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Neutrophil interaction with activated endothelial cells (EC) is required for transmigration. We
examined consequences of this interaction on NETosis. Co-culture of activated EC with neutrophils
induced neutrophil extracellular trap (NET) formation, which was partially dependent on produc-
tion of IL-8 by activated EC. Extended neutophil/EC co-culture resulted in EC damage, which could
be abrogated by inclusion of either diphenyleneiodonium to inhibit the NAPDH oxidase pathway
required for NETosis, or DNAse to disrupt NETs. These findings offer new insight into mechanisms

whereby NETs trigger damage to the endothelium in sepsis, small vessel vasculitis and possibly
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the villous trophoblast in preeclampsia.
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1. Introduction

A unique aspect of polymorphonuclear neutrophil (PMN) anti-
microbial defence is their ability to release chromatin and granular
proteins to form an extracellular fibrillar matrix termed neutrophil
extracellular traps (NETs) [1,2]. Several studies have determined
that extracellular NETs ensnare and kill bacteria, fungi or even par-
asites [1,3-5]. While NETs contain anti-microbial proteins includ-
ing elastase, cathepsin G, LL-37 and histones, an intact chromatin
lattice appears to be required, as anti-microbial activity is dimin-
ished following exposure to DNases [2-4].

NETosis is triggered by a variety of stimuli, including microor-
ganisms, activated platelets, placental micro-debris, pro-inflam-
matory cytokines (interleukin 8 (IL-8), tumor necrosis factor o
(TNFa)) or phorbol 12-myristate 13-acetate (PMA) [1,6-8]. Reac-
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tive oxygen species play a central role in NETosis, as it is hindered
by diphenyleneiodonium (DPI), a NADPH oxidase inhibitor [6]. Fur-
thermore, patients with chronic granulomatosis, who have a genet-
ically defective NADPH oxidase enzyme, do not produce NETs [9].

NETs have also been observed under inflammatory conditions
and sepsis, implying a potential role in the pathogenesis of such
disorders [2,7,8,10]. In preeclampsia, a severe pregnancy-related
inflammatory disorder, large numbers of NETs have been observed
in vivo in the intervillous space and are triggered in vitro by tro-
phoblast micro-debris [8,11]. In experimental sepsis, platelet
TLR4-neutrophil interaction induced NETs [7]. Of interest is that
NETs were associated with endothelial injury [7]. Furthermore, in
small vessel vasculitis (SVV) NETs were located in areas of tissue
damage [12].

Although endothelial activation supports transmigration by
neutrophils [13], the effect on NETosis is unclear. To examine this,
we co-cultured human umbilical vein endothelial cell (EC) mono-
layers with isolated circulatory neutrophils.

2. Materials and methods
2.1. Isolation of neutrophils

Blood samples (20 ml each) were obtained from healthy donors
at the Red Cross Blood Donation Center, Basel. PMNs were isolated
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using a Ficoll-Dextran method [8] and resuspended in neutrophil
culture medium (NCM) comprising RPMI 1640 supplemented with
2% heat inactivated human serum, 2 mM L-glutamine, 100 U/ml
penicillin 100 pg/ml and streptomycin (Invitrogen Life Technolo-
gies, Basel, Switzerland). Cell viability was 95-97% by trypan blue
dye exclusion, and flow cytometry analysis for absence of CD11b
ensured that PMN were not activated during isolation [8].

2.2. Endothelial cell culture

Human umbilical vein EC were purchased from PromoCell
GmbH (Heidelberg, Germany) and cultured on 0.1% gelatine-
coated culture plates in basal EC medium containing low serum
(2% FCS) and EC growth supplement (PromoCell) [14]. NCM was
used during co-culture experiments.

