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A screening mechanism for conformal vector–tensor modifications of general relativity is proposed. The
conformal factor depends on the norm of the vector field and makes the field to vanish in high dense
regions, whereas drives it to a non-null value in low density environments. Such process occurs due to
a spontaneous symmetry breaking mechanism and gives rise to both the screening of fifth forces as well
as Lorentz violations. The cosmology and local constraints are also computed.
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Driven by cosmological observations, a plethora of theoretical
models have been developed in the last decades to explain the
evolution and composition of the Universe. Those models gener-
ally rely either on modifications of General Relativity (GR) or on
the introduction of new exotic components in the Universe [1]. Of-
ten there is a mapping between the two approaches. For instance,
f (R) theories [2,3], can be mapped via a conformal transforma-
tion into an interacting scalar field in Einstein’s gravity. In this new
frame, the matter fields still feel the effects of the modified grav-
itational interaction because the scalar field couples to them. This
gives rise to a fifth force which is tightly constrained by local grav-
ity tests. Therefore, a general feature of novel theories to explain
the nature of dark energy or dark matter, is that they modify gen-
eral relativity at astrophysical scales, but are bound to recover GR
at small scales via a screening mechanism.

Several screening mechanisms have been proposed in the liter-
ature: in the chameleon [4], the extra scalar degree of freedom be-
comes more massive in regions of high densities so that its range
of interaction becomes very short and the fifth force is hidden
from local gravity experiments (the existence of this mechanism
in f (R) theories was also shown in [5]); the symmetron mecha-
nism [6] relies on an environmental-dependent potential, i.e., for
low densities the potential has two minima so the field acquires a
non-vanishing value, whereas for high enough densities the po-
tential has only one minimum placed at the origin so that the
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scalar field vanishes; the Vainhstein mechanism [7] is based on ki-
netic self-interactions to hide the field on small scales. Recently, a
mechanism to screen scalar fields via disformal couplings was pro-
posed [8].

All the screening mechanisms in the literature have been devel-
oped for scalar degrees of freedom. Presently, there is no screen-
ing mechanism for vector–tensor modifications of GR, although
chameleonic gauged B-L bosons have been discussed in [9]. How-
ever, higher spin fields are abundant in novel high-energy physics
theories, and have been explored in several cosmological and parti-
cle physics contexts. In fact, they have been proposed as candidates
for Lorentz violation signatures, dark energy, dark matter, inflation
or as generators of curvature perturbations [1,10–17]. If such fields
exist, they also modify gravity and a screening mechanism is re-
quired by local gravity tests.

In this Letter, we propose a screening mechanism for vector–
tensor gravity theories, in which the vector field hides its effects
on small scales while producing relevant cosmological signatures.

We shall consider the simplest action to show this mechanism
at work, which is that of a massive vector field with a gauge fixing
term

S =
∫

d4x
√−g

[
− R

16πG
− 1

4
F 2 − 1

2

(∇μ Aμ
)2 − M2

2
A2

]

+
∫

d4xLm[g̃μν,ψ], (1)

where R is the Ricci scalar constructed from the Levi-Civita
connection of the metric gμν , F 2 = gμα gνβ Fμν Fαβ with
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Fμν = ∂μ Aν − ∂ν Aμ and Lm is the Lagrangian for the matter
fields, which couple to gravity through g̃μν given by1

g̃μν = B2(A2)gμν, (2)

with A2 = gμν Aμ Aν . Notice that, as usual with conformal trans-
formations, this relation guarantees that both metrics lead to the
same causal structure. In this Letter, we shall assume the particular

case where the conformal factor is given by B2(A2) = e2β A2/M2
p .

The action (1) reduces to the Stueckelberg action for a mas-
sive vector field [18] in flat spacetime and when the vector field is
much smaller than the Planck mass (see Appendix A). As in that
scenario, one would also need to introduce the Stueckelberg field
to compensate for the ghostly degree of freedom A0 and, then, the
theory can be quantised with a bounded Hamiltonian following
standard methods, in which one works with negative norm states
in a restricted Hilbert space. Here, we will focus on the screening
mechanism for the physical spatial components so that we have
neglected the Stueckelberg field. In addition, we will show ex-
plicitly that the temporal component remains negligible in all the
considered situations so that our results do not rely on its pres-
ence. Even though this does not prove the complete theoretical
consistency of the full theory in an arbitrary background space-
time, we have chosen our action as a proof of concept of a working
screening mechanism for a vector field.

