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By using Schauder's fixed point theorem, we prove some existence results for
traveling wavefronts of reaction-diffusion systems with quasimonotonicity reactions.
More precisely, we reduce the existence of traveling wavefronts to the existence of
an admissible pair of supersolution and subsolution which are easy to construct in
practice. Finally, to illustrate our main results, we study the existence of traveling
wavefronts for a delayed predator-prey model with diffusion as well as the reaction-
diffusion system with the well-known Belousov�Zhabotinskii reaction, and the
obtained results improve the existing ones. � 2001 Academic Press
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1. INTRODUCTION

For a long time, the systems of nonlinear parabolic partial differential
equations have attracted much attention due to their significant nature in
sciences and engineering. In those systems, some special translation invariant
solutions, such as traveling wave solutions, are studied as a paradigm for
behavior exhibited in many model problems.

One of the most frequently encountered class of systems of parabolic
partial differential equations is the reaction-diffusion systems

�u
�t

=D2u+ f (u), (1.1)
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where u # Rn, D is an appropriate matrix, and 2 is the Laplacian operator.
The first instances in which traveling wave solutions were investigated were
in the celebrated papers of Kolmogorov et al. [1] and Fisher [2]. Since
then, a large number of research papers have been devoted to the study of
wave solutions of various parabolic systems and the number has been
continuously increasing.

On the traveling wave problem for scalar reaction-diffusion equations,
much has been done by using the phase plane technique. On those problems
for reaction-diffusion systems, many papers have also been published [3, 4, 6,
9, 12�19]. Since the classical phase plane technique is not applicable any more
for reaction-diffusion systems, some distinct methods, such as degree theory
method and the Conley index method, have been developed [7, 12�14].

It is well known that time delay should be and has been incorporated
into many realistic models in applications. However, to the best of our
knowledge, it seems that little has been done for traveling waves of scalar
reaction-diffusion equations with delay, not to mention the study of delayed
systems of reaction-diffusion equations. One exception is the pioneering work
of Schaaf [5], where two scalar reaction-diffusion equations with a discrete
delay for the so-called Huxley nonlinearity as well as Ficher nonlinearity
were systematically studied, using the phase plane technique, the maximum
principle for parabolic functional differential equations, and the general
theory of ordinary functional differential equations. The other is the recent
work by Zou and Wu [8, 10, 11], where some existence results for traveling
wavefronts of delayed reaction-diffusion systems with quasimonotonicity reac-
tions were obtained by developing a technique of monotone iteration for
parabolic systems. More precisely, the authors employed the idea of upper-
lower solutions and an iteration scheme to construct a monotone sequence of
upper solutions which is proved to converge to a solution of the corresponding
wave equation of the reaction-diffusion system under consideration. It is worth
mentioning that the initial iteration is an upper solution of the wave equation,
which converge to two distinct trivial solutions of the wave equation when
t � &� and t � +�, respectively.

The present paper is motivated by the work of Zou and Wu [10, 11].
The purpose of this paper is to tackle the existence of traveling wavefront
solutions of delayed reaction-diffusion systems by using some fixed point
theorems. As far as traveling wavefront solutions are concerned, the corre-
sponding wave equation of the delayed reaction-diffusion system under
consideration must have two trivial solutions. In order to obtain a non-
trivial traveling wavefront, we also use the idea of lower-upper solutions to
construct in an appropriate Banach space a closed bounded covex set in
which there are no trivial solutions of the corresponding wave equation.
One important feature of our method, which is different from the work of
Zou and Wu [10, 11], is that the upper solution of the wave equation is
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not necessary to converge to two distinct trivial solutions when t � &�
and t � +� respectively. In particular, some components of the upper
solution may be constants. Thus, whenever systems are concerned, our
method used in this paper is significant.

The rest of this paper is organized as follows. In Section 2, we reduce the
existence of traveling wavefront solutions of delayed reaction-diffusion systems
in which reaction terms are monotone with respect to delayed arguments
to the existence of an admissible pair of supersolution and subsolution of
the corresponding wave equation, which are used by Schaaf [5] and are
easy to construct in practice. In Section 3, as examples, we study the exist-
ence of traveling wavefront solutions for a delayed predator-prey model
with diffusion as well as the reaction-diffusion system with the Belousov�
Zhabotinskii reaction and a descrete delay.

