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a b s t r a c t

Antioxidants are vital for aerobic life, and for decades the expectations of antioxidants as health pro-
moting agents were very high. However, relatively recent meta-analyses of clinical studies show that
supplementation of antioxidants does not result in the presumed health benefit, but is associated with
increased mortality. The dilemma that still needs to be solved is: what are antioxidants in the end,
healthy or toxic? We have evaluated this dilemma by examining the presumed health effects of two
individual antioxidants with opposite images i.e. the “poisonous” β-carotene and the “wholesome” vi-
tamin E and focused on one aspect, namely their role in inducing BPDE-DNA adducts. It appears that both
antioxidants promote DNA adduct formation indirectly by inhibition of the protective enzyme glu-
tathione-S-transferase π (GST π). Despite their opposite image, both antioxidants display a similar type of
toxicity. It is concluded that, in the appreciation of antioxidants, first their benefits should be identified
and substantiated by elucidating their molecular mechanism. Subsequently, the risks should be identified
including the molecular mechanism. The optimal benefit–risk ratio has to be determined for each an-
tioxidant and each individual separately, also considering the dose.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

From a toxicological point of view, molecular oxygen and other
reactive oxygen species (ROS) are among the most reactive com-
pounds we encounter in daily life [1,2]. Moreover, their level of
exposure is relatively high and the duration of exposure is lifelong.
This cumulates in the permanent threat of oxidative stress; a
B.V. This is an open access article u

(M.F. Vrolijk).
toxicological process implicated in the pathogenesis of virtually
any disease [3,4]. Antioxidants, which protect against ROS, are
therefore vital for aerobe life. For that reason, nutrients rich in
antioxidants or antioxidants administered as supplement are ap-
plied on a large scale in an attempt to alleviate ROS induced da-
mage [5]. The concept of oxidative stress emerged in the second
half of the previous century. Consequently, at that time the ex-
pectations for the health benefits of antioxidants were very high
and the use of all kinds of antioxidants in relative high quantities
were recommended based on the ideas that all antioxidants are
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Box 1. Antioxidant protection: for a long time, it was thought that antioxidants
only needed to scavenge radicals to offer protection. Currently, our knowledge on
how antioxidants functions has progressed. The mechanism of action of anti-
oxidants consists of multiple steps, as illustrated with the protection of lipoproteins
against lipid peroxidation by vitamin E. During the process of lipid peroxidation
lipid peroxyl radicals (LOO●) are formed. In the protection, the first step is the
scavenging of LOO● by the lipophilic antioxidant vitamin E � . This is a chemical
reaction in which the reactive radical (LOO●) is transformed into a non-radical
(LOOH) that is relatively unreactive. The second step is that the radical is safe-
guarded in the antioxidant radical. The vitamin E radical is relatively unreactive due
to delocalization of the radical over the antioxidant molecule. In the final step, the
radical is transferred safely into the antioxidant network. In sequential reactions,
the radical is transferred from one antioxidant to another antioxidant. In the ex-
ample, the radical located on vitamin E in the lipoprotein is taken over by vitamin C
in the plasma [62]; the vitamin C radical might react with NADH to regenerate
vitamin C, a reaction catalyzed by the ascorbate free radical reductase. In the end,
the reactivity of the radical is totally absorbed in the 3 steps.
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equal, and that the higher the intake, the higher the health ben-
efits of antioxidants would be.

However, relatively recent meta-analyses of clinical studies
insinuate that that the high expectations could not be met. It
seems as if supplementation of antioxidants does not result in the
presumed health benefit, but paradoxically a high intake of anti-
oxidants is associated with increased mortality [6–9]. More than
68 randomized control trials were analyzed for the effects of β-
carotene, vitamin A and vitamin E on mortality. All these com-
pounds, given in a relatively high dose as a single compound or in
different combinations, had no beneficial effects. The supplements
even increased all-cause mortality. In this respect, it should be
noted that vitamin A is considered not be an antioxidant, in-
dicating that any compound (not only antioxidants) will be toxic
when the dose is too high. In fact, this is the fundamental rule in
toxicology coined five centuries ago by Paracelsus. As a con-
sequence of the reports on the adverse effects of antioxidants gi-
ven in a relatively high dose, the appreciation of antioxidants
rigorously changed from healthy to toxic [10–12]. To date, the
discussion on the health benefits of antioxidants continues.