The vector field equations of motion derived from the action (1)
can be written as

�Aμ = Rμ
ν Aν +

(
M2 + 2β

M2
p

g̃αβ T̃αβe4β A2/M2
p

)
Aμ, (3)

where T̃αβ ≡ 2√−g̃
δLm
δ g̃αβ . This energy–momentum tensor is not

conserved under the covariant derivative associated to the Levi-
Civita connection generated by the spacetime metric gαβ , i.e.,
∇μ T̃ μν �= 0. However, it is conserved under the covariant deriva-
tive associated to g̃μν so that ∇̃μ T̃ μν = 0. In other words, particles
will follow the geodesics of the metric g̃μν and not those of gμν .
Notice that for the conformal coupling not to be trivial, it is nec-
essary to have a dynamical norm for the vector field. Hence, this
screening mechanism is not applicable to aether theories in which
the norm of the vector field is fixed by means of a Lagrange mul-
tiplier [19].

Since we have two conformally related metrics, one could try
to go to a Jordan frame in which matter is minimally coupled to
the metric, and gravity would be described by a vector–tensor the-
ory. In order to do that, it is necessary to invert (2). However,
unlike in the scalar field case, the inverted relation is not simply
gμν = B−2(A2)g̃μν because the argument of B still depends on
the metric gμν . The main difficulty to invert this relation will be
to solve the equation Ã2 ≡ g̃μν Aμ Aν = B2(A2)A2 for A2 in terms
of Ã2. This equation will give rise, in general, to several branches
that can lead to different theories in the Jordan frame. This can
be useful, for instance, to constrain the vector field to be either
timelike or spacelike in such a frame without having to introduce
a Lagrange multiplier and, therefore, without reducing the number
of degrees of freedom. We shall not pursue the consequences of
going to the Jordan frame any further here (see however [20]). Let
us simply mention that, in our case, the inversion of the conformal

1 In this framework where the transformation is determined by a vector field,
it is natural to consider more general couplings to matter arising from adding a
disformal term such that g̃μν = B(A2)gμν + C(A2)Aμ Aν that could introduce novel
features. Notice that, unlike for the disformal transformation involving a scalar field,
no derivatives are involved in this disformal transformation.
relation is given by gμν = e−W (2β Ã2) g̃μν , being W (x) the Lambert
function.

In the case of a conformal coupling depending on a scalar
field φ, one finds Tμν = B2(φ)T̃μν , where Tμν ≡ 2√−g

δLm
δgαβ is the

source of Einstein’s equations. However, in the case of our confor-
mal factor depending on the vector field, we obtain

Tμν = B2(A2)[T̃μν − 2B
(

A2)B ′(A2)T̃ Aμ Aν

]
, (4)

where a new term arises because the conformal factor B2(A2) de-
pends itself on the metric. Notice that, since the additional term is
proportional to the trace of T̃μν , it disappears for a radiation-like
component. Thus, in the cosmological evolution, it can only be im-
portant when the matter component is relevant and, indeed, it is
a potential source of a large scale anisotropic stress. Nevertheless,
this is not necessarily the case, since a vector field with a poten-
tial can yield an isotropic averaged energy–momentum tensor if it
oscillates fast as compared to the Hubble expansion rate [21]

In order to understand the screening mechanism at small
scales, we consider the vector field in a Minkowski spacetime and
the matter field consisting of a pressureless fluid, i.e., g̃αβ T̃αβ � ρ̃ .
As usual with conformal couplings, it is more convenient to use

ρ ≡ e3β A2/M2
p ρ̃ , which does not depend on Aμ [4,6]. The field

equations (3) can then be written as

�Aμ =
(

M2 + 2βρ

M2
p

eβ(A2
0−	A2)/M2

p

)
Aμ. (5)

We can interpret these field equations as those for a set of four
scalar fields with an effective interaction that couples all four com-
ponents. Even though this interaction cannot be written in terms
of an effective potential as it is done in the scalar field case, the
critical points can nevertheless be easily obtained

