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Abstract—1In this paper, we consider solving the coupled systems of discrete equations which
arise from implicit time stepping procedures for the time dependent Stokes equations using a mixed
finite element spatial discretization. At each time step, a two by two block system corresponding to a
perturbed Stokes problem must be solved. Although there are a number of techniques for iteratively
solving this type of block system, to be effective, they require a good preconditioner for the resulting
pressure operator (Schur complement). In contrast to the time independent Stokes equations where
the pressure operator is well conditioned, the pressure operator for the perturbed system becomes
more ill conditioned as the time step is reduced (and/or the Reynolds number is increased). In
this paper, we shall describe and analyze preconditioners for the resulting pressure systems. These
preconditioners give rise to iterative rates of convergence which are independent of both the mesh
size h as well as the time step and Reynolds number parameter k.

Keywords—=Stokes problems, Preconditioned iteration, Mixed approximation, Pressure operator.

1. INTRODUCTION

In this paper, we analyze efficient iterative techniques for solving the coupled systems of linear
equations which arise from fully discrete approximations of time dependent Stokes equations.
Such systems also arise when the Navier-Stokes equations are advanced in time by using the
modified method of characteristics.

The coupled linear systems have a block matrix representation of the form

A, B X F
(& %)) -6) @y
Here Ay is symmetric, B* is the adjoint of B, and the parameter k is related to the time step
size and Reynolds number. There are a number of techniques which lead to efficient iterative

schemes for solving (1.1) provided that effective preconditioners for Ay and BA; ' B* are available
(cf. [1-3]). These methods will be reviewed in Section 3. The goal of this paper is the analysis
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14 J. H. BRAMBLE AND J. E. Pasciak

of preconditioners for the so-called Schur complement BA;IB* for the time dependent Stokes
application.

For the time dependent Stokes application, the problem is posed in terms of two finite dimen-
sional spaces, V and Wj,. The space V}, consists of vector valued functions defined from a mesh
of size h on a connected bounded domain §2. The space W}, consists of scalar valued functions
on a mesh of size h. It is assumed that the pair of spaces satisfy the classical Babuska-Brezzi
condition: for all p € W,

2
2 < (p7v : V) .
llol) Sesie “hey”

h

Here, D(:,-) denotes the sum of the componentwise Dirichlet forms. In the case of the time
dependent Stokes application, the form which resuits from the Schur complement is given by

_ V- v)?
BAZ'B'p,p) = sup LYY 1.2
(BAL'B'p.p) = sup "5y (12)
Here, Di(w,w) = (w,w) + kD(w,w).
The preconditioner for BA,:IB*, which we shall study, is of the form
K =kI+ QyT,, (1.3)

where I denotes the identity on Wy, Qp denotes the L?(Q) projection onto W;, and T, is
solution operator for a finite element approximation to the Neumann problem (see Section 4).
Preconditioners of this form have been used for the solution of the coupled systems resulting
from fully discrete approximations to time dependent Stokes problems (see, e.g., [4,5]). Although
numerical results were reported, there has been no theoretical work explaining the success of the
preconditioner. In this paper, we provide a theory which shows that this preconditioner gives
rise to rates of convergence which can be bounded independently of both the mesh size h as well
as the time step parameter k.

The outline of the remainder of the paper is as follows. In Section 2, we develop the coupled
linear systems corresponding to fully discrete time stepping approximations to the time dependent
Stokes problem. In Section 3, we survey some iterative techniques for solving block systems of the
form of (1.1). These techniques give rise to rapidly converging iterative schemes provided that
effective preconditioners are available for Ay and BA,:IB*. The problem of preconditioning Ay
has been well studied and effective algorithms are available. In Section 4, we give the analysis
which provides bounds on the condition number for the preconditioner (1.3) applied to BA;IB*.
Finally, we present the results of numerical experiments which illustrate the effectiveness of the
proposed preconditioner in Section 5.

2. THE PROBLEM AND NOTATION

We shall be concerned with solving the discrete systems which result from time stepping ap-
proximation to the linearized Navier-Stokes equations:

ou

Y —vAu—grad P=f in W=Qx(0,T), (2.1)
V-u=0 in W, (2.2)

u=0 on 90 x [0, T, (2.3)

u(z,0) = up(z) in £, (2.4)

/ P(z,t)dz =0 for each ¢ € (0,T). (2.5)
Q
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Here, Q is a domain d dimensional Euclidean space (with d = 2 or d = 3) and A denotes the
componentwise Laplace operator. In addition, u is a vector valued function and P is a scalar
valued function on W. We restrict our attention to the above model problem for simplicity.

