Note

Characterizing $2k$-critical graphs and n-extendable graphs

R.E.L. Aldreda, D.A. Holtona, Dingjun Loub, Ning Zhongb

aDepartment of Mathematics and Statistics, University of Otago, P. O. Box 56, Dunedin, New Zealand
bDepartment of Computer Science, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China

Received 17 May 2002; received in revised form 9 June 2004; accepted 20 June 2004

Abstract

Let G be a graph with even order. Let M be a matching in G and x_1, x_2, \ldots, x_{2r} be the M-unsaturated vertices in G. Then G has a perfect matching if and only if there are r independent M-augmenting paths joining the $2r$ vertices in pairs. Let G be a graph with a perfect matching M. It is proved that G is $2k$-critical if and only if for any $2k$ vertices u_1, u_2, \ldots, u_{2k} in G, there are k independent M-alternating paths P_1, P_2, \ldots, P_k joining the $2k$ vertices in pairs such that P_1, P_2, \ldots, P_k start and end with edges in M. It is also proved that G is n-extendable if and only if, for each r with $0 \leq r \leq n$ and each $F \subseteq M$ with $|F| = r$, and for any $n - r$ pairs of M-alternating paths $x_i, x_j', y_i, y_j' \in M$ $(1 \leq i \leq n - r)$ in $G - V(F)$, there exist independent M-alternating paths P_1, P_2, \ldots, P_k in $G - V(F)$ joining the vertices in $Z = \{x_1, y_1, \ldots, x_{n-r}, y_{n-r}\} \cap \{x_1', y_1', \ldots, x_{n-r}', y_{n-r}'\}$, where $|Z| = 2k$, which start and end with edges in $E(G) \setminus M$.

Keywords: Perfect matching; n-extendable graph; $2k$-critical graph; M-alternating path

1. Introduction and terminology

All (D. Lou) graphs in this paper are finite, undirected, connected and simple.

Let G be a graph with a perfect matching M and let $n \leq (r - 2)/2$ be a positive integer. The graph G is said to be n-extendable if any matching of size n is contained in a perfect matching in G. Let $m \leq r - 2$ be a positive integer. A graph G is said to be m-critical if deleting any m vertices from G, the remaining graph has a perfect matching. If M is a matching and Q is a path in G such that the edges on Q appear in M and in $E(G) \setminus M$ alternately, then Q is said to be an M-alternating path. An M-alternating path P that starts and ends with two M-unsaturated vertices is said to be an M-augmenting path. Let A and B be two sets. Then $A \Delta B$ is the symmetric difference of A and B.

For the other terminology and notations not defined in this paper, the reader is referred to [4].

Since Plummer [13] introduced the concept of n-extendable graphs in 1980, an extensive research has been done (see [1,2,8]). A related topic is that on n-critical graphs, Zhong, Yu and Lou obtained some results on n-critical graphs which corresponds to results on n-extendable graphs (see [10–12]). For the advances in research on n-extendable graphs, please see [15,16].

Plummer [14] first gave the characterization of n-extendable bipartite graphs. This result was also obtained by Brualdi and Perfect [5]. But their result was couched in terms of matrices.

E-mail address: issldj@zsu.edu.cn (D. Lou).

0012-365X/ - see front matter © 2004 Published by Elsevier B.V.
doi:10.1016/j.disc.2004.06.013
Theorem 1 (Plummer [14] and Brualdi [5]). Let G be a connected bipartite graph with bipartition (U, W). Suppose n is a positive integer such that $n \leq (v - 2)/2$. Then the following are equivalent:

(i) G is n-extendable;
(ii) $|U| = |W|$ and for each non-empty subset X of U such that $|X| \leq |U| - n$, $|N(X)| \geq |X| + n$;
(iii) For all $u_1, u_2, \ldots, u_n \in U$ and $w_1, w_2, \ldots, w_n \in W$, $G' = G - u_1 - u_2 - \cdots - u_n - w_1 - w_2 - \cdots - w_n$ has a perfect matching.