The dilemma remains: what are antioxidants in the end, toxic
or healthy? We evaluated this dilemma by examining the pre-
sumed health effects of two individual natural antioxidants in
which the opposite images are materialized i.e. the “poisonous” β-
carotene and the “healthy” vitamin E [13–17]. The interaction of β-
carotene and vitamin E with physiological systems should be
evaluated at a molecular level, because at this level the biological
effect of a compound arises. β-carotene and vitamin E display a
wide variety of effects from free radical scavenging to modulation
of signal transduction [18–22]. In the present evaluation, we fo-
cused on one aspect, namely their role in inducing DNA damage by
focusing on the interaction of β-carotene and vitamin E with
glutathione-S-transferase π (GST π). However, our perception of
antioxidants should not be limited to their risks; actually their
benefits should be put in first place. A risk–benefit analysis is
made and is based on the interaction of the antioxidants on the
molecular level. It will be discussed if we should adjust our per-
ception of both compounds. The benefits of antioxidants on a
molecular level are neutralizing ROS and prevent oxidative da-
mage. The health benefits are supported by a large body of epi-
demiological evidence. For instance, a low plasma level of β-car-
otene is associated with increased mortality [23–25]. Additionally,
vitamin E is associated with a reduced risk of coronary heart dis-
ease and colon cancer [13,14,26,27]. Our knowledge on how these
compounds act has drastically increased (Box 1). In the 1970s, it
was believed that antioxidants only needed to scavenge free ra-
dicals which would totally absorb their reactivity. In the current
concept on the molecular mechanism of action, scavenging is the
first step in a series of at least three steps. The second step is that
the radical is safeguarded in the antioxidant radical. Finally the
radical has to be transferred safely into the antioxidant network.
Although initially all antioxidants were considered to be equal, we
now realize that each antioxidant has its own biochemical profile.
Vitamin E for instance protects membranes from lipid peroxida-
tion by scavenging lipid peroxyl radicals, while β-carotene is one
of the most potent scavengers of singlet oxygen [28,29]. The mo-
lecular mechanism of action of the major antioxidants is already
partially unraveled. Nevertheless, several important aspects such
as the interaction with the endogenous antioxidant network,
needs to be fully elucidated in order to completely exploit the
health benefits of these antioxidants.

β-Carotene

β-Carotene belongs to the group of naturally occurring car-
otenoids and has a lipophilic character containing pro-vitamin
activity. β-Carotene is naturally occurring in dietary fruits and
vegetables, but is also present as food supplements. The chemical,
biological and physical properties of β-carotene are well-described
[31]. Besides the proposed beneficial effects of β-carotene, several
clinical trials do not support these effects and reported toxic ef-
fects of β-carotene supplementation. Regarding these risks, the
ATBC study revealed in 1994 that β-carotene supplementation was
associated with an increased incidence of lung cancer in smokers
[32]. In the years that followed, other epidemiological studies
corroborated this alarming effect [33–36]. The blame was put on
β-carotene. However, the molecular mechanism for inducing lung
cancer could not be evidently tied to β-carotene.

Especially in the combination with smoking, β-carotene sup-
plementation is extra dangerous [37,38]. The polycyclic aromatic
hydrocarbon benzyo[a]pyrene (BaP), present in tobacco smoke,
has a well-known carcinogenic track record and the molecular
evidence is beyond reasonable doubt [39]. BaP is activated into its
highly mutagenic metabolite benzo[a]pyrene diol epoxide (BPDE).
The electrophile BPDE attacks the nucleophilic regions of DNA,
yielding BPDE-DNA adducts [40,41]. The carcinogenic potential of
BPDE is corroborated in the present study by the presence of
153723 BPDE-DNA adducts/107 nucleotides (Fig. 1A) in lung
epithelial cells (BEAS-2B) after exposure to BPDE. These DNA ad-
ducts cause chromosomal instability and eventually initiate tumor
formation [42].