Aμ = 0, Ā2 ≡ A2
0 − 	A2 = M2

p

β
log

−M2M2
p

2βρ
. (6)

The first critical point corresponds to a Lorentz invariant vacuum
and always exists, whereas in the second one the field acquires
a non-vanishing value, thus breaking Lorentz symmetry, and only
exists if M2 and β have opposite signs. Moreover, for the second
critical point, we find that in regions of high density, the vector
field is spacelike (timelike) for β negative (positive). In this Letter,
we focus on the case with β < 0 so that a spacelike vector field
is screened and, thus, also Lorentz violations will be screened. In
such a case, we can assume that A0 
 Ai so that the vector field is
always spacelike. This assumption is proved below to be consistent
throughout the whole evolution, so that the vector field does not
change from spacelike to timelike. In such a case, the equations
can be approximated by

�Aμ =
(

M2 + 2βρ

M2
p

e−β 	A2/M2
p

)
Aμ. (7)

Thus, we can now define the following effective potential for the
spatial components

V eff
(	A2) = −1

2
M2 	A2 + ρe−β 	A2/M2

p . (8)

The mass matrix at the critical point with 	A = 0 is Mij = m2
0δi j

with

m2
0 = −M2

(
1 + 2βρ

M2M2
p

)
. (9)

Hence, in regions of high density, the effective mass is m2
0 �

−2βρ/M2
p (which is positive for β < 0) and the VEV of the field
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Fig. 1. In this plot we show the effective potential given in (8) as a function of
the modulus of the spatial components | 	A| ≡ A for different values of the energy
density ρ . We can see how the effective potential exhibits the symmetry breaking
explained in the main text when the density is low enough. Notice that at the min-
imum with A �= 0, the direction of the VEV is only spontaneously acquired so that
we still have the O (2) symmetry corresponding to rotations around the direction
determined by the VEV of 	A.

vanishes. However, in low dense regions, we have m2
0 � −M2 < 0

and the modes become tachyonic. For the second critical point, the
masses given by the eigenvalues of the mass matrix are

m2
1 = m2

2 = 0, m2
3 = 2M2 log

[
− M2M2

p

2βρ

]
. (10)

This result was expected since the effective potential (8) exhibits
an O (3) symmetry that is spontaneously broken to O (2) in the
minimum of the effective potential, where the vector field spon-
taneously acquires a given value and points along one determined
direction. This implies that one massive mode and two massless
modes corresponding to the unbroken symmetries arise. Since the

critical point only exists for log[− M2 M2
p

2βρ ] > 0, the massive mode
is always non-tachyonic. The effective potential thus, exhibits a
symmetry breaking mechanism when going from high to low den-
sities (see Fig. 1). At very high densities (|2βρ| � |M2M2

p |), the
effective potential has only one critical point located at the ori-
gin so that the vector field has a vanishing VEV and a positive
mass m2

0 � 2|β|ρ
M2 M2

p
. On the other hand, when the density is low

enough (|2βρ| 
 |M2M2
p |), the critical point at the origin becomes

tachyonic and the field runs away from it. However, the conformal
coupling stabilises this tachyonic evolution and another set of crit-
ical points appear. In the new vacuum corresponding to the effec-
tive potential after the symmetry breaking, we have two massless
modes plus a massive mode with mass m2

3 given in (10).
The difference of our screening mechanism with respect to

the symmetron is that, in the symmetron, the stabilisation of
the tachyonic mode after the symmetry breaking is done by the
φ4-term of the potential, whereas in our case the stabilisation
comes from the exponential term of the conformal coupling. The
fact that the stabilisation is done by an exponential instead of a
quartic term is the reason why our screening process is more effi-
cient after the symmetry breaking than in the original symmetron,
although this could be very straightforwardly adapted for the sym-
metron.