2. MAIN RESULTS

In the present paper, we will consider the following system of reaction-
diffusion equations with time delay

�
�t

u(t, x)=D
�2

�x2 u(t, x)+ f (ut(x)), (2.1)

where t # R, x # R, u # Rn, D=diag(d1 , d2 , ..., dn) with di>0, i=1, ..., n,
f : C([&{, 0], Rn) � Rn is continuous and for any fixed x # R, ut(x) #
C([&{, 0], Rn) is defined by ut(x)(%)=u(t+%, x), % # [&{, 0].

A traveling wave solution of (2.1) is a special translation invariant solu-
tion of the form u(t, x)=.(x+ct), where . # C2(R, Rn) is the profile of the
wave that propagates through the one-dimensional spatial domain at a
constant velocity c>0. Substituting u(t, x)=.(x+ct) into (2.1) and
letting s=x+ct, we obtain the corresponding wave equation

D."(s)&c.$(s)+ f c(.s)=0, s # R, (2.2)

where f c : C([&c{, 0], Rn) � Rn is given by

f c(�)= f (�c), �c(%)=�(c%), % # [&{, 0].

If for some c>0, (2.2) has a monotone solution . defined on R such
that

lim
s � &�

.(s)=u& , lim
s � +�

.(s)=u+ (2.3)

exist, then u(t, x)=.(x+ct) is called a wavefront with speed c.
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In the remainder of this paper, we will use the usual notations for the
standard ordering in Rn. That is, for u=(u1 , ..., un)T and v=(v1 , ..., vn)T,
we denote u�v if ui�vi , i=1, ..., n, and u<v if u�v but u{v. In par-
ticular, we will denote u<<v if u�v but ui{vi , i=1, ..., n. If u�v, we also
denote (u, v]=[w # Rn : u<w�v], [u, v)=[w # Rn : u�w<v].

Lemma 2.1 [11]. If (2.2) and (2.3) have a monotone solution, then f c(û+)
= f c(û&)=0, where u # Rn, û denotes the constant vector fuction on [&c{, 0]
taking the value u.

Without loss of generality, we can assume u&=0 and u+=K>0. More
precisely, we assume, throughout the remainder of this paper, the following
holds

(H1) f (0� )= f (K� )=0.

Obviously, we should replace (2.3) with

lim
s � &�

.(s)=0, lim
s � +�

.(s)=K. (2.4)

In this paper, we explore the existence of wave fronts of (2.1) where the
reaction term f is monotone with respect to the delayed arguments. In
other words, we assume the following quasimonotonicity condition:

(H2) There exists a matrix ;=diag(;1 , ..., ;n) with ;i�0 such that

f (.)& f (�)+;(.(0)&�(0))�0

for ., � # C([&{, 0], Rn) with 0��(s)�.(s)�K, s # [&{, 0].
Let | } | denotes the Euclidean norm in Rn and & }& denotes the supremum

norm in C([&{, 0], Rn). We also need the following continuty hypotheses:

(H3) There are two constants _>0 and L>0 such that

| f (.)& f (�)|�L &.&�&_

for ., , # C([&{, 0], Rn) with 0�.(s), �(s)�K, s # [&{, 0].
Define the operator H: C(R, Rn) � C(R, Rn) by

H(.)(t)= f c(.t)+;.(t), . # C(R, Rn). (2.5)

Let

C[0, K](R, Rn)=[. # C(R, Rn) : 0�.(s)�K, s # R].

Then we have the following
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Lemma 2.2 [11]. Assume that (H1) and (H2) hold. Then

(i) 0�H(.)(t)�;K, for . # C[0, K](R, Rn);

(ii) H(.)(t) is nondecreasing in t # R, if . # C[0, K](R, Rn) is non-
decreasing in t # R;

(iii) H(�)(t)�H(.)(t) for t # R, if ., � # C[0, K](R, Rn) are given so
that �(t)�.(t) for t # R.

Clearly, with the above notations, (2.2) is equivalent to the following
system of ordinary differential equations

D."(t)&c.$(t)&;.(t)+H(.)(t)=0, t # R. (2.6)

Without loss of generality, we assume that ;i>0 for every i=1, ..., n,
and let

*1i=
c&- c2+4;i di

2di
, *2i=

c+- c2+4;idi

2d i
.

Define the operator F: C[0, K](R, Rn) � C[0, K](R, Rn) by

(F.) i (t)=
1

di (*2i&*1i) _|
t

&�
e*1i (t&s)H i (.)(s) ds+|

�

t
e*2i (t&s)Hi (.)(s) ds&

(2.7)

for i=1, 2, ..., n and . # C[0, K](R, Rn).
It is easy to show that F: C[0, K](R, Rn) � C[0, K](R, Rn) is a well defined

map and and for any . # C[0, K](R, Rn),

D(F.)"&c(F.)$&;(F.)+H(.)=0.

