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A b s t r a c t - - I n  this paper, we consider solving the coupled systems of discrete equations which 
arise from implicit time stepping procedures for the time dependent Stokes equations using a mixed 
finite element spatial discretization. At each time step, a two by two block system corresponding to a 
perturbed Stokes problem must be solved. Although there are a number of techniques for iteratively 
solving this type of block system, to be effective, they require a good preconditioner for the resulting 
pressure operator (Schur complement). In contrast to the time independent Stokes equations where 
the pressure operator is well conditioned, the pressure operator for the perturbed system becomes 
more ill conditioned as the time step is reduced (and/or the Reynolds number is increased). In 
this paper, we shall describe and analyze preconditioners for the resulting pressure systems. These 
preconditioners give rise to iterative rates of convergence which are independent of both the mesh 
size h as well as the time step and Reynolds number parameter k. 

K e y w o r d s - - S t o k e s  problems, Preconditioned iteration, Mixed approximation, Pressure operator. 

1. I N T R O D U C T I O N  

In  this  paper,  we analyze efficient i terat ive techniques for solving the coupled systems of l inear 

equa t ions  which arise from fully discrete approximat ions  of t ime dependen t  Stokes equat ions.  

Such sys tems also arise when  the Navier-Stokes equat ions  are advanced in t ime by using the 

modified me thod  of characteristics.  

The  coupled l inear systems have a block mat r ix  representa t ion of the form 

Here Ak is symmetr ic ,  B* is the  adjoint  of B,  and  the paramete r  k is related to the  t ime  step 

size and  Reynolds  number .  There  are a number  of techniques which lead to efficient i terat ive 

schemes for solving (1.1) provided tha t  effective precondi t ioners  for Ak and  B A ~ - I B  * are available 

(cf. [1-3]). These methods  will be reviewed in Section 3. The  goal of this paper  is the  analysis  
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14 J . H .  BRAMBLE AND J. E. PASCIAK 

of preconditioners for the so-called Schur complement BA~-IB * for the time dependent Stokes 
application. 

For the time dependent Stokes application, the problem is posed in terms of two finite dimen- 
sional spaces, Vh and Wh. The space Vh consists of vector valued functions defined from a mesh 
of size h on a connected bounded domain ~. The space Wh consists of scalar valued functions 
on a mesh of size h. It is assumed that the pair of spaces satisfy the classical Babu~ka-Brezzi 
condition: for all p E Wh, 

(p, V.  v) 2 
Ilpll 2 < c sup 

veVh D(v,v) " 

Here, D(., .) denotes the sum of the componentwise Dirichlet forms. In the case of the time 
dependent Stokes application, the form which results from the Schur complement is given by 

(p, V.  v) 2 
(BA~-IB*p,p) = sup 

,,ev~ Dk(v, v) 
(1.2) 

Here, Dk(w,w) = (w,w) + kD(w,w). 
The preconditioner for BA~-IB *, which we shall study, is of the form 

= kI  + QhT.~, (1.3) 

where I denotes the identity on Wh, Qh denotes the L2(~) projection onto Wh, and T~ is 
solution operator for a finite element approximation to the Neumann problem (see Section 4). 
Preconditioners of this form have been used for the solution of the coupled systems resulting 
from fully discrete approximations to time dependent Stokes problems (see, e.g., [4,5]). Although 
numerical results were reported, there has been no theoretical work explaining the success of the 
preconditioner. In this paper, we provide a theory which shows that this preconditioner gives 
rise to rates of convergence which can be bounded independently of both the mesh size h as well 
as the time step parameter k. 

The outline of the remainder of the paper is as follows. In Section 2, we develop the coupled 
linear systems corresponding to fully discrete time stepping approximations to the time dependent 
Stokes problem. In Section 3, we survey some iterative techniques for solving block systems of the 
form of (1.1). These techniques give rise to rapidly converging iterative schemes provided that 
effective preconditioners are available for Ak and B A k l B  *. The problem of preconditioning Ak 
has been well studied and effective algorithms are available. In Section 4, we give the analysis 
which provides bounds on the condition number for the preconditioner (1.3) applied to B A k l B  *. 
Finally, we present the results of numerical experiments which illustrate the effectiveness of the 
proposed preconditioner in Section 5. 

2 .  T H E  P R O B L E M  A N D  N O T A T I O N  

We shall be concerned with solving the discrete systems which result from time stepping ap- 
proximation to the linearized Navier-Stokes equations: 

C~U 

Ot 
- gAu - grad P -- f in )4; = ~ x (0, T), (2.1) 

V. u = 0 in l/V, (2.2) 

u = o on 0~ x [o, T],  (2.3) 

u(x,0) = uo(x) in ~, (2.4) 

~ P(x,  t) dx = 0 for each t ~ (0, T). (2.5) 
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Here, f~ is a domain d dimensional Euclidean space (with d = 2 or d = 3) and A denotes the 
componentwise Laplace operator. In addition, u is a vector valued function and P is a scalar 
valued function on 142. We restrict our attention to the above model problem for simplicity. 