The discrete approximation to (2.1)—(2.5) is defined in terms of the discrete approximation of
the stationary Stokes problem. The Stokes problem is as follows: find v and @ satisfying

—Av—grad Q=g in Q, (2.6
V-v=Ff in 2, (2.7)
v=_0 on O£}, (2.8

)

)
/QQda: =0. (2.9)

The regularity properties for the stationary Stokes equation will play a fundamental role in
the construction and analysis of iterative methods for solving the discrete systems arising from
approximations to (2.1)—(2.5). These properties are defined in terms of Sobolev spaces. The
Sobolev spaces { H*(2)} for nonnegative integers s are defined to be the distributions which along
with their partial derivatives of order s are in L?(£2). A complete development and discussion of
these spaces can be found in, e.g., [6-8]. The norm on H*{Q2) will be denote || - ||s. For negative s,
the space H*() is defined by duality and is the set of linear functionals on H~*(Q) for which

the norm
U’
o, = sup 29

secs@) llBll_,

is finite. Here, (-,-) denotes the L%(Q) inner product. We shall also use Sobolev spaces of vector
valued functions. A vector function w is in (H*(Q))? if each of its components is in H*(Q). The
norm in (H*(€2))¢ will also be denoted by || - ||s- There is no ambiguity with this definition since
the specific norm used will be uniquely identified by the type of function on which it is applied.
When s = 0, the norm will be denoted by || - || in both the vector and scalar case.

We next consider the weak formulation of (2.6)-(2.9). Let H}(f2) be the completion of C$°(£)
in the norm || - ||;. Define V = (H}(Q2))4, i.e., the space of vector valued functions with each
component in H (). Finally, let W denote the functions in L?(§2) with zero mean value on .
Multiplying (2.6) and (2.7) by functions in V and W, respectively, it is easy to see that the
solution (v, Q) of (2.6)—(2.9) satisfies

D(v,w)+ (Q,V-w) = (g, w), for all w e V,

(V-v,q)=(f.q), forallg e W. (2.10)

Here, D(-,-) denotes the vector Dirichlet form. We shall let D(-,-) denote both the vector and
scalar Dirichlet forms on Q. For scalar functions in v,w € H(Q2), D(.,-) is defined by

D(v,w) = /Qgrad v-grad wdz.
For vector functions w, w, ]
D (w, W) = ZD(wi,u"zi) .
Since ) is bounded and connected, it follows from [9] that there is a constant Cj satisfying

loll < Co sup PV w)

wev  [[wlh

Here and in the remainder of the paper, C (with or without subscript) will denote a generic
positive constant. These constants may take on different values in different occurrences, however,

(2.11)
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they will always be independent of mesh and time step parameters. It easily follows from (2.11)
that if g = 0, then the solution v satisfies

Ivll, < ClIfIl- (2.12)

In addition, we assume that the solutions of (2.6)—(2.9) satisfy regularity estimates of the form:
for f =0 and all g € L2()¢,
Ivllz + QI < Cligll - (2.13)

This imposes some conditions on the domain. It is known that (2.13) holds in the case of convex
domains in R? with polygonal boundaries [10] and for convex polyhedral domains in R3 (see [11]).
Using a duality technique and (2.13), it is shown in the Appendix that solutions to (2.6)—(2.9)
with g = 0 satisfy

IVl < CIAI- (2.14)

To approximately solve (2.10), we introduce a collection of pairs of approximation subspaces
Vi C V and W, C L?3() indexed by A in the interval 0 < A < 1. We assume that the constant
function is in W}, and define W}, to be the subspace of functions in W}, with zero mean value. We
will assume that the classical L-B-B (Ladyzhenskaya-Babuska-Brezzi) condition (cf. [9]) holds for
the pair of spaces; i.e., there is a constant ¢y which does not depend upon % such that

V. v)?
sup (p,V-v)

2
>c , for all p € Wy, 2.15
S D) o [|pl| pEW, (2.15)

In addition, the subspaces are assumed to satisfy the following approximation and inverse prop-
erties.

(1) For v € (H*(2) N H}(Q))?,

g v = wl, < Chvl,. (2.16)
(2) For v € H(Q),
inf |jv— <Ch . 2.17
o llv —wl| < Chllvll, (2.17)
(3) Forve Vi and s =0,1,
Ivll, < Ch Vi, - (2.18)
(4) For v € Wy,
lof) < CR7Mjull_, - (2.19)

The constant C appearing above is independent of the approximation parameter h. Many sub-
space pairs satisfying (2.15)—(2.19) have been studied (see, e.g., [9,12,13]). A simple collection of
(V1,Wh,) pairs is given in the following example.

EXAMPLE 1. Let Q be the unit square (0,1)? in R?. We first break {2 into smaller squares with
edge length h = 1/n for even integer values of n. The domain is further subdivided by breaking
each smaller square into two triangles by connecting the lower left-hand corner to the upper right.
The subspace V}, is defined to the the set of vector valued functions which are piecewise linear
with respect to the above triangulation, continuous on 2, and vanishing on 0. We will use a
pressure space of piecewise constant functions. To satisfy (2.15), this space must be taken with
respect to a somewhat coarser mesh. To this end, we consider breaking up € into squares of
size 2/n. Let W), denote the set of functions which are piecewise constant on the squares of edge
length 2/n. The space W, is then defined to be the functions in W), with zero mean value on €.
The pair (Vy, W3) satisfies (2.15) with ¢y independent of h = 1/n (see [9]).
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The approximation to the solution (v, Q) of (2.10) is defined by replacing the spaces in (2.10)
by their discrete counterparts. Specifically, the approximate functions are defined as the unique
elements vy € V;, and Qp € W), satisfying

D(Vh,W)+(Qh,V'W) = (ng)v for alleVh,

(2.20)
(V : VhaQ) = (fa Q)a for all q € Wh.