Thus, a fixed point of F is a solution of (2.6). Furthermore, we have

Lemma 2.3. Assume that (H1) and (H2) hold. Then

(i) F.(t) is nondecreasing in R, if . # C[0, K](R, Rn) is nondecreasing
in t # R;

(ii) F.(t)�F.(t) for t # R, if ., � # C[0, K](R, Rn) are given so that
�(t)�.(t) for t # R.

Proof. Part (ii) follows immediately from Lemma 2.2(iii).
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To prove (i), let t # R and s>0 be given. Then for any i=1, ..., n, we
obtain

(F.) i (t+s)&(F.) i (t)

=
1

di (*2i&*1i) _|
t+s

&�
e*1i (t+s&%)H i (.)(%) d%+|

�

t+s
e*2i (t+s&%)H i (.)(%) d%&

&
1

di (*2i&*1i) _|
t

&�
e*1i (t&%)H i (.)(%) d%+|

�

t
e*2i (t&%)Hi (.)(%) d%&

=
1

di (*2i&*1i) _|
t

&�
e*1i (t&%)(Hi (.)(s+%)&Hi (.)(%)) d%

+|
�

t
e*2i (t&%)(H i (.)(s+%)&Hi (.)(%)) d%&

�0 (by Lemma 2.2(ii)).

This completes the proof.

Let \>0 be such that \<min[&*1i , *2i : i=1, ..., n], and let

B\(R, Rn)=[. # C(R, Rn) : sup
t # R

|.(t)| e&\ |t|<�],

|.|\=sup
t # R

|.(t)| e&\ |t|.

Then it is easy to check that (B\(R, Rn), | } |\) is a Banach space.

Lemma 2.4. Assume that (H1), (H2), and (H3) hold. Then F: C[0, K](R, Rn)
� C[0, K](R, Rn) is continuous with respect to the norm | } |\ in B\(R, Rn).

Proof. First of all, we claim that H: C[0, K](R, Rn) � B\(R, Rn) is
continuous. In fact, for any fixed =>0, take T>0 such that

2_L |K|_ e&\T<=�2. (2.8)

Let $>0 be such that

$<min {\ =
2L+

1�_

e&\(T+c{),
=

2 &;&= , (2.9)

where &;& denotes the matrix norm induced by the norm | } | in Rn. Then,
if ., � # C[0, K](R, Rn) satisfy

|.&�|\=sup
t # R

|.(t)&�(t)| e&\ |t|<$,
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we have

|.(t)&�(t)|�$e\(T+c{)<\ =
2L+

1�_

, t # [&T&c{, T].

Therefore, for t # [&T, T], we have

|H(.)(t)&H(�)(t)| e&\ |t|�| f c(.t)& f c(�t)|+&;& } |.(t)&�(t)| e&\ |t|

�L &.t&�t&_+&;& } |.&�|\

<=�2+=�2==,

and for |t|�T, we have

|H(.)(t)&H(�)(t)| e&\ |t|�| f c(.t)& f c(�t)| e&\T

+&;& } |.(t)&�(t)| e&\ |t|

�2_L |K|_ e&\T+&;& } |.&�|\

<=�2+=�2==.

Therefore, |H(.)&H(�)|\�=. That is, H: C[0, K](R, Rn) � B\(R, Rn) is
continuous.

Now, we show that F: C[0, K](R, Rn) � C[0, K](R, Rn) is continuous.
For t�0, we find

|(F.) i (t)&(F�) i (t)|

�
1

di (*2i&*1i) _|
t

&�
e*1i (t&s) |H i (.)(s)&Hi (�)(s)| ds

+|
�

t
e*2i (t&s) |Hi (.)(s)&Hi (�)(s)| ds&

=
1

di (*2i&*1i) _|
t

&�
e*1i (t&s)+\ |s| |Hi (.)(s)&Hi (�)(s)| e&\ |s| ds

+|
�

t
e*2i (t&s)+\ |s| |Hi (.)(s)&Hi (�)(s)| e&\ |s| ds&

�
1

di (*2i&*1i) _|
t

0
e*1i (t&s)+\s ds+|

0

&�
e*1i (t&s)&\s ds

+|
�

t
e*2i (t&s)+\s ds& |H(.)&H(�)| \

=
1

di (*2i&*1i) _
*2i&*1i

(\&*1i)(*2i&\)
e\t+

2\
*2

1i&\2 e*1i t& |H(.)&H(�)|\ .
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Hence, for t�0, we have

|(F.)i (t)&(F�) i (t)| e&\ |t|

�
1

di (*2i&*1i) _
*2i&*1i

(\&*1i)(*2i&\)
+

2\
*2

1i&\2 e(*1i&\) t& |H(.)&H(�)|\

�
1

di (*2i&*1i) _
*2i&*1i

(\&*1i)(*2i&\)
+

2\
*2

1i&\2& |H(.)&H(�)| \ . (2.10)