2.3. Analysis of NETs

NETs were evaluated using the membrane-impermeable DNA
binding dye SYTOX green (Molecular Probes, Invitrogen Life Tech-
nologies) to detect extracellular DNA as detailed previously [1,8].
Experiments were performed in 96-well culture plates. In a first
set of experiments freshly isolated PMN (1.5 x 10° cells/well) were
directly stimulated with PMA (25 nM), thapsigargin (500 nM) or
r'TNFa (20 ng/ml) (all from Sigma Chemicals, St. Louis, MO, USA).
In a second set, EC (1 x 10* cells/well) were treated with the same
agents for 18 h, rinsed repeatedly with PBS to remove all traces of
agents, and then co-cultured with unstimulated PMN (1.5 x 10°
cells/well). SYTOX green (5 tM) was added to the cultures after se-
lected periods of incubation (30-180 min), and fluorescence mea-
sured 5 min later using arbitrary fluorescence units. To visualize
NETs, live-cell cultures were imaged with an Olympus IX-50 in-
verted fluorescence microscope. Here the co-cultured EC were
loaded with PKH26 red fluorescent cell linker (Sigma) prior to the
treatment with different agents.

2.4. Scanning electron microscopy

PMN (1 x 10° cells) seeded onto 12 mm 0.001% polylysine-
coated coverslips were incubated in the absence or presence of
PMA (25 nM), thapsigargin (500 nM) or rTNFa (20 ng/ml) for 3 h,
fixed with 2.5% glutaraldehyde, postfixed using repeated incuba-
tions with 1% osmium tetraoxide/1% tannic acid, and dehydrated
with a graded ethanol series (30%, 50%, 70%, 100%). After dehydra-
tion and critical-point drying, the specimens were coated with
2 nm platinum and analyzed by a Philips XL-30 ESEM scanning
electron microscope at ZMB, Biozentrum, University of Basel.

2.5. Analysis of EC damage

A cellular DNA fragmentation ELISA (Roche Diagnostics GmbH,
Mannheim, Germany) was used to quantitatively determine EC
damage. BrdU-labelled EC [15] (1 x 10*cells/well in 96-well
plates) were cultured for 18 h in the absence of presence of PMA
(25 nM), thapsigargin (500 nM) or rTNFo (20 ng/ml). EC were
rinsed to remove all traces of activators and cultured for a further
18h in the absence or presence of unstimulated PMN
(1.5 x 10° cells/well) and without or with inclusion of 500 U/ml
DNase (Sigma) or 25 uM diphenylene iodonium (DPI; Sigma) or
100 pg/ml IL-8 neutralizing antibodies (anti-CXCL8/IL-8 (clone
6217), R&D Systems, Abingdon, UK) or 100 pg/ml isotype control
IgG (Sigma). The plates were centrifuged (10 min, 250xg) and
supernatants collected for analysis of BrdU-labelled DNA frag-
ments. EC damage is expressed as the fold-increase in the released
DNA fragments over that in untreated monolayer EC cultures. EC
cultured for 18 h under conditions of complete serum deprivation

(i.e. 0.1% BSA replacing 2% FCS), which results in ~90% cell detach-
ment/death [14], served as a positive assay control; release of
BrdU-labelled DNA fragments into culture supernatants was in
the order of 20-fold greater than control EC.

2.6. IL-8 ELISA

EC (1 x 10° cells) were seeded into 6-well plates, allowed to at-
tach and then cultured for 18 h with or without PMA (50 nM),
thapsigargin (500 nM) or rTNFa (200 ng/ml). EC were washed with
PBS to remove all traces of activators and further cultured for 18 h
in NCM. IL-8 in supernatants was measured using a human IL-8
ELISA kit (R&D Systems, Abingdon, UK).

2.7. Statistics

Experiments were performed in triplicate on at least three sep-
arate occasions. Data, given as mean + S.D., were analyzed using
GraphPad Prism software. Where appropriate either two-tailed
Student’s t-test or one-way ANOVA followed by Tukey’s multiple
comparison test were used to calculate the statistical significance
of the differences between experimental groups. P values of less
than 0.05 were considered significant.

