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a b s t r a c t

An adaptive control scheme based on data-driven controller (DDC) is proposed in this article. Unlike
several DDC techniques, the proposed controller is constructed by an adaptive fuzzy rule emulated
network (FREN) which is able to include human knowledge based on controlled plant's inputeoutput
signals within the format of IF-THEN rules. Regarding to this advantage, an on-line estimation of pseudo
partial derivative (PPD) and resetting algorithms, which are commonly used by DDC, can be omitted
here. Furthermore, a novel adaptive algorithm is introduced to minimize for both tracking error and
control effort with stability analysis for the closed-loop system. The experimental system with brushed
DC-motor current control is constructed to validate the performance of the proposed control scheme.
Comparative results with conventional DDC and radial basis function (RBF) controllers demonstrate that
the proposed controller can provide the less tracking error and minimize the control effort.
© 2015 Karabuk University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recently, several control algorithms based on data-driven
controller (DDC) or model-free adaptive control (MFAC) have
been introduced to compensate the requirement of mathematical
model developed under the controlled plant for traditional model
based control (MBC) schemes [1]. Only the set of inputeoutput data
is required to construct those controllers and its stability can be
proved under reasonable assumptions [2e4]. Generally, the on-line
estimation of pseudo partial derivative (PPD) of the controlled plant
is necessary for design DDC schemes [5]. Those estimation tech-
niques can be used under the assumption that PPD varies slowly
over the time. The resetting algorithm for PPD is required when the
change of control effort is very small. Moreover, many open prob-
lems for DCC method are unraveling such as how to verify the
generalized Lipschitz condition, how to select the length of PPD
vector and how to guarantee the convergence and stability of
tracking problems [1].

The stability analysis is barely objective but the optimum
controller is usually preferred [6] for several practical control
.
ntree@cinvestav.edu.mx.
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systems. By solving the nonlinear HamiltoneJacobieBellman (HJB),
adaptive dynamic programming (ADP) schemes had been devel-
oped to minimize an infinite cost function for both the error signal
and the control effort [7]. Artificial neural networks (ANN) have
been utilized to estimate the nearly optimum solution with value
and policy iterations as critic and action networks [8,9]. The inner
iteration and the off-line learning phase are required within the
sampling interval [10]. The implementation of this control scheme
with physical systems is under developing because of the
complexity of computation, the requirement of off-line learning
phase and the limitation for a class of nonaffine discrete-time
systems [11].

In this work, a novel control scheme, which is applied to DC-
motor current control application, is proposed without any
requirement of mathematical model of the controlled plant. This
plant is considered as a class of nonaffine discrete-time systems
which can be simplified by the equivalent compact dynamic line-
arization (CFDL) under reasonable assumptions. The on-line esti-
mation of PPD and resetting algorithm can be neglected by using an
adaptive network called fuzzy rule emulated network (FREN) as a
direct controller. Furthermore, the completed estimation of plant
Jabobian parameter [12] can be omitted because the proposed
learning algorithm requires only the approximated minimum and
maximum values of PPD. Those minimum and maximum values
can be estimated by our technique which will be discussed in
n open access article under the CC BY-NC-ND license (http://creativecommons.org/
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section 4. The relation between armature voltage and current of DC
motors can bewritten in the format of IF-THEN rule as this example
“IF we need to increase armature current THEN we must supply more
armature voltage” [13,14]. Those IF-THEN rules can be included to
FREN-controller by network's architecture and parameters setting
[15,16].