For t<0, we find

|(F.) i (t)&(F�) i (t)|

�
1

di (*2i&*1i) _|
t

&�
e*1i (t&s)&\s ds+|

0

t
e*2i (t&s)&\s ds

+|
�

0
e*2i (t&s)+\s ds& |H(.)&H(�)| \

=
1

di (*2i&*1i) _
*2i&*1i

&(\+*1i)(*2i+\)
e&\t

+
2\

(*2i&\)(*2i+\)
e*2i t& |H(.)&H(�)| \ .

Hence, for t<0, we have

|(F.)i (t)&(F�) i (t)| e&\ |t|

�
1

di (*2i&*1i) _
*2i&*1i

&(\+*1i)(*2i+\)
+

2\
*2

2i&\2 e(*2i+\) t& |H(.)&H(�)|\

�
1

di (*2i&*1i) _
*2i&*1i

&(\+*1i)(*2i+\)
+

2\
*2

2i&\2& |H(.)&H(�)| \ . (2.11)

Thus, it follows from (2.10) and (2.11) that F: C[0, K](R, Rn) � C[0, K](R, Rn)
is continuous with respect to the norm | } |\ in B\(R, Rn) and the proof is
complete.

For convenience, we introduce the definition of an upper (or a lower)
solution of (2.2).

Definition 2.1. A twice continuous differentiable function \: R � Rn is
called an upper solution of (2.2), if \ satisfies

D\"(t)&c\$(t)+ f c(\t)�0, t # R. (2.12)
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A lower solution of (2.2) is defined in a similar way by reversing the inequality
in (2.12).

Now, we are in the position to state and prove the following existence
theorem.

Theorem 2.1. Assume that (H1), (H2), and (H3) hold. Suppose that (2.2)
has an upper solution \� # C[0, K](R, Rn) and a lower solution \

�
# C[0, K](R, Rn)

satisfying

(I) sups�t \
�
(s)�\� (t), for t # R;

(II) f (û){0, for u # (0, inft # R \� (t)] _ [supt # R \
�
(t), K).

Then (2.2) and (2.4) have a monotone solution. That is, (2.1) has a traveling
wavefront solution.

Proof. Let

M=�max[;1 , ..., ;n]
min[d1 , ..., dn]

,

and

(i) . is nondecreasing in R;

1={. # C[0, K](R, Rn) : (ii) \
�
(t)�.(t)�\� (t), \t # R; =(iii) |.(u)&.(v)|�M |u&v|, \u, v # R.

Let W(t)=(F\� )(t)&\� (t), t # R. Since

D(F\� )" (t)&c(F\� )$ (t)&;(F\� )(t)+H(\� )(t)=0

and

D\� "(t)&c\� $(t)+ f c(\� t)�0,

it follows that

DW"(t)&cW$(t)&;W(t)�0, t # R.

Denote r(t)=DW"(t)&cW$(t)&;W(t). Then r(t) is continuous, bounded,
and non-negative on R, and the fundamental theory of second order linear
ordinary differential equations yields

Wi (t)=e*1i tc1i+e*2i tc2i

&
1

di (*2i&*1i) _|
t

&�
e*1i (t&s)ri (s) ds+|

�

t
e*2i (t&s)ri (s) ds& ,

(2.13)
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where c1i , c2i # R and i=1, ..., n. Since Wi (t) is bounded on R and

} 1
d i (*2i&*1i) _|

t

&�
e*1i (t&s)ri (s) ds+|

�

t
e*2i (t&s)ri (s) ds&}

�
1
;i

sup
s # R

ri (s)<�,

it follows from (2.13) that c1i=c2i=0, and hence

Wi (t)=&
1

di (*2i&*1i) _|
t

&�
e*1i (t&s)ri (s) ds+|

�

t
e*2i (t&s)ri (s) ds&�0.

This proves that (F\� )(t)�\� (t), t # R.
In a similar way, we may show that (F\

�
)(t)�\

�
(t), t # R.