The unique solvability of (2.20) is a consequence of (2.15). The following lemma provides error
estimates for the Stokes approximation.

LEMMA 2.1. Let (v,Q) solve (2.10) and (vp,Qn) solve (2.20). Assume that (2.15)—(2.17) hold.
Then

Ivi = vy +1Qn — QU < Ch(lIv, + Q1) - (2.21)

Suppose that (2.13) holds for all g € (L?(Q))?. Let v and vy, respectively, solve (2.10) and (2.20)
with g = 0. Then,
v = vl < ChvI; (2.22)

The proof of the first inequality (2.21) is well known and can be found in [9]. For completeness,
we provide a proof of (2.22) in the Appendix.

Fully discrete time-stepping approximations to (2.1)—(2.5) using the above spaces lead to sys-
tems of equations of the form

Dy (up, w) + (P, V -w) = (f, w), for all w € V,

(2.23)
(V- up,q) =0, for all ¢ € Wy,

Here,
Di(v,w) = (v,w) + kD(v,w), for all v,w €V, (2.24)

and k is a positive number which is related to the time step size.
The above problem can be formulated in terms of operators as follows: let Ay : Vj +— Vy,,
BV, — W, and B* : W;, — V), be defined by

(Agv,w) = Dy(v,w), for all v,w € Vy,
(Bv,w) = (V- v,w), forall ve Vy, weW, (2.25)
(B*w,v) = (w,V - v), forall veVy,, weW,.

Note that B* is the adjoint of B. Moreover, (2.23) can be rewritten as

Ak B* up _ fh
(5 0)(R)-(5) 220
where f;, denotes the (L?(€2))¢ orthogonal projection of f into V.

3. ITERATIVE METHODS FOR SYSTEMS
OF THE FORM OF (2.6)

In this section, we present some iterative methods for block systems of the form of (2.26). All
of these methods involve the introduction of a preconditioner for a reduced system on W},. Three
of the methods involve the use of an additional preconditioner for the operator Ay on V. In this
section, we describe these iterative techniques and discuss how their rates of convergence depend
upon the condition numbers of related preconditioned subsystems. The techniques discussed in
this section are not restricted to the specific system (2.26) but rather, they are applicable to
general block systems of the form of (2.26). Block systems of this form arise in many other
applications. For example, such systems must be solved for finite element Lagrange multiplier
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approximations to Dirichlet and interface problems [14,15] velocity-pressure formulations of the
equations of Stokes and elasticity [9] and mixed finite element methods [16].

We start by considering generic block operator equations of which (2.26) is an example. Let H*
and H? be finite dimensional Hilbert spaces, and consider the problem

(- e

where X, F are in H! and Y, G are in H2. We study operators M of the form

M=<g ’f)) (3.2)

We assume that A is a positive definite, symmetric operator on H!. In addition, we assume
that B and B* are adjoints with respect to the inner products in H! and H?. We shall use the
notation (-,-) and || - || to denote the inner products and norms on H! and H2. This can be done
without ambiguity since the particular inner product and norm can be identified by the type of
function on which the inner product or norm operates.

Applying block Gaussian elimination to (3.1) shows that the solution of (3.1) satisfies

(‘(L)1 BAIEIB*) ();) = (BA-II;"—G)' (3:3)

Thus, (3.1) is nonsingular if and only if BA~!B* is invertible. Clearly, BA~1B* is symmetric
and nonnegative. A straightforward computation gives that

2
(BA™'B*U,U) = sup %%—))—, for all U € H?, (3.4)
gcH! )
and hence, solvability of (3.1) will follow if
2
sup ((Z’—GB%)T >c|U|?, for all U € H?, (3.5)
©cH! ’

holds for some positive number c. Inequality (3.5) is the classical L-B-B (Ladyzhenskaya-Babugka-
Brezzi) condition (cf. [9]).
The first scheme which we shall consider for solving (3.1) involves iteratively solving the equa-
tion
BA™!B*Y = BA"'F -G (3.6)

and subsequently back solving (3.3) for X, i.e., X = A~}(F — B*Y). This is a classical technique
but has two potential drawbacks. First, the operator BA~! B* may be ill-conditioned, and hence,
the iteration for (3.8) may converge slowly without preconditioning. Second, the action of the
inverse of the operator A must be computed at each step of the iteration. This latter drawback is
perhaps the more serious one and for this reason, we will not focus our attention on this method.