The discrete approximation to (2.1)-(2.5) is defined in terms of the discrete approximation of 
the stat ionary Stokes problem. The Stokes problem is as follows: find v and Q satisfying 

- A v -  g r a d  Q = g in f~, (2.6) 

V .  v = f in Q, (2.7) 

v = 0 on 0f~, (2.8) 

~ Q  dx = o. (2.9) 

The regularity properties for the stationary Stokes equation will play a fundamental role in 
the construction and analysis of iterative methods for solving the discrete systems arising from 
approximations to (2.1)-(215). These properties are defined in terms of Sobolev spaces. The 
Sobolev spaces {H ~ (gt)} for nonnegative integers s are defined to be the distributions which along 
with their partial derivatives of order s are in L2(Vt). A complete development and discussion of 
these spaces can be found in, e.g., [6-8]. The norm on HS(f't) will be denote I1" IIs- For negative s, 
the space HS(Ft) is defined by duality and is the set of linear functionals on H-S(f~) for which 
the norm 

IIV[]s = sup (v, ¢) 

is finite. Here, (-, .) denotes the L2(f~) inner product. We shall also use Sobolev spaces of vector 
valued functions. A vector function w is in (HS(f2)) d if each of its components is in H~(Q). The 
norm in (H~(fl)) d will also be denoted by I1 L- There is no ambiguity with this definition since 
the specific norm used will be uniquely identified by the type of function on which it is applied. 
When s = 0, the norm will be denoted by II II in both the vector and scalar case. 

We next consider the weak formulation of (2.6)-(2.9). Let H~(f~) be the completion of C~(f~) 
in the norm I1" 111- Define V -= (H~(f~)) d, i.e., the space of vector valued functions with each 
component in H~(f~). Finally, let W denote the functions in L2(~2) with zero mean value on f~. 
Multiplying (2.6) and (2.7) by functions in V and W, respectively, it is easy to see that  the 
solution (v, Q) of (2.6)-(2.9) satisfies 

D(v,  w) + (Q, V .  w) = (g, w), for all w E V, 
(2.10) 

(V.  v,q) -- ( f ,q) ,  for all q E W. 

Here, D(., .) denotes the vector Dirichlet form. We shall let D(., .) denote both the vector and 
scalar Diriehlet forms on f~. For scalar functions in v,w c Hl(f~), D(., .) is defined by 

For vector functions w, @, 

D(v, w) =-/a g r a d  v .  g r a d  w dx. 

d 

D (w, q¢) = E D (w~, wi). 
i = l  

Since f~ is bounded and connected, it follows from [9] that  there is a constant Co satisfying 

(p, V. w) 
IIPll --< C0 sup (2.11) 

w ~ v  ILwlll 

Here and in the remainder of the paper, C (with or without subscript) will denote a generic 
positive constant. These constants may take on different values in different occurrences, however, 
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they will always be independent of mesh and time step parameters. It easily follows from (2,11) 
that  if g -- 0, then the solution v satisfies 

IlvI[~ ~ c Ilfl[ • (2.12) 

In addition, we assume that  the solutions of (2.6)-(2.9) satisfy regularity estimates of the form: 
for f = 0 and all g • L2(~) d, 

[[vI[2 + ][Q[[1 -< C ]]g[I • (2.13) 

This imposes some conditions on the domain. It is known that  (2.13) holds in the case of convex 
domains in R 2 with polygonal boundaries [10] and for convex polyhedral domains in R 3 (see [11]). 
Using a duality technique and (2.13), it is shown in the Appendix that  solutions to (2.6)-(2.9) 

with g = 0 satisfy 

IIvI[ < C [[fl]-i • (2.14) 

To approximately solve (2.10), we introduce a collection of pairs of approximation subspaces 
Vh C V and 17Vh C L2(~) indexed by h in the interval 0 < h < 1. We assume that  the constant 
function is in ITdh and define Wh to be the subspace of functions in gth with zero mean value. We 
will assume that  the classical L-B-B (Ladyzhenskaya-Babu~ka-Brezzi) condition (cf. [9]) holds for 
the pair of spaces; i.e., there is a constant co which does not depend upon h such that  

sup (p' V .  v) 2 > Co Ilpll 2 for all p • Wh. (2.15) 
veVh D ( v , v )  - 

In addition, the subspaces are assumed to satisfy the following approximation and inverse prop- 

erties. 

(1) For v • (H2(fl) N H~(~))  2, 

inf [Iv - w[[  1 < Ch [[v[[ 2 . 
wEVh 

(2.16) 

(2) For v E Hi (D) ,  

(3) F o r v E V h a n d s = 0 , 1 ,  

(4) For v E Wh, 

inf [Iv - w[I < Ch IIV[[1. ( 2 . 1 7 )  
wE ITVh 

[Iv][8 < Ch -1 IIvHs_l. (2.18) 

[[v[[ < Ch -1 [[v[[_ 1 . (2.19) 

The constant C appearing above is independent of the approximation parameter h. Many sub- 
space pairs satisfying (2.15)-(2.19) have been studied (see, e.g., [9,12,13]). A simple collection of 
(Vh,Wh) pairs is given in the following example. 

EXAMPLE 1. Let ~ be the unit square (0, 1) 2 in R 2. We first break ~ into smaller squares with 
edge length h = 1In for even integer values of n. The domain is further subdivided by breaking 
each smaller square into two triangles by connecting the lower left-hand corner to the upper right. 
The subspace Vh is defined to the the set of vector valued functions which are piecewise linear 
with respect to the above triangulation, continuous on ~2, and vanishing on 0~.  We will use a 
pressure space of piecewise constant functions. To satisfy (2.15), this space must be taken with 
respect to a somewhat coarser mesh. To this end, we consider breaking up f~ into squares of 
size 2/n.  Let 17Vh denote the set of functions which are piecewise constant on the squares of edge 
length 2/n. The space Wh is then defined to be the functions in l/VVh with zero mean value on ~. 
The pair (Vh, Wh) satisfies (2.15) with co independent of h = 1In (see [9]). 
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The approximation to the solution (v, Q) of (2.10) is defined by replacing the spaces in (2.10) 
by their discrete counterparts. Specifically, the approximate functions are defined as the unique 
elements Vh E Vh and Qh E Wh satisfying 

D(Vh,W) + ( Q h , V '  w) = (g,w),  

(V.  vh,q) = (f ,q) ,  

for all w C Vh, 
(2.20) 

for a l lq  EWh.  