The experimental results with a commercial grade DC-motor
validate the control scheme's performance. Moreover, the advan-
tage of the proposed controller is demonstrated by comparative
results with the radial basis function (RBF) controller [17] and the
conventional DDC scheme [5].
2. DC motor driving and a class of nonlinear discrete-time
systems

In Fig. 1, an electronic circuit is designed to drive a brushed DC
motorwith armature currentmeasurement. In this work, themotor
driving system is considered as the nonlinear plant for a class of
discrete-time systems which can be described by

yðkþ 1Þ ¼ f
�
yðkÞ;/; y

�
k� ny

�
;uðkÞ;/;uðk� nuÞ

�
; (1)

where yðkÞ2ℝ denotes as the output voltage [V] represented the
armature current by U1 B and R3�6 and uðkÞ2ℝ stands for the
control voltage [V] at the time index k. The nonlinear function f($)
and system orders ny and nu are definitely unknown. This electronic
circuit is constructed by a 2-channel operational amplifier U1

(TL072). Those resistors are given as R0 10kU, R1�2 1kU, R3 10U, R4
1kU and R5�6 10kU. Twomatch-pair transistors Q1�2 are selected as
2N4921 and 2N4920, respectively. A commercial DC motor model
FF-050SK is selected as our demonstration device “M”. The current
sense circuit has currentevoltage gain as

yðkþ 1Þ ¼ 0:11IM; (2)

when IM denotes the motor current [mA]. According to conven-
tional MFAC algorithms, those following assumptions are stated.

Assumption 1: The partial derivatives of f($) are continuous with
respect to the control effort u(k).

Assumption 2: The nonlinear system described in (1) is gener-
alized Lipschitz. That means the positive constant lmust be defined
when jDyðkþ 1Þj � ljDuðkÞj, when Dy(kþ1) ¼ y(kþ1)�y(k) and
Du(k) ¼ u(k)�u(k�1).

According to those upper assumptions, the following lemma can
be obtained.

Lemma 2.1 The nonlinear system (1), which is satisfied by
assumption 1 and 2 with jDuðkÞjs0 for time index k, can be
Fig. 1. DC-Motor driving circ
transformed into the equivalent compact form dynamic linearization
(CFDL) as

Dyðkþ 1Þ ¼ FðkÞDuðkÞ; (3)

when F(k) is pseudo partial derivative (PPD), Dy(kþ1)¼ y(kþ1)�y(k)
and Du(k) ¼ u(k)�u(k�1).

The proof of this lemma is given in the appendix A.
In this work, only minimum and maximum boundaries of F(k)

are required to design the controller with the following constrain

Fm < jFðkÞj<FM; (4)

ck ¼ 1,2,/, when Fm and FM stand for minimum and
maximum values of jFðkÞj, respectively. The example and discus-
sion will be given in the section 4 to estimate those values by
inputeoutput data set of the controlled plant.
3. Closed-loop system and controller design

The closed-loop control scheme is illustrated by block diagram
in Fig. 2. The control effort u forces the output y to follow the
desired trajectory r or yd. This control effort is generated by an
adaptive network FREN which can be written as

uðkÞ ¼ bT ðkÞfðeðkÞÞ; (5)

when e(k) stands for the error signal defined by

eðkÞ ¼ rðkÞ � yðkÞ: (6)

The vector b(k) denotes as a set of adjustable parameters and
fðkÞ is a vector of membership functions. The setting for both b(k)
and fðkÞwill be demonstrated later in section 4. To tune adjustable
parameters b, the cost function is defined by

Jðkþ 1Þ ¼ 1
2
g1e

2ðkþ 1Þ þ 1
2
g2u

2ðkÞ; (7)

when g1 and g2 are positive constants which will be discussed next.
Unlike several weight tuning algorithms for neural networks, both
tracking error and control effort are able to be minimized. By using
a gradient search, the tuning law for b can be obtained as

bðkþ 1Þ ¼ bðkÞ � h
vJðkþ 1Þ
vbðkÞ ; (8)

where h denotes as the learning rate. The partial derivative term
vJðkþ 1Þ=vbðkÞ can be determined by
uit and block diagram.