Let .� (t)=sups�t \
�
(s), then .� (t) is nondecreasing in R and it follows

from Conditon (I) that

\
�
(t)�.� (t)�\� (t), t # R

which together with Lemma 2.3 yields

\
�
(t)�(F\

�
)(t)�(F.� )(t)�(F\� )(t)�\� (t), t # R.

It is also easy to check that

|(F.� )(u)&(F.� )(v)|�M |u&v|, u, v # R.

Consequently, F.� # 1, implying that 1 is nonempty. It is also easy to show
that 1 is convex and compact in B\(R, Rn).

Moreover, by Lemma 2.3 and a similar argument as above, we may
prove that

F(1 )/1.

Therefore, the well-known Schauder's fixed point theorem implies that F
has a fixed point . # 1, which is a solution of (2.2).

Also, we have

0�.&=: lim
t � &�

.(t)� inf
t # R

\� (t) (2.14)

and

sup
t # R

\
�
(t)�.+=: lim

t � �
.(t)�K. (2.15)
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Hence, by Lemma 2.1, we have

f (.̂&)= f c(.̂&)=0, f (.̂+)= f c(.̂+)=0.

Therefore, it follows from (2.14), (2.15), and Condition (II) that

.&= lim
t � &�

.(t)=0, .+= lim
t � �

.(t)=K.

Thus .(t) is a monotone solution of (2.2) and (2.4), and this completes the
proof.

Definition 2.2. A continuous function .: R � Rn is called a supersolu-
tion of (2.2), if there exist constants Ti (i=1, ..., m) such that .(t) is twice
continuously differentiable in R"[Ti : i=1, ..., m] and satisfies

D."(t)&c.$(t)+ f c(.t)�0, a.e. on R. (2.16)

A subsolution of (2.2) is defined in a similar way by reversing the inequality
in (2.16).

Lemma 2.5. If . # C[0, K](R, Rn) is a supersolution of (2.2) and
.$(t+)�.$(t&), \t # R, then F. # C[0, K](R, Rn) is an upper solution
of (2.2).

Proof. Without loss of generality, we assume that .(t) is continuously
differentiable in R"[Ti : i=1, ..., m] with Tm<Tm&1< } } } <T1 . Denote
T0=+� and Tm+1=&�. For any 1�i�n and t # (Tk+1 , Tk),
0�k�m, it follows from (2.16) that

(F.) i (t)�
1

di (*2i&*1i) _|
t

&�
e*1i (t&s)(&d i.i"(s)+c.$i (s)+; i .i (s)) ds

+|
�

t
e*2i (t&s)(&di.i"(s)+c.$i (s)+;i .i (s)) ds&

=.i (t)+
1

*2i&*1i _ :
m

j=k+1

e*1i (t&Tj )(.$i (Tj+)&.$i (Tj&))

+ :
k

j=1

e*2i (t&Tj )(.$i (Tj+)&.$i (Tj&))&
�.i (t)
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which together with Lemma 2.1 yields

D(F.)" (t)&c(F.)$ (t)+ f c((F.)t)

=D(F.)" (t)&c(F.)$ (t)&;F.(t)+H(F.)(t)

�D(F.)" (t)&c(F.)$ (t)&;F.(t)+H(.)(t)

=0.

Noting that F. # C[0, K](R, Rn) & C2(R, Rn), we conclude that F. is an
upper solution of (2.2). The proof is complete.

Lemma 2.6. If . # C[0, K](R, Rn) is a subsolution of (2.2) and .$(t+)�
.$(t&), \t # R, then F. # C[0, K](R, Rn) is a lower solution of (2.2).

Proof. The proof is similar to that of Lemma 2.5 and is omitted.

Theorem 2.2. Assume that (H1), (H2), and (H3) hold. Suppose that (2.2)
has a supersolution .� # C[0, K](R, Rn) and a subsolution .

�
# C[0, K](R, Rn)

satisfying

(I) sups�t .
�
(s)�.� (t), for t # R;

(II) f (û){0, for u # (0, inft # R .� (t)] _ [supt # R .
�
(t), K);

(III) .� $(t+)�.� $(t&), for t # R;

(IV) .
�
$(t+)�.

�
$(t&), for t # R.

Then (2.2) and (2.4) have a monotone solution. That is, (2.1) has a traveling
wavefront solution.

Proof. Let \� (t)=(F.� )(t) and \
�
(t)=(F.