The unique solvability of (2.20) is a consequence of (2.15). The following lemma provides error 
estimates for the Stokes approximation. 

LEMMA 2.1. Let (v ,Q)  solve (2.10) and (Vh,Qh) solve (2.20). Assume that (2.15)-(2.17) hold. 
Then 

Ilvh - vii1 + llQh - QII <<- Ch (llvll2 + IIQII1) • (2.21) 

Suppose that (2.13) holds for ali g E (L2(Y~)) a. Let v and Vh, respectively, solve (2.10) and (2.20) 
with g = O. Then, 

Ilvh - vii <_ Ch Ilv[ll. (2.22) 

The proof of the first inequality (2.21) is well known and can be found in [9]. For completeness, 
we provide a proof of (2.22) in the Appendix. 

Fully discrete time-stepping approximations to (2.1)-(2.5) using the above spaces lead to sys- 
tems of equations of the form 

Dk (Uh, w) + (Ph, g .  w) = (f, w), 

(V "Uh,q) = O, 

for all w E Vh, 
(2.23) 

for all q E Wh. 

Here, 
Dk(v, w) = (v, w) + kD(v ,  w), for all v, w E V, (2.24) 

and k is a positive number which is related to the time step size. 
The above problem can be formulated in terms of operators as follows: let Ak : Vh ~-* Vh, 

B : V h  ~ Wh, and B* : Wh ~ Vh  be defined by 

(Akv, w) = Dk(v, w), 

(Bv,  w) = (V- v,w),  

(B*w,v)  = ( w , V - v ) ,  

for all v, w E Vh, 

for a l l v E V h ,  w E W h ,  

for a l l v E V h ,  w E W h .  

(2.25) 

Note that  B* is the adjoint of B. Moreover, (2.23) can be rewritten as 

(t "0)  = 
where fh denotes the (L2(f~)) d orthogonal projection of f into Va. 

(2.26) 

3. ITERATIVE METHODS FOR SYSTEMS 
OF THE FORM OF (2.6) 

In this section, we present some iterative methods for block systems of the form of (2.26). All 

of these methods involve the introduction of a preconditioner for a reduced system on Wh. Three 

of the methods involve the use of an additional preconditioner for the operator Ak on Vh. In this 

section, we describe these iterative techniques and discuss how their rates of convergence depend 

upon the condition numbers of related preconditioned subsystems. The techniques discussed in 
this section are not restricted to the specific system (2.26) but rather, they are applicable to 

general block systems of the form of (2.26). Block systems of this form arise in many other 

applications. For example, such systems must be solved for finite element Lagrange multiplier 
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approximations to Dirichlet and interface problems [14,15] velocity-pressure formulations of the 
equations of Stokes and elasticity [9] and mixed finite element methods [16]. 

We start  by considering generic block operator equations of which (2.26) is an example. Let H 1 
and H 2 be finite dimensional Hilbert spaces, and consider the problem 

M ( X )  = ( G F ) ,  (3.1) 

where X, F are in H I and Y, G are in H 2. We study operators M of the form 

We assume that  A is a positive definite, symmetric operator on H I. In addition, we assume 
tha t  B and B* are adjoints with respect to the inner products in H 1 and H 2. We shall use the 
notation (.,-) and [[. [[ to denote the inner products and norms on H 1 and H 2. This can be done 
without ambiguity since the particular inner product and norm can be identified by the type of 
function on which the inner product or norm operates. 

Applying block Ganssian elimination to (3.1) shows that  the solution of (3.1) satisfies 

A B *  
0 B A - 1 B  *)  ( X ) =  ( B A _ I F F _ G ) .  (3.3) 

Thus, (3.1) is nonsingular if and only if B A - I B  * is invertible. Clearly, B A - 1 B  * is symmetric 
and nonnegative. A straightforward computation gives that  

(BA-1B*U, U) = sup (U, B0) 2 OeH1 (AO, ~) ' for all U • H 2, (3.4) 

and hence, solvability of (3.1) will follow if 

(U, BO) 2 
>_ c[]U[[ 2 , for all U • H 2, (3.5) sup 

OeH' (AO, O) 

holds for some positive number c. Inequality (3.5) is the classical L-B-B (Ladyzhenskaya-Babu~ka- 
Srezzi) condition (cf. [9]). 

The first scheme which we shall consider for solving (3.1) involves iteratively solving the equa- 
tion 

BA-XB*Y = B A - 1 F  - G (3.6) 

and subsequently back solving (3.3) for X, i.e., X = A - I ( F -  B 'Y ) .  This is a classical technique 
but has two potential drawbacks. First, the operator B A - 1 B  * may be ill-conditioned, and hence, 
the iteration for (3.6) may converge slowly without preconditioning. Second, the action of the 
inverse of the operator A must be computed at each step of the iteration. This latter drawback is 
perhaps the more serious one and for this reason, we will not focus our attention on this method. 

As we will see, it will be essential for the efficiency of all of the other methods discussed 
here to be able to construct a good preconditioner for B A - 1 B  *. For this purpose, let K: be a 
symmetric positive definite operator on H 2 and let ~ be the condition number of E B A - 1 B  *. 
Since ICBA-1B * is symmetric with respect to the inner product defined by (/C -1., .), it follows 
easily that  ~ < cl/co for any pair co and cl of positive numbers satisfying 

co(IEV, V) < (BA-1B*ICV, ICV) <_ cl(ICV, V), for all V • H 2. (3.7) 

The construction of such operators K:, with ~ not too large, will be important for the performance 
of the methods which we will now describe. 
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REMARK 3.1. This paper is concerned with the solution of the systems resulting from time 
stepping procedures for the linearized Navier-Stokes problem. In the next section, we shall show 
how to construct efficient preconditioners for the particular operator B A ~ I B  * corresponding 
to (2.26). 