Yu [17] gave a Holton, Little and Grant style characterization of general n-extendable graphs.

Theorem 2 (Yu [17]). A graph G is n-extendable ($n \geq 1$) if and only if for any $S \subseteq V(G)$

(1) $\omega(G - S) \leq |S|$ and
(2) $\omega(G - S) = |S| - 2k$ ($0 \leq k \leq n - 1$) implies that $\Phi(S) \leq k$, where $\Phi(S)$ is the size of a maximum matching in $G[S]$.

Independently, Lou [9] gave a Tutte style characterization of n-extendable graphs as follows:

Theorem 3 (Lon [9]). A graph G is n-extendable if and only if, for any $S \subseteq V(G)$, $\omega(G - S) \leq |S| - 2d$, where $d = \min\{\ind(S), n\}$ and $\ind(S)$ is the maximum number of independent edges in $G[S]$.

Later Chen [6] also gave a Tutte style characterization of n-extendable graphs.

Theorem 4 (Chen [6]). Let $k \geq 1$. Then a graph G is k-extendable if and only if $\omega(G - S) \leq |S| - 2k$ for every $S \subseteq V(G)$ such that $G[S]$ contains k independent edges.

For n-critical graphs, Yu [17] and Favaron [7] independently obtained the following characterization.

Theorem 5 (Yu [17] and Favaron [7]). A graph G is k-critical if and only if $\omega(G - S) \leq |S| - k$ for every $S \subseteq V(G)$ satisfying $|S| \geq k$.

In [3], Aldred, Holton, Lou and Saito use M-alternating path theory to characterize the structure of n-extendable bipartite graphs. Motivated by this result, in this paper, we characterize $2k$-critical graphs and the general n-extendable graphs using M-alternating path theory.

2. Preliminary results

In this section, we introduce some basic results on n-extendable graphs and n-critical graphs which will be used in the proof of the following theorems.

Lemma 6 (Plummer [14]). If G is n-extendable for $n \geq 2$, then G is also $(n - 1)$-extendable.

Lemma 7 (Favaron [7]). Every k-critical graph is k-connected.

Lemma 8 (Lou [10]). If G is n-critical for $n \geq 3$, then G is $(n - 2)$-critical.

3. A new necessary and sufficient condition for perfect matching

In this section, we propose a new necessary and sufficient condition for a graph to have a perfect matching that plays a key role in the proof of the theorems to characterize the $2k$-critical graphs and the general n-extendable graphs.

Theorem 9. Let G be a graph with even order. Let M be a matching in G and x_1, x_2, \ldots, x_2r be the M-unsaturated vertices in G. Then G has a perfect matching if and only if there are r independent M-augmenting paths joining the $2r$ vertices in pairs.
Theorem 10.

1. Extendable graphs: G is n-extendable if 1, $n+1$, $n+2$, $n+3$, ..., $n+m$ joining m vertices in $\{x_1, x_2, ..., x_m\}$ so that m is as large as possible, and assume $m < r$. We may assume P_j joins x_{j-1} and x_j $(1 \leq j \leq m)$. Let $M' = M \Delta (\bigcup_{j=1}^m E(P_j))$. Then M' is a matching of G, but since $m < r$, M' is not a maximum matching of G.

Thus, G has an M'-augmenting path Q. We may assume Q joins x_{2m+1} and x_{2m+2}. Let $H = (V(G), \bigcup_{j=1}^m E(P_j) \Delta E(Q))$.

Let $v \in V(P_i) \cap V(Q) (1 \leq i \leq m)$ and let e be the unique edge of $E(P_i) \setminus M$ incident with v. Then $e \in M'$ and hence $e \in E(Q)$. This implies $e \notin E(H)$. From this observation, we have the following:

(i) If $v \notin \{x_{2i-1}, x_{2i}\}$, then $d_P(v) = d_Q(v) = 2$ and hence $d_H(v) \in \{0, 2\}$. Moreover, if $d_H(v) = 2$, then one of the two edges of H incident with v belongs to M.