�
)(t). Then by (III), (IV), Lemma

2.5, and Lemma 2.6, \� # C[0, K](R, Rn) and \
�

# C[0, K](R, Rn) are an upper
solution and a lower solution of (2.2), respectively.

Denote .̂(t)=sups�t .
�
(s). Then .̂(t) is nondecreasing in t # R. It follows

from Lemma 2.3 and Condition (I) that F.̂(t) is nondecreasing in t # R and

sup
s�t

\
�
(s)�sup

s�t
F.̂(s)=F.̂(t)�\� (t), t # R. (2.17)

On the other hand, by Conditions (III), (IV) and a similar argument as
used in the proof of Lemma 2.5, we can show that

\� (t)�.� (t), \
�
(t)�.

�
(t), t # R. (2.18)

It follows from Condition (II) and (2.18) that

f (û){0, u # (0, inf
t # R

\� (t)] _ [sup
t # R

\
�
(t), K). (2.19)
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Thus, by virtue of Theorem 2.1, (2.2) and (2.4) have a monotone solution
and this completes the proof.

Theorem 2.2 reduces the existence of traveling wavefronts of (2.1) to the
existence of an admissible pair of subsolution and supersolution of (2.2)
satisfying some additional conditions. The following theorem shows that
there is a natural way to construct a supersolution of (2.2).

Theorem 2.3. Assume that (H1) and (H2) hold. For *i�0, Ti # R,
i=1, ..., n, let

.i (t)=min[Ki e*i (t&Ti), Ki], i=1, ..., n.

If for every i, we have

f c
i (.t)�0, t # [Ti , Ti+c{],

di *2
i &c*i+

1
K i

sup
t�Ti

e&*i (t&Ti )f c
i (.i)�0,

then .(t)=(.1(t), ..., .n(t))T is a supersolution of (2.2) satisfying .$(t+)�
.$(t&), \t # R.

Proof. The proof is easy and therefore is omitted.

3. APPLICATIONS

In this section, we shall give some applications of our main results
obtained in previous section.

At first, we consider the delayed predator-prey model with diffusion

{
�
�t

u(x, t)=d1

�2

�x2 u(x, t)+ru(x, t) _\1&
u(x, t)

P +&av(x, t)& ;

�
�t

v(x, t)=d2

�2

�x2 v(x, t)+v(x, t)[&&+bu(x, t&{)],
(3.1)

where x # R, {�0, r, a, b, & and P, the prey carrying capacity, are positive
constants. u(x, t), v(x, t) denote the population density of prey and predator,
respectively. d1 and d2 are the diffusion coefficients. For a detailed description
of this model equation, we refer to Murray [17]. We mention that in the case
where {=0, by using some techniques different from ours, the existence of
traveling wavefront solutions of (3.1) have been studied by Murray [17]
(for d1=0, d2>0) and by Dunbar [18, 19] (for d1>0, d2>0).
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We are only interested in the existence of waves of pursuit and evasion.
In other words, we shall consider here only the case where d1>0, d2>0.

In the sequel, we always assume (3.1) has a positive steady state, i.e., we
assume that

P>
&
b

. (3.2)

In what follows, we will seek a traveling wavefront solution of (3.1) with
the boundary conditions

{
u(&�, t)=0,

u(+�, t)=
&
b

,

v(&�, t)=0;

v(+�, t)=
1
a \1&

&
Pb+ .

(3.3)

Clearly, the wave equation corresponding to (2.2) in this case is

{c,$1(t)=d1,"1(t)+r,1(t)[(1&,1(t)�P)&a,2(t)];
c,$2(t)=d2,"2(t)+,2(t)[&&+b,1(t&c{)],

(3.4)

and the corresponding asymptotic boundary condition is

{
lim t � &� ,1(t)=0,

lim t � +� ,1(t)=
&
b

,

lim t � &� ,2(t)=0;

lim t � +�,2(t)=
1
a \1&

&
Pb+ .

(3.5)

Define f (,)=( f1(,), f2(,))T by

f1(,)=r,1(0)[(1&,1(0)�P)&a,2(0)];

f2(,)=,2(0)[&&+b,1(&{)].

It is easy to check that in this case (H1), (H2), and (H3) are satisfied.

Lemma 3.1. Let c>2 - d1r and

*0=:
c&- c2&4d1r

2d1

.

Define

.� 1(t)=min {&
b

e*0t,
&
b= , .� 2(t)=\&

b
,

1
a \1&

&
Pb++
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and

.
�

1(t)=max {&
b

[1&Me=t] e*0 t, 0= , .
�

2(t)=0,

where M>0, =>0. Then .� (t)=(.� 1(t), .� 2(t))T is a supersolution of (3.4),
and if M>0 is sufficiently large and =>0 is sufficiently small, then .