3. Results and discussion
3.1. Endothelial cell activation elicits NETs formation

The expected release of DNA and visible NET formation by
PMNs following activation by PMA [1,6,8] or TNFo [16] is shown
in Fig. 1A and C. Thapsigargin, which mobilizes Ca?* from intracel-
lular pools, also effectively induced NETs in PMNs (Fig. 1A and C).
Since EC are activated by PMA, TNFa and thapsigargin [14] we
examined whether EC treated with them might induce NETosis.
Fluorescence in co-cultures with untreated EC and PMN was negli-
gible (Fig. 1B). In contrast an increase in SYTOX green fluorescence
in co-cultures of activated EC and unprimed PMN suggested that
NETosis had been triggered (Fig. 1B). This was most pronounced
for EC pre-treated with PMA, followed by TNFa and thapsigargin
(Fig. 1B). The kinetics was similar, albeit quantitatively less than
by direct of PMN (c.f. Fig. 1A and B). Induction of NETs was con-
firmed by live-cell fluorescence microscopy, which showed the
presence of typical extracellular DNA lattices in co-cultures of
PMN and activated EC, but not with untreated EC (Fig. 1C). From
these photomicrographs, recorded at the end of the 3 h culture per-
iod, it is evident that in both neutrophil monoculture and EC-PMN
co-cultures the incidence of SYTOX green stained cells was consid-
erably higher than that of NET-like structures (Fig. 1C). Thus in-
creases in SYTOX green fluorescence readings (Fig. 1A and B) can
be assumed to reflect both the process of NETosis per se as well
as cell death following NETosis. To unequivocally demonstrate
the presence of NETs we performed high resolution scanning elec-
tron microscopy on control and activated PMN. In activated PMN
we observed structures characteristic of NETs [1]; they consisted
of smooth fibers with a 15-17 nm-diameter and globular domains
of 25-28 nm-diameter (Fig. 1D). A major structural component of
these extracellular lattices was DNA as demonstrated by high mag-
nification fluorescence microscopy after live-cell SYTOX green
staining of activated PMN on a parallel set of cover slips (Fig. 1D).

3.2. NETs can induce EC injury
After prolonged (18 h) co-culture of PMNs and activated EC, we

noted that a large proportion of EC stained for both PKH26 and SY-
TOX green (Fig. 2A) indicating the occurrence of EC death during
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Fig. 1. Activated EC induce NETs. (A) PMN were incubated for up to 3 h in the absence (control) or presence of PMA (25 nM), TNFa (20 ng/ml) or thapsigargin (500 nM) during
which induction of NETs was monitored by SYTOX green fluorimetry. (B) EC were incubated for 18 h in the absence (control) or presence of PMA, TNFa or thapsigargin and
rinsed to remove all traces of activators. Then untreated PMN were added to EC (t=0) and SYTOX green fluorescence in co-cultures was monitored for up to 3 h. (C)
Fluorescence microscopy of NETs induced in PMN after 3 h of direct stimulation (top panel) or co-culture with activated EC (lower panel). NETs were visualized by SYTOX
green staining (green). EC were pre-loaded with PKH26 (red). (D) High-resolution scanning electron microscopy of NETs induced by PMN following a 3 h period of stimulation
(bars, 10 um). SYTOX green staining shows that DNA is a major component of the structural lattice (bars, 15 um).

extended co-culture. Such “co-staining” was negligible when acti-
vated EC and PMN were co-cultured for only 3 h (Fig. 1C). Interest-
ingly, SYTOX green staining of EC during extended co-culture with
PMN was prevented by inclusion of either DNAse, which destroys
the DNA backbone of NETs [1]), or the NADPH oxidase inhibitor
DPI, which hinders NETosis [6] (Fig. 2A). Thus, intact NETs in con-
tact with EC for extended time periods evidently damage EC. A
similar observation was made in sepsis and SVV [7,12].

In order to quantitate EC damage after co-culture with PMN we
used BrdU-labelled EC and measured release of BrdU-labelled DNA
fragments into co-culture supernatants by cellular DNA fragmenta-

tion ELISA. Release of BrdU-labelled DNA under short-term (3 h)
culture conditions was negligible for both EC monolayer and EC-
PMN co-cultures (data not shown). Under extended (18 h) culture
conditions we detected significant damage to EC when PMNs were
co-cultured with activated EC, but not with non-activated EC
(Fig. 2B). The release of BrdU-labelled DNA fragments from EC
co-cultured with PMN was almost entirely abolished by the inclu-
sion of DNase and also largely reduced by the addition of DPI
(Fig. 2B). Taken together these data support a PMN/NET-mediated
mechanism of EC injury subsequent to priming of neutrophils by
activated EC.
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Fig. 2. NET-induced EC injury. (A) Fluorescence microscopy of NET-induced EC death and its hindrance by DNAse or DPI. PKH26-loaded EC (red) were treated with PMA for
18 h, rinsed well to remove all traces of PMA, and then co-cultured with PMN in the absence or presence of DNAse or DPI for 18 h. (B) NET-induced EC death. BrdU-labelled EC
were treated with PMA, TNFa or thapsigargin for 18 h. After rinsing to remove all traces of activators EC were cultured without or with inclusion of PMN for a further 18 h,
after which the release of BrdU-labelled DNA fragments from EC was analysed. Significant differences between EC monoculture and EC-PMN co-culture are indicated

(**P<0.01, ***P < 0.001).