(ii) If $v = x_{2i-1}$ or $v = x_{2i}$, then $d_H(v) = 1$, and since v is M-unsaturated, the unique edge of H incident with v belongs to $E(H) \setminus M$.

Therefore, H consists of $m+1$ independent M-augmenting paths joining vertices in $\{x_1, x_2, ..., x_{2m+2}\}$ in pairs, and possibly M-alternating cycles. This contradicts the maximality of m. □

4. Characterizing 2k-critical graphs and n-extendable graphs

Using Theorem 9, we prove the following theorems to show the role of M-alternating paths in 2k-critical graphs and n-extendable graphs:

Theorem 10. Let G be a graph with a perfect matching M. Then G is 2k-critical ($k \geq 1$) if and only if for any 2k vertices v_1, v_2, \ldots, v_{2k} in G, there are k independent M-alternating paths P_1, P_2, \ldots, P_k joining the 2k vertices in pairs such that P_1, P_2, \ldots, P_k start and end with edges in M.

Proof. To prove necessity, let v_1, v_2, \ldots, v_{2k} be any 2k vertices in G. Then there are k independent M-alternating paths P_1, P_2, \ldots, P_k joining the 2k vertices in pairs such that P_1, P_2, \ldots, P_k start and end with edges in M. Then, in $G' = G - \{v_1, v_2, \ldots, v_{2k}\}$, P_1, P_2, \ldots, P_k become $r (r \leq k)$ independent M-augmenting paths, where r - paths of P_1, P_2, \ldots, P_k are single matching edges. Then we can easily find a perfect matching in G'.

To prove necessity, let G be a 2k-critical graph and M' be a perfect matching in G. Let v_1, v_2, \ldots, v_{2k} be any 2k vertices of G. Suppose there are r pairs of vertices in $\{v_1, v_2, \ldots, v_{2k}\}$ that are joined by an edge in M, respectively. Without loss of generality, assume $v_{2i-1}v_{2i} \in E, i = 1, 2, \ldots, r$. Then $G' = G - \{v_i | i = 1, 2, \ldots, r\}$ has a perfect matching. But $M'' = M' \setminus (v_1v_2) = G - \{v_1, v_2, \ldots, v_{2k}\}$ is a matching in G''. By Theorem 9, there are $(k - r)$ independent M''-augmenting paths in G'' joining the vertices in v_1v_2. These $(k - r)$ paths plus $\{v_i | i = 2r, 2r+2, \ldots, 2k\}$ form $(k - r)$ M-augmenting paths in G'' joining the vertices in v_1v_2. Considering $\{v_2v_3 \ldots, v_{2k}\}$, we obtain the k required paths. Hence we complete the proof. □

Theorem 11. Let G be a graph with a perfect matching M. Then the following statements are equivalent:

1. G is n-extendable;
2. For each r with $0 \leq r \leq n$ and each $F \subseteq M$ with $|F| = r$, and for any $n - r$ pairs of M-alternating paths x_iy_j in $G - V(F)$ such that $x_i^r, y_j^r \in M (1 \leq i \leq n - r)$ and x_1, x_2, y_1, y_2, ..., x_{n-r}, y_{n-r} are $2(r - n)$ different vertices, there exist independent M-augmenting paths P_1, P_2, \ldots, P_m in $G - V(F)$ joining the vertices in $Z = \{x_1, y_1, \ldots, x_{n-r}, y_{n-r}\} \setminus \{x_1^r, y_1^r, \ldots, x_{n-r}^r, y_{n-r}^r\}$, where $|Z| = 2m$, which start and end with edges in $E(G) \setminus M$.

