 2.14. For examplé)it= (s, t) is a dihedral group of type
I,(m) (with m > 4 even), then we may také = 2. Indeed, let us specify a weight function
L:W — Z by the pair(a, b) such thatL(s) =« and L(t) = b. Then, by Example 2.12,
there are exactly three cell-equivalence classes of weight functions:

Li1={(a,b)la=b>0}, representativel, 1),
Lo={(a,b)|a>b>0}, representative2, 1),
L3={(a,b)|b>a>0}, representativel, 2).
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In fact, the above computations show that thase even the generic equivalence classes.

If W is of type F4, we will see in Section 4 that there are 7 cell-equivalence classes of
weight functions.

Now let W be of typeB,,, with diagram given as follows:

t 51 52 Sn—1
B &= o - - . —e

Here, the generatosg are all conjugate, while ands; are not conjugate. Thus, a weight
functionL : W — Z is uniquely specified by the values

b:=L(t)>0 and a:=L(s1)=L(s2)=---=L(s,_1) > 0.

The best bound does not yet seem to be known. Recently, Bonnafé and lancu have shown
that all weight functions such that/b > n — 1 are cell-equivalent. Experiments with
CHEVIE lead to the following general conjecture.

Conjecture2.17. In type B,, with diagram and weight function as specified above, we have
the following cell-equivalence classes of weight functions

L1={(a,a,a,...,a)|a>0} (equal parameter cage
£,-={(ia,a,a,...,a)|a>0} (where2 <i <n—-1),
Lii—1={(b,a,a,....,a)|ia>b> (i —1a>0} (wherel<i<n-1),
Easympz{(b,a,a,...,a)|b>(n—1)a>0}.

(The functions inCasympcorrespond to the case treated by Bonnafé—Iga¢y)

Furthermore, if (C) in Section 2 holds, then all left cell representations with respect to
L will be irreducible, unless we havke e £; for some 1< i <n — 1 (see [15, 22.25]); if
L € L; for somei, then the left cell representations will be given as in [15, 22.24].

The above conjecture is a slightly differerrgion of a part of several conjectures that
were formulated by Bonnafé (private communication). Using ©@JEVIE-program, we
have verified that Conjecture 2.17 holds Ry and B,.

The above results are only concerned with finite Coxeter groups. It would be interesting
to study equivalence classes of weight functions for affine Weyl groups.

3. Onthe generic equivalence classes of weight functions

We place ourselves in the general setting wh&rés any Coxeter group with genera-
tors S and where we are given an abelian grdupa total order specified by c I and
a set of parametels; | s € S} C I'; for the corresponding Iwahori-Hecke algebraiof
One of the aims of this section is to provide a proof of Proposition 2.14. Our first task will
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be to get some control on the degrees of the monomials that might occur in the polynomi-
alsP} ,, andMj . Now, Lusztig gives some rather explicit such bounds, but only in the
setting involving a weight function, and these are not entirely sufficient for our purposes.
To illustrate our point, consider the following example.

Example 3.1. Let W = (s, r) be a dihedral group as in Example 2.12. Consider a weight
function L whereL(s) =a > 1 is a big number and.(r) = 1. Then [15, Proposition 6.4]
tells us thatMy ,, is aZ-linear combination of powers” with —a +1<n <a —1 and
n=L(w)— L(y)— L(s) mod 2. So, a prioriMj!w could be a polynomial involving many
non-zero terms. However, from the formula given in Example 2.12 and Proposition 2.10,
we see thad/y ,, only involves very few terms:

, a—1 1-a ifl(w)=I)+1Lsy<y<w<sw
MS = M = v v ’ I % Sy = ’
y.w ‘7( )w) {1, if l(w)=1(y)+3,sy<y<w<sw.

To explain this behaviour, we need to establish some bounds in the general framework with
respect to an abelian grodpand a total order on it.

Lemma 3.2. Lety, w € W be such thay < w. Then the following hold

(@) vyv, P, is a polynomial infv? | s € S}, with constant ternd.

(b) vyv; P, is a polynomial infv? | s € S}, with constant terng.