NET-induced EC death appears to be akin to what has been ob-
served for the anti-microbial activity of NETs, in as much as an in-
tact DNA lattice structure is required [2,3,17]. The proposed
containment of toxic PMN granular contents by NETs may not be
sufficient to prevent cell damage by direct contact of NETs [18].
On the other hand, disruption of the DNA lattice could lead to a
more widespread effect of released granular contents. This aspect
awaits further examination.

3.3. Neutrophil/NETs-mediated EC injury is partially dependent on IL-8
produced by activated EC

Activated EC produce cytokines and adhesion molecules enabling
adherence and transmigration of neutrophils. Since IL-8 is both pro-
duced by activated EC [19,20] and a potent inducer of NETs [1,6,8],
we asked whether it plays a role in NETosis-mediated by activated
EC. We determined whether EC continue to produce IL-8 during
the 18 h period of co-culture following treatment with PMA, TNFo
and thapsigargin [19,20]. A considerable production of IL-8 occurred
in cultures of EC exposed to TNFa or thapsigargin (Fig. 3A), while
production by EC exposed to PMA was low (Fig. 3A). Inclusion of
DPI during the post-activation culture period abrogated the produc-
tion of IL-8 by EC activated with TNFa or thapsigargin, but had little
effect in PMA activated EC (Fig. 3A), indicating a role for NAPDH
oxidase in the former cases but not the latter.

To determine the functional role of IL-8 in the EC-PMN interac-
tion, an IL-8 neutralizing antibody or isotype control IgG was
included throughout the period of co-culture of activated EC and
PMNs. Anti-IL-8 antibodies reduced NET-induced EC death follow-
ing activation with TNFa and thapsigargin (Fig. 3B), whereas only
a minimal reduction was observed after activation with PMA
(Fig. 3B). These data demonstrate an IL-8 mediated mechanism in
PMN-mediated injury of EC after they were treated with thapsigar-
gin or TNFo. The factors mediating NETosis by PMA activated EC
still needs to be determined, but may involve cell-cell interaction
via members of the ICAM family [21].

4. Conclusion

In conclusion, activated EC not only interact with PMN during
transmigration [13,20-22], but may also induce NETosis and ensu-
ing EC death. Since activated EC are present under conditions of
inflammation [13,20], this interaction could escalate the inflamma-
tory response. This could have severe consequences in conditions
where large numbers of NETs have been found in vivo, such as in
the intervillous space of preeclamptic placentae [8], or glomeruli
in SVV affected patients [12]. To address these questions, it will
be necessary to determine whether NETosis induced by activated
EC occurs in vivo, whether it is per se associated with tissue dam-
age, and what role scavenger cells such as macrophages play in
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Fig. 3. IL-8 produced by activated EC and NET-induced EC death. (A) Production of
IL-8 by activated EC. EC were activated with PMA, TNF or thapsigargin for 18 h in
the absence or presence of DPI, rinsed extensively and cultured for a further 18 h,
following which IL-8 levels in the supernatant were determined. (a) = Significantly
increased accumulation compared with control, untreated EC (P at least < 0.05).
(b) = Significant inhibitory effect of DPI (P at least <0.01). (B) BrdU-labelled EC were
activated with PMA, TNF or thapsigargin for 18 h, rinsed extensively and cultured
for a further 18 h without or with PMN and in the absence or presence of 100 pig/ml
neutralizing anti-IL-8 antibodies or isotype non-immune (n.i.) IgG. Release of BrdU-
labelled DNA fragments from EC was measured by ELISA. (a) = significant difference
between EC monoculture and EC-PMN co-culture (P at least <0.001). (b) = signif-
icant inhibitory effect of anti-IL8 antibodies (P at least <0.001).

rapidly removing NETs to prevent damage to the underlying/sur-
rounding tissue.
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