As already observed, one problem with the iterative technique just described is that  it requires 
the evaluation of the action of A -1 at each step in the iteration. In the application considered 
in this paper, the action of A -1 = A~ 1 is more expensive to compute than that  of a suitable 
preconditioner. We next consider a natural preconditioned conjugate gradient technique for 
solving (3.1) which does not require the evaluation of the action of A -1. To this end, we assume 
that  we are given a symmetric positive definite operator J which acts as a preconditioner for A. 
This means that  there are positive numbers c2 and c3 satisfying 

c2(,.7"V, V) <_ (AJV,,.TV) <_ c3(,.TV, V), for all V E H I, (3.s) 

with C3/C 2 n o t  too large. 
The second method which we present here is as follows. We will precondition M by the block 

operator M0 defined by 
0 

and then form the normal equations corresponding to (3.1). That  is, we write the equivalent 
system 

MoMMoM(X) =MoMMo(F). (3.9) 

Let (., .) denote the sum of the componentwise inner products on H I × H 2. Note that  MoMMoM 
is a symmetric operator with respect to the inner product (Mo 1., .). Since it is also positive defi- 
nite, we can apply the conjugate gradient method (in the inner product (Mo 1-, .)) to solve (3.9). 
Note that  the asymptotic rate of convergence per 
bounded by 

v~ 
P - v ~  

where ~ is the condition number of MoMMoM. It 

(MoMMoM) < ( - -  

step of the conjugate gradient method can be 

- 1  
+ 1' (3.10) 

is essentially shown in [2] that  

3 + _~__~2 c~ 2 
(3.11) 

where c~0 = rain(c0, c2) and c~1 = max(c1, c3). We omit the proof here. 
The importance of an estimate of the type (3.11) is that  it shows that  the convergence rate 

bound (combining (3.11) and (3.10)) is improved when good preconditioners J and ]C are used. 

REMARK 3.2. Even though we are applying the conjugate gradient method in the inner product 
(Mo 1., -), the algorithm can be implemented in such a way as to avoid the explicit evaluation 
of M o l .  This is because of the special form of the equations being solved. Every instance of 
the inner product  which appears in the conjugate gradient algorithm involves variables, e.g., 
(Molxl,x2), where xi = Mowi, for i = 1,2, with either wl or w2 known. Thus, Mo  1 can be 
avoided in the implementation. This is important in that  there are many preconditioners whose 
evaluation is implemented as a process. Efficient computational procedures for computing the 
action of the inverse of such processes may not be known or available. 

A third method, which we describe now, was studied by Rustin and Winther [3]. It is related 
to the above "normal equations method" but seems to perform quite a bit better  when used in 
the application studied in this paper (see Section 5). 

33:1/2-B 
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This time we write (3.1) as 
F 

_ -  

and note that  MoM is a symmetric operator with respect to the inner product (Mo 1., .). Even 
though it is not positive definite, we can apply the minimal residual method to (2.11). This is 
computationally no more involved than the conjugate gradient method in that  it also involves 
only a three term recurrence relation for its implementation. This method can be characterized 
as follows. Let Ei be the error after i steps of the iteration and define the Krylov space 

' { < - 0  ' } Ki = span M) Eo • 
/----1 

Then, Ei = E0 + X for the unique X E Ki which minimizes 

(MoM (Eo + ~), M (Eo + 0)),  for all 0 E Ki. 

2i steps of this method is necessarily no worse than i steps of the normal equation method since 
the error after i steps of the normal equation method satisfies the above minimization but  with 
Ki  replaced by 

Thus the rate of convergence for the minimal residual method applied to (3.12) can be bounded by 
the normal method rate (see (3.10) and (3.11)). Alternatively, bounds for the rate of convergence 
of the minimal residual method may be inferred from the MoM eigenvalue estimates given in [3]. 
Note that  the computational cost of two steps of the minimal residual method is approximately 
that  of one step of the normal equation method. 

REMARK 3.3. In both of the preceding methods, spectral bounds may not really predict the 
convergence behavior. We consider the case j - I  = A and ~ - 1  = B A - 1 B . .  Clearly, 

It is straightforward to check that  if the null space of B is nonempty, then (3.13) has exactly 
the three eigenvalues 1, (1 + x/-5)/2, and (1 - v~) /2 .  It follows that  both the minimal residual 
method and the normal method converge in three iterations which is considerably bet ter  than 
the rate predicted by the spectral estimates. For preconditioners close to.these limiting cases, it 
is clear that  the eigenvalues must cluster near the three values 1, (1 + x/5)/2, and (1 - x/~)/2. 

REMARK 3.4. The minimal residual method applied to a nonsingular symmetric operator N is, in 
general, no bet ter  than the conjugate gradient method applied to the positive definite symmetric 
operator  N 2. An example which illustrates this is as follows. Suppose that  N has a spectrum 
which is symmetric about  0 and that  each eigenvalue is simple. Any vector x has an eigenvector 
expansion of the form 

x = E (c ¢i + 
,k~>O 

Here, {A~, ¢i} and {-)~i, ¢ - i}  are the eigenpairs for the operator N. We say that  a vector x 
is even (respectively, odd) if ci = c_~ (respectively, c~ = - c - i ) .  Consider solving the problem 
N x  = y with an initial iterate x0 chosen such that  the initial error e0 = x - x0 is even. It  is easy 
to see tha t  Nkeo is even for k even and odd for k odd. Thus the terms with odd powers of the 
operator in K ,  are already orthogonal to the error e0. It follows that  the minimization over Ki  
is identical to the minimization over K~, i.e., 21 steps of minimal residual method produce the 
same result as l steps of the normal equation iteration. However, this is not the situation in our 
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application where the minimal residual method appears to perform significantly better  than the 
normal equation method (see the numerical examples in Section 5). 