Proof. The following proofis more or less a copy of that of [15, Proposition 5.4]. However,

in [15], Lusztig exclusively considers the situation involving a weight function. Thus, in
order to show that all the arguments go through in the general case, we include the details
here. First, we shall need thiepolynomials in the general setting, as defined in [10]. For

y € W, we have

T, = Ty—_l1 =Y R¢,T.. whereR, , eZ[I].
xeW
We have the following recursion formula.df < y for somes € S, then
Ryy =Rsx,sy + (vs — vs_l)Rx,Sy, if sx >x,

Re,y =Rsxsy, ifsx <x.

(Same proof as in [15, Lemma 4.4].) Using the above recursion formula, one easily shows
thatR, , =1 andR, , =0 unlessx < y. Furthermore,

vyvy IRy y € Z[vZ | s € S],  with constant terng—1)/) =), (%)

(Same proof as in [15, Lemma 4.7].) The Kazhdan-Lusztig polynomials ang-fhay-
nomials are related by the followiridentity (see [10, Proposition 2]). We have
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Pr,—Pi,= Y Ru,Pr, forallx<winw.

X, w
x<yKw

Now, for the proof of (a) and (b), we proceed by induction/an) — I(y). If y = w, then
p* =1 and there is nothing to prove. Now assume thatw. Multiplying both sides of

w,w

the identity relating Kazhdan—Lusztig polynomials aigholynomials withv,, vy Lyields

—1p* —1lp*x __ -1 —1p*
R e N Z (vxvy Ry.x) (vw; Px!w).

y<x<w

By induction and £), all terms on the right-hand side are polynomialgifi| s € S}. Hence
so is the left-hand side. Sin@§ and P* have no terms in common, we conclude that

bothv,,v; *P} , andv,v; P}, are ponnomlaIsmthe variableg (s € S). Now consider
the constant terms on both S|des of the above equation. We begin with the right-hand side.
By induction and ), it has constant term

Z (_1)l(x)—l()’) l=—14+ (_1)l(y) Z (_1)l(x) -1

y<x<w y<a<w

where the last equality holds by [15, Projtims 4.8] (an identitydue to D.N. Verma).
It remains to observe thaztyv;lP;w € Z[I'+] and so the constant term is 0. Hence the

constant term of—vwvglP;‘, » €quals—1, as required. O

Lemma3.3.Lety, w e W ands € § be such thaty <y < w < sw. Thenvsv, vy M; w
is a polynomial m{vt |t € S}, with constant tern@.

Proof. As in the proof of [10, Proposition 4], one considers the identity (arising
from (2.6)):

TsCy — Couw +v5Cy, — E Mi,’w C)ZO
y<w
Sy<y

Expressing all terms in the bagi$, | y € W} of H, the coefficient of everyl, must be
zero. That coefficient is given by

_ % % k s
=P+ P — P — Z P; .M
ySz<w
§Z<Z

Hence, given thaf, =0, we obtain

* * * % s
MY w =Py w = Py sw + Py, — Z PL:MZ
y<z<w
§Z<Z



M. Geck / Journal of Algebra 281 (2004) 342—-365 355

Sincesy <y andsw > w, we havev, = vsv,, and vy, = vsv,. Thus, multiplying the
above equation bysvwvy‘1 yields that

—1pngs 2 —1pngs
Vs VU, My,w =Py — Py sw + 5Py — E Py,z(vsvwvZ Mz,w).
y<z<w
§7<Z

Hence, the assertion follows by induction ki) — /(y) and using Lemma 3.2.0

From now on, we assume thit is finite and letwg € W be the longest element. Then,
by the classification of finite Coxeter groups, unequal parameters can only ocddir for
of type I>(m) (with m even),B, (anyn > 3) or F4. Furthermore, in these cases, a weight
function onW may take at most 2 different values on the generatoi® oT hus, we will
now consider an abelian group= {x’y/ | i, j € Z} wherex andy are independent inde-
terminates and whetg, C I'" is any total order. Furthermore, |8t= S, 115, be a partition
(whereS,, S, # ¥) such that no generator i} is conjugate to any generator §. The
parameters of the corresponding Iwahori—-Hecke algebra will be assumed to be given by

vy=x (ifsesSy) and =y (fres,)).

