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Morita equivalence has been studied for categories enriched over a monoidal category. For such 

enriched categories themselves with a monoidal structure, we define a monoidal Cauchy comple- 

tion, and derive many of the Morita theorems in this context. Conditions under which the 

monoidal Cauchy completion is closed are also discussed. 

1. Introduction 

After the work of Morita [13], concerned with the equivalence of the categories 

R-Mod and S-Mod for rings R and S, many have studied Morita theory in the con- 

text of categories enriched over a monoidal category ‘V’ or even over a bicategory. 

See, for example [5,6, 10, 11, 15, 161. 

A summary of results known prior to 1981 can be found in [3]. In particular, 

Lawvere [lo] defined the Cauchy completion 2,& of a V-category d, generalising 

the Cauchy completion of a metric space (the case ‘V= IR+) and the idempotent- 

splitting completion of an ordinary category (Y=Set). Lindner [ll] then showed 

that ‘V-categories &’ and 25’ are Morita equivalent ([&, W] = [B, V]) precisely when 

their Cauchy completions are equivalent. 

If we consider V-categories with a monoidal structure, the questions arise whether 

there is a corresponding rnonoidal Cauchy completion, and whether standard 

Morita theorems are valid in the monoidal setting. Im and Kelly [7] have studied 

the free monoidal cocompletion Y,xZ of a small monoidal ‘V-category &‘, and much 

of their work extends easily to free monoidal $-cocompletions where @is any set 

of weights for colimits. This, together with the observation of Street [14] that the 

Cauchy completion is just the free cocompletion under absolute colimits, gives us 

a monoidal structure on the Cauchy completion g& of any small monoidal & 

From the principle that a monoidal functor is a monoidal equivalence if and only 

if it is strong (that is, preserves the monoidal structure to within isomorphism) and 

has an underlying functor which is an equivalence, it will follow that there is a 

monoidal equivalence Y& = .Y2?,_& for any monoidal d. It can then be shown that 

much of Morita theory carries over to the monoidal case. 
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In [4], Day showed that the monoidal g.&’ is biclosed for any small monoidal &‘. 

It is far from being true that %J is always biclosed (in fact this implies that the ten- 

sor product of & preserves colimits in both variables), but if d is near closed, in 

a sense to be made precise, the internal horn of g& will restrict to &Z making G?d 

closed. 

2. Preliminaries 

All of the results here apply to categories enriched over a complete and co- 

complete symmetric monoidal closed category ‘V’ with unit Z and tensor product 0. 

A ‘Vfunctor will be called a functor if it is understood that the domain and codo- 

main are Vcategories. Similarly a ‘Pnatural transformation between ‘Pfunctors will 

be called simply a natural transformation. For V/-categories &’ and 3, [d?B] will 

denote the wfunctor category and [&:I0 will denote its underlying ordinary 

category of functors from d to 55’ and natural transformations between them. If & 

is not small, [.&.?B] may only exist as a “t/’ category for some extension V’ of V as 

in [9, Section 3.111. We use Acc[.& W] to denote the W-category of accessible func- 

tors: those that are left Kan extensions of some Y[+ V with X small (see [I I], where 

such functors are called small; the term accessible is that used in [9] and [l]; of 

course every functor d+ W is accessible when d is small.) 

If .P is any set of accessible Vfunctors which have codomain ^y; Scolimits are 

colimits weighted (or indexed) by elements of 9, and an .@-cocomplete wcategory 

is a %+ategory admitting @-colimits. If &‘, % and g are .%-cocomplete, then a func- 

tor from d to .B is called Scocontinuous if its preserves all &colimits, and a func- 

tor F: d@ .2+ @ is called separately Scocontinuous if F(A, -) : 353-t f9 and 

@(-, B) : Cd4 f2 are @-concontinuous for all A Ed and B EC&‘. We write @- 

Coc[dB] for the full subcategory of [A%‘] determined by the %cocontinuous 

functors, and @-Coc(.&.%?) for its underlying ordinary category. Similarly S$- 

Coc[&@.%‘,g] will denote the full subcategory of [_$@B, E’] determined by the 

separately @-cocontinuous functors and S@-Coc(d@ .%, %) will denote its under- 

lying ordinary category. All of this notation follows that of Kelly [9]. 