As we will see, it will be essential for the efficiency of all of the other methods discussed
here to be able to construct a good preconditioner for BA~!B*. For this purpose, let K be a
symmetric positive definite operator on H? and let x be the condition number of X BA~1B*.
Since KBA~!B* is symmetric with respect to the inner product defined by (K~!. ), it follows
easily that kK < ¢;/¢o for any pair ¢p and ¢; of positive numbers satisfying

co(KV,V) < (BAT'B*KV,KV) < e1(KV, V), for all V € HZ. (3.7)

The construction of such operators K, with k not too large, will be important for the performance
of the methods which we will now describe.



Iterative Techniques 19

REMARK 3.1. This paper is concerned with the solution of the systems resulting from time
stepping procedures for the linearized Navier-Stokes problem. In the next section, we shall show
how to construct efficient preconditioners for the particular operator BA;IB* corresponding
to (2.26).

As already observed, one problem with the iterative technique just described is that it requires
the evaluation of the action of A~! at each step in the iteration. In the application considered
in this paper, the action of A™! = A,:l is more expensive to compute than that of a suitable
preconditioner. We next consider a natural preconditioned conjugate gradient technique for
solving (3.1) which does not require the evaluation of the action of A~!. To this end, we assume
that we are given a symmetric positive definite operator 7 which acts as a preconditioner for A.
This means that there are positive numbers ¢ and c3 satisfying

TV, V) < (ATV,TV) < e3(TV, V), for all V € H!, (3.8)

with e3/cq not too large.
The second method which we present here is as follows. We will precondition M by the block

operator My defined by
_(J 0
= (3 x)

and then form the normal equations corresponding to (3.1). That is, we write the equivalent

system

MoM MM (i/") = MoM M, (g) . (3.9)

Let (-, -) denote the sum of the componentwise inner products on H! x H2. Note that MoM MyM
is a symmetric operator with respect to the inner product (My 1.,.). Since it is also positive defi-
nite, we can apply the conjugate gradient method (in the inner product (M;*-,)) to solve (3.9).
Note that the asymptotic rate of convergence per step of the conjugate gradient method can be
bounded by

_VE-1
=Vt (3.10)
where & is the condition number of MoM MyM. It is essentially shown in [2] that
3++5 a2
o
K (MoMMM) < -, 3.11
( 0 0 ) = (3 — \/’5) ag ( )

where ap = min(cp, c2) and a; = max(cy, cs). We omit the proof here.
The importance of an estimate of the type (3.11) is that it shows that the convergence rate
bound (combining {3.11) and (3.10)) is improved when good preconditioners 7 and K are used.

REMARK 3.2. Even though we are applying the conjugate gradient method in the inner product
(My 1...), the algorithm can be implemented in such a way as to avoid the explicit evaluation
of M§'. This is because of the special form of the equations being solved. Every instance of
the inner product which appears in the conjugate gradient algorithm involves variables, e.g.,
(Mo‘lml,:vg), where z; = Myw;, for ¢ = 1,2, with either w; or wg known. Thus, MO_1 can be
avoided in the implementation. This is important in that there are many preconditioners whose
evaluation is implemented as a process. Efficient computational procedures for computing the
action of the inverse of such processes may not be known or available.

A third method, which we describe now, was studied by Rustin and Winther [3]. It is related
to the above “normal equations method” but seems to perform quite a bit better when used in
the application studied in this paper (see Section 5).

CAMWA 33:1/2-8
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MoM (i) = M, (g) (3.12)

and note that MyM is a symmetric operator with respect to the inner product (Mg 1.).). Even
though it is not positive definite, we can apply the minimal residual method to (2.11). This is
computationally no more involved than the conjugate gradient method in that it also involves
only a three term recurrence relation for its implementation. This method can be characterized
as follows. Let E; be the error after ¢ steps of the iteration and define the Krylov space

This time we write (3.1) as

K; = span {(MOM)’ EO}.

=1

Then, E; = Eg + x for the unique x € K; which minimizes
(MoM (Eo+0) ,M (Eo +8)),  forall § € K;.

2i steps of this method is necessarily no worse than ¢ steps of the normal equation method since
the error after i steps of the normal equation method satisfies the above minimization but with
K; replaced by
K/ = span { (Mo M) Eo} .
=1

Thus the rate of convergence for the minimal residual method applied to (3.12) can be bounded by
the normal method rate (see (3.10) and (3.11)). Alternatively, bounds for the rate of convergence
of the minimal residual method may be inferred from the MyM eigenvalue estimates given in (3].
Note that the computational cost of two steps of the minimal residual method is approximately
that of one step of the normal equation method.

REMARK 3.3. In both of the preceding methods, spectral bounds may not really predict the
convergence behavior. We consider the case 7! = A and K~! = BA~1B*. Clearly,

(3.13)

—1
M0M=(I A B>'

KB 0

It is straightforward to check that if the null space of B is nonempty, then (3.13) has exactly
the three eigenvalues 1, (1 + v/5)/2, and (1 — v/5)/2. It follows that both the minimal residual
method and the normal method converge in three iterations which is considerably better than
the rate predicted by the spectral estimates. For preconditioners close to.these limiting cases, it
is clear that the eigenvalues must cluster near the three values 1, (1 + v/5)/2, and (1 — v/5)/2.