The aforementioned critical points for the effective potential are
the key for the screening mechanism: provided that −M2M2

p 

2βρlocal for the local density in the Solar System or our galaxy, the
VEV of the vector field is zero. The leading order of the interaction
of the vector field with the matter fields is β Aμ

VEVδAμT /M2
p so that

it decouples from matter in high density environments. When the
vector field acquires a non-vanishing VEV, the strength of the in-
teraction is set by β Aμ

VEV/M2
p so if we want this interaction to be

of the same order as that of gravity, we need, at least, β Aμ
VEV ∼ Mp .

This condition is indeed fulfilled when the symmetry is broken and
the field acquires the VEV given in (6), since the condition for the

symmetry breaking is precisely − M2 M2
p

2βρ � 1. It is also interesting
to note that due to the conformal invariance of electromagnetism
in 4 dimensions, photons do not couple to the vector field because
of the tracelessness of its energy–momentum tensor. Finally, we
should stress the fact that the interaction is direction dependent
and only the component of the vector field parallel to its VEV cou-
ples to matter.

Another interesting feature of this mechanism is that, after the
symmetry breaking takes place, we have a non-vanishing VEV for
the vector field, so there is also a spontaneous breaking of Lorentz
symmetry2 when going from high to low density regions. This
represents a distinctive feature with respect to screening mecha-
nisms for scalar fields. In fact, this mechanism can be regarded
not only as a way to screen the fifth force mediated by the vec-
tor field, but also as a mechanism to screen Lorentz violations or,
in other words, as a mechanism to dynamically restore Lorentz
invariance in high density regions, while being broken in low den-
sity environments. Screening of Lorentz violating interactions has
also been explored in [22] in the context of modified gravity the-
ories with a scalar field φ. In that case, the Lorentz violating cou-
pling is through a coupling term ∂μφ∂νφT μν so that a direction-
dependent interaction appears when there is a background with
non-vanishing gradients of the scalar field.

The local bounds on the theory can be computed by calculating
the field profile near a static and spherically symmetric object. The
field equations read

A′′
0 + 2

r
A′

0 = −
[

M2 + 2
ρβ

M2
p

eβ A2/M2
p

]
A0, (11)

A′′
z + 2

r
A′

z = −
[

M2 + 2
ρβ

M2
p

eβ A2/M2
p

]
Az. (12)

To obtain the profile, we shall solve these equations outside and
inside a spherical object. In the outer region, we assume that we
are in the phase of symmetry breaking so that we will expand
the equations to linearise them around the corresponding critical
point. In such a case, the equations for the perturbations of the
field with respect to their values at the fixed point are

δA′′
0 + 2

r
δA′

0 = 2βM2 Ā0

M2
p

( Ā0δA0 − ĀzδAz), (13)

δA′′
z + 2

r
δA′

z = 2βM2 Āz

M2
p

( Ā0δA0 − ĀzδAz) (14)

where δA0 ≡ A0 − Ā0, δAz ≡ Az − Āz and Ā0, Āz are the asymp-
totic values. Now, as we commented above, we can assume that
Ā0 
 Āz because the vector field is spacelike at the critical point.
Then, assuming that the perturbations on both components are of
the same order, we can further approximate the above equations
to obtain

δA′′
0 + 2

r
δA′

0 � m2
3

Ā0

Āz
δAz, (15)

δA′′
z + 2

r
δA′

z � m2
3δAz. (16)

2 The breaking of Lorentz symmetry to which we refer in this Letter and that is
common in the literature actually refers to a breaking of isotropy in the vacuum.



J. Beltrán Jiménez et al. / Physics Letters B 725 (2013) 212–217 215
Fig. 2. The field profile inside and outside the galaxy: the field goes to zero inside
the galaxy whereas it tends to a non-vanishing (cosmological) value outside. Thus,
inside the galaxy, the fifth force is screened and Lorentz symmetry is restored. As
explained in the main text, the temporal component profile is driven by the spa-
tial component so that if it is asymptotically smaller on cosmological scales, it will
remain small at all scales and both outside and inside the object.

From these equations we can see that the source term for δA0
is determined by δAz so that its profile will follow that of δAz .
Thus, since its asymptotic (cosmological) value Ā0 is assumed to
be smaller than Āz , it will remain smaller for all r. It is important
to notice that both components satisfy the same equation inside
the object, so that this remains true also in the inner region.