Fig. 2. Control system block diagram.
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vJðkþ 1Þ
vbðkÞ ¼ 1

2
g1

ve2ðkþ 1Þ
vbðkÞ þ 1

2
g2

vu2ðkÞ
vbðkÞ ;

¼ g1eðkþ 1Þ veðkþ 1Þ
vyðkþ 1Þ

vyðkþ 1Þ
vuðkÞ

vuðkÞ
vbðkÞ þ g2uðkÞ

vuðkÞ
vbðkÞ

¼ �g1eðkþ 1ÞFðkÞfðkÞ þ g2uðkÞfðkÞ:
(9)

Substitute (9) into (8), thus the adaptation law can be obtained
as

bðkþ 1Þ ¼ bðkÞ þ h½g1eðkþ 1ÞFðkÞ � g2uðkÞ�fðkÞ: (10)

The learning rate h in (10) will be considered with constants g1
and g2. The range of learning rate will be defined to guarantee the
convergence and closed-loop performance. According to the dy-
namic model given by (3), that system can be rearranged as

yðkþ 1Þ ¼ yðkÞ þ FðkÞuðkÞ � FðkÞuðk� 1Þ: (11)

Substitute (5) into (11), thus the error dynamic can be obtained
by

eðkþ 1Þ ¼ rðkþ 1Þ � FðkÞfTðkÞbðkÞ þ FðkÞuðk� 1Þ � yðkÞ:
(12)

Substitute (12) into (10), we have

bðkþ 1Þ ¼ bðkÞ � h
h
g1F

2ðkÞ þ g2

i
kfðkÞk2bðkÞ þ h½g1rðkþ 1Þ

þ FðkÞuðk� 1Þ � yðkÞ�FðkÞfðkÞ;
¼

h
I � h

h
g1F

2ðkÞ þ g2

i
kfðkÞk2

i
bðkÞ þ abðkÞfðkÞ;

(13)

when

abðkÞ ¼ h½g1rðkþ 1Þ þ FðkÞuðk� 1Þ � yðkÞ�FðkÞ: (14)

The sequence b(k) will be converged when

�1 � 1� h
h
g1F

2ðkÞ þ g2

i
kfðkÞk2 � 1: (15)

With positive constants g1 and g2, it is clear that
½g1F

2ðkÞ þ g2�kfðkÞk2 � 0, thus (15) can be rearranged as

0 � h � 2�
g1F

2ðkÞ þ g2
�kfðkÞk2 : (16)

Regarding to (4), it's clear that
0 � h � 2�
g1F

2
M þ g2

�kfðkÞk2 � 2�
g1F

2ðkÞ þ g2
�kfðkÞk2 : (17)

Let's define 0 �gh �2, thus, the learning rate in (17) can be
practically calculated by

hðkÞ ¼ gh�
g1F

2
M þ g2

�kfðkÞk2 ; (18)

where h(k) is time varying learning rate. Regarding to theminimum
boundary of F(k) in (4) and a time varying learning rate in (18), the
on-line tuning law in (10) can be rewritten as

bðkþ 1Þ ¼ bðkÞ þ hðkÞ½g1eðkþ 1ÞFm � g2uðkÞ�fðkÞ: (19)

By using the control scheme proposed in Fig. 2 and the on-line
learning algorithm (19), the closed-loop performance will be
demonstrated with the following Lyapunov function

VðkÞ ¼ gve
2ðkÞ þ gLLðkÞ; (20)

when gv and gL are positive constants which will be discussed later
and L(k) is the infinite cost function defined by

LðkÞ ¼
X∞
l¼k

h
t1e

2ðlÞ þ t2u
2ðlÞ

i
; (21)

where t1 and t2 are positive constants. The change of Lyapunov
function can be obtained by

DVðkÞ ¼ Vðkþ 1Þ �VðkÞ;¼ gv

h
½eðkÞ þDeðkÞ�2 � e2ðkÞ

i
þgL

" X
l¼kþ1

∞ h
t1e

2ðlÞþ t2u
2ðlÞ

i
�
X∞
l¼k

h
t1e

2ðlÞþ t2u
2ðlÞ

i#
;

