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We present a modular method for schedulability analysis of real time distributed systems.

We extend the actor model, as the asynchronous model for concurrent objects, with real

time using timed automata, and show how actors can be analyzed individually to make

sure that no task misses its deadline. We introduce drivers to specify how an actor can be

safely used. Using these driverswe can verify schedulability, for a given scheduler, by doing

a reachability check with the Uppaal model checker. Our method makes it possible to put

a finite bound on the process queue and still obtain schedulability results that hold for any

queue length.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Schedulability analysis for a real time system consists of checkingwhether all tasks can be finishedwithin their deadlines.

We propose a modular method for schedulability analysis by extending the Actor model with real time, wherein actors can

be analyzed individually. The Actor model [1,2] is the completely asynchronous setting of concurrent objects. Actors can

send only asynchronous messages and have queues for receiving them. An actor has a message server (also called a method)

for eachmessage it can handle.We introduce a high-level actor modeling languagewheremessage servers are defined using

timed automata [3]. Receiving a message schedules the corresponding method, i.e., puts it in the queue to be executed. A

method is sequential and may in turn send messages. A message that the actor sends to itself is called a self call.

Actors are suitable for modular modeling, because of the asynchronous nature of communication and the encapsulation

of computation (i.e., having no shared variables). Thismeans that actors can be developed independently, and later put in the

context of bigger systems. Nevertheless, for an actor to produce a specific service, messages should be sent to it in a correct

sequence.

Our extension of the actor model is in line with this modular modeling. The message servers, which correspond to the

methods that will be scheduled, are specified by means of timed automata [3]. A deadline is assigned to each message

specifying the time before which the intended job should be accomplished.We allow each actor to define its own scheduling

policy (rather than, for instance, assuming “First Come First Served (FCFS)” by default) with the condition that inserting a

newmessage in the queue cannot preempt the currently runningmethod.When amessage is received, the scheduling policy

determines where in the queue the message should be inserted.
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Fig. 1. Modular approach to schedulability analysis.

The modeler gives the possible timings for the arrival of messages to the actor (excluding self-calls) in another timed

automatoncalled thedriver. Adriver is amost general specificationofhowanactormightbeused. This driver also contains the

deadlines of the incomingmessages. Using driversmakes it possible to perform schedulability analysis for actors individually.

From the actor’s point of view, the driver describes the pattern of generating tasks in the actor. This makes a driver very

much similar to a task automaton [4]; nevertheless, while running a task (i.e., a message server), the actor may in turn

send messages to itself and generate other (internal) tasks. It may also be the case that an internal task should inherit the

(remaining) deadline of the task generating it (called delegation). The actor is said to be schedulable if all the (external and

internal) tasks are finished within their deadlines.

In our approach, an actor (given a specific scheduling strategy) is put together with its driver and analyzed for schedu-

lability. Although an actor is allowed to have an unbounded queue, we can statically find an upper bound on the length of

schedulable queues; hence, the behavior of the actor is finite. We show that this analysis is decidable by reducing it to the

problem of reachability check for timed automata [5]. This way, one can analyze the actor with regard to different scheduling

strategies, and find the best strategy. The analysis can be performed with the tools for timed automata verification, e.g., IF

[6], RED [7] or OpenKronos [8]; we have chosen to use Uppaal [9] for our analysis.

Onecanuseactors that are individually schedulablewith respect to their drivers formakingbigger componentsor systems.

In principle, checking the schedulability of such amulti-processor system is subject to state-space explosion. In line with the

aims of the Flacos workshop, we propose to use the ‘design by contract’ approach [10] based on automata [11]. A driver being

a specification of the general conditions under which instances of the model are schedulable (given by the actor developer),

a system developer has to provide the specific ‘use-case’ U of the actor in the given system. U is a timed automaton like a

driver but which describes the actual use of an actor in a particular configuration of connections. Compatibility is defined as

the inclusion of the timed traces of U in those of D, i.e., this particular usage is in the allowed usages. SinceD is deterministic,

trace inclusion is decidable [3,12]. If an actor is schedulable with respect to a driver D and D is compatible with a use-case U

then the actor is also schedulable in the particular configuration of connections described in U.

In this paper, we focus on the maximal use of model checking techniques for schedulability analysis while avoiding

state-space explosion, which is achieved by modular verification (depicted in Fig. 1). This includes analyzing an actor for

schedulability with respect to its driver; and, checking whether a given use case of the actor is compatible with the general

driver specification. This provides the means for modeling schedulable actors and ensuring their correct usage. The user

of a schedulable actor may further need to check, as an extra step, whether the real system implementation conforms to

the given use case. This step is not addressed in this paper, however, we envision that testing is appropriate for analyzing

conformance of potentially big systems.

1.1. Related work

There has been lots of work on schedulability analysis of real time systems. Here we compare our work with some most

relevant ones, focussing on different aspects of the work.

• We address schedulability at a modeling level, as in [4,13–15], whereas [16,17] are applied to programming languages. In

the latter case, a given application is augmented with real time requirements (like deadlines) and automata are derived

from code. In addition in TAXYS [16], an ‘event handler’ which is similar to our scheduler automata is synthesized

automatically from the annotations of the program. In contrast, we start by using automata for modeling schedulers,

actors and their drivers.