The last method which we will consider involves a somewhat different reformulation of (3.1). 
Assume that  c2 in (3.8) is greater than one. Let A0 be defined to be j - 1 .  Clearly, A-Ao satisfies 

( 1 )  ( 1)(AV,  V), (3.14) O< 1 - ~  (AV, V)<_((A-Ao)V,V)< 1--~3 

for all nonzero V in H 1. 
Using straightforward manipulations, we obtain the system 

BAol(A-Ao) SAolS*) (X) = G) t ,Y) t, \ BAoiF - • 

As a consequence of (3.14), we can define an inner product on H 1 x H 2 by 

We note tha t  

(3.15) 

(3.16) 

U 

+ (Bdo 1 (d - do) U, Y) + (BAolB*V, Y),  

and hence, the operator h / i s  symmetric with respect to the inner product defined by (3.16). It 
was shown in [1] that  h / i s  also positive definite. Let 

.0('0 :) 
It  was also shown in [1] that  the condition number of M0hT/is uniformly bounded (a bound was 
given in terms of co, cl, and c3). It follows that  the conjugate gradient method for solving (3.15) 
preconditioned by h/0 converges rapidly. In fact, as A0 tends to A and K: -1 tends to BA-1B *, 
the condition number for the preconditioned system tends to one. 

4 .  T H E  P R E C O N D I T I O N E R  A N D  I T S  A N A L Y S I S  

We develop the preconditioner for the perturbed pressure system in this section. It should 
be noted that ,  in contrast to the case of stationary Stokes, the pressure operator BA~-IB * 
corresponding to the time stepping equation (2.26) becomes ill-conditioned as k becomes small. 
In this section, we will develop preconditioners for BA~-IB * which lead to preconditioned systems 
with condition number bounds which are independent of k. 

To define the preconditioner K:, we use a conforming scalar valued finite element space '~h C 
H l(f~). We assume that  Sh satisfies the standard approximation property: for each v E H2(f~), 

in f  Ilv - 0111 <- ChNvt!2. (4 .1 )  
OE,g'h 

Finally, we assume that  the constant function is in Sh and define Sh to be the set of functions in Sh 
which have zero mean value on ft. Many examples of the construction of subspaces satisfying the 
above hypotheses can be found in [17-19]. 

Let T denote the solution operator for the continuous Neumann problem, i.e., given f 
H-l(Ft), w = Tf  is the unique function (with zero mean value on ft) in Hl ( f t )  satisfying 

D(w, ¢) = (f,  ¢) (4.2) 
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for all ¢ E HI(f~)/R, the functions in HI(f~) with zero mean value on ~. The unique solvability 
of (4.2) follows from the Poincar~ inequality. We shall assume full elliptic regularity for solutions 
of (4.2), i.e., 

[Iwl[2 _< C [[f[[ • (4.3) 

Note that  (4.3) holds for convex domains in R 2 and R 3 (see [6]). Let Th be the solution operator 
for the Galerkin approximation to the second order Neumann problem. Specifically, for a function 
f E L2(~)), w = Thf  is the unique function in Sh satisfying 

D(w, 0) = (f, 0), for all 0 E Sh. (4.4) 

Note that  the functions in Sh do not satisfy boundary conditions but have zero mean value. 
Under the assumptions (4.1) and (4.3), it is well known that  

H( T -  Th)viI <- Ch2 IMI . (4.5) 

Let Qh denote the L2(~) orthogonal projection onto the subspace Wh. The major result of 
this paper is given in the following theorem and its corollary. 

THEOREM 4.1. Assume that (2.13), (2.15)-(2.19), (4.1) and (4.3) hold and that k >_ h 2. Let 7 
be in the interval [h, k 1/2] and define the operator A~ : Wh H Wh by 

A~ = QhT~ + kI. 

Let BA~-IB * be defined by (2.25). Then there are constants Co and C1 not depending on h or k 
such that 

- -1  * k k Co (A~q,q) <_ (BA k B .4~q,A~q) <_ C 1 (,4kq, q) , for all q E Wh. (4.6) 

COROLLARY 4.1. Assume that (2.13), (2.15)-(2.19), (4.1), and (4.3) hold and that  k <_ h 2. Then 
there are constants Co and C1 not depending on h or k such that 

h 2 [BA-1B,Ah 2 A h  2 ~ h 2 

REMARK 4.1. The above theorem shows that  one can use /C -- ~4~ as a preconditioner for 
B A k l B  *. Each evaluation of ]C then requires solving a discrete Neumann problem (4.4) on a 
mesh of size 7. If 7 is relatively small, it may be more economical to replace the operator T~ by 
a preconditioner 2b~. Such an operator is constructed so that  

C2(T.~O,O)<_(~'.yO, O)<_C3(T.yO, O), for all 0 E S~, 

with C2 and C3 not depending on h. Suppose that  (4.6) holds. If T~ is scaled so that  C2 _< 1 _< C3, 
then IC = QhT~ + kI  satisfies 

-CoC2(lCq, q) <_ (BAklB*/Cq,/Cq) _< C1C3(ICq, q), for all q E Wh. 

This remark holds for 7 = h which can be applied in the case of the corollary. 