The obtained equations look similar to those in [6] so we can
proceed in a similar manner to obtain the solutions inside and
outside the object. The corresponding solutions for an object of
density ρR and size R and with the boundary conditions A′

z(0) = 0
and A(r → ∞) → Ã, being Ã the cosmological value, can be writ-
ten as follows:

Ain
z = B

R

r
sinh

[
r

R

√
α2 − μ2

]
, (17)

Aout
z = C

R

r
e−m3r + Āz

where α2 ≡ −2βρR R2/M2
p and μ2 ≡ M2 R2 are dimensionless pa-

rameters. The mass m3 is the one given in (10). It is important to
notice that in the expression for m3 we need to use the cosmo-
logical density and not ρR . On the other hand, we focus on the
massive mode because the massless modes are less constraining.
Finally, the constants B and C are obtained so that both solutions
(and their first derivatives) match at r = R . In Fig. 2 we show the
profile corresponding to the above solution where we see the ana-
logue of the thin-shell effect and how the field profile goes to zero
very rapidly inside the object.

The force acting on a test particle due to the vector field is
given by the gradient of the conformal factor |	F | = d ln B/dr, as
obtained from the geodesic equations. We should notice here that,
unlike in the scalar field case, the full expression for the fifth
force actually depends on the gravitational potential because B(A2)

depends on the metric. If we assume the weak field limit with
gμν = ημν + hμν where |hμν | 
 1, then the fifth force is given
by

|	F | = β

M2
p

[
2
(
ημν − hμν

)
Aμ

dAν

dr
− dhμν

dr
Aμ Aν

]

� 2β

M2
p

[
A0

dA0

dr
− 	A · d	A

dr
− 1

2

dhμν

dr
Aμ Aν

]
. (18)

The last term in the bracket is proportional to the usual gravita-
tional force given by the gradient of the gravitational potential so
that it can be seen as a modification of Newton’s constant. Thus,
the leading term of the fifth force gives a term proportional to the
value of the field and its gradient and it also modifies the effective
Newton’s constant. However, the effects are negligible inside the
galaxy, since there the value of the field drops dramatically and
we have a thin-shell effect (see Fig. 2).

Our screening process drives the fifth force due to the vector
field to extremely small values, away from any possible detectabil-
ity range in present or near future experiments. As an extreme
illustration, in Fig. 3, we used |β| > 106 and M � H0 ∼ 10−42 TeV.
It is clear from the figure that weak equivalence principle viola-
tions and Eöt-Wash-like experiments are easily satisfied for a wide
range of the theory parameter space. For |β| = 106 the value of the
field is ∼ 10−7 TeV inside the galaxy, and the profile is almost flat,
so the gradient of the field is negligible. Inside high density objects
like the Sun, the thin shell effect is even more efficient.

Notice that, although mediated by a vector field, the test par-
ticle feels a force depending only on the magnitude of the vector
field, but not on its direction. This is so because, the coupling to
matter is through A2 to the trace of the energy–momentum ten-
sor. However, the vector nature of the new interaction appears by
Fig. 3. Left panel: Parameter space, for |β| > 106 in which the symmetry is broken outside the galaxy and unbroken inside so that fifth force and Lorentz violations are
screened. Right panel: Cosmological evolution of the temporal (dashed blue) and the spatial (solid red) components of the vector field, where we can see how the symmetry
breaking takes place and the field goes to the new minimum and oscillates there. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this Letter.)
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means of gravitational effects, i.e., when the backreaction of the
vector field on the metric is relevant and we have a spontaneous
breaking of Lorentz invariance, on cosmological scales when the
energy density drops below the critical value leading to the sym-
metry breaking phase.