• For schedulability analysis, the task generation pattern should be provided. Tasks could be periodic specified with their

inter-arrival times [13], while tasks are scheduled based on a resource management policy. Rate monotonic analysis

techniques are extended in [14] for fixed priority systems in which tasks synchronize with the arrival of multiple

events. Task automata, on the other hand, are used for describing non-uniformly recurring tasks [4]. Intuitively, in a

task automaton, transitions may trigger an instance of a task, which will be put into the queue for execution, according to

a given scheduling strategy, e.g., FPS (fixed priority scheduling) or EDF (earliest deadline first) [18]. Although [16,17] also

use automata, they do not address decidability. Fersman et al. [4] have studied the decidability of the problem of checking

schedulability for task automata for different settings. For example, when using a non-preemptive scheduler, or when
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tasks have fixed computation times, schedulability for a task automaton can be reduced to checking for reachability in

timed automata, and is therefore decidable [5].

The drivers are similar to task automata in the sense that they model the pattern of task generation. However, in our

framework tasks are specified as timed automata (rather than just execution times) and can therefore trigger other

(internal) tasks during execution. Such an internal task may inherit the (remaining) deadline of the task generating it

(called delegation). The internal tasks are not captured in the driver, because their arrival depends on the scheduling of

the parent tasks, which in turn depends on the selected scheduling strategy.

• Schedulability has usually been analyzed for a whole system running on a single processor, whether atmodeling [4,13] or

programming level [16,17]. We address distributed systems where each actor has a dedicated processor and scheduling

policy. We propose a modular approach to schedulability analysis similar to the ideas of modular model checking [19]

(cf. next bullet). The work in [14] is also applicable to distributed systems but is limited to rate monotonic analysis. A

modular actor language addressing schedulability is proposed in [15]. This approach is modular in the sense that the

untimed specification of the actors, and the timing constraints (specified separately) can be reused. However, they still

analyze a complete system, rather than individual actors. Furthermore, a deadline in their framework includes only

the time until an event is received. Hence, their approach cannot address complications like delegation of a task to

subtasks.

• In our approach, drivers are key to modularity. A driver models the most general message arrival pattern for an object.

The driver can be viewed as a contract as in ‘design by contract’ [10] or as a most general assumption in modular model

checking [19] (based on assume-guarantee reasoning); schedulability is guaranteed if the real use of the actor satisfies

this assumption. In the literature, amodel of the environment is usually the task generation scheme in a specific situation.

However, a driver in our analysis covers all allowable usages of the actor, which in turn adds to the modularity of our

approach; every use of the actor foreseen in the driver is verified to be schedulable. Comparatively, for instance in TAXYS

[16], this model of the environment can also be general enough to cover all uses of the program but it is used to analyze

a complete program and is not used modularly.

1.2. Paper structure

In Section 2, we provide the grounds for the approach by explaining the actor language and timed automata. Section 3

informally demonstrates themodular approach tomodeling schedulable real time actors. The schedulability analysismethod

is formally investigated in Section 4. An overview of how to check compatibility is given in Section 5. We explain how to

perform the analyses in practice using Uppaal in Section 6. Section 7 concludes the paper.

2. Preliminaries

2.1. Timed automata

In this section, we define timed automata syntax and semantics as it forms the basis of the analyses in the paper.

Definition 1 (Timed Automata). Suppose B(C) is the set of all clock constraints on the set of clocks C. A timed automaton over

actions � and clocks C is a tuple 〈L, l0,−→, I〉 representing
• a finite set of locations L (including an initial location l0);

• the set of edges −→⊆ L × B(C) × � × 2C × L; and,

• a function I : L �→ B(C) assigning an invariant to each location.

A location can be marked urgent which is equivalent to resetting a fresh clock x in all of its incoming edges and adding an

invariant x ≤ 0 to the location.

An edge is written as l
a−−→

g , r
l′. It means that action ‘a’ may change the location l to l′ by resetting the clocks in r, if clock

constraints in g (as well as the invariant of l′) hold. In addition, when a location is marked as urgent, intuitively, it means that

the automaton cannot spend any time in that location [9].

Definition 2 (Timed Automata Semantics). A timed automaton defines an infinite labeled transition system whose states are

pairs (l,u) where l ∈ L and u : C → R+ is a clock assignment. We denote by 0 the assignment mapping every clock in C to 0.

The initial state is (l0,0). There are two types of transitions:

• action transitions (l,u)
a→ (l′,u′) where a ∈ �, if there exists l

a−−→
g , r

l′ such that u satisfies the guard g, u′ is obtained by

resetting all clocks in r and leaving the others unchanged and u′ satisfies the invariant of l′;
• delay transitions (l,u)

d→ (l,u′) where d ∈ R+, if u′ is obtained by delaying every clock for d time units and for each

0 ≤ d′ ≤ d, u′ satisfies the invariant of location l.
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Deterministic timed automata. A timed automaton is called deterministic if and only if for each a ∈ �, if there are two edges

from l labeled by the same action l
a−−→

g , r
l′ and l

a−−−→
g′ , r′ l′′ then the guards g and g′ are disjoint (i.e., g ∧ g′ is unsatisfiable).

Variables. As accepted in Uppaal, we allow defining variables of type boolean and bounded integers for each automaton.

Variables can appear in guards and updates. The semantics of timed automata changes such that each state will include

the current values of the variables as well, i.e., (l,u, v) with v a variable assignment. An action transition (l,u, v)
a→ (l′,u′, v′)

additionally requires v and v′ to be considered in the corresponding guard and update.