¼ gvDeðkÞ½DeðkÞþ 2eðkÞ� �gL

h
t1e

2ðkÞþ t2u
2ðkÞ

i
;

¼ gvD
2
e ðkÞþ 2gvDeðkÞeðkÞ �gLt1e

2ðkÞ �gLt2u
2ðkÞ:

(22)

when De(k) ¼ e(kþ1)�e(k) and it can be approximated by

DeðkÞbveðkþ 1Þ
vbðkÞ DbðkÞ: (23)

By applying the chain rule, the partial derivative veðkþ 1Þ=vbðkÞ
can be determined by

veðkþ 1Þ
vbðkÞ ¼ veðkþ 1Þ

vyðkþ 1Þ
vyðkþ 1Þ
vuðkÞ

vuðkÞ
vbðkÞ;¼ �FðkÞfðkÞ: (24)

Substitute (24) into (23) and use the tuning law (19), thus



Fig. 3. Experimental setup.

If e(k) is NL Then u1(k)¼bNL(k)mNL(ek),
If e(k) is NM Then u2(k)¼bNM(k)mNM(ek),
If e(k) is NS Then u3(k)¼bNS(k)mNS(ek),
If e(k) is Z Then u4(k)¼bZ(k)mZ(ek),
If e(k) is PS Then u5(k)¼bPS(k)mPS(ek),
If e(k) is PM Then u6(k)¼bPM(k)mPM(ek),
If e(k) is PL Then u7(k)¼bPL(k)mPL(ek),

Parameter Value [V] Parameter Value [V]

bNL(1) �2.5 bPS(1) 0.75,
bNM(1) �1.25 bPM(1) 1.25,
bNS(1) �0.75 bPL(1) 2.5,
bZ(1) 0
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DeðkÞb� FðkÞfðkÞDbðkÞ;¼ �hðkÞFðkÞ½g1½eðkÞ þ DeðkÞ�FðkÞ
� g2uðkÞ�kfðkÞk2;

¼ �a1ðkÞeðkÞ þ a2ðkÞuðkÞ;
(25)

when a1ðkÞ ¼ hðkÞg1F
2ðkÞkfðkÞk2=1þ hðkÞg1F2ðkÞkfðkÞk2 and

a2ðkÞ ¼ hðkÞg2FðkÞkfðkÞk2=1þ hðkÞg1F
2ðkÞkfðkÞk2. Substitute (25)

into (22), thus the change of Lyapunov function can be given by

DVðkÞ ¼ gvDe
2ðkÞ þ 2gvDeðkÞeðkÞ;

¼ gv½ � a1ðkÞeðkÞ þ a2ðkÞuðkÞ�2 þ 2gv½ � a1ðkÞeðkÞ
þ a2ðkÞuðkÞ�eðkÞ;�gLt1e

2ðkÞ � gLt2u
2ðkÞ: (26)

By applying Cauchy-Schwarz inequality with (26), we have

DVðkÞ<2gva
2
1ðkÞe2ðkÞ þ 2gva

2
2ðkÞu2ðkÞ � 2gva1ðkÞe2ðkÞ

þ 2gva2ðkÞuðkÞeðkÞ � gLt1e
2ðkÞ � gLt2u

2ðkÞ;

<
�
2gva

2
1ðkÞ � 2gva1ðkÞ þ

1
2
gv � gLt1

�
e2ðkÞ

þ
h
4gva

2
2ðkÞ � gLt2

i
u2ðkÞ:

(27)

The selection of designed constants gv, gL, t1, t2, g1 and g2 will be
introduced by the following theorem.