Lemma 3.4. Thg monomials involved in any polynomﬁi;l)w orin any polynomial\/.I;).w
are of the formx’ y/ where—I(wg) < i, j < [(wp). In particular, we havd ™, (W) C {x'y/ |

—Il(wo) <1, j <l(wp)}.

Proof. Let y,w € W, y < w. Thus, sincey is a subexpression ab, we havevwv;l =
x“y" wherea, b > 0. Furthermore, let us write} , =" ; ., nijx'y/ wherel CZ x Z
is a finite subset ang};; € Z. Thus, using Lemma 3.2, we have

vy Py = Do per iy e Z[x% V7],

vy Py = Do per nigx T YT € Z[x% V7).
Now let (i, j) € I. We certainly have & a, b < I(wo). This yields 0< a +i < I(wo) + i
and 0< a —i < I(wp) —i. Consequently, we havel (wo) < i < [(wo). A similar argument

shows that we also havel (wg) < j < I(wo). 3
Now assume thaty < y <w < sw and writeM{ ,, = f + ¢+ f wherec € Z and

feZix®, yF. Let f =Y j)es fijx'y/ whereJ C Z x Zis afinite subset ang; € Z.
As above, we see tha Uwvy_l = x%y? where 0< a, b < I(wg). (Note thaty < w < wp.)
Using Lemma 3.4, this yields

VvV, MY, = x40 f 4 exy? + xyPF

y
— cxayb + Z fij (xa+iyb+j +xa7iyb7j) c Z[XZ’ yZ]‘
(i,j)ed

Arguing as above, we see that(wg) < i, j <Il(wp) forall (i, j) e J. O
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Now, a weight functiorL : W — Z is uniquely specified by the values
a:=L(s)>0 (whereseS,) and b:=L(t)>0 (wherereS,).
We shall writeL = L, 5. Let us consider the set
&:={x € Q0| x==+i/j wherei, j #0and — 2/ (wo) <1i, j < 2/(wo)}

and write€ = {x1, ..., x,} where O< x1 < x2 < --- < x,. By convention, we setg =0
andx, 1 = oo. For any 0< k < n, we consider the set of weight functions

Li:={Lap|a,b>0suchthaty <b/a < xry1}.

Let us fix 0< k < n and writex; = d/c wherec, d are integers such thatQc, d < 2/(wo)
andc # 0. Then we consider the total orderihspecified by

1"4(_]() = {xiyj |ci+dj>0}uU {xiyj |ci+dj=0andi >0} ifd>c, or
r® ={x'y/ |ci+dj>0}u{x'y/ |ci+dj=0andj >0} ifd<c
(a weighted lexicographic order). Note thatki& d = 0, then
r®={x'y/|i>0jezjufy’|j>0}
(a pure lexicographic order).
Proposition 3.5. In the above setting, all the weight functionsdp are Ffrk)-equivalent.

Proof. Leta, b > 0 be such that; < b/a < x;4+1. The idea is to get some control on the
setlI’y (W) C I'y and to show that conditior} in Proposition 2.10 is satisfied for the ring
homomorphism
Oup 2 — Z[v, vfl], xiyl s p®thi

and the total ordeFJ(rk) C I’ specified above. Now, by Lemma 3.4, we have

Iy (W) c {x'y/ | x'y/ e I'y and—21(wo) <1, j < 2(wo)}.
To check condition £), assume first that < d. Let x'y/ e Ff‘)(W). In particular, this
means thati + dj > 0. Furthermore, we have2/(wo) < i, j < 2l(wp) and soti/j € £.

Now, we must show thati + bj > 0. If i =0 or j =0, thisis clear. Ifj > 0, then we have

ai+bj=a(i+ jb/a)>a(i+xj)=ali+ jd/c)=(a/c)(ci+dj) =0,
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as required. Next assume that 0. Then, by the definition o!“frk) (recall that we are
assuminge < d), we must havei + dj > 0 and so—i/j > d/c = x;. Now, if we had
ai + bj <0, then we would obtain

Xy <—i/j<b/a <xp+1

and so—i/j ¢ £, a contradiction. Thus, conditior) holds. The argument for the case
whered < c is completely analogous.O

Corollary 3.6. Let& = {x1, ..., x,} as above. LeL = L, , be any weight function oW
wherea, b > 0.