Networks of timed automata. A system may be described as a collection of timed automata communicating with each other.

In these automata, the action set is partitioned into input, output and internal actions. The behavior of the system is then

defined as the parallel composition of those automata A1 ‖ · · · ‖ An. Semantically, the system can delay if all automata can

delay and can perform an action if one of the automata can perform an internal action or if two automata can synchronize

on complementary actions (inputs and outputs are complementary).

2.2. The modeling language for asynchronous concurrent objects

The Actor model was introduced by Hewitt [1] as an agent-based language; and, later developed by Agha [2] into a

concurrent object-basedmodel. Actors are units of distribution and concurrency, and have encapsulated states and behavior.

They communicate via asynchronous (non-blocking) message passing, and the arrival of the messages is guaranteed. Due to

their intrinsic asynchrony, actor-based languages can be used formodeling classical concurrent and distributed applications,

as well as, modern web services. Actors have local variables, but no shared variables. An actor has a dedicated processor. Our

approach can be easily adapted to any modeling platform with the above-mentioned characteristics for concurrent objects,

e.g., Rebeca [20], Creol [21], etc. To have a concrete method, we need to have a more detailed language mentioned next.

We define reactive classes as templates for actors. A reactive class defines amessage server for eachmessage it can handle.

A message sever (also called a method) is defined using a timed automaton, which may send messages. There is at least a

message server ‘initial’ in each reactive class, which is responsible for initialization. A reactive class can have known actors,

which serve as place holders for the actors that can communicate with instances of that class. When no ambiguity arises we

may use the term actor instead of reactive class.

Each actor has an unbounded queue for storing its incoming messages. The message at the head of the queue determines

the method to be executed next. At the initial state, a number of actors are created statically, and an ‘initial’ message is

implicitly put in their queues. The model continues running as actors send messages to each other and the corresponding

methods are executed.

3. Modeling real time actors and drivers

In this section, we informally describe ourmodularmethod ofmodeling real time systems.We demonstrate the approach

by modeling a mutual exclusion handler, called MutEx in the following. Section 4 provides the formal actor model.

For every actor, wemodel eachmessage serverwith a timed automaton. These automata are parameterized in the identity

of the actor itself, and the identifiers of the actors communicating with it (namely, its known actors). For instance, a MutEx
may communicate with the two objects on its left and right which try to enter a critical section. Each actor is coupled with

another timed automaton, called a driver, specifying in the most general terms the context in which the actor can be safely

used. Next section describes formally how a driver helps us analyze each actor individually. In Section 6, we will show how

to model these automata in Uppaal.

Fig. 2 depicts the automata for the message servers of the MutEx, called method automata. These automata are parame-

terized in self, Left and Right. An action Left.permitL(15)!means amessage permitL is sent to the actor representing the

Left known actor, and a deadline 15 is assigned to it. We abstract from computation, which is represented only by a time

delay. However, some variables (e.g., ‘taken’ in MutEx) may be needed for correct behavior of the actor. This is explained later

in this section.

A MutEx is initially not taken (the ‘taken’ variable is set to false in initial method). The object on the left (specified as

Left) may ask for the MutEx by sending reqL. In response, the MutEx sends a permitL back, if the MutEx is not already taken.

Similarly, themessage reqRmay be sent by Right. If the MutEx is taken, the request is put back in queue by a self call. A release

message can be sent by either object on the left or right.

Fig. 3 shows the specification of the driver automaton for MutEx. Themodeler specifies the correct way of using each actor

in its driver, i.e., the driver is the highest level abstraction of all environments in which the actor instances can be used. In

other words, a driver characterizes the expected pattern of incoming messages. The MutEx driver includes all possibilities of

receiving two requests followed by two releases.

The drivers should include the expected timing information for the arrival of messages. Specifically, a time interval

between messages is necessary to have a schedulable actor. The given MutEx driver keeps track of the time since every

request, and expects that the corresponding release arrives no sooner than MIN_REL time units. The driver assumes that
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Fig. 2. Specification of a mutual exclusion handler (MutEx).

Fig. 3. A driver automaton specification for MutEx.

the first request is always granted (because MutEx is not taken initially). If the next request arrives before a release, it will

be waiting for the MutEx to be released. Whenever a request is pending, a release must arrive before MAX_REL time units,

otherwise the pending request will miss the deadline. By iterating the schedulability analysis (explained in the next section)

this interval can be refined so that to indicate the minimum requirement.

The timing constraints in method automata show the amount of computation needed for each step. The invariants on the

locations of method automata together with the guards on edges, require that the send operations succeed; otherwise, time

cannot progress. This is necessary in order to model the asynchronous nature of the message passing.

The send and receive actions (inmethod and driver automata) should be assigned a deadline. Self calls inherit the remain-

ing deadline of the parent task (called delegation), unless an explicit deadline is assigned (called invocation). Delegationmay

be used when a task is split over two or more methods.