For a %-category &let .%J denote the closure in [& Op, ̂v] of &under g-colimits 

and let y = Y,~: &+ %? denote the Yoneda embedding seen as landing in g&Z. 

Thus, letting 9 be the set of all accessible weights, we get by 19, Section 5.71 that 

P~=Acc[.&“P, W], the free cocompletion of d. Kelly there gives a construction of 

@d by transfinite induction and shows that &&’ is the free @‘-cocompletion of d 

in the sense that for any g-cocomplete .B’, composition with y is an equivalence g- 

Coc[.%d%‘] = [&%‘I, with inverse LanY (= left Kan extension along y). Further- 

more, by [9, Theorem 5.561 (see also [2, Section 21) we have: 

Proposition 2.1. Zf $35’ is Scocomplete and if F : 9X+ 23, then F has a right adjoint 
iff F is Scocontinuous and .%‘(F. yid-, B) E &xl for all BE 6%‘. 
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An accessible functor F: .71°p +W’is called an absolute weight if all colimits 

weighted by F are absolute (i.e. preserved by any functor). Let 9 be the set of all 

absolute weights. For small &, Street shows in [14] that .&?&is just the Cauchy com- 

pletion of ,AZ (defined in [9, Section 5.51 as the full subcategory of g&’ determined 

by the small projectives). In this case, since every functor preserves all absolute co- 

limits, Z!-Coc[d E] = [.& E’] and Sg-Coc[J@ 55’, E?] = [&‘@ .B, g] for any Cauchy- 

complete y%. 

We let &= (4 0, K) denote a monoidal %-category where 0 : A!@ d+ d is the 

tensor product of & and where K is the unit. As in [7], @=(@,&@O) : d-d’ 

denotes a monoidal functor where @ : dpiz-t d’ is a wfunctor, 6: @A o’@B-+ 

@(A oB) is a natural transformation and Go : K’ + @K is an arrow in d’ satisfying 

the usual coherence conditions. Recall that @ is strong if 6 and Q” are isomor- 

phisms. Also recall that a monoidal natural transformation is just a natural trans- 

formation subject to two coherence conditions. We denote the resulting 2-category 

of (strong) monoidal categories by [Str]Mon. We will sometimes combine these 

prefixes with the prefix @-Cot so that, for instance, StrMon@‘-Coc(& %) will denote 

the (ordinary) category of strong monoidal @-cocontinuous functors from ,xZ to E? 

and monoidal natural transformations between them. The results here will be 

proved for monoidal ‘V/-categories, but the corresponding results will also hold for 

symmetric monoidal ones, with essentially unchanged proofs. 

We recall [7, Proposition 2.21 due to Kelly in [8]: 

Proposition 2.2. Let CD = (@, 6, @‘) be a monoidal functor. In order that @ be a left 
adjoint in Mon, it is necessary and sufficient that @ be a left adjoint in V-Cat and 
that @ be strong. In fact, if q, E : cp i ty is an adjunction in V-Cat and @ is strong, 
there is a unique enrichment of w to a monoidal Y (not in general strong) that 
renders q and E monoidul; so that q, E : @ i Y in Mon. Hence the monoidal @ is an 
equivalence in Mon if and only if @ is strong and @ is an equivalence in V-Cat. The 
same results hold in the symmetric monoidal case. 

3. The free monoidal Scocompletion 

Suppose that &and .%I are %/-categories and that E? is an @-cocomplete %/-category 

for some set .%- of weights. Letting R : SF-Coc(@&@ .FB, E7) -+ [dpaO 9, %‘I0 be the 

functor derived by composition with y @y : .A’@ L%+ S&Y@@“, we have a gener- 

alisation of [7, Proposition 3.11: 

Proposition 3.1. The functor R is an equivalence 

w-Coc(~~@ @z?, g) = [.x2@ 23, g], . 