Theorem 1 For a class of discrete-time nonlinear systems
described in (1), let the control effort be generated by (5) and let
parameter b be adjusted by (19), then the closed-loop system for the
controlled plant, which fulfills CFDL equivalence system in (3) and
assumptions 1e2, can be guaranteed as asymptotically stable while

gv ¼ 2gLt1; (28)

and

g2
g1

<
1
2

ffiffiffiffiffiffiffiffi
t2

2t1

r
jFðkÞj: (29)

The proof of this theorem is addressed in appendix B.
In this work, the ratio g2=g1 in (29) can be determined without

F(k). By using (4), it's clear that Fm < jFðkÞj, thus (29) is practically
determined by

g2
g1

				
max

¼ 1
2

ffiffiffiffiffiffiffiffi
t2

2t1

r
Fm: (30)

With the conclusion, the time varying learning rate h(k) is
determined by (18) with constants g1 and g2 to follow the relation
given by (30). Thus, the closed-loop performance can be guaran-
teed under the result of theorem 1. The setting of all designed
constants will be demonstrated in the next section by using only
inputeoutput data set of the controlled plant.
4. Experimental setup and results

Themotor current IMwill bemeasured by a data acquisition card
CONTEC 16-bit AIO-160802L-LPE as the plant's output y(kþ1). The
control effort u(k) is generated by computer programming based on
MATLAB R2008b with DAQ-toolbox 2.13, Windows XP sp3 and
Pentium4-3 GHz CPU. Fig. 3 presents the experimental system. The
sampling time is given as 1.5 [ms] for each interval for matching the
maximum speed of AIO-160802L-LPE and personal computer's
performance to implement control algorithms.
4.1. FREN controller design and results

Let's consider the fact that “IF we need higher motor current
THEN we must increase terminal voltage”, thus IF-THEN rules are
defined as the followings:
when N, Z and P denote “negative”, “zero” and “positive” linguistic
levels respectively, L stands for “large”, M is ”middle” and S intends
for “small”.

Fig. 4 illustrates the shape of designed membership functions
m(e(k)) to cover the expected range within eðkÞ2±50 [mA]. The
initial of parameters b can be given by the followings:
The relation of initial setting with membership values is
depicted by Fig. 5 to demonstrate the range of motor's terminal
voltage. In this application, this range can be given by motor's
specification as ±2.5 [V]. Regarding to the control law in (5), those
control vectors can be defined as bðkÞ ¼ ½bNLðkÞ bNMðkÞ/bPLðkÞ�T
and fðkÞ ¼ ½mNLðekÞ mNMðekÞ/mPLðekÞ�T : It's clear that bNL is the
largest voltage on the negative side and bPL is the largest voltage on
the positive. Those values are designed to cover the motor oper-
ating range ±2.5 [V] completely.

To estimate parameters FM and Fm, the experimental setup is
performed by monitoring motor current with ramp input-voltage
0 to 1.5 [V] and 0 to �1.5 [V]. Fig. 6 shows the result with esti-
mated lines. The ratios betweenmotor current and terminal voltage
can be determined by



Fig. 4. Membership functions setting.
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DIp
DVp

¼ 19:5� 0:7
1:5� 0:29

¼ 15:537
�
mA
V

�
; (31)

on the positive side and

DIn
DVn

¼ �17:2þ 0:8
�1:5þ 0:5

¼ 16:4
�
mA
V

�
; (32)

on the negative side. The constantFM is designed by the calculation
results in (31) and (32) while another constant Fm is estimated by
10-time reduction from FM. For summary, designed constants are
given as the followings:
Constant Value Constant Value

gh 0.5 t1 1,
g1 1 t2 1,
g2 0.5 gL 1,
gv 2 FM 20,

Fm 2.
The constant gv is determined by (28) and the ratio of g2 and g1
meets the requirement in (29) to follow the main theorem.

The experimental results of FREN-controller are illustrated in
Fig. 7. The signal in channel-1 represents themotor current IMwhen
the desired motor current yd is rectangular signal ±30 [mA] or ±
3.3 [V] with currentevoltage gain in (2). The control effort u is
illustrated in Fig. 7 as Vin by channel-2. The time varying of learning
rate obtained by (18) is depicted by Fig. 8. Fig. 9 represents the time
varying square norm kbk2 of adjustable parameters.
4.2. Comparative results

To demonstrate the advantage of proposed controller, RBF
neural network and data driven control schemes are implemented
to our motor driving system.