Another commonscenario fordelegationhappenswhena task (sayhandlinga ‘request’ in a MutEx) cannotbeaccomplished

immediately (say because the MutEx is already ‘taken’). Therefore, it needs to make a self call, which must terminate within

the original deadline. In other words, the original deadline of a request requires a bound on the time until the request is

granted (i.e., a permit is sent back). Variables (‘taken’ in this example) are used to keep the current state of the actor and

thus to bound such delegation loops. In modeling, we cannot abstract from such variables, because it would let the loops in

delegation to continue infinitely. This results in nonschedulability, because the (inherited) deadline becomes smaller every

time.
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4. The timed actor model

In this section, we present our formal model of actors. Each actor has a set of method names, which represent the

methods the actor provides. Each of these methods is represented by a timed automaton. An actor also needs a queue for

storing incoming messages and a scheduling strategy for determining the order of executing messages. Upon receiving a

message, the corresponding automaton, representing the task to be executed, is inserted into the process queue. Once the

currently executing automaton reaches a final state, the next task in the queue is started.

A model of an actor consisting of only methods cannot be analyzed for schedulability on its own, because there are an

infinite number of ways in which the methods could be called. Therefore, we add a driver that defines how the methods

could be called by the outside environment. Furthermore, we show in Section 4.3 that we may put a finite bound on the

queue and still derive schedulability results that hold for any queue length.

We assume a finite global set of method names M (corresponding to the messages that can be sent and received).

Definition 3 (Driver). A driverDwith a set ofmethod namesMD ⊆ M is a deterministic timed automaton (LD, lD,→D, ID) over

the alphabet �D = {m(d)?|m ∈ MD ∧ d ∈ N} and clocks CD.

The driver can be viewed as a high-level specification of how an actor can be used. It specifies the (acceptable) input

behavior of the actor, and abstracts from queue and scheduling strategy. An action m(d)? represents a message m sent to

the actor by the environment with the deadline d. A correct actor implementation should be able to finish an incoming call

m(d)? before d time units.

Definition 4 (Actor). An actor R matching the driver D is defined as a set {(m1,A1), . . . , (mn,An)} where:

• MR = {m1, . . . ,mn} ⊆ M is a set of method names such thatMD ⊆ MR; and,

• for all i, 1 ≤ i ≤ n, Ai = (Li, l0i ,→Ai
, Ii) is a timed automaton representing method mi with the alphabet �i = {m!|m ∈

MR} ∪ {m(d)! | m ∈ M ∧ d ∈ N} and clocks Ci. We also write →mi
for →Ai

. The method A1 is considered to be the initial

method and it is given a preassigned deadline d.

Method automata only send messages while computations are abstracted into time delays. Receiving messages (and

buffering them) is handled by a scheduler defined next. Sending a message m ∈ MR is called a self call. As explained in the

previous section, self callsmodeling delegation are not statically assigned adeadline; in this case, they inherit the (remaining)

deadline of the task that triggers them. Delegation implies that the internal task is in fact the continuation of the parent

task. The conditionMD ⊆ MR requires that a class should at least provide method implementation for handling all messages

it may receive according to its driver.

The driver does not capture internal tasks triggered by self calls. In order to analyze the schedulability of an actor,

one needs to consider both the internal tasks and the tasks triggered by the environment (the driver). We construct the

behavior automaton of an actor by executing the automata representing themessage servers as controlled by the driver. First,

we need to define formally a model of the queue and scheduler.

4.1. Scheduler

An actor needs a queue for storing incoming messages before they are scheduled to be executed. In this section, we give

the formal definition of a queue and scheduling strategies. Our scheduler model is inspired by and extends the ideas of

task automata [4]. Tasks, being specified using timed automata, may perform self calls, which need to be handled by the

scheduler, whereas in task automata tasks are just modeled with their execution time. We also need to support inheriting

deadlines for delegation.

For each task, a queue needs to store the method name and its deadline. Furthermore, it needs a clock to keep track of

the time since the task is triggered. This enables us to check if a deadline is missed. In theory a queue can be unbounded.

We show in Section 4.3 that we may put a finite bound on the queue and still derive schedulability results that hold for any

queue length. The first task in the queue is the currently running task.

Definition 5 (Queue). A queue qwith an upper boundMAX is a list of at mostMAX tasks together with a set Cq ofMAX clocks.

Each task is written as m(d, c) where m is a method name, d ∈ N is its deadline and c ∈ Cq keeps track of how long the task

has been in the queue. The deadline of m expires when c > d.

To construct thebehavior automaton, a scheduling strategy shouldbedefined for theactor, in termsof a scheduler function.

A scheduler is used to insert tasks into the queue. Typically the scheduler could dynamically examine the remaining time

of each task in the queue. However, during construction of the behavior automata, the values of the queue clocks are not

known. Therefore, the scheduler function returns the set of all possibilities for putting the new task in the queue depending

on different clock values. The function also assigns an unused queue clock to the new task.
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Definition 6 (Scheduler Function). Given a queue qwith clocks Cq and amethod namemwith deadline d, a scheduler function

‘sched(q,m(d))’ returns a set of triples {(G, c, q′)}, where

• G is a guard on clocks in Cq (possibly based on d);

• c ∈ Cq is a clock not used (i.e., not assigned to any tasks) in q; and,

• q′ is a queue with the clocks Cq and represents the queue q after inserting m(d, c) in a particular position as implied by

the guard G.

We define an overloading of the scheduler function as sched(q,m(d, c)) that inserts a task into the queue using a given

clock c. By reusing the deadline and the clock already assigned to a task in the queue, we can model inheriting the deadline.

In the case of delegation, the clock assigned to the currently running task is reused.

A scheduler function is preemptive if it can place the new task in the first position. Recall that the first task in the queue

is the task that is currently running. In this paper we only consider non-preemptive schedulers. Section 4.4 briefly discusses

the decidability of preemptive scheduling.