PROOF OF THEOREM 4.1.  Let Mk = BAk-IB *. It is easy to see that  the upper inequality 
in (4.6) is equivalent to 

( ~ M k q ,  Mkq) <_ @1 (Mkq, q), for all q E Wh. (4.7) 
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Let q be in Wh. Using the definitions of T~ and T, we have that  

(A~Mkq, Mkq) = (T.yMkq, Mkq) + k I lMkql l  2 

< (TMkq, Mkq) + k I lMkqN 2 . 
(4.8) 

As in (3.4), a straightforward computation gives that  

(q, BY) 2 
(Mkq, q) = sup 

v~vh (Akv,  v)  

(q, V" v) 2 
- sup Dk(v ,v )  " vCVh 

(4.9) 

We first bound the last term in (4.8). We clearly have that  

I IV . v i i  ~ < D ( v , v ) ,  

and hence, (4.9) and the Schwarz inequality imply that  

k (Mkq, q) _< Nqll 2 . (4.10) 

Using the fact that  Mk is a symmetric positive definite operator, it follows that  

k IIMkqll 2 _ (Mkq, q).  (4.11) 

We note that  for any w in H-l(f~) ,  

D(Tw, ¢)2 
(Tw, w) = D(Tw, Tw) = sup 

~eH'(a)IR D(¢, ¢) 

= sup (w, ¢)___~ < C Ilwll~l. 
CeH'(a)IR D(¢, ¢) - 

(4.12) 

We used the Poincar6 inequality for the last inequality above. If, in addition, w has zero mean 
value on gt, then 

(w, ¢)2 
Nwll2_l = sup - -  < (Tw, w). (4.13) 

<~- ' (~) i -11¢1121 - 

We used the representation for (Tw, w) given in (4.12) for the last inequality above. 
We next bound the first term on the right-hand side of (4.8). By (4.12), 

(TMkq, Mkq) <_ C HMkqll2_l. 

- 1  * Note that  Mkq = QhV • w where w = A k B q. Consequently, 

(TMkq, Mkq) <_ 2C @ ( I -  Qh)V " wl12_l + IIV' wll2_l) • (4.14) 

It follows from (2.17) and a straightforward duality argument that  

H(s - Qh)V.  wll_l  <_ Ch 1IV wl l  

Thus, by the inverse inequality (2.18), 

(TMkq, Mkq) _< C (h 2 IIV" wll 2 + Ilwll 2) 

< C Ilwll 2 = C IIAklB'qll 2 

_< C (A~-IB*q, B 'q)  = C (Mkq, q). 

(4.15) 
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We used the fact that  the spectrum of A~ t is in the interval (0, i) for the last inequality above. 
Combining (4.8), (4.11), and (4.15) completes the proof of (4.7). 

We now prove the lower inequality of (4.6). Evidently this is the same as 

((.A~)-tq, q) <_ (Ukq,  q), for all q E Wh. (4.16) Co 

Let q be an arbitrary function in Wh. We prove (4.16) by constructing a function Vh C Vh such 
that  BVh = (M~)-lq and 

(Vh,Vh) _< C ((¢4~)-1 q,q) . (4.17) Dk 

If we have such a function, then by (4.9) and (4.17), 

(q, B v ~ )  2 > C -1 ((Ak)-lq,  q). 
(Mkq, q) _> Dk (Vh, Vh) 

We start by considering the pair (v, Q) solving the Stokes equation 

- A v  - VQ = 0, in ~, 

V . v  (A~) -1 = q, in ~, 

v = 0, on 0~. 

C ( .4k)y lq  , (4.18) [IVlll 

and by (2.14), 

Ilvll < c  (,Ak)-lq -1" (4.19) 

Combining the above two inequalities and using (4.13) gives 

Dk(v ,v)  < C ((T + kI) (A~)-'q, ( A k ) - t  q ) .  (4.20) 

Let p be in Wh. By (4.5), 

[((T - T.y)p,p) I < C72 Ilpll e < Ck Ilpll 2 . (4.21) 

Thus, it follows from the triangle inequality that  

((T + kI)p,p) < C ((T.y + kI)p,p). (4.22) 

Combining (4.22) and (4.20) gives 

Dk(V,V) _< C((T~ +kI)( . ,4~)- lq,( .A~)- lq)=C(( .Ak)- lq,  q). (4.23) 

We define Vh to be the mixed approximation to v. Specifically, Vh satisfies 

D (Vh, W) + (Qh, V .  w) = 0, for all w E Vh, 

(vvh,,) ) • = q, s , for all s E Wh. 

Note that  Bvh ---- ( j i~ ) - lq  follows from the second equation above. The proof of the theorem 
will be complete once we verify (4.17) for this choice of Vh. Clearly, 

D (vh, vh)  = - (qh ,  V .  vh)  = - (Qh, V .  v)  

< Ilqhll I IV. vii < flqhll D(v,v) 1/2- (4.24) 

B y  (2.12),  
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Now, by (2.15) 
(Qh, V.  w) 

IIQhll <- C sup D(w,w) l /2  
w 6 V h  

D(vh,w)  
= CvevhSUp D(w,w) l /2  < CD(vh,Vh) 1/2. 

Combining (4.23)-(4.25) gives 

kD(vh,Vh) <_ CkD(v,v) < C ((A~)-tq, q). 

To verify (4.17), we need only estimate Ilvhll- By Lemma 2.1 and (4.18), 

IIv-vhll _< Chllvkll _< Ch ( A ~ ) - l q  . 

Thus, by the inverse inequality (2.19), (4.13), and the triangle inequality, 

Nv~lL < Ilvll + c (~ (A~) - '  k - ,  ) , j2 _ q ,  ( A ~ )  q . 