(1) If b/a = xi for somel < k < n, thenL, ; is generically equivalent td.. ; where
0 <c,d < 2l(wp) are such thab/a =d/c.

(2) If b/a ¢ £, then there exist integets< a’, b’ < 8l(wo)* such thatL, ; is generically
equivalent toL, ;.

Proof. Recall thatvg = 0 andx,+1 = co. Hence there exists sontec {0, 1, ..., n} such
thatxy <b/a < xxy+1. We writex; = d/c where 0< ¢, d < 2l(wg) andc # 0. If xy =b/a,

then L, », L. 4 are equivalent by Remark 2.15. Thus, (1) is proved. Now assume that
x; < b/a < xx41. Since bothy, andxgy1 are rational numbers where the numerator and
the denominator are strictly bounded byi2p), we certainly have A4l(w0)2 < Xgt1 — Xk-
Furthermore, note that, < 2/(wg). Thus, we can find some integet§ »’ such that
1<a’, b’ <8l(wo)®andxy < b'/a’ < xx11. ThenL, andL, ; are equivalent by Propo-
sition 3.5. Thus, (2) is proved.O

Example 3.7. Assume that:, b > 0 are such that/b > 2 (wg). ThenL, , is generically
equivalent to the weight functiohy; ,), 1.

To see this, note that/2/(wg) < x1. Hence, we are in the case whebga <
1/2I(wo) < x1. Thus, we havd., ; € Lo. By Proposition 3.5, all weight functions ifip
are generically equivalent. It remains to note that,,, 1 also belongs tco.

This example provides a more formal justification for [2, Remark 6.1].

4. Kazhdan-Lusztig polynomialsand left cellsin type Fu

Our aim is to work out the cell-equivalence classes of weight functions on a Coxeter
group of typeFs. Throughout this section, |&V be a Coxeter group of typ&s, with
generating sef = {s1, 52, 53, s4} and Dynkin diagram given as follows:

s1 52 53 54
F4 o e o
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There are 25 irreducible representationdiafdenoted by
11, 10, 13, 14, 21, 29, 23, 24, 41, 42, 43, 44, 45, 61, 62, 81, 82, 83, 84, 91, 92, 93, 94, 121, 1615

see [11, 4.10] or [7, 5.3.6 and Table C.3]. The generatgrs are conjugate iri¥, and
so are the generatoss, s4 (While s andsz are not conjugate). Thus, a weight function
L: W — Z is uniquely determined by

L(s1)=L(s2)=a>0 and L(s3)=L(s4) =b>0.

We shall denote such a weight function by= L, ;. By the symmetry of the above dia-
gram, we may assume throughout that ».
Letx, y be independent indeterminates oeand consider the abelian group

r=\x'y’|i, jez}.
Letv be another indeterminate. Then we have a ring homomorphism
Oap ZIT]— Z[v, v_l], xiyl > paithi

Now, in type F4, we havel(wo) = 24 and so, by Corollary 3.6, we know that, ;, is
generically equivalent to a weight functidn. ; where 1< ¢ < d < 48% = 110592. In
principle, we could just gairough all these podsiities, determinetie corresponding left
cell representations and so on—but these are far too many cases! However, now we can
use OUICHEVIE-program to compute explicitly all the polynomid$ , andM? , for any
total order onI". The explicit knowledge of these polynomials will yield much sharper
bounds than the general bounds obtained in Lemma 3.4.

As a first illustration of this idea, we consider the following case.

Lemma 4.1. Consider the total order ol” specified by
1"+={x"yj‘j>0, ieZ}U{xi‘i>0}.

Then conditior(x) in Proposition2.10is satisfied for all weight functions, ; such that
b/a > 4. In particular, all these weight functions a#é, -equivalent.

Proof. The idea is basically the same as in the proof of Proposition 3.5. In fact, the
general strategy in Corollary 3.6 shows that BJl, are I';-equivalent, provided that
b/a > 2l(wp) = 48. But now we use OUCHEVIE-program to compute explicitly all the
polynomialsPy , andMy , (with respect tal"y C I'). By inspection of all these polyno-
mials, we find that

ry(wyc{x'|i>ojufx'y/|j>0,i+4j>0}.