The basis functions of RBF controller are selected as the same as
membership functions for FREN depicted in Fig. 4 and the network
architecture is constructed as [18]. The back propagation is inte-
grated to tune weight parameters with convergence and stability
proof provided by [17]. The tracking performance and the control
effort are illustrated in Fig. 10 with the same designed trajectory as
FREN controller. Fig. 11 shows the time varying square norm kWk2
of RBF network's weight parameters.

Remark: The initial setting of weight parameters W is same as
FREN controller's parameters or W(1) ¼ b(1).

Next, the data-driven controller proposed by [5] is applied to
drive the motor. This control algorithm can be summarized as
follows:

uðkÞ ¼ uðk� 1Þ þ rcbfðkÞ
lþ 		bfðkÞ		2 ½ydðkþ 1Þ � yðkÞ�; (33)

bfðkÞ ¼ bfðk� 1Þ þ hcDuðk� 1Þ
mþ Duðk� 1Þ2

�
DyðkÞ � bfðk� 1ÞDuðk� 1Þ�;

(34)

when rc and hc are sequences of step length, l and m are weighted
factors and bfðkÞ is the estimated PPD. The resetting algorithm is
required as the following:

bfðkÞ ¼ bfð1Þ; if
		bfðkÞ		 � εc or jDuðk� 1Þj � εc; (35)

where εc is a small positive constant. The tracking performance is
shown in Fig.12with the same desired trajectory as FREN controller
case when channel 1 and 2 represent the motor current by using
currentevoltage gain in (2) and the control effort, respectively. The
online estimation of PPD bfðkÞ is illustrated by Fig. 13. In this
application, the initial setting of PPD is given by FM orbfð1Þ ¼ FM ¼ 20. Generally, the initial setting of PPD can be defined
by small positive value. In this work, this initial is given as bfð1Þ ¼ 1.
The responses are shown in Fig. 14 for both tracking performance
and control effort. Fig. 15 represents the online estimation bfðkÞ. The
extreme variation of bfðkÞ can be observed with this setting.

To summarize, Table 1 demonstrates comparative results by
using sum square of total control effort and tracking error. It's clear
that the proposed controller can provide less control effort and
tracking error. A parameter Tc denotes computation time which is



Fig. 6. DC motor: Relation between Voltage and Current.

Fig. 7. Motor current and control voltage: FREN controller.

Fig. 5. Initial setting of adjustable parameters b(1).
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Fig. 8. Time varying learning rate: FREN controller.
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used to evaluate the complexity of control schemes. Furthermore, a
constant FM obtained from FREN controller can be selected as a
good candidate for the initial setting bfð1Þ in DDC scheme.
5. Conclusion

A model-free adaptive controller based on FREN has been pro-
posed to control the armature current of commercial DC-motors.
This controller is simply designed by the general knowledge of
controlled plants. Any mathematical model or system dynamic can
be neglected here. In this case, the control plant is a commercial
DC-motor with armature current tracking control, thus, the
knowledge within IF-THEN rules can be defined as “IF we need
higher motor current THEN we must increase terminal voltage”.
Moreover, the system analysis has been developed from DDC
Fig. 9. Time varying of kbð
schemes which allow us to consider the controlled plant as “un-
known system”. The motor driving plant has been considered as a
class of non-affine discrete time systemwhich can be simplified by
CFDL as the general application of DDC. In this work, the on-line
estimation of PPD and resetting algorithm, which is generally
required by common DDC schemes, can be neglected because of
FREN's IF-THEN rules created by relation between motor's current
and voltage. The proposed controller requires only maximum and
minimum values of PPD. Fortunately, those values can be directly
estimated by the relation of plant's inputeoutput as the demon-
stration given in section 4. The cost function has been proposed to
minimize for both tracking error and control effort energy. Those
control constrains such as the learning rate h, cost function's pa-
rameters (g1 and g2) and so on have been considered for the
learning algorithm to tune all adjustable parameters inside FREN.
kÞk2: FREN controller.