REMARK 3.4. The minimal residual method applied to a nonsingular symmetric operator N is, in
general, no better than the conjugate gradient method applied to the positive definite symmetric
operator N2. An example which illustrates this is as follows. Suppose that N has a spectrum
which is symmetric about 0 and that each eigenvalue is simple. Any vector z has an eigenvector
expansion of the form
z = Z (cidhi +ci—s).
A >0

Here, {A;,¢;} and {—)\;,¢~;} are the eigenpairs for the operator N. We say that a vector z
is even (respectively, odd) if ¢; = c_; (respectively, ¢; = —c_;). Consider solving the problem
Nz = y with an initial iterate zo chosen such that the initial error eg =  — xg is even. It is easy
to see that N¥eq is even for k even and odd for k odd. Thus the terms with odd powers of the
operator in K, are already orthogonal to the error ey. It follows that the minimization over K;
is identical to the minimization over K}, i.e., 2/ steps of minimal residual method produce the
same result as [ steps of the normal equation iteration. However, this is not the situation in our



Iterative Techniques 21

application where the minimal residual method appears to perform significantly better than the
normal equation method (see the numerical examples in Section 5).

The last method which we will consider involves a somewhat different reformulation of (3.1).
Assume that c; in (3.8) is greater than one. Let Ag be defined to be 1. Clearly, A — A satisfies
1 1

0< (1 - Z—) (AV, V) < ((A— A4p) V,V) < (1 - c—) (AV, V), (3.14)
2 3
for all nonzero V in H*.
Using straightforward manipulations, we obtain the system

(XN _ ATA A7B* X\ ASF
M(Y>=<BA61(A—A0) BA;'B* J\v ) =\ BAs'F -G ) (3.15)

As a consequence of (3.14), we can define an inner product on H! x H? by

[(5)@()] = (AU, X) - (AU, X) + (V,Y). (3.16)

We note that

- (U\ (X o .
[M<V>,<Y>] — ((AA; A= A)U, X) + (A - Ao) A7 B*V, X)
+ (BAG (A- A)U,Y) + (BAF'B*V)Y),

and hence, the operator M is symmetric with respect to the inner product defined by (3.16). It
was shown in [1] that M is also positive definite. Let

- (I 0
It was also shown in [1] that the condition number of My is uniformly bounded (a bound was
given in terms of ¢y, ¢1, and c3). It follows that the conjugate gradient method for solving (3.15)

preconditioned by Mg converges rapidly. In fact, as Ao tends to A and K~! tends to BA~!B*,
the condition number for the preconditioned system tends to one.

4. THE PRECONDITIONER AND ITS ANALYSIS

We develop the preconditioner for the perturbed pressure system in this section. It should
be noted that, in contrast to the case of stationary Stokes, the pressure operator BA;IB*
corresponding to the time stepping equation (2.26) becomes ill-conditioned as k becomes small.
In this section, we will develop preconditioners for BA;lB* which lead to preconditioned systems
with condition number bounds which are independent of k.

To define the preconditioner K, we use a conforming scalar valued finite element space S, C
H(£)). We assume that S), satisfies the standard approximation property: for each v € H?(Q),

inf v — 6ll, < Chlloll. (1)
0€Sh

Finally, we assume that the constant function is in S}, and define S}, to be the set of functions in S
which have zero mean value on §2. Many examples of the construction of subspaces satisfying the
above hypotheses can be found in [17-19].

Let T denote the solution operator for the continuous Neumann problem, i.e., given f &
H=1(Q), w = Tf is the unique function (with zero mean value on ) in H*(Q) satisfying

D(w, ) = (f.9) (42)
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for all ¢ € H'(2)/R, the functions in H'() with zero mean value on 2. The unique solvability
of (4.2) follows from the Poincaré inequality. We shall assume full elliptic regularity for solutions
of (4.2), ie.,

lwll, < ClIfl- (4.3)

Note that (4.3) holds for convex domains in R? and R3 (see [6]). Let T}, be the solution operator
for the Galerkin approximation to the second order Neumann problem. Specifically, for a function
f € L3(R), w = Ty f is the unique function in Sy, satisfying

D(w,8) = (£,6),  for all @ € Sp. (4.4)

Note that the functions in S do not satisfy boundary conditions but have zero mean value.
Under the assumptions (4.1) and (4.3), it is well known that

I(T = Th) vl < CR?|lv]] . | (45)

Let Qp, denote the L?(Q) orthogonal projection onto the subspace Wy. The major result of
this paper is given in the following theorem and its corollary.