Now let us check that con.dit'ior*Iin Proposition 2.10 holds far, ; provided thab > 4a.
Leti, j € Z be such thak'y’/ € Iy (W). We must show thaii + bj > 0. If j =0, then
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i >0 andswi + bj =ai > 0. On the other hand, if > 0 andi + 4 > 0, thenai + bj =
a(i+ jb/a) > a(i +4j) >0, as required.

We can now apply Proposition 2.10 anonclude that all wight functionsL, , such
thatb/a > 4 arel,-equivalent. O

In order to deal with weight functions, ; such thatb/a < 4, we now proceed as

follows. We look again at the elements Ity (W) computed in the proof of Lemma 4.1.
Let

E={xeQ.o0|x==i/j wherej #0, x'y/ e 'y (W)}].

Then we note that the largest elemen€adbelow 4 is 3. This leads us to consider weight
functionsL, ,» whereb’/a’ > 3.

Lemma 4.2. Consider the total order o specified by
Iy ={x'y/|i+3j>0}u {x73jyj | j >0}

Then conditior(x) in Proposition2.10is satisfied for all weight functions, ; such that
4> b/a > 3. In particular, all these weight functions atg, -equivalent.

Proof. This is completely analogous to that of Lemma 4.1. Now we find that

rewyc{x'|i=oju{x'y/|j>0,i+j>0}

U{xiy-/ |i>—j>0, —i/j>4}U{xiy-/|—i>j>0, —i/j <3}

As before, we see that conditiog)(in Proposition 2.10 holds, provided that 4 b > 3a.
Indeed, let, j be such that’y/ € I' (W). If j =0, theni > 0 and saii +bj =ai > 0. If
j>0andi+j>0,thenai +bj >ai+3aj>a(i+j)>0.1fi >—j>0and—i/j >4,
thenai +bj =i(a+bj/i) >ia(1+4j/i) > 0. Finally, if —i > j > 0and—i/j > 3, then
ai +bj=jai/j+b)>aj@i/j+3)>0,asrequired. O

As before, we now look again at the elementsiin(W) computed in the proof of
Lemma 4.2. Defin€ in a similar way as above. Then we note that the largest element of
& below 3 is 52. This leads us to the following case.

Lemma 4.3. Consider the total order ol” specified by

Iy ={x'y/ |20 +5j >0} U{x™>/y?/ | j > 0}.

Then conditior(x) in Proposition2.10is satisfied for all weight functions, ; such that
3> b/a > 5/2. In particular, all these weight functions atg, -equivalent.
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Proof. Again, this is completely analogous to that of Lemma 4.1. Now we find that
rewyc{x'|i>=ofufx'y/|j>0,i+j>0}
U {xiy-/ |i>0,i+3j>0}uU {xiyj | —i>j>0, —i/j <5/2}.
We omit further details. O
We now continue the above procedure. This yields the following cases.
Lemma 4.4. Consider the total order ol specified by
1"+={x"y-" |i+2j >0}U{x_2-/yj ‘j>0}.

Then conditior(x) in Proposition2.10is satisfied for all weight functions, ; such that
5/2 > b/a > 2. In particular, all these weight functions atg, -equivalent.

Proof. Again, this is completely analogous to that of Lemma 4.1. Now we find that
rewyc{x'|i>ojufx'y/|j>0,i+j>0}
Ufx'y/ |i>—j>0, —i/j>5/2}u{x'y/ |-i>j>0, —i/j <2}
We omit further details. O
Lemma 4.5. Consider the total order ol” specified by
ry= {xiyj | 2i +3j > O} U {x_3jy2-/ | j> O}.

Then conditior(x) in Proposition2.10is satisfied for all weight functions, ; such that
2> b/a > 3/2. In particular, all these weight functions arfé, -equivalent.

Proof. Again, this is completely analogous to that of Lemma 4.1. Now we find that
rewyc{x'|i>ojufx'y/|j>0,i+j>0}
U {xiyj |i>—j>0, —i/j>2}uU {xiy-/ | —i>j>0, —i/j<3/2}.
We omit further details. O
Lemma 4.6. Consider the total order o specified by
ry= {xiyj ‘ 3i+4j > O} U {x74jy3j ‘ Jj> O}.