Fig. 10. Motor current and control voltage: RBF controller.

Fig. 11. Time varying of kWðkÞk2: RBF controller.

Fig. 12. Motor current and control voltage: Data driven controller bfð1Þ ¼ FM ¼ 20.
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Fig. 13. Time varying of bfðkÞ: Data driven controller bfð1Þ ¼ FM ¼ 20.

Fig. 14. Motor current and control voltage: Data driven controller bfð1Þ ¼ 1.

Fig. 15. Time varying of bfðkÞ: Data driven controller bfð1Þ ¼ 1.
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Table 1
Performance comparison results.

RBF DDC bfð1Þ ¼ FM DDC bfð1Þ ¼ 1 FRENP
u2ðkÞ 5.548 � 103 3.176 � 103 3.859 � 103 3.001 � 103P
e2ðkÞ 1.219 � 106 7.134 � 104 1.051 � 105 3.123 � 104

Tc [ms] 1.4 1.3 1.3 1.4
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The closed-loop performance and stability issues have been guar-
anteed by Lyapunov method with control constrains.

Comparative results with the RBF-controller and the DDC
scheme have demonstrated the proposed controller's advantage as
the less tracking error and control effort.
A. Proof of Lemma 2.1

Proof:
From the dynamic system given by (1), the change of y(kþ1) can

be written by

Dyðkþ1Þ¼yðkþ1Þ�yðkÞ;
¼ f

�
yðkÞ;/;y

�
k�ny

�
;uðkÞ;/;uðk�nuÞ

�
� f

�
yðk�1Þ;/;y

�
k�ny�1

�
;uðk�1Þ;/;uðk�nu�1Þ�;

¼ f
�
yðkÞ;/;y

�
k�ny

�
;uðkÞ;/;uðk�nuÞ

�
� f ðyðkÞ;/;y

�
k�ny

�
;uðk�1Þ;/;uðk�nuÞ;

� f
�
yðk�1Þ;/;y

�
k�ny�1

�
;uðk�1Þ;/;uðk�nu�1Þ�

þ f
�
yðkÞ;/;y

�
k�ny

�
;uðk�1Þ;/;uðk�nuÞ

�
:

(A.1)

By using the differential mean value theorem and assumption 1,
(A.1) can be rewritten as

Dyðkþ 1Þ ¼ c1
�
yðkÞ;/;y

�
k� ny � 1

�
;uðk� 1Þ;/;uðk� nu � 1Þ�

þ vf �

vuðkÞDuðkÞ;

(A.2)

when
c1ðyðkÞ;/;yðk� ny � 1Þ;uðk� 1Þ;/;uðk� nu � 1ÞÞ ¼ f ðyðkÞ;/;

yðk� nyÞ;uðk� 1Þ;/;uðk� nuÞÞ � f ðyðk� 1Þ;/;yðk� ny � 1Þ;
uðk� 1Þ;/;uðk� nu � 1ÞÞ and vf �=vuðkÞ denotes the partial deriv-
ative operation of f with respect to u which is a point within
[u(k),u(k�1)]. Let repeat the same method, again, we have

Dyðkþ1Þ ¼ c1
�
yðkÞ;/;y

�
k�ny�1

�
;uðk�1Þ;/;uðk�nu�1Þ�

�c1
�
yðkÞ;/;y

�
k�ny�1

�
;uðk�2Þ;/;uðk�nu�1Þ�

þc1
�
yðkÞ;/;y

�
k�ny�1

�
;uðk�2Þ;/;uðk�nu�1Þ�

þ vf �

vuðkÞDuðkÞ;