�
(t)=

(.
�

1(t), .
�

2(t))T is a subsolution of (3.4). Furthermore, we have

(i) sups�t .
�
(s)�.� (t), for t # R;

(ii) .� $(t+)�.� $(t&), t # R;

(iii) .
�
$(t+)�.

�
$(t&), t # R.

Proof. Denote

K=\&
b

,
1
a \1&

&
Pb++ ,

and *1=*0>0, *2=0. Since

f c
1(.� t)�0, f c

2(.� t)�0,

and

d1*2
1&c*1+

1
K1

sup
t�0

e&*1 tf c
1(.� t)=d1*2

0&c*0+
r&
Pb

<d1*2
0&c*0+r=0,

d2*2
2&c*2+

1
K2

sup
t�0

e&*2 tf c
2(.� t)=

1
K2

sup
t�0

f c
2(.� t)�0,

by Theorem 2.3, we know that .� (t) is a supersolution of (3.4) satisfying (i).
Next, we will show that if M>0 is sufficiently large and =>0 is suf-

ficiently small, then .
�
(t) is a subsolution of (3.4).

Assume that M>1. Then for some t*<0,

.
�

1(t)=
&
b

[1&Me=t] e*0 t�0, t<t*,

.
�

1(t)=0, t�t*.

Notice that the equation

d1 *2&c*+r=0
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has exactly two positive real zeros 0<*0<**, so we can choose =>0
sufficiently small such that

0<=<*0 , d1(*0+=)2&c(*0+=)+r<0. (3.6)

Let M>1 be sufficiently large so that

&M(d1(*0+=)2&c(*0+=)+r)�
r&
Pb

. (3.7)

For t>t*, we have

d1 .
�
"1(t)&c.

�
$1(t)+ f c

1(.
�

t)=0,

and for t<t*, from (3.6) and (3.7), we also have

d1.
�
"1(t)&c.

�
$1(t)+ f c

1(.
�

t)

=
&
b

[d1*2
0&c*0] e*0 t&

&
b

M[d1(*0+=)2&c(*+=)] e(*0+=) t

+r.
�

1(t) _\1&
.
�

1(t)

P +&
�

&
b

[d1*2
0&c*0+r&r

.
�

1(t)

P
] e*0 t

&
&
b

M[d1(*0+=)2&c(*0+=)+r] e(*0+=) t

�
&
b _&

r&
Pb

e(*0&=) t&M(d1(*0+=)2&c(*0+=)+r)& e(*0+=) t

�
&
b _&

r&
Pb

&M(d1(*0+=)2&c(*0+=)+r)& e(*0+=) t

�0.

Therefore, noting that for any t # R,

d2 .
�
"2(t)&c.

�
$2(t)+ f c

2(.
�

t)=0,

.
�
(t) is a subsolution of (3.4) satisfying (iii).
Finally, (i) follows from the fact that .� (t) is nondecreasing in t # R, and

.
�
(t)�.� (t), \t # R. The proof is complete.
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It is easy to see that (3.1) has exactly three steady states,

0=(0, 0)T, K=\&
b

,
1
a \1&

&
Pb++

T

, (P, 0)T.

Thus, by (3.2), there are exactly two zeros of g(x, y)=: f (x̂, ŷ), (x, y) # R2,
in the interval [0, K]/R2 and

f (x̂, ŷ){0, \(x, y)T # (0, inf
t # R

.� (t)] _ [sup
t # R

.
�
(t), K).

Therefore, all conditions of Theorem 2.2 are satisfied and we have the
following

Theorem 3.1. For every c>2 - d1r, (3.1) and (3.3) have a traveling
wavefront solution u(x, t)=.1(x+ct), v(x, t)=.2(x+ct) with the asymptotic
behavior

.1(s)=K0 exp \(c&- c2&4d1r) s
2d1 + [1+o(1)] as s � &�,

where K0 is some positive constant.

Remark 3.1. Theorem 3.1 claims that the existence of traveling wave-
fronts for the predator-prey model (3.1) is independent of the time delay.

Now, we consider the system of reaction-diffusion equations with the
well-known Belousov�Zhabotinskii reaction

{
�
�t

u(x, t)=
�2

�x2 u(x, t)+u(x, t)[1&u(x, t)&rv(x, t)];

�
�t

v(x, t)=
�2

�x2 v(x, t)&bu(x, t) v(x, t),
(3.8)

where r>0 and b>0 are constants, u and v correspond respectively to the
bromic acid and bromide ion concentrations. This system can also be regarded
as a model for many other more complex biochemical and biological
processes. We also refer the readers to Murray [17] for a detailed descrip-
tion of this model equation.