Then conditior(x) in Proposition 2.10is satisfied for all weight functions, ;, such that
3/2>b/a > 4/3. In particular, all these weight functions aré, -equivalent.
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Proof. Again, this is completely analogous to that of Lemma 4.1. Now we find that
re(w)c{x'|i>0}ulx'y/|j>0,i+;>0}
U {xiyj ‘ i>—j>0, —i/j>3/2}U {x_4jy3j ‘ j=>0}.
We omit further details. O
Lemma 4.7. Consider the total order o specified by
F+={xiyj |i+j>O}U{x7jyj |j>O}.

Then conditior(x) in Proposition2.10is satisfied for all weight functions, ; such that
4/3> b/a > 1. In particular, all these weight functions aré, -equivalent.

Proof. Again, this is completely analogous to that of Lemma 4.1. Now we find that
rewyc{x'|[i=ofufx'y/|j>0,i+j=0lulx'y/|i>0, 3i+4j>0}.
We omit further details. O

Thus, we have finally covered all cases of unequal parameters. A detailed analysis of
the partition of left cells obtained in each case leads us to the following result.

Corollary 48. Let L = L, and L' = L,y be two weight functions o such that
b>a>0andb' >a > 0. ThenL, L' are cell-equivalent if and only it., L’ € £; for
i €{0,1,2, 3}, wherel; are defined as follows

Lo= {(c,c,c,c)|c>0},
L1={(c,c,2c,2c)|c >0},
Lo={(c,c,d,d)|2c>d>c>0}
Lz={(c.c.d.d)|d > 2c>0}.

In all cases, the left cell representations are precisely the constructible representations, as
defined i15, Chapter 22]in particular, if two weight functions define the same partition

of W into left cells, then they also give rise to the same set of left cell representations. The
partial order relation< g on two-sided cells and the left cell representations are given in
Tablesl and 2. Furthermore, the statements in Theorelr®and 1.3 hold for any weight
functionL.

Note that the list of constructible representations given in [15, §22.27, Case 1], has to
be corrected as specified in Table 2; see Remark 4.10 below.

Proof. Let L = L. 4 be any weight function ofV whered > ¢ > 0. In addition to the re-
sults obtained in Lemmas 4.1-4.7, we use@dEVIE program to compute all the required
data in the cases where
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Table 1
Partial order on two-sided cells in tygé

1L 1

13

83
13 44

91

81 2
44 44 9 1
3

9

93 93 81

9 8

92 43

8 2
1 45

84

4
3 9%

45 2 1 45
45
2,
4 2
14 1y 1
a=b b=2a 2a>b>a b>2a

A box indicates a two-sided cell with several constructiblgresentations, see Table 2. Otherwise, the two-sided
cell has only one irreducible, cansctible res presentation.

Table 2
Left cell representations in typg,
a=b b=2a b ¢ {a,2a}
[42]: 23+42, : 13483, [161]: 614121 +16y,
21+42 21491, 62+121+161,
12y |: 93+61+1214+44+161, 91+83 414161
9y+61+12;+43+167, 161 ]: 61+121+16,
414+90+93+6,+127+2- 164, 6+121+16;
1342 93+6p+121+44+164, 41416
1542 99+62+121+43+164, 1 1p+8y,
D 24+4s, 22+9,

2,445 91+84
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(1) {c.d} €{(1,4),(1,3),(2,5,(1,2),(2,3), 3,4, (1, D}.

Then, by Remark 2.15, we have covered all generic equivalence classes of weight functions
on W. In each of the above cases, @HEVIE program has automatically computed the
preorder relations{;, and<r and checked that Theorem 1.3 holds. Furthermore, by in-
spection of the partitions into left cells obtained in the various cases, we find the above four
cell-equivalence classes of weight functiah)50 < i < 3). The decompositions of the left

cell representations are determined by expdiomputations using the character tabléiof

By inspection, we see that the left cell representations are precisely the constructible repre-
sentations as determined by Lusztig [15, §22.27] (modulo the error in Case 1 in Lusztig's
list).