Protection against BPDE is provided by GSTs. This family of
enzymes catalyzes the conjugation of BPDE to glutathione (GSH),
which neutralizes the carcinogenic potential of BPDE [43]. These
GSTs are divided into five major isoforms (α, μ, π, θ, and s), of
which the π isoform is found to be the most abundant isoform in
erythrocytes, lung and the human skin [44–47]. In our experi-
ments, GST π effectively decreased the number of BPDE-DNA ad-
ducts in the lung epithelial cells to 75710 BPDE-DNA adducts/107

nucleotides (Po0.01) (Fig. 1B). The evidence on the protective role



Fig. 1. The effects of β-carotene (10 mM) on BPDE-DNA adduct formation (A), on GST π induced detoxification of BPDE (B) and the inhibitory effect β-carotene on the activity of GST π.
The inhibitory effect of β-carotene on GST π induced BPDE detoxification. BPDE-DNA adduct formationwas measured by 32P-postlabeling assay. BEAS2B-cells were treated for 1 h with
0.1 mM BPDE in the absence or in the presence of β-carotene, the combination of GST π (50mU/ml) and GSH (1 mM) or the combination of GST π (50mU/ml), GSH (1 mM) and β-
carotene (10 mM). After treatment, mediumwas removed and cells were collected and stored at � 20 °C. DNA adduct levels were determined according to the nuclease P1 enrichment
technique as described by Reddy and Randerath with minor modifications [59,60]. GST π activity measurements were performed as described by Mannervik and Guthenberg with
slight modifications [61]. In short, the reaction of 1 mM CDNB with 1mM GSH in 100mM potassium phosphate buffer (pH 6.5; 37 °C) was spectrophotometrically monitored by
measuring the increase in absorbance at 340 nm. The effect of β-carotene (final concentrations: 5 and 10 mM) on GST enzyme activity (0.05 U/ml in buffer) was determined. The control
activity (of 12773 nmol/min/ml) was set to 100%. Data are shown as means7SEM (n¼6). One way analysis of variance (ANOVA) with Bonferroni post hoc correction was used to
examine differences in enzyme activities of GST π. In order to determine differences in BPDE-DNA adduct formation, student's t-test was used. Differences were considered to be
statistically significant when Po0.05. *Po0.05, **Po0.005, and ***Po0.001.
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of GST π is circumstantiated by the elevated risk for lung cancer in
humans with impaired GST π activity [46,48,49].

We also observed that β-carotene attenuated the enzyme ac-
tivity of GST π. Five and 10 mM β-carotene inhibited the GST-π
activity with 35% and 43% respectively (Fig. 1C). Consequently, β-
carotene weakens the defense against BPDE. Indeed, in lung epi-
thelial cells exposed to BPDE, β-carotene inhibits the protective
effect of GST π, by increasing the number of BPDE-DNA adducts to
125710/107 nucleotides (Po0.05) (Fig. 1B). This means that β-
carotene indirectly increases the formation of BPDE-DNA adducts,
since the conjugation of BPDE to GSH will not take place. This
finding implies that inhibition of the protective activity of GST π by
β-carotene is involved in the tumor promoting effect in smokers
(Fig. 3) [32].

The blame the ATBC study put on β-carotene supplementation
fitted in the disappointment on the unrealistically high expecta-
tions of the health effect of antioxidant supplementation of that
time [3]. However, by classifying it as toxic does injustice to
β-carotene, and we do not recognize its beneficial health effects.
Nevertheless, we do have to be fully aware of the hazard of
β-carotene in a specific group at risk, namely smokers.
Vitamin E

Vitamin E is the blanket term that covers all biological active
tocopherols and tocotrienols and their derivatives. The chemical,
biological and physical properties of vitamin E are well-described
[27] Vitamin E is abundant in our diet and present in numerous
food supplements. Also the dermal exposure has to be considered
due to the inclusion of vast quantities of vitamin E in cosmetic
products such as shampoos and skin creams. Numerous beneficial
health effects have been proposed for vitamin E, which are at-
tributed to its antioxidants activity. Despite its reputation of being
healthy, vitamin E has a dark side that is astonishingly similar to
that of β-carotene. Mitchel et al. [50] found that vitamin E had
tumor promoting activity of in the skin of mice exposed to 7,12-
dimethylbenz(a)anthracene (DMBA), a reference compound for
inducing cancer that displays a molecular mechanism similar to
that of BPDE.