THEOREM 4.1. Assume that (2.13), (2.15)—(2.19), (4.1) and (4.3) hold and that k > h?. Let
be in the interval [h, k'/?] and define the operator A% : Wy, — W), by

AL = QT + kI

Let BA;'B* be defined by (2.25). Then there are constants Cy and C; not depending on h or k
such that

Co (Akq,q) < (BA'B*Akq, Afrq) <C (.A’,jq, q), for all g € W, (4.6)

COROLLARY 4.1. Assume that (2.13), (2.15)-(2.19), (4.1), and (4.3) hold and that k < h%. Then
there are constants Cy and Cy not depending on h or k such that

Co (.Aﬁzq, q) < (BA,:IB*Aﬁzq, Aﬁzq) <C (.A',fq, q) , for all g € Wy,

REMARK 4.1. The above theorem shows that one can use K = A,’i as a preconditioner for
BA,:IB*. Each evaluation of K then requires solving a discrete Neumann problem (4.4) on a
mesh of size . If « is relatively small, it may be more economical to replace the operator T, by
a preconditioner 7. Such an operator is constructed so that

G2 (T26,6) < (T8, 6) <Cs(T46,6), forallfes,

with Cs and C3 not depending on h. Suppose that (4.6) holds. If TL, is scaled so that Cy <1 < Cj,
then K = QpT., + kI satisfies

-CoCy(Kg,q) < (BA;'B*Kq,Kq) < C1C3(Kgq,q),  for all g € Wj.

This remark holds for -y = A which can be applied in the case of the corollary.

PROOF OF THEOREM 4.1. Let My = BA,:lB". It is easy to see that the upper inequality
in (4.6) is equivalent to

(ASMig,Mig) < C1 (Mig,g),  for all g € Wh. 4.7)
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Let g be in Wj,. Using the definitions of T, and T', we have that

(A Mg, Miq) = (T, Mig, Mkq) + k [|Mxq|”

) (4.8)
< (TMkg, Miq) + k|| Migll” .
As in (3.4), a straightforward computation gives that
2 )2
o) = mp (£00 = 20 ey =
We first bound the last term in (4.8). We clearly have that
IV vI* < D(v,v),
and hence, (4.9) and the Schwarz inequality imply that
k (Mg, q) < llal*. (4.10)
Using the fact that My, is a symmetric positive definite operator, it follows that
k|IMigll® < (Miq,q) - (4.11)
We note that for any w in H~1(Q),
(Tw,w) = D(Tw,Tw) = ¢€;52)/R% )
= o WO oy, |

" sem@)/r D(6,9)

We used the Poincaré inequality for the last inequality above. If, in addition, w has zero mean
value on €2, then

(’LU7¢)2 < (Tw,w). (4_13)

Jwi?; = sup 5
pcH @Q)/R ||9lI]

We used the representation for (T'w,w) given in (4.12) for the last inequality above.
We next bound the first term on the right-hand side of (4.8). By (4.12),

(TMq, Myq) < C [ Myqll?; .
Note that Mg = @,V - w where w = A,:IB*q. Consequently,
(TMyg, Miq) < 2C (I(T = Qu)V - w|, + [V - wi?,) (4.14)
It follows from (2.17) and a straightforward duality argument that
(I = Qn)V - wil_y < CRIV - wi
Thus, by the inverse inequality (2.18),

(TMig, Myg) < C (B V - wif? + | wi*)

<Clwi* =C A7 B’ (4.15)

< C(A;'B*q,B*q) = C (Miq,q).
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We used the fact that the spectrum of A;l is in the interval (0, 1) for the last inequality above.
Combining (4.8), (4.11), and (4.15) completes the proof of (4.7).
We now prove the lower inequality of (4.6). Evidently this is the same as

Co ((A,’i)_l q, q) < (Mg, q), for all ¢ € Wy, (4.16)

Let ¢ be an arbitrary function in W;,. We prove (4.16) by constructing a function v, € Vj, such
that Bvy, = (Afy)"lq and

D (va,va) < C ((44) " g,0). (417)
If we have such a function, then by (4.9) and (4.17),
(Qy th)2 -1 Kyl
> > .
(qu’ Q) = Dk (Vh.avh) >C ((A'y) q, q)

We start by considering the pair (v, Q) solving the Stokes equation

~Av —-VQ =0, in Q,
V.-v= (.A:)—lq, in Q,
v =0, on 990.
By (2.12),
Ivl, <C H(A’i)-_lq“ , (4.18)
and by (2.14),
Ivi <457 q_ - (4.19)

-1
Combining the above two inequalities and using (4.13) gives

De(v,v) < C (T +EI) (45) 7 g, (45) ") . (4.20)
Let p be in Wj. By (4.5),
(T = T) p, )| < CY*1Ipl* < Chlpll®. (4.21)
Thus, it follows from the triangle inequality that
(T + kp,p) < C((Ty + k) p,p) . (4.22)
Combining (4.22) and (4.20) gives
Di(v,v) < C ((Tn, +kI) (A%) g, (A8 q) =C ((A:)‘1 a q) . (4.23)
We define v;, to be the mixed approximation to v. Specifically, v, satisfies

D (vp,w) + (Qn,V-w) =0, for all w € V,
(V-vp,8) = ((.A.’:)-lq, s) , for all s € W,

Note that Bv;, = (.A,’;)‘lq follows from the second equation above. The proof of the theorem
will be complete once we verify (4.17) for this choice of vj. Clearly,

D(va,vi) = —(Qn, V- vp) = = (Qn, V- V)