It remains to prove the statements in Theorem 1.2, concerning the distinguished in-
volutions. For this purpose, we use a similar procedure as before, beginning with a total
order Iy C I' as specified in Lemma 4.1. But now we have to work with the larger set
I’ (W) defined in Remark 2.11 in each step and make sure #jah¢lds. For example,
the analogue of Lemma 4.1 now reads:

Let Iy C I' be a pure lexicographic order as in Lemmal. Then condition(x’) in
Remark2.11holds provided thab/a > 9.

Then we continue with an analogue of Lemma 4.2 and so on. Thus, there will be more
cases to be considered, but the whole argunsebasically the same. We omit the details.
Once this is done, one can argue as follows. Cdte a left cell of W (with respect to a
total orderl"y  I' similar to one of the cases in Lemmas 4.1-4.7). By inspection, one
checks that the following holds:

There exists &unique dp € C such tha’r&;olaw € Iy for everyw € C \ {do}.

(Here,$,, is defined as in Remark 2.11.) Thus, we may reghrds adistinguished invo-
lution in C. Now, the fact that condition«() in Remark 2.11 holds in these cases shows
that the functiorw — A(w) restricted toC also reaches its minimum dg € C and that
A(w) > A(do) forallw € C\ {do}. O

Remark 4.9. Let L, L’ be two weight functions such thdt(w) > 0 andL’(w) > 0 for
all 1# w e W. Assume thaf., L’ give rise to the same partition &¥ into left cells. By
inspection of the results obtained in Corollary 4.8 and its proof, we find the following:

() LetD be the set of distinguished involutions with respecLtandD’ the analogous
set with respect td.’ (see Theorem 1.2). Then, quite remarkably, we Have D’. In
fact, we even have thd? = D’ if we just assume that andL’ give rise to the same
set of left cell representations. (For examgle,; and L1 3 define the same set of left
cell representations, but the partitions into left cells are different.)

(b) As already implicitly stated in Corollary 4.8, the pre-order relatigrg defined with
respect tal is the same as that defined with respecLto(However, this is not nec-
essarily the case for the left pre-order relatigp; for example, the weight functions
L13andLj 4 give rise to different pre-order relatiors. .)
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Remark 4.10. Consider the case whebe= 2a > 0. Lusztig states in [15, 22.27, Case 1]
that 13 ® 27 and b @ 2, are constructible. However, these representations are not con-
structible. (In fact, we just have to omit them from the list given by Lusztig.) Let us add
some details about this. Tleeinvariants of the irreducible representationdiofare given

by

a 0 a 2a 3a 5a 6a 7a 10a 1la 12a 15 20a 25z 36a
pl1234 134493 4 9 43 8 L 45 24 1y

21 8, 61 2

91 62 9

83 12 84
16

Fori € {1, 2, 3, 4}, let W; be the parabolic subgroup 8f generated by \ {s;}. The max-
imal a-invariant of a representation &¥; (fori = 1, 2, 3, 4) is given by 1%, 7a, 6a, or
124, respectively. Furthermore, that maximalwe is reached only at the sign representa-
tion. Thus, since the restriction o$ 1o W; is not the sign representation, we conclude that
1, cannot occur in the/-induction of any representation of afy;. Hence % (obtained
from 1, by tensoring with sign) must occur in thleinduction from some proper parabolic
subgroup. Now, the restriction oo W1 (type C3) is given by (¥, 3). Furthermore, this
representation is constructible. The restriction gftd W» (type A1 x A») is given by
(11) X (3). Furthermore, this representation is constructible. The restriction t6 W3
(type A2 x A1) is given by(111) X (2). Furthermore, this representation is constructible.
The restriction of 3 to Wy (type B3) is given by(111, @). Furthermore, the representation
(111, »)+ (11, 1) is constructible, and this is the only constructible representation in which
(111, ») occurs; see [15, Chapter 22]. We have

W (@3.3) =23, I (L1DIK(2) =130 8,
sz((ll) X (3)) = 2s, JVV54((113, )+ (11,1)) = 13 8.

Thus, % @ 83 is the only constructible representationWfin which 13 occurs.

Remark 4.11. The case = 2a in type F4 also shows that, in general, there no longer exist
representations which would have similar properties as the “special” representations in
the equal parameter case (see [9, 8§12]). Indeedsider the two-sided cell containing. 1

Then the three constructible representations belonging to that two-sided cell do not have
an irreducible constituent in common.
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