Applying (4.22) gives 

(4.25) 

(4 .26)  

In this section, we present the results of numerical computations which illustrate the condi- 
tioning guaranteed by Theorem 4.1. We also report the number of iterations required to achieve 
a given accuracy using the preconditioned block methods discussed in Section 3. 

As a model problem, we consider systems which arise from time stepping (2.1)-(2.5) for f~ 
equal to the unit square (0, 1) 2 in R 2. The space Vh is defined as in Example 1. To define Wh, 
we start with the space l~h of piecewise constant functions with respect to the square mesh with 
edge lengths 1/n (see Example 1). Label the smaller squares in the x and y directions and let ~5~,3 
denote the characteristic function which is one on the i,j TM square. For l, m E {1, 2 , . . . ,  n/2}, let 

Ol,rn -~- (I)21,2rn - -  (I)2/--1,2r n - -  ( I )2/ ,2rn_ 1 -t- ( I )2 / - -1 ,2rn_  1. 

We then define 

It is shown in [9,20] that  the resulting pairs Vh and d h satisfy (2.15) with co independent of n. 

5. N U M E R I C A L  E X A M P L E S  

lq) _< C + 'q) C 'q,q) 

Combining (4.23) and the above two inequalities gives 

itv,,H 2 <_ c ( (A~) - '  q,q). <4.27) 

Finally, (4.17) follows from (4.26) and (4.27). This completes the proof of the theorem. 

PROOF OF COROLLARY 4.1. It immediately follows from the inverse inequality (2.18) that  for 
k <_ A 2 , 

Ilvll 2 _< Ok(v, v) < C llvll 2 , for all v e Vh, 

holds for C independent of k and h. Using this with (4.9) shows that  all of the forms (Mkq, q) 
are equivalent, provided that  k < h 2. The corollary then follows from Theorem 4.1 with k = h 2. 
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For convenience, we discretize the first term in (2.24) by a lumped mass approximation. This 
means that  we use 

(v, w) -- h 2 ~ v i i .  wij,  for all v, w E Vh. 
i j  

Here the sum is taken over the nodes of the mesh and the subscript on the functions v and w 
denotes evaluation at the grid point. We will use the operator A~ analyzed in Section 4 as a 
preconditioner for the Schur complement BA~-IB * corresponding to the coupled system (2.23). 

We let Sh denote the space of functions with zero mean value which are continuous on f~ and 
piecewise linear with respect to the triangulation defining Vh. Because Ak comes from a regular 
mesh and constant coefficient operator, its inverse can be computed by using the discrete sine 
transform. Similarly, the action of Th can be computed by using the discrete cosine transform. 
By utilizing odd and even extensions, the discrete sine and cosine transforms can be reduced to 
the discrete Fourier transforms which can be efficiently computed in on the order of n 2 log(n) 

operations. 
One can compute the action of .4~ and B A k l B  * efficiently using the above techniques. The 

largest and smallest eigenvalues of AhkBAklB * were then computed using the power method. In 

the case of k -- 0, we used Ah h2 as suggested by Corollary 1. The resulting condition numbers as 
a function of h and k are reported in Table 1. For the reported range of h and k, the condition 
numbers of the system .A~BAklB * were bounded by 5.3. 

Table 1. Condition number  of .AhkBA~-IB *. 

h k = l  k = h  k = h  2 k = 0  

1 4.6 4.3 3.8 4.3 
8 

1 4.9 4.6 4.3 4.5 
16 
1 

5.2 4.7 4.5 4.6 
32 
1 

5.3 5.0 4.5 4.6 
64 

We next illustrate the behavior of the last three iterative algorithms discussed in Section 3. For 
these examples, we use a V-cycle multigrid preconditioner for each component of the operator Ak. 
Specifically, we consider the V-cycle algorithm which uses one pre- and post-sweep of point- 
Gauss-Seidel as a smoother (see [21]). For the multigrid algorithm to give rise to a symmetric 
preconditioning operator, the order of the points in the post-Gauss-Seidel smoother is the reverse 
of tha t  used in the pre-Gauss-Seidel smoother. Because of the lumped mass term, the resulting 
multigrid scheme is not of variational type (see [22, Section 5]). By direct computation, the 
resulting preconditioner applied to Ak has eigenvalues in the interval [0.74, 1]. 

We applied the last three algorithms of Section 3 utilizing the multigrid preconditioner just 
discussed. For the normal and minimal residual algorithms, no scaling was required. In the case 
of (3.15) preconditioned by M0, we defined J to be the multigrid preconditioner scaled by 2. 
Since the original preconditioner applied to Ak had eigenvalues in the interval [0.74, 1], it follows 
that  the scaled operator J satisfies 

1 (Akv, v ) ,  0.32 (A v, v ) <  < for all v E Vh. 

As before, we used/C = A k. 
In Tables 2-4, we report the number of iterations required to reduce the discrete L 2 norm 

error by a factor of 10 -4 for the various preconditioned block iterative techniques discussed in 
Section 3. We choose the discrete L 2 norm as an unbiased measure of the solution error. All 
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Table 2. Iteration numbers for block normal method. 

h k = 1 k = h k = h 2 

1 
40 32 25 

v 

1 
49 36 30 

16 
1 

52 35 29 
32 
1 

53 34 27 
64 

Table 3. Iteration numbers for the minimal residual method. 

h k = 1 k = h k = h 2 

1 
24 19 15 

1 
29 23 18 

16 
1 

31 23 18 
32 
1 

31 22 18 
64 

Table 4. Iteration numbers for reformulation (3.15) preconditioned by/V/0. 

h k - - 1  k = h  k = h  2 

1 
18 14 13 

1 
23 18 14 

16 
1 

25 18 14 
32 
1 

25 17 14 
64 

th ree  m e t h o d s  are  m in imiza t i on  m e t h o d s  wi th  respec t  to  different  norms  and  Kry lov  subspaces .  