Proof. To prove that (2) implies (1), let $x_i^r, y_j^r (i = 1, 2, \ldots, n)$ be any n independent edges in G. Assume that r of the n edges are in M. Without loss of generality, assume $F = \{x_i^r, y_j^r | i = n - r + 1, n - r + 2, \ldots, n\} \subseteq M$ with $|F| = r$. Then we have $x_i^r, y_j^r \in M (i = 1, 2, \ldots, n - r)$. By statement (2), there are m independent M-augmenting paths P_1, P_2, \ldots, P_m in $G - V(F)$ joining the $2m$ vertices in $Z = \{x_i, y_j | i = 1, 2, \ldots, n - r\} \setminus \{x_i^r, y_j^r | i = 1, 2, \ldots, n\}$ in pairs, where $|Z| = 2m$, such that P_1, P_2, \ldots, P_m start and end with edges in $E(G) \setminus M$. Then, in $G'' = G - \{x_i^r, y_j^r | i = 1, 2, \ldots, n\}$, P_1, P_2, \ldots, P_m are independent M-augmenting paths joining the $2m$ unsaturated vertices in pairs. So we can easily find a perfect matching in G''. Hence G is n-extendable.

To prove that (1) implies (2), suppose G is n-extendable. Let $F = \{x_iy_j | i = n - r + 1, n - r + 2, \ldots, n\} \subseteq M$ with $|F| = r$ and $G'' = G - V(F)$. Then G'' is $(n - r)$-extendable and $M'' = M' \setminus F$ is a perfect matching in G''. Consider any $2(r - n)$ different
vertices $x_1, y_1, x_2, y_2, \ldots, x_{n-r}, y_{n-r}$ such that there is a path $x_i x'_i y'_i y_i$ with $x_i x'_i, y'_i y_i \in M'$ ($i = 1, 2, \ldots, n-r$). Since G' is $(n-r)$-extendable, $G'' = G' - \{x'_i, y'_i \mid i = 1, 2, \ldots, n-r\}$ has a perfect matching. Note that $\{x_i, y_i \mid i = 1, 2, \ldots, n-r\}$ and $\{x'_i, y'_i \mid i = 1, 2, \ldots, n-r\}$ may intersect. Assume $Z = \{x_i, y_i \mid i = 1, 2, \ldots, n-r\} \setminus \{x'_i, y'_i \mid i = 1, 2, \ldots, n-r\}$ with $|Z| = 2m$. But $M'' = M'' \setminus \{x_i x'_i, y'_i y_i \mid i = 1, 2, \ldots, n-r\}$ is a matching in G''. By Theorem 9, there are m independent M''-augmenting paths P_1, P_2, \ldots, P_m joining the $2m$ unsaturated vertices in Z in pairs. Then P_1, P_2, \ldots, P_m are the required paths in statement (2). The proof of this theorem is complete. □

Corollary 12. Let G be a graph with a perfect matching M. If G is n-extendable, then for any pair of vertices u and v such that there is a (u, v)-M-alternating path P of length $2m + 1$ ($1 \leq m \leq n$) starting and ending with edges in M, there is an independent (u, v)-M-alternating path P with respect to Q starting and ending with edges in $E(G) \setminus M$.

Proof. The proof is the same as the necessity proof of Theorem 11. Let the (u, v)-M-alternating path $Q = x_0 y_0 x_1 y_1 \cdots x_m y_m$, where $x_0 = u, y_m = v, x_i y_i \in M$ ($i = 0, 1, 2, \ldots, m$) and $y_i x_{i+1} \in E(G) \setminus M$ ($i = 0, 1, 2, \ldots, m - 1$). Then we have $2m$ pair of different vertices $u_j, v_j \mid i = 1, 2, \ldots, m$ such that $u_j = x_{i-1}, v_j = y_i$ ($i = 1, 2, \ldots, m$), and there is an M-alternating path Q_j of length 3 joining u_j and v_j ($i = 1, 2, \ldots, m$) starting and ending with edges in M. Since G is n-extendable, G is also m-extendable. By Theorem 11, there is an M-alternating path P joining the two vertices $u = x_0$ and $v = y_m$ that are not internal vertices of Q_j ($i = 1, 2, \ldots, m$). Hence the corollary is proved. □

Theorem 13. Let G be a $2k$-critical graph. Then for every $F \subset E(G)$ with $|F| = k$, $G - F$ has a perfect matching.