Proof. The inverse of R is the underlying functor of L : [AZ@%,%] = [A [.%,E?]] = 
$F-Coc[GK, SCoc[@B, ‘S?]] = S.!F-COC[%YZ@ @6%‘, ???I which takes a functor T: 
d@ 33 --f E? to its left Kan extension along y @ y. 0 
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Now let &‘= (4 0, K) be monoidal. From [4] there is a monoidal structure on ,9%! 

with unit J=d(-,K), and tensor product * defined by the convolution formula 

‘B,Cc.d 

("I-*&A = 
1 

fB@gC@&‘(A,BoC) 

5 colim( f-, colim(g?, &(A, - 0 ?))) 

for A E &! and f, g E 9&. Although this result is only stated for small &in [4], it is 

clearly valid even when &‘is not small (though the monoidal 3%2 may not be closed 

in that case). From [ 11, we know that .&Z is closed in y&under f-weighted colimits 

whenever f : xop + Wis an object of .RYL Thus, * restricts to a tensor product of 

3&Z which we will denote by * : Kd@ %A?+ &if. The unit J= AZ+-, K) is in KG? as 

this always contains the representables. The associativity and unit isomorphisms of 

9&’ and the strong monoidal enrichment y : d+ 9.d of the Yoneda embedding 

from [7] all restrict to 9%?. Thus we have the following generalisation of Day’s result 

[4], as re-formulated in part of [7, Proposition 4.11: 

Proposition 3.2. If &= (4 0, K) is (symmetric) monoidal, then 93’ has a (sym- 
metric) monoidal structure (@..*, J) and there is a strong monoidal inclusion 
y=_l&+: .Ape- SG?l 

Of course, we do not in general have (as in the case when @=9 and dis small) 

that &x2 is biclosed even if GLZ is. For instance, the countable colimit closure of the 

ordinary Cartesian closed category 1 is not Cartesian closed. 

A monoidal 6’= (@ *‘, J’) is called monoidally .9-cocomplete if @ is @-cocomplete 

and *’ : g @ g + g is separately @-cocontinuous. The proof of [7, Theorem 5. l] now 

generalises (using Proposition 2.1 above) easily to give 

Theorem 3.3. For a monoidal & and a monoidally Scocomplete %, the functor 
R : MonS-Coc(@& E?) -+ Mon(d %) given by composition with y is an equivalence 
of categories which restricts to an equivalence StrMon.P-Coc(@d EY)= StrMon(& ~7). 
Moreover, the monoidal F : $d+ %’ has a right adjoint in Man iff FE StrMonS 
Coc(SL& @ and @Fox,-, C) E Sk2 for all C E @Z. The corresponding results are 
true in the symmetric monoidal case. 

4. Monoidal Morita equivalence 

Of special interest is the case @= 9 where L!L& is the Cauchy completion of &. 

We shall use q = qd: d+ LL&’ to denote the Yoneda embedding in this case. A 

monoidal V/-category @ is called monoidally Cauchy complete if it is monoidally 9- 

cocomplete. Since any tensor product is separately %?-cocontinuous, E? is monoidally 

Cauchy complete iff it is monoidal and Cauchy complete as a V/-category. The 

results of the previous section give: 
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Corollary 4.1. For any monoidal &‘, Day’s monoidaf structure on Z=J’d restricts to 
.2~4 so that there is a strong monoidal enrichment q : A+ 2b4 of the functor q. If 
%? is any monoidally Cauchy complete V-category, the functor R : AIon@?& 6%) -+ 
Mon(._& @7) given by composition with q is an equivalence of categories which 
restricts to an equivalence StrMon(2?4 @?) = StrMon(& E?). We call 2x2 the 
monoidal Cauchy completion of d. 