None of  these  norms  cor respond  to the  d iscre te  L 2 norm.  All  m e t h o d s  are  app l ied  to  ca lcu la te  

the  same  fixed known solut ion.  

By  far, t he  wors t  m e t h o d  was the  block normal  me thod .  I t  required s ignif icant ly  more  i t e ra t ions  

for the  same  accu racy  when c o m p a r e d  to  the  o the r  two techniques.  Moreover ,  each i t e r a t i on  of 

the  no rma l  equa t ion  m e t h o d  requires  two o p e r a t o r  and  p recondi t ioner  eva lua t ions  and thus  the  

cost  pe r  i t e r a t i on  is roughly  double  t h a t  of t he  o the r  two methods .  

Of  t he  r ema in ing  two techniques ,  the  re formula t ion  (3.15) p recond i t ioned  by/V/0 (cf. [1]) con- 

verged s o m e w h a t  faster  t h a n  the  min ima l  res idual  technique  (cf. [3]). Bo th  of these  m e t h o d s  

involve rough ly  the  same  amoun t  of c o m p u t a t i o n a l  work since t hey  on ly  require  one eva lua t ion  

of the  o p e r a t o r  and  p recond i t ione r  per  i t e ra t ive  step.  One mus t  choose the  scal ing fac tor  for the  

p recond i t i one r  in the  case of re formula t ion  (3.15) whereas  the  min ima l  res idual  t echn ique  does  

not  requi re  any p a r a m e t e r  selection.  Actua l ly ,  somewha t  b e t t e r  pe r fo rmance  was observed  using 

the  r e fo rmula t ion  (3.15) and  A o  1 defined by  scal ing the  mul t ig r id  p recond i t ione r  by a factor  

of 1.5 ( ins tead  of 2). For  compar i son ,  the  i t e ra t ion  resul ts  for for all th ree  m e t h o d s  and  k = h 2 

were combined  in Table  5. 

A P P E N D I X  

We provide  a p roof  of (2.14) and  (2.22) in th is  section.  We include th is  sec t ion to  show t h a t  
t he  des i red  conclus ions  resul t  f rom our  assumpt ions .  The  techniques  for proving  these  e s t i m a t e s  
are  well known. 
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Table 5. I terat ion numbers  for all methods  and k = h 2. 

h 

1 § 25 

1 
30 

16 
1 

29 
32 
1 

27 
64 

Normal Min. Res. Reformulation (3.15) 

15 

18 

18 

18 

13 

14 

14 

14 

We start by proving (2.14). Let (v, Q) be the solution to (2.6)-(2.9) with g = 0. Consider the 
solution to the following Stokes problem in weak form: find (~, 0) in V x W satisfying 

D ( ~ ,  w )  + (0, ~7- w )  = (v,  w ) ,  

( V .  ~', q) = O, 

for all w E V, 
for all q E W. (A.1) 

By the regularity assumption (2.13), 

11'~112 ÷ 110111 ~ c Ilvll • (A.2) 

It immediately follows from (2.10) and (A.1) that  

[[vl[ 2 = D(~,v) + (0, V. v) 

: (f,O) ~ [If][-11[0[11" 
(A.3) 

Inequality (2.14) then follows combining (A.2) and (A.3). 
We next prove (2.22) by applying the finite element duality argument. Let E = v - Vh and 

e = Q - Qh where (v, Q) and (Vh, Qh) are, respectively, the solutions of (2.10) and (2.20). Note 
that  

D(E,  w) + (e, V .  w) = 0, for all w E Vh, 

(~7. E, q) ---- 0, for all q E Wh. 

Consider the solution to the following Stokes problem in weak form: Find (@, 0) in V x W 
satisfying 

D(ff2, w) + (0, V .  w) -- (E, w), for all w E V, 
(~7. ~,  q) -- 0, for all q E W. (A.4) 

By the regularity assumption (2.13), 

[[~[[2 + [10[[1 -< C [[E[[. (A.5) 

We clearly have that  for any w E V h  and q E Wh, 

[[EI[ 2 -- D(@, E) + (8, V .  E) 

= D ( ~  - w ,  E)  - (e, V .  ( w  - ~ ) )  + (e - q, V .  E)  

_< Ch ([[E[[ 1 + Hell)([[k~H2 + [[0[[1) 
_< C h  (IIEII1 + Ilell)IIEI] • 

We used (2.16), (2.17), and (A.5) to get the last two inequalities above. It immediately follows 
that  

[[Eli < Oh(liE[J1 + I]eH). (A.6) 
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To complete the proof of (2.22), we need only bound the two norms on the right-hand side 
of (A.6) by [IV]]l. By (2.11) and the fact that g = 0, 

(O, V .  w) 2 
IIQ[[ 2 <_ Cg sup 

= C g sup D(v, w) 2 _< CD(v, v). 
Ilwll  

S i m i l a r l y ,  (2 .15)  i m p l i e s  t h a t  

Finally, 

IIQhll 2 ~ C D  (Vh,Vh). 

D (Vh,Vh) = I(Qh, V" Vh)l 

----I(Qh,V "v)l ~ D ( v , v )  1/2 IIQhll • 

I t  fo l lows  f r o m  t h e  a b o v e  t h r e e  i n e q u a l i t i e s  t h a t  

IIEII1 + [lell <_ C D ( v , v )  1/2. 

T h i s  c o m p l e t e s  t h e  p r o o f  (2 .22) .  
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