Proof. Assume $G - F$ has no perfect matching. Note that G has even order since G is $2k$-critical. Then $o((G - F) - S) \geq |S| + 2$ by Tutte’s theorem and the parity of $|V(G)|$. Since $o(G - S) \leq o((G - F) - S) - 2k$, we have $o(G - S) \geq |S| - 2k + 2$. If $|S| \geq 2k$, this contradicts Theorem 5. Hence, $|S| \leq 2k - 1$. Since $o(G - F - S) \geq |S| + 2$, if $|S| \geq k$, $G - S$ is disconnected and G is not $2k$-connected. This contradicts Lemma 7. Hence, we have $|S| \leq k - 1$. However, since G is $2k$-connected by Lemma 7, $G - S$ is $(k + 1)$-connected, and hence $(G - F) - S$ is connected, which contradicts $o((G - F) - S) \geq |S| + 2$. Therefore, the theorem follows. □

Remark 1. Since adding new edges to a graph G with a perfect matching, the resulting graph still has a perfect matching. Theorem 13 can be reformulated as Let G be a $2k$-critical graph. Then for every $F \subset E(G)$ with $|F| \leq k$, $G - F$ has a perfect matching.

Corollary 14. Let G be a $2k$-critical graph and M be a perfect matching in G. Then for any $2k$ vertices v_1, v_2, \ldots, v_{2k}, there are k independent M-alternating paths P_1, P_2, \ldots, P_k joining the $2k$ vertices in pairs such that P_1, P_2, \ldots, P_k start and end with edges in $E(G) \setminus M$.

Proof. Suppose there are r pairs of vertices in $\{v_1, v_2, \ldots, v_{2k}\}$ that are joined by a matching edge, respectively. Without loss of generality, assume that $v_{2j-1} v_{2j} \in M$, $j = 1, 2, \ldots, r$, and $v_i v'_i \in M$, $i = 2r + 1, 2r + 2, \ldots, 2k$.

By Theorem 10, there are k independent M-alternating paths P_1, P_2, \ldots, P_k joining the $2k$ vertices in $\{v_1, v_2, v_2', v_2 + 1, v_2' + 2, \ldots, v_{2k}\}$ in pairs such that P_1, P_2, \ldots, P_k start and end with edges in M. Without loss of generality, assume that $P_i = v_{2j-1} v_{2j}$, $j = 1, 2, \ldots, r$. Then there is a perfect matching $M' = M \triangle \bigcup_{i=r+1}^{k} E(P_i)$ in $G' = G - \{v'_i \mid i = 2r + 1, 2r + 2, \ldots, 2k\}$ which contains $\{v_{2j-1} v_{2j} \mid i = 1, 2, \ldots, r\}$ but G' is $2r$-critical since G is $2k$-critical. By Theorem 13, $G'' = G - \{v'_i \mid i = 2r + 1, 2r + 2, \ldots, 2k\}$ has a perfect matching. However, $M'' = M \setminus \{v_{2j-1} v_{2j} \mid i = 1, 2, \ldots, r\}$ is a matching in G'' and v_1, v_2, \ldots, v_{2k} are the M''-unsaturated vertices in G''. By Theorem 9, there are k independent M''-augmenting paths Q_1, Q_2, \ldots, Q_k joining the $2k$ vertices v_1, v_2, \ldots, v_{2k} in pairs. Then Q_1, Q_2, \ldots, Q_k are the required paths in G. The proof is complete. □

Acknowledgements

The work of this paper was supported by the National Science Foundation of China. A part of the work was done while Lou was visiting the University of Otago. Lou is indebted to the University of Otago for its partial financial support and hospitality. Lou is also grateful for the financial support by the Ministry of Education of China.

The authors of this paper would like to thank the referees for their good suggestions to improve the paper.
References