Example 7. Consider a queue q = [m1(d1, c1), . . . ,mk(dk , ck)] with the set of clocks Cq. A ‘first come first served’ scheduler

would always put the new job at the back of the queue. This scheduler would not impose any constraints:

sched_FCFS(q,m(d)) = {
(true, c, [m1(d1, c1), . . . ,mk(dk , ck),m(d, c)])}

where c ∈ Cq is not assigned to any task in q.

An ‘earliest deadline first’ scheduler would insert tasks into the queue based on the remaining deadlines of the existing

queue members:

sched_EDF(q,m(d)) ={
(d < d2 − c2, c, [m1(d1, c1),m(d, c),m2(d2, c2), . . . ,mk(dk , ck)]),
(d2 − c2 ≤ d < d3 − c3, c, [m1(d1, c1),m2(d2, c2),m(d, c), . . . ,mk(dk , ck)]),
. . .

(dk−1 − ck−1 ≤ d < dk − ck , c, [m1(d1, c1),m2(d2, c2), . . . ,m(d, c),mk(dk , ck)]),
(dk − ck ≤ d, c, [m1(d1, c1),m2(d2, c2), . . . ,mk(dk , ck),m(d, c)])}

where c ∈ Cq is not assigned to any task in q. The scheduler function cannot reorder the queue, so here we assume as an

invariant that the tasks already in the queue are in the right order.

In our implementation, wewill use a timed automaton to act as both the queue and the scheduler function (cf. Section 6).

4.2. Actor behavior model

Provided a scheduling strategy, an actor can be analyzed in the context of its driver. We will show in the next subsection

that we can put a finite bound on the queue length and derive schedulability results that hold for any queue length.

Definition 8 (Behavior Automaton). Suppose Q is the domain of all queues with upper boundMAX and using the clocks in Cq.

Given a scheduler function sched, the behavior automaton of an actor R = {m1 : A1, . . . ,mn : An} with the driver D is a timed

automaton H = (LH , lH ,→H , IH) over the alphabet �H and clocks CH:

• �H = {m(d)!|m /∈ MR} ∪ {m(d)?|m ∈ MD} ∪ {m|m ∈ MR}, where d ∈ N denotes a deadline.

• CH = CD ∪ ( ⋃
i∈[1..n] Ci

) ∪ Cq, where Ci and CD are the clocks for Ai and D, respectively, and Cq is the set of queue clocks.

• LH = {error} ∪ (
(
⋃

i∈[1..n] Li) × LD × Q
)
, where LD and Li are the sets of locations of D and Ai, respectively.

• The initial location lH is (lD, start(A1), [m1(d, c)]), where lD is the initial location ofD, A1 is the automaton for the ‘initial’
method (corresponding tom1), d is the initial deadline and c ∈ Cq.

• The edges →H are defined with the rules in Fig. 4.

• The location invariants are defined as I(l, ld, q) = I(l) ∧ I(ld) and I(error) = true. Furthermore, the locations (l, ld, [T1, . . . , Tk])
such that l ∈ final(T1) and k ≥ 2 are marked as urgent locations.

In Fig. 4, functions start(A) andfinal(A)give the initial locationofA and the set of locations inAwithnooutgoing transitions,

respectively. Each location of the behavior automaton is written as (l, ld, q), where q is the queue, ld is the current location of

the driver and l is the current location of the method being executed, i.e., the automata corresponding to the first element of

the queue. An edge of an automaton A with action a, guard g and update r is shown in this figure as
a−−→

g ; r−A
. Finally, k shows

the number of tasks in the queue.

When the driver allows receiving a message, or when a self call is made, the message is scheduled into the queue. In the

case of delegation the clock of the currently running task is reused for the new task so that it inherits the remaining deadline.

The internal step rule captures other transitions in a method.

When a task terminates the next task in the queue is started, unless there is no other task in the queue. In the latter case,

context switch is not performed. Instead, this terminated task is exempted from the missed deadline rule. As soon as a new

task is added to the queue, the context switch rule is enabled. Notice that the context switch rule is immediately executed

when enabled, due to the urgency of the source location (cf. last bullet in Definition 8).
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Fig. 4. Calculating the edges of the behavior automaton.

4.3. Schedulability analysis

We build the behavior automata for an actor based on a given driver. We can then check if the actor is schedulable for the

environments that match the driver.

Definition 9 (Schedulable). A behavior automata is schedulable if the deadlines of the tasks in the queue (including the

currently executing task) never expire, i.e., there is no reachable state such that a clock of one of the tasks of the queue is

greater than the deadline.
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Checking schedulability with an unrestricted queue length might require us to check an infinite system. Whereas artifi-

cially fixing the queue may lead to false negatives. Luckily, for a given actor, we can determine an upper bound on the queue

length of schedulable systems before constructing the behavior automaton.

Lemma 10. If a behavior automata is schedulable then it does not put more than �dmax/bmin� tasks into the queue,where dmax is

the longest deadline for any methods called on any transition of the automata (Ai or D) and bmin is the shortest termination time

of any of the method automata (the Ai’s).