By [l, Section 31 or Section 2 above, the cocontinuous functor L,, unique to 

within isomorphism, for which we have 

is in fact the left Kan extension along yJ of ygd. q. Indeed, by [l, Section 31 

L,F= Lar+F. Because d is small, L, has by [9, Theorem 4.511 a right adjoint 

which is easily seen to be gq given by composition with qop. From Lindner’s result 

[l 1, Proposition 3.41 or [9, Theorem 5.271 we know that this adjunction L, i .!Pq is 
an adjoint equivalence. If & is monoidal this equivalence enriches to a monoidal 

equivalence. 

Proposition 4.2. Let J be small monoidal and let .??&, 22~2 and 2?2?& have the 
monoidal structures derived as above from that of d. Then there are monoidal 
enrichments Ly : 9&-+9~2& and .Yq : PS?d + Pd of L4 and Pq respectively, such 
that L, i Yq is an adjoint equivalence YAZ= P~?JJ in Mon. 

Proof. Since y,, and q are strong monoidal, so is their composite JJ~~. q. Thus by 

Theorem 3.3 there is a unique (up to isomorphism) strong monoidal cocontinuous 

functor L, : PA! + Wik? such that 

where the isomorphism is monoidal. Clearly L, is a monoidal enrichment of (some 

choice for) L,. 
By Proposition 2.2 there is a unique monoidal enrichment Yq of ,!Pq giving a 

monoidal adjoint equivalence L,iPq. 0 
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We know from Lindner’s [ll, Proposition 3.91 that the opposite of any Cauchy 

complete Vcategory is Cauchy complete and that if &‘is small the left Kan extension 

of q,;;<V : ._42-+ a(&? Op)Op along q,d gives an equivalence of W-categories qTp : LiLd-) 

ad Op Op Thus, since q preserves limits, it also preserves colimits, unlike most of > . 
the embeddings ycd: &+ @&. Again, this equivalence $!dz. Z?(&op)op enriches to a 

monoidal equivalence if & is monoidal. 

Proposition 4.3. If & is small monoidal and Sk? is given the monoidal structure 
derived from that of &, then 2x2= 2?(&op)op monoidally. 

Proof. Since q,,dop is a strong monoidal functor, there is a strong monoidal 

q,zlp : d + ~~~~~~~~ obtained by taking the inverse of the isomorphism &(9,/l)* 

.JG+,B)Z:(-,A 0 B). Since ~(.&op)“p is Cauchy complete, it is monoidally 

Cauchy complete. Hence by Corollary 4.1 there is a unique (up to isomorphism) 

strong monoidal functor qTb such that 

By the Cauchy completion property qx is an enrichment of (some choice for) 

qTp which is an equivalence. Hence by Proposition 2.2, 4% which is an equi- 

valence. Hence by Proposition 2.2, q.sp is a monoidal equivalence. 0 

The last two propositions give us the following, which was proved in the non- 

monoidal context in [ 11, Corollary 3.71. 

Theorem 4.4. If d and 93 are small monoidal W-categories, then the following are 
equivalent (where all equivalences shown are monoidal). 

(i) gd=&Z?. 

(ii) g)u$r ,%%I. 

(iii) p(dop) = [d W] 2: [EZI, V] = .Y(@p). 

(iv) &?(.JJ Op) = @80p). 

Proof. (i) j (ii). Ydrgsd (by Proposition 4.2) -.Y.Z% (since 9 : A40Ncoop + 
MON is a 2-functor) =95X 

(ii) j (i). The equivalence of underlying W-categories Y&=R%’ restrict to an 

equivalence Z?&=.&%% which clearly enriches to a monoidal equivalence. 

(iii) e (iv). The dual of the above. 

(i) H (iv). Follows immediately from Proposition 4.3. 0 

Of course the corresponding results for the symmetric monoidal case hold. 

We end this section with the observation that the one-object case of monoidal 
Morita equivalence is (unlike the non-monoidal case) trivial. 
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Proposition 4.5. If&l and 33 are one-object monoidal W-categories, then there is a 
monoidal equivalence ~A’=~VJ iff there is a monoidal isomorphism dg.33. 