4.24
<@V - v € 11Qnll D(v,v)Y2. (4.24)
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Now, by (2.15)

,V-w
1Qull < C sup \9mY W)
wEV, D(W, W) (4 25)
=C sup M < CD (v vh)1/2_ '
VEV, D(W,W)1/2 N ,
Combining (4.23)—(4.25) gives
kD (vi,v1) < CkD(v,v) < C ((,4’5)'1 q,q) . (4.26)
To verify (4.17), we need only estimate ||vy||. By Lemma 2.1 and (4.18),
-1
Iv = vall < ChIv], < Chl|(4%) g
Thus, by the inverse inequality (2.19), (4.13), and the triangle inequality,
-1 -1 \1/2
IVall < v+ C (T (45) g, (45) " q)
Applying (4.22) gives
~1 -1 -1 -1 -1
(7 (45", (45 g) <O (@ + kD) (A5) g, (45) " a) = C ((44) " asq) -
Combining (4.23) and the above two inequalities gives
-1
Ival? < C ((Aﬁ) q,q) - (4.27)

Finally, (4.17) follows from (4.26) and (4.27). This completes the proof of the theorem.
PROOF OF COROLLARY 4.1. It immediately follows from the inverse inequality (2.18) that for
k < hZ

IV]> < Di(v,v) < Clvl?, forallveVy,

holds for C independent of & and h. Using this with (4.9) shows that all of the forms (Mg, q)
are equivalent, provided that k < A2, The corollary then follows from Theorem 4.1 with k = h?.

5. NUMERICAL EXAMPLES

In this section, we present the results of numerical computations which illustrate the condi-
tioning guaranteed by Theorem 4.1. We also report the number of iterations required to achieve
a given accuracy using the preconditioned block methods discussed in Section 3.

As a model problem, we consider systems which arise from time stepping (2.1)—(2.5) for
equal to the unit square (0,1)? in R2. The space V}, is defined as in Example 1. To define Wy,
we start with the space W}, of piecewise constant functions with respect to the square mesh with
edge lengths 1/n (see Example 1). Label the smaller squares in the z and y directions and let ®, ,
denote the characteristic function which is one on the 7, j*1 square. For [,m € {1,2,...,n/2}, let

Bi,m = ®or,0m — Par—12m — Pt om—1 + Po—1.2m—1-

We then define

Wh={¢€Wh

/¢dm=0and (¢,0im)=0for 1 <l,m < g}
Q

It is shown in [9,20] that the resulting pairs V;, and W}, satisfy (2.15) with ¢y independent of n.
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For convenience, we discretize the first term in (2.24) by a lumped mass approximation. This
means that we use
(V, W) = h2 ZVU *Wij, for all v,w € V.
ij

Here the sum is taken over the nodes of the mesh and the subscript on the functions v and w
denotes evaluation at the grid point. We will use the operator Aﬁ analyzed in Section 4 as a
preconditioner for the Schur complement BA;IB* corresponding to the coupled system (2.23).

We let S;, denote the space of functions with zero mean value which are continuous on  and
piecewise linear with respect to the triangulation defining V. Because Ay comes from a regular
mesh and constant coefficient operator, its inverse can be computed by using the discrete sine
transform. Similarly, the action of T}, can be computed by using the discrete cosine transform.
By utilizing odd and even extensions, the discrete sine and cosine transforms can be reduced to
the discrete Fourier transforms which can be efficiently computed in on the order of n?log(n)
operations.

One can compute the action of A,’i and BA,:IB* efficiently using the above techniques. The
largest and smallest eigenvalues of AﬁBA;lB* were then computed using the power method. In
the case of k = 0, we used .A’,f as suggested by Corollary 1. The resulting condition numbers as
a function of h and k are reported in Table 1. For the reported range of h and k, the condition
numbers of the system AﬁBA,:lB* were bounded by 5.3.

Table 1. Condition number of AfBA;'B*.

h k=1 k=h | k=h2? k=0
% 4.6 4.3 3.8 4.3
1

— 4.9 46 4.3 45
16

1

— 5.2 4.7 4.5 4.6
32

S 5.3 5.0 4.5 4.6
64

We next illustrate the behavior of the last three iterative algorithms discussed in Section 3. For
these examples, we use a V-cycle multigrid preconditioner for each component of the operator Ag.
Specifically, we consider the V-cycle algorithm which uses one pre- and post-sweep of point-
Gauss-Seidel as a smoother (see [21]). For the multigrid algorithm to give rise to a symmetric
preconditioning operator, the order of the points in the post-Gauss-Seidel smoother is the reverse
of that used in the pre-Gauss-Seidel smoother. Because of the lumped mass term, the resulting
multigrid scheme is not of variational type (see [22, Section 5]). By direct computation, the
resulting preconditioner applied to A has eigenvalues in the interval [0.74, 1].