Proof. Assume that the queue length reaches �dmax/bmin� + 1. We show that in this case, the actor is not schedulable. All

methods are called with a deadline, and delegated deadlines are equal to, or less than, the original deadlines. Therefore, all

tasks in the queue, including the last task, must have a deadline less than or equal to dmax . The scheduler can only insert

tasks into the queue, it cannot reorder the queue; therefore, �dmax/bmin� + 1 tasks must be executed before the last task in

the queue terminates. Each of these tasks takes at least time bmin; therefore, the final task terminates in time greater than

(�dmax/bmin� + 1) × bmin > dmax and so misses its deadline. �

We can calculate the best case runtime for timed automata as shown by Courcoubetis and Yannakakis [22]. The longest

deadline can be found by a simple static search of all the transitions.

Theorem 11. Abehavior automaton is schedulable if, and only if, it cannot reach the error statewith a queue length of �dmax/bmin�.

Proof. A behavior automaton can only reach the error state by using the [queue overflow] rule or the [missed deadline] rule.
The guard of the [missed deadline] rule implies that a deadline has been missed and therefore the behavior automaton is not

schedulable. Lemma10 implies that if the [queue overflow] rulewasused then the behavior automaton is also not schedulable.

In the other direction, if the behavior automata cannot reach the error state then the guard of the [missed deadline] rule
must never hold, so no deadlines are missed. �

As a result of this theorem, we can check the schedulability of behavior automata by checking the reachability of the error

state using the Uppaalmodel checker.

4.4. Discussion on preemptive scheduling

We have focused our work on “non-preemptive” schedulers, i.e., schedulers that finish one task and then pick the next

task to run using a given policy. Preemptive schedulers, on the other hand, will interrupt and switch between running tasks.

It is exactly this switching that gives the effect of truly concurrent processes on a single CPU machine.

In themost general case, testing the schedulability of a preemptive scheduler is undecidable. Fersman et al. prove this for

Task Automata [4] and their proof may be applied to our framework. In short they show that it is possible to implement a

2-counter machine by encoding the counters using clocks in the interval [0, 1]. Their system repeatedly loops and the value

of the counter is taken to be 21−c where c is the value of the clock at the end of each loop. Preemption allows the value c to

be arbitrarily halved and doubled so that the counter may be incremented and decremented.

The work by Kloukinas and Yovine [17] uses discrete-time automata to handle preemption and proposes a methodology

to copewith the state-space explosion due to it. In the densemodel of time, however, themost general preemptive scheduler

is undecidable because the amount of time between preemptions can be any value in the real domain. If we are willing to

restrict this interval andonly allowpreemption every t seconds then schedulability is decidable for every t > 0. This is enough

to accurately model real systems; t could, for instance, be set to equal the target machine’s clock speed. Schedulability is

decidable in this framework becausewe can break up any of themethod automata into a number of smaller automata each of

which runs for t time units and then adds the next part of the method to the queue, so giving the scheduler the opportunity

to preempt them. Unfortunately this would lead to the size of our system increasing exponentially as t decreases. We hope

that a full investigation of preemption will make promising further work.

5. Compatibility checking

Individually schedulable actors can be used as off-the-shelf components in making bigger components and systems.

Checking the whole system for schedulability is subject to state space explosion, given the fact that each actor has its own

processor and scheduling strategy. Using the analysis method in the previous section, one can develop in a modular manner

actors that are schedulable when their actual use is compatible with their drivers. In this section, we briefly discuss one way

to check for such a compatibility in the context of the ‘design by contract’ approach [10] based on automata [11].

In this approach, a developer of an actor model provides a driver as a specification which describes the most general

conditions under which instances of the model are schedulable. A system developer (as opposed to the actor developer)

instantiates actor models in the context of a particular configuration of connections. In order to check whether each actor
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Fig. 5. A use-case for MutEx.

instance of such a system is schedulable, a system developer has to provide a ‘use-case’ which is a timed automaton like a

driver but which describes the actual use of an actor in a particular configuration of connections.

Compatibility between a driver D and a use-case U is defined in terms of trace-inclusion, that is, the timed traces of U are

contained in those of D, denoted U � D. Clearly, if an actor is schedulable with respect to a driver D and D is compatible with

a use-case U then the actor is also schedulable in the particular configuration of connections described by U.

We define the drivers to be deterministic in Definition 3. This does not reduce the expressiveness, because what is

important for schedulability analysis is the timed traces in the driver. This implies the decidability of the compatibility check

(see for example [12] for a way of checking trace inclusion in Uppaal).

5.1. Example

Recall the MutEx actor modeled in Section 3. A classic example where the MutEx actor can be used is as a fork in the dining

philosophers example. Fig. 5 shows a use case of MutEx in such a system. This specifies that the objects on left and right of

the MutEx ask for entering the critical section exactly once, and in the order specified. Depending on which gets the MutEx
first, they may release in different orders. It is assumed that the objects release the MutEx no earlier than 4 time units. The

invariant on the location after reqR shows an upper bound on the time the MutExwill be released.

Inclusion of the traces of this use-case in those of the MutEx driver can be done in Uppaal as proposed in [12] when the

approach is extended to incorporate the deadlines into account. It is explained in the next section how to consider deadlines

in this check. If the values of min and max time the MutEx is released does not match MIN_REL and MAX_REL in the driver

(see Section 3), the use-case will not be compatible.

6. Using Uppaal for analysis

In this section, we explain how to use Uppaal [9] to perform schedulability analysis for a given actor. The details are

explained with the help of the MutEx example from Section 3. We model drivers, methods implementations and schedulers

(which in turn include a queue) with timed automata. The actor behavior model (corresponding to behavior automaton) can

be generated by making a network of these timed automata in Uppaal.