For (3.8), the following boundary conditions have been proposed (see
[3, 4, 6, 9, 11]).

{u(&�, t)=0,
u(+�, t]=1,

v(&�, t)=1;
v(+�, t)=0.

(3.9)
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By incorporating a discrete delay {�0 into system (3.8), X. Zou [11]
considered the system

{
�
�t

u(x, t)=
�2

�x2 u(x, t)+u(x, t)[1&u(x, t)&rv(x, t&{)];

�
�t

v(x, t)=
�2

�x2 v(x, t)&bu(x, t) v(x, t),
(3.10)

Corresponding to (3.10) and (3.9), we get the wave equation

{c,$1(t)=,"1(t)+,1(t)[1&,1(t)&r,2(t&c{)];
c,$2(t)=,"2(t)&b,1(t) ,2(t),

(3.11)

and the boundary conditions

{lim t � &� ,1(t)=0, limt � +� ,1(t)=1;
limt � &� ,2(t)=1, lim t � +� ,2(t)=0.

(3.12)

By making change of variables ,1*=,1 , ,2*=1&,2 and omitting the
asterisks for notational simplicity, (3.11) and (3.12) become, respectively,

{c,$1(t)=,"1(t)+,1(t)[1&r&,1(t)+r,2(t&c{)];
c,$2(t)=,"2(t)+b,1(t)[1&,2(t)],

(3.13)

and

{lim t � &� (,1(t), ,2(t))=(0, 0);
lim t � +� (,1(t), ,2(t))=(1, 1).

(3.14)

Define f (,)=( f1(,), f2(,))T by

f1(,)=,1(0)[1&r&,1(0)+r,2(&{)],

f2(,)=b,1(0)[1&,2(0)].

It is easy to verify that f satisfies (H1), (H2), and (H3). It is also easy to
see that (0, %), % # [0, 1] and (1, 1) are zeros of g(x, y)=: f (x̂, ŷ), x, y # R2.

Lemma 3.2. Let 0<r<1 and c>2 - 1&r. Assume

*=*0=:
c&- c2&4(1&r)

2
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satisfies the inequality

*2&c*+be&*c{�0.

Define

.� 1(t)=min[e*0 t, 1], .� 2(t)=min[e*0 (t+c{), 1]

and

.
�

1(t)=max[(1&r)[1&Me=t] e*0t, 0], .
�

2(t)=0,

where M>0, =>0. Then .� (t)=(.� 1(t), .� 2(t))T is a supersolution of (3.13),
and if M>0 is sufficiently large and =>0 is sufficiently small, then .

�
(t)=

(.
�

1(t), .
�

2(t))T is a subsolution of (3.4). Furthermore, we have

(i) sups�t .
�
(s)�.� (t), for t # R;

(ii) .� $(t+)�.� $(t&), t # R;

(iii) .
�
$(t+)�.

�
$(t&), t # R.

Proof. The proof is similar to that of Lemma 3.1 and is omitted.
By virtue of Lemma 3.2 and a similar argument as before, we may get

the following

Theorem 3.2. Let 0<r<1 and c>2 - 1&r be such that

b exp \&
c{(c&- c2&4(1&r))

2 +�1&r. (3.15)

Then (3.13) and (3.14) have a monotone solution, that is, (3.10) and (3.9)
have a traveling wavefront solution u(x, t)=.1(x+ct), v(x, t)=.2(x+ct)
with the asymptotic behavior

.1(s)=K0 exp \(c&- c2&4(1&r)) s
2 + [1+o(1)] as s � &�,

where K0 is some positive constant.

Remark 3.2. In the case where {=0, (3.15) becomes b�1&r, and
Theorem 3.2 reduces to the main theorem (Theorem 4.1) of Ye and Wang
[9] and improves the results in Kanel [3], Kapel [4], and Troy [6]. In
the case where {>0, (3.15) yields b�1&r; therefore, Theorem 3.2 improves
Theorem 2.5.2.2 in Zou [11].

Remark 3.3. If r # (0, 1), b>1&r and c # (2 - 1&r, 2 - b), then (3.10)
and (3.9) may have no traveling wavefront solutions with speed c for small
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{�0. But, it follows from (3.15) that there exists a {*={*(r, c)�0 such
that for every {�{*, (3.10) and (3.9) have a wavefront solution with speed
c. So time delay not only reduces the minimal wave velocity (see [5, 8]),
but also gives rise to traveling wavefront solutions.
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