We applied the last three algorithms of Section 3 utilizing the multigrid preconditioner just
discussed. For the normal and minimal residual algorithms, no scaling was required. In the case
of (3.15) preconditioned by My, we defined J to be the multigrid preconditioner scaled by 2.
Since the original preconditioner applied to A had eigenvalues in the interval [0.74, 1], it follows
that the scaled operator J satisfies

0.32(Axv,v) < ((Ax - T M) v,v) < %(Akv, v), for all v € V.

As before, we used K = Af.

In Tables 2-4, we report the number of iterations required to reduce the discrete L? norm
error by a factor of 10~4 for the various preconditioned block iterative techniques discussed in
Section 3. We choose the discrete L? norm as an unbiased measure of the solution error. All
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Table 2. Iteration numbers for block normal method.

h k=1 k=h k= h?
1 40 32 25

8

! 49 36 30
16

L 52 35 29
32

1

— 53 34 27
64

Table 3. Iteration numbers for the minimal residual method.

h k=1 | k=h | k=h?
1

= 24 19 15
8

1

— 29 23 18
16

L 31 23 18
32

1

— 31 22 18
64

Table 4. Iteration numbers for reformulation (3.15) preconditioned by Mp.

ho | k=1 | k=h | k=h?
1

= 18 14 13
8

1

— | 23 18 14
16

! 25 18 14
32

1

— |- 25 17 14
64

three methods are minimization methods with respect to different norms and Krylov subspaces.
None of these norms correspond to the discrete L2 norm. All methods are applied to calculate
the same fixed known solution.

By far, the worst method was the block normal method. It required significantly more iterations
for the same accuracy when compared to the other two techniques. Moreover, each iteration of
the normal equation method requires two operator and preconditioner evaluations and thus the
cost per iteration is roughly double that of the other two methods.

Of the remaining two techniques, the reformulation (3.15) preconditioned by My (cf. [1]) con-
verged somewhat faster than the minimal residual technique (cf. [3]). Both of these methods
involve roughly the same amount of computational work since they only require one evaluation
of the operator and preconditioner per iterative step. One must choose the scaling factor for the
preconditioner in the case of reformulation (3.15) whereas the minimal residual technique does
not require any parameter selection. Actually, somewhat better performance was observed using
the reformulation (3.15) and Aj ! defined by scaling the multigrid preconditioner by a factor
of 1.5 (instead of 2). For comparison, the iteration results for for all three methods and k = h?
were combined in Table 5.

APPENDIX

We provide a proof of (2.14) and (2.22) in this section. We include this section to show that
the desired conclusions result from our assumptions. The techniques for proving these estimates
are well known.
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Table 5. Iteration numbers for all methods and k = h2.

h Normal | Min. Res. Reformulation (3.15)
1
- 25 15 13
8
1
— 30 18 14
16
1
— 29 18 14
32
1
— 27 18 14
64

We start by proving (2.14). Let (v, Q) be the solution to (2.6)—(2.9) with g = 0. Consider the
solution to the following Stokes problem in weak form: find (¥,8) in V x W satisfying

D(¥,w)+ (6,V-w) = (v,w), forallwe 'V,

Al
(V-¥,q) =0, forallg e W. (A-1)
By the regularity assumption (2.13),
1Zlly + 1161, < Clivll - (A.2)
It immediately follows from (2.10) and (A.1) that
2
= D(¥, 8,V
IVIF = D@,v) + (6,9 V) "

= (£,0) <Ifl_. N6l

Inequality (2.14) then follows combining (A.2) and (A.3).

We next prove (2.22) by applying the finite element duality argument. Let E = v — v, and
e = @ — Qn where (v,Q) and (vp,Qp) are, respectively, the solutions of (2.10) and (2.20). Note
that

DE,w) + (e,V-w) =0, for all w € Vy,
(V-E,q)=0, for all ¢ € W,

Consider the solution to the following Stokes problem in weak form: Find (¥,0) in V x W
satisfying
D(¥,w)+(0,V-w) = (E,w), forallweV,

Ad
(V.-¥,q) =0, for all ¢ € W. (A-4)

By the regularity assumption (2.13),
I%ll, + 1161, < CIE] . (A.5)
We clearly have that for any w € V;, and g € Wy,

|E|)? = D(Z,E) + (6,V - E)
=D -w,E)—-(e,V- (w—=U))+(0-¢q,V-E)
< Ch(IEll, + llell) (1], + 161l,)
< Ch(IEll, + llell) IE] -

We used (2.16), (2.17), and (A.5) to get the last two inequalities above. It immediately follows
that
Bl < CR(IEl; + llell) - (A.6)
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To complete the proof of (2.22), we need only bound the two norms on the right-hand side
of {A.6) by |lv|l1. By (2.11) and the fact that g = 0,

Q17 < Cf sup G )
wev  flwl
2
=C? su Dlv, w)” < CD(v,v).

p)
wev  [lwly

Similarly, {2.15) implies that

I1Qnll*> < CD (vi,vn).

Finally,

D(Vh,Vh) = I(Qh7v : vh)'
=(Qn, V- V)| < DV, V) ||Qn] .

It follows from the above three inequalities that

IEll; +lle] < CD(v,v)"/2,

This completes the proof (2.22).
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