Communication. We use two channels invoke and delegate for sending messages. The channel invoke has three dimensions

(parameters), the message name, the sender and the receiver, e.g., invoke[release][self][Left]! replaces Left.release in the driver of

MutEx. Notice that in drivers, the actions are modeled as outputs (! instead of ?), which is necessary for handling deadlines

explained next. Inmethod automata, by setting both sender and receiver as self, one can invoke a self call (when a deadline is

to be given). The delegate channel is used for delegation. The self callmadeusing the delegate channel inherits the deadline of the

currently running task (it is taken careof by the scheduler automaton). Since adelegation is usedonly for self calls, no sender is

specified (it has only two parameters). Fig. 6 shows the driver and themethod reqL of MutExmodeled inUppaal (cf. Section 3).

Deadlines. We take advantage of the fact that when two edges synchronize, Uppaal performs the updates on the emitter

before the receiver. Hence we can use a global variable deadline. The emitter sets the deadline value into this variable which

is read by the receiver. The receiver, however, cannot use this deadline value in its guard, as guards are evaluated before

updates.

6.1. Modeling the scheduler

A scheduler function (Definition 6) can be implemented as a scheduler automaton. This automaton also contains a queue

as in Definition 5. Fig. 7 shows the general structure of a scheduler automaton. This general picture does not specify any

specific scheduling strategy. Unlike the Definition 6, the scheduler automata applies the scheduling strategy at dispatch time

instead of insertion time, but the resulting behavior is the same. The reason is to enable using deadlines in the strategy.

As explained in the previous subsection, the deadline value cannot be used (in the guard) on the same transition where a

message is received.
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Fig. 6. Modeling method and driver automata in Uppaal.

Fig. 7. A general scheduler automaton.

Queue. The triple m(d, x) for each task in the queue is modeled using the arrays q, d and x, respectively. The array ca shows

the clock assigned to each message (task), such that ‘d[ca[i]] − x[ca[i]]’ represents the remaining deadline of q[i] at any time.

counter[i] holds the number of tasks using clock x[i]. A clock is free if its counter is zero. When delegation is used, the counter

becomes greater than one.

Input-enabledness. A scheduler for a class R should allow receiving any message in MR at any time. In Fig. 7, there is an edge

(left down in the picture) that allows receiving a message on the invoke channel (from any sender). To allow any message

and sender, ‘select’ expressions are used. The expression msg : int[0,MSG] nondeterministically selects a value between 0 and

MSG for msg. This is equivalent to adding a transition for each value of msg. Similarly, any sender (sender : int[0,OBJ−1]) can be

selected. This message is put at the tail of the queue (q[tail] = msg), and a free clock (counter[c] == 0) is assigned to it (ca[tail] = c),

and the deadline value is recorded (d[c] = deadline). The synchronization between this transition and the driver (resp. method

automata) corresponds to the rule receive (resp. self call : invocation) in Fig. 4.

A similar transition accepts messages on the delegate channel. In this case, the clock already assigned to the currently

running task (parent task) is assigned to the internal task (ca[tail] = ca[run]). In a delegated task, no sender is specified (it is

always self). The variable run shows the index of the currently running task in the queue (which is not necessarily the first

task). This handles the rule self call : delegation.
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Fig. 8. A possible trace for a fork based on FIFO scheduling policy.

Context-switch. It is performed in two steps (without letting time pass). When a method is finished (synchronizing on finish

channel), it is taken out of the queue (by shift()). If it is not the last in the queue, the next method to be executed should be

chosen based on a specific scheduling strategy (by assigning the right value to run). For a concrete scheduler, the guard and

update of run should be well defined. If run is always assigned 0 during context switch, the automaton serves as a First Come

First Served (FCFS) scheduler. An Earliest Deadline First (EDF) scheduler can be encoded using a guard like:

i < tail && i != run &&
forall (m : int[0,MAX-1])

(m == run) || (x[ca[i]] - x[ca[m]] >= d[ca[i]] - d[ca[m]])

and i will show the task with the smallest remaining deadline. Notice that x[a] − x[m] ≥ d[a] − d[m] is equivalent to d[m] −
x[m] ≥ d[a] − x[a]. The rest ensures that an empty queue cell (i < tail) or the currently finished method (run) is not selected.

If the currently running method is the last in the queue, nothing needs to be selected (i.e., if tail == 1 we only need to shift).

The second step in context-switch is to start the method selected by run. Having defined start as an urgent channel, the next

method is immediately scheduled (if queue is not empty).

Error. The scheduler automatonmoves to the Error state if a queue overflowoccurs (tail > MAX) or a deadline ismissed (x[i] > d[i]).

The guard counter[i] > 0 checks whether the corresponding clock is currently in use, i.e., assigned to a message in the queue.

6.2. Schedulability analysis of MutEx

With such an automated analysis process, it is easy to study the effect of different scheduling strategies on schedulability.

Fig. 8 shows a possible scenario inwhich ‘First Come First Served (FCFS)’ strategy for a MutExmay cause starvation, i.e., makes

MutEx non-schedulable. This scenario is obtained by running a MutEx as controlled by its driver. The figure depicts the time

line of a fork and its queue. The queue contents are shown only at context switch, i.e., when a method is finished and a new

method is taken from queue head to start its execution (shown by a diamond on the time line). The same scenario generated

by Uppaal is shown in Fig. 9. This is part of the trace generated when checking for the reachability of the Error location.