In accordance to these findings, we observed that BPDE-DNA
adducts were formed in skin keratinocytes (HaCaT cells) after ex-
posure to BPDE (221728 BPDE-DNA adducts/107 nucleotides)
(Fig. 2A). The effective protection of GST π is corroborated in these
cells, evidenced by the effective decrease in the number of BPDE-



Fig. 2. The effects vitamin E (30 mM) on BPDE-DNA adduct formation (A), on GST π induced detoxification of BPDE (B) and the inhibitory effect of vitamin E on the activity of
GST π. BPDE-DNA adduct formation was measured by 32P-postlabeling assay. HaCaT cells were treated for 1 hour with 0.1 mM BPDE dissolved in DMSO in the absence or in
the presence of vitamin E, the combination of GST π (50 mU/ml) and GSH (1 mM) or the combination of GST π (50 mU/ml), GSH (1 mM) and vitamin E. After treatment,
medium was removed and cells were collected and stored at � 20 °C. DNA adduct levels were determined according to the nuclease P1 enrichment technique as described
by Reddy and Randerath with minor modifications [59,60]. The GST π activity was determined by recording the conjugation of 1 mM 1-chloro-2,4-dinitrobenzene (CDNB) by
1 mM GSH. The reaction of 1 mM CDNB with 1 mM GSH in 100 mM potassium phosphate buffer (pH 6.5; 37 °C) was spectrophotometrically monitored by measuring the
increase in absorbance at 340 nm. The effect of vitamin E (final concentrations: 1.25, 5 and 10 mM) on GST enzyme activity (0.05 U/ml in buffer) was determined. The control
activity (of 12773 nmol/min/ml) was set to 100%. Data are shown as means7SEM (n¼6). One way analysis of variance (ANOVA) with Bonferroni post-hoc correction was
used to examine differences in enzyme activities of GST π. In order to determine differences in BPDE-DNA adduct formation, student’s t-test was used. Differences were
considered to be statistically significant when Po0.05. *Po0.05, and ***Po0.001.
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DNA adducts, which were found to be 7874 BPDE-DNA
adducts/107 nucleotides (Po0.01) (Fig. 2B). Similar to inhibition of
GST π by β-carotene, we found that vitamin E also inhibited this
enzyme [51]. The enzyme activity of GST π is even more potently
inhibited by vitamin E in a concentration dependent manner
(Fig. 2C). In a concentration of 1.25, 5 or 10 mM vitamin E sig-
nificantly decreased the enzyme activity of GST π with 57%, 73%
and 74% respectively (Po0.001). Conversely, in rats a diet deficient
in vitamin E was found to increase GST activity [52]. As a con-
sequence of GST π inhibition, vitamin E also significantly atte-
nuated detoxification of BPDE by GST π (149722 BPDE-DNA
adducts/107 nucleotides; Po0.05). The resulting net effect is an
increase in BPDE-DNA adducts (Fig. 2B). This finding implies that
inhibition of the protective activity of GST π might explain the
tumor promoting effect of vitamin E in mice (Fig. 3) [50].

Coal tar contains polycyclic aromatic compounds (PAH) in-
cluding BP (the precursor of BPDE) and dermal exposure is asso-
ciated with inducing skin cancer [53]. After being banned, coal tar
is currently making a surprising comeback as ingredient in
medicated shampoos, soap and ointment for the treatment of
numerous skin diseases as eczematous dermatitis and psoriasis
[54,55]. Coal tar ointments induce PAH-DNA adducts in skin [56]
and in analogy with β-carotene in smokers, vitamin E may have an
additional toxic effect on people using coal tar creams. By classi-
fying it as wholesome we have a one-sided view on the health
effect of vitamin E, and we do not recognize its toxic effect. Indeed,
we do have to be fully aware of the hazard of vitamin E in a
specific group at risk, namely people using coal tar creams.
Conclusion and perspectives

Apparently, the appreciation of an antioxidant is a reflection of
the prevailing perception of the risks and benefits at a certain
point in time, and this is subject to change (Box 2). We earlier
found that smokers and patients treated with coal tar ointments
that are genetically deficient in GST detoxifications had higher
DNA adducts in blood cells and skin [57,58]. So modulation of GSTs
by antioxidants as β-carotene and vitamin E would certainly im-
pose a risk in these groups of exposed persons. To come to an



Fig. 3. Increase (%) in risk for lung cancer in smokers induced by β-carotene (left y-axis)
and in skin tumor formation in mice treated with DMBA induced by vitamin E (right y-
axis). β-carotene has a relative risk of lung cancer in smokers of 1.36, giving an increase
of 36%. Vitamin E increased the number of skin tumors in mice from 1 tumor/25 animals
in the control group to 154 tumors/26 animals in DMBA treated mice, giving an increase
of 15,400%. The β-carotene data were obtained from the alpha-tocopherol, β-carotene
Cancer Prevention Study Group, in which male smokers were daily supplemented with
β-carotene (20 mg). Lung cancer incidence was determined during a follow-up of 5–
8 years [32]. Vitamin E data were obtained from Mitchel et al. [50]. In this study, DMBA
with and without vitamin E were topically applied to the dorsal skin of female SENCAR
mice from which the hair was shaved. ninety-eight nd 153 days after DMBA initiation,
skin tumor formation was determined.