Proof. Let * denote the one object of d or 95’. Then if there is a monoidal 

equivalence @ : 9~=9%’ we have by Yoneda that d= d(*, *) zqd(&(-, *), 

&‘(-, *)) = $?d(J, J) = s?%(@J, @J) 3 993(~(-, *), B(-, *)) E 3, where these isomor- 

phisms are all monoidal. q 

Thus, for example, if R is a commutative ring with unit, ring multiplication is a 

monoidal tensor product on R giving rise (via the above convolution formula 

from [4]) to OR on R-Mod. In this case any monoidal (or even unit-preserving) 

equivalence R-Mod = S-Mod must come from an isomorphism R = S. (This fact was 

pointed out to me by Dr. Martin Ward.) 

5. Closed monoidal Cauchy completions 

If & is a small closed monoidal Vcategory, we can use the equivalence (9.~2)‘~ = 

.S(d”“) and the equivalence [&Or @ d, SU’] = [9%‘Op @ 6Z?d, 9.~21 (from Proposi- 

tion 3.1) to see that SS is closed. More generally, however, SUmay be closed even 

when ._&’ is only near closed in a sense we will make precise. 

Definition. A W-functor G : ~35’ --f d is a near right adjoint to F : A + 33 if there are 

natural transformations q : 1 --f GF and E : FG 4 1 such that 

1 
F-F 

F\ /F 

FGF 

or equivalently if Sl(F-, B) is a retract of uPe(-, GB) in 9d, naturally in B. 

If F: d-.55’, we let 2?F denote the unique functor such that 

From the case .9= S? of Proposition 2.1, BF has a right adjoint iff L%‘(F-, B) E 2~’ 
for all BE 33. As %_zZ always contains the retracts of the representables (and consists 

solely of them when V= Set) we get: 
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Proposition 5.1. For any J we have the following chain of implications: 
(i) F : d+ 55’ has a near right adjoint. 
= (ii) SF: i?i?d+ L&%5’ has a right adjoint. 
3 (iii) SF preserves any colimits which exist in 2?&T 
3 (iv) F preserves any colimits which exist in &. 

If W= Set, then we also have (ii) 3 (i), though none of the implications can be reserved 
in general. 

Proof. For (iii) j (iv) note that q&preserves colimits and 4% is fully faithful. The 

rest follows from the above remarks. Alternatively, see Part’s result [12, Exercise 

4 of Section IV.11 q 

Definition. If & is monoidal, we say that d is near closed if each - o/l : d+ d 

has a near right adjoint. 

For any small monoidal JQ, the tensor * of 9& derived from that of d is always 

separately cocontinuous and therefore 9J is biclosed. Let [F, -1 denote the right 

adjoint in 9’d to - *F for FEN’& 

Corollary 5.2. If & is small monoidal, then we have the following chain of im- 
plications: 

(i) & is near closed. 
a (ii) Z&Z is closed (with the restriction of [-, -1 as the internal horn functor). 
S. (iii) For all A E &, - oA : d-+ d preserves any colimits which exist in &. 

If W=Set, then (ii) 3 (i). 

Proof. (i) a (ii). As &is near closed each 22(-o&)=--*&(-,A) : .L?.J+ ~‘2~2 has 

a right adjoint [I&(-, A), -1 by Proposition 5.1. Let I-, -1 : 22dop 0 L2d-+ L&d 

be the unique functor (from Proposition 3.1) such that 

To check that [F, -1 : &x+ Z?d is a right adjoint to -*F : &Z&Z + ZM we need 

to check the isomorphism %zZ(G*F,H)= SU(G, [F,I!Ill), but by Proposition 3.1 

we need only check this for representable F and G for which we know it is true. 

Finally, to see that I-, -1 agrees with [-, -1 on 9& note that for A E 4 
[[F,GnA=YJ(&(-,A), [F,G~)x%&+,A)*F,G)z~J(&(-,A),[F,G])=[F,G]A 
naturally in A. 

(ii) j (iii). Follows immediately from Proposition 5.1 as does (ii) = (i) in the case 

V=Set. 0 
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