At the end of this scenario, executing release and reqR would result in a ‘permitR’ to the right object for a second time,

ignoring the request from the left one. This can continue infinitely. New instances of ‘reqL’ inherit the deadline associated

to their parents, which shrinks continuously. After postponing ‘reqL’ for enough number of times, its deadline is missed,

resulting in nonschedulability of MutEx. Using an Earliest Deadline First (EDF) strategy would favor old reqL to new reqR in

this scenario. In addition, the EDF scheduler must give a higher priority to ‘release’ as opposed to ‘request’.

The MutEx actor with the given driver needs a queue length of at least 5. Considering the driver, the reason is that 2

requests and 2 releases may be in the queue, while a delegated request can be added. Having chosen the proper scheduling

strategy and queue length, we can repeat the scheduling analysis (checking for reachability of Error location) to find the best

values for MIN_REL and MAX_REL and the deadline values for request and release.

6.3. Compatibility check

As explained in Section 5, compatibility checking amounts to checking trace inclusion between a use caseU and the driver

D. It is explained in [12] how to reduce trace inclusion problem to reachability check in Uppaal. We extend this approach to

take deadlines into account.

The basic step in this reduction is the construction of an automaton called Derr from the driver D. Derr is constructed by

adding a location error to D and transitions ‘l
a−→
g

error’ for all locations l and action labels a in such a way that this transition

is enabled if no other a-transition is enabled from l. Furthermore, an internal transition from l to errorwith the guard ¬Inv(l)

is added and all location invariants are removed.
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Fig. 9. Starvation scenario for FCFS given byUppaal. The parameters self, Left and Right are instantiated to 2, 0 and 1, respectively. The arrows labeled invoke

and delegate show enqueuing of messages. The arrows labeled start and finish determine the execution period of methods.
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Fig. 10. News reader.

Fig. 11. Barrier Synchronizer.

If a driver of a schedulable actor accepts an actionm(d), the actor is guaranteed to accomplishm before d. A corresponding

actionm(d′) in the use case is therefore acceptable only when d′ ≥ d. To check this inUppaal, an actionm(d′) in U is modeled

as m! along with setting the global variable deadline to d′. In constructing Derr , every transition l
m(d)−−→
g , r

l′ is changed into the

transitions l
m?−−→
g , r

l′′, l′′ −−−−−−→
deadline≥d

l′ and l′′ −−−−−−→
deadline<d

errorwhere l′′ is a fresh committed location.Whenm! andm? synchronize,

deadline will have the value of d′. Since l′′ is a committed location, Uppaal has to take an action to leave this location before

any other action (without time passing).

By this construction, U � D if and only if error is not reachable in the network of the automata U and Derr in Uppaal.

6.4. More examples

Fig. 10 shows the model of a news reader actor. It continually receives news updates from two sources modeled as its

known actors BBC and CNN. Whenever this actor gets a request from its reader known object, it will forward the next news

update from BBC or CNN,whichever is faster. In the case that both BBC and CNN provide an update (almost) at the same time,

it only forwards one of the updates. A ‘fixed priority scheduler (FPS)’ could be used to favor one of the news agencies when

both are available. The CNNnewsmethod (and similarly BBCnews) only forwards the news updates if there is a pending request

for it (the variable req is set to false in the initial method). The given driver shows the minimum inter-arrival intervals

(measured by b, c and r clocks) and deadline constraints that lead to a schedulable actor.

The model in Fig. 11 shows an actor for providing barrier synchronization between its two known actors represented as

A and B. The variables rA and rB show if A and B are ready. Since the synchronization should happen in real time, if one of

A or B arrives but the other one is too late, the actor will send back a timeout. The variable s indicates that synchronization

has been successful. The method arriveA can be obtained from arriveB by swapping As and Bs. In this method, waiting for

the other partner is modeled using the delegation mechanism. The clock yB is used to bound the loops of delegations and

to provide a timeout when the other partner is not in time. This actor is schedulable with the ‘first come first served (FCFS)’

strategy.

Checking schedulability for strategies like FPS and FCFS is computationally simpler and therefore faster than EDF. An

EDF scheduler requires examining the remaining deadlines, which translates to potentially checking clock differences for all

queue elements. Considering the existing model checking tools, our experiments confirm that FPS and FCFS can be easily

verified while EDF is inevitably more costly to analyze.

7. Conclusions

Wepresented amodularmethod for schedulability analysis of real time distributed systems by extending the actormodel.

Methods of actors are specifiedwith timed automata. The behavior of an actor can be analyzed individually for schedulability

by introducing a driver as the most general specification of how the actor can be used. We can calculate a finite bound on

the task queue such that the schedulability results hold for any queue length. Thus, the behavior automaton for an actor is
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finite. Schedulability analysis is reduced to reachability check for timed automata and hence is decidable. We showed how

to carry out the schedulability analysis using the Uppaal toolset.

One of our main contributions is the integration of the abstract formalism of task automata into a high-level Actor based

modeling language. This integration requires a real time extension of actors and the modeling of asynchronous reception

of messages as (dynamic) task generation. Furthermore, it allows for the specification and analysis of application-specific

scheduling policies at the modeling level. We are working on applying this approach for the schedulability analysis of Creol

[21], which supports concurrent objects involving more complex synchronization schemes.
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