¼ c2
�
yðkÞ;/;y

�
k�ny�1

�
;uðk�2Þ;/;uðk�nu�1Þ�

þ vf �

vuðkÞDuðkÞþ
vc�1
vuðkÞDuðk�1Þ:

(A.3)

With out any loss on generality, let t be a control effort length of
linearization [5], thus we obtain
Dyðkþ1Þ¼ vf �

vuðkÞDuðkÞþ
vc�1
vuðkÞDuðk�1Þþ/

þ vc�t
vuðk�tþ1ÞDuðk�tþ1Þ

þct
�
yðkÞ;/;y

�
k�ny�1

�
;uðk�tÞ;/;uðk�nu�1Þ�:

(A.4)

Furthermore, ct(k) can be reconsidered as

ctðkÞ ¼ FT
cðkÞDUðkÞ; (A.5)

when DU(k)¼[Du(k),Du(k�1),/,Du(k�t)]T. On the other hand, we
can rewrite (A.4) as

Dyðkþ 1Þ ¼ F
!T ðkÞDUðkÞ; (A.6)

where

F
!ðkÞ ¼ FcðkÞ þ

�
vf �

vuðkÞ;
vc�1
vuðkÞ;/;

vc�
t�1

vuðkÞ
�T

: (A.7)

This proof has been done for a general system. When t ¼ 1, the
system becomes the CFDL model which can be given be

Dyðkþ 1Þ ¼ FðkÞDuðkÞ; (A.8)

when FðkÞ ¼ vf �=vuðkÞ þ FcðkÞ½: 1�.

B. Proof of theorem 1

Proof:
The change of Lyapunov function obtained in (27) can be

negative or DV(k) < 0 while

2gva
2
1ðkÞ � 2gva1ðkÞ þ

1
2
gv � gLt1 <0; (B.1)

and

4gva
2
2ðkÞ � gLt2 <0: (B.2)

Substitute (28) into (B.1), thus we obtain

0<
2gv � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gvgLt1

p
2gv

< a1ðkÞ<
2gv þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gvgLt1

p
2gv

<1: (B.3)

Regarding to
a1ðkÞ ¼ hðkÞg1F

2ðkÞkfðkÞk2=1þ hðkÞg1F2ðkÞkfðkÞk2, the relation in
(B.3) can be rearranged as

0<
hðkÞg1F2ðkÞkfðkÞk2

1þ hðkÞg1F2ðkÞkfðkÞk2
<1; (B.4)

while g1 is a positive constant thus (B.4) and (B.1) can be held-
Substitute a2ðkÞ ¼ hðkÞg2FðkÞkfðkÞk2=1þ hðkÞg1F

2ðkÞkfðkÞk2 into
(B.2), thus we obtain

hðkÞg2jFðkÞjkfðkÞk2
1þ hðkÞg1F2ðkÞkfðkÞk2

<
1
2

ffiffiffiffiffiffiffiffiffiffi
gLt2

gv

r
: (B.5)

By using the fact that hðkÞg2 jFðkÞjkfðkÞk2
1þhðkÞg1F

2ðkÞkfðkÞk2 <
hðkÞg2 jFðkÞjkfðkÞk2
hðkÞg1F

2ðkÞkfðkÞk2 , it
leads to

hðkÞg2jFðkÞjkfðkÞk2
hðkÞg1F2ðkÞkfðkÞk2

<
1
2

ffiffiffiffiffiffiffiffiffiffi
gLt2

gv

r
: (B.6)
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Substitute (28) into (B.6), thus the ratio of g2 and g1 can be
obtained as

g2
g1

<
1
2

ffiffiffiffiffiffiffiffi
t2

2t1

r
jFðkÞj: (B.7)

It is identical with (29), thus the existence of (B.2) can be
guaranteed. Regarding to results within (B.1) and (B.2), the change
of Lyapunov function is negative or DV(k) < 0, thus the closed-loop
system is asymptotically stable.
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