Box 2. The health effect of antioxidants: in the perception of the health effect of an
antioxidant, it is often considered that an antioxidant either only provides benefits
or that it only poses risks. These opposing, one side views are the main obstacles in
the accurate perception of the health effect of antioxidants. A more balanced view
is mandatory as any bioactive, antioxidants included, have benefits as well as risks.
In fact, the distinction between the two is not as clear-cut as generally assumed; as
coined by Adrien Albert, the benefit is a form of selective toxicity. Critical in the
risk–benefit analysis is that each individual balance is biased. In people that are
expected to profit, the arm of the benefit is relatively long. Contrariwise, in vul-
nerable people, the arm of the risk is relatively long. The latter is seen for the risk of
β-carotene in smokers. Apparently, it has to be determined for each individual
separately whether the benefit outweighs the risk. The molecular mechanism is the
pulling force that determines the weight of the benefit as well as the risk.
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accurate risk–benefit analysis the following issues should be kept
in mind:
1.
 Antioxidants are consumed to improve health and not because
they are not toxic. In our appreciation on antioxidants priority
is given to the risks and this needs to be corrected. The priority
should be to identify groups that are likely to benefit. A chal-
lenge is that clear pharmacological endpoints still need to be
defined that also includes the impact on redox signaling.
2.
 The molecular mechanism of the benefit is the actual funda-
ment. Since each antioxidant has its own unique biochemical
profile, antioxidants should not be treated as group. Based on
the molecular pathways involved in pathology, the specific
protection can be determined and the antioxidant which fits
the profile best can be selected.
3.
 Next to groups that benefit, also groups that are at risk should
be identified. Benefits are well-defined and therefore relatively
easy evaluated. In contrast, risks can in principle be anything.
Therefore, finding a group at risk is often a matter of chance.
For example, it could not have been foreseen that smokers are
at risk for β-carotene supplementation. Probably, there are
additional, not yet identified, risks in smokers or other specific
groups.
4.
 Risks should be substantiated by elucidating the molecular
mechanism. This does not have to be related to the molecular
mechanism for the benefit. The toxicity of the antioxidants in
the present study does not arise from their antioxidant effect or
their reactive products, but from the interaction with a protein.
β-carotene inhibited BPDE detoxification by GST π. This mole-
cular mechanism puts the toxicity of β-carotene in the right
perspective. BPDE is the actual culprit, whereas β-carotene is
more of an accomplice to BPDE, since it inhibits the detoxifying
enzyme GST. By putting the toxicity in the right perspective, an
overreaction (such as a general ban on β-carotene) can be
prevented. On the other hand, the molecular mechanism can be
used to predict other risks, such as shown in the present study,
the toxicity of vitamin E in people using coal tar.

Although the accurate appreciation of antioxidants seems
straight forward to do, in practice this appears to be quite awk-
ward. This can be exemplified by the case of β-carotene in smo-
kers. Since smoking causes oxidative stress, it is logical to sup-
plement smokers with antioxidants. β-carotene was selected be-
cause relatively low levels of this antioxidant were found in
smokers. Unpredictably, β-carotene appeared to be toxic in this
group and therefore β-carotene proved to be the wrong choice.
Undoubtedly, oxidative stress has a substantial contribution to
smoke toxicity. Therefore, smokers are expected to benefit from
antioxidant supplementation. Fully elucidating the molecular
mechanism is needed to identify the antioxidant that fits smokers.

In conclusion, as seen in the case of β-carotene and vitamin E,
there is a thin line between toxic and healthy. Supplementation of
antioxidants does not necessarily have to be beneficial and a
natural origin is no guaranty for safety. The optimal benefit–risk
ratio has to be determined for each antioxidant and each in-
dividual separately, also considering the dose. The molecular me-
chanism is the fundament to put the benefits as well as the risks in
an accurate perspective.
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