Although the field hides in high density regions, at cosmological
scales the symmetry can be broken and astrophysical signatures
appear. In the early Universe (radiation and matter dominated
epochs), we expect the vector field to be subdominant. In such a
case, it is justified to consider the equations for the vector field and
assume that the expansion is driven by the dominant component.
As before, we assume that the vector field is spacelike. This means
that we have Ai ≡ Ai/a � A0. Moreover, we assume that the spa-
tial component has linear polarisation along the z-direction. Then,
in a FLRW metric, the equations of motion are given by3

Ä0 + 3H Ȧ0 =
[
−3Ḣ + M2 + 2

T β

M2
pl

eβ(A2
0−A2

z )/M2
p

]
A0,

Äz + 3HȦz =
[

M2 − Ḣ − 2H2 + 2
T β

M2
p

eβ(A2
0−A2

z )/M2
p

]
Az. (19)

We have solved these equations numerically throughout the Uni-
verse evolution and the solutions are plotted in Fig. 3. In the
following we shall find approximate analytical solutions for the
cosmological evolution. Since the coupling to the background den-
sity is through the trace of the energy–momentum tensor, only
non-relativistic species are relevant for the interactions of the vec-
tor field, i.e., only the matter component will modify the effective
mass of the vector field. Thus, we can simply set T = ρm , even
in the radiation dominated epoch. Moreover, we also assume that
A2

0,A2
z 
 M2

p/β so that we can approximate the exponential by 1.
Notice that, as long as this condition holds, the equations decou-
ple and both components evolve independently. Well inside the
radiation dominated epoch the equations can be approximated
by

Ä0 + 3H Ȧ0 � −3Ḣ A0,

Äz + 3HȦz � 0 (20)

where we have used that T � 0 and H2 � M2. Thus, the growing
mode for the temporal component is given by A0 ∝ t , whereas Az

remains frozen. This behaviour goes on until the energy density
of matter becomes relevant in the field equations. This will imply
that we need to tune the initial conditions such that, even though
A0 grows with respect to Az , it remains smaller (A0 < Az) by the
time when ρm starts being relevant. If we look at the equations,
we can see that this happens when 2βρm/M2

p � H2 � ρr/M2
p ,

i.e., when ρr � 2βρm . The corresponding redshift is (1 + zT ) =
2βΩm/Ωr = 2β(1 + zeq) with zeq the equality redshift. Thus, pro-
vided that β > 1, this indeed happens in the radiation dominated
epoch. After this time, the matter component becomes relevant
and the equations can be approximated by

Ä0 + 3H Ȧ0 = 2βρm

M2
pl

A0, (21)

Äz + 3HȦz = (2β − 1
6 )ρm

M2
pl

Az, (22)

where we have used that Ḣ + 2H2 = 1
6M2

p
T . Since we are assuming

a negative value for β , the solutions are damped oscillations for

3 Here we introduce T = e3β A2/M p T̃ as usual.
both components. During radiation, the damping factor is t−1/4,
whereas in the matter epoch it is t−1/2 for both components. The
field behaves in this way until M2 ∼ βH2. At this point, the effec-
tive mass becomes negative and the field grows exponentially until
A2 ∼ |M2

p/β|, when the higher order terms become important.
This happens because the critical density at which the symmetry
breaking occurs is reached and the field evolves towards the new
minimum. Once the new minimum is reached, the field starts os-
cillating around it. However, since the position of the minimum is
time-dependent, with a timescale of order βρ/M2

p , the center of
the oscillations moves. This is so because the oscillations timescale
is

τ−2 ∼ m2
eff ∼ M2 log

−M2M2
p

2βρ
∼ M2 log

−M2

2βH

and the timescale associated with the evolution of the minimum

is H−1, so that we have that
m2

eff
H2 ∼ M2

H2 log −M2

2βH2 , that is large after

the symmetry breaking. Therefore, the minimum evolves adiabati-
cally with respect to the field oscillations.

Notice that during Big Bang nucleosynthesis the field is cos-
mologically screened so that no effects are present and the corre-
sponding constraints are easily evaded.

The main difference between these models and GR comes from
an anisotropic effective gravitational constant which will affect
structure formation at large scales. Moreover, these models will
have imprints in cosmology which are not present in other screen-
ing models, such as the chameleons and symmetron type of mod-
els. Those signatures will arise from the novel extra-term in the
energy–momentum tensor (4) proportional to Aμ Aν that can pro-
duce anisotropic stresses on large scales that will contribute to the
ISW effect.

In summary, a screening mechanism for conformal vector–
tensor modifications of general relativity is proposed. Such mech-
anism allows to screen a vector field on small scales while non-
trivial cosmological effects can still be present due to modifications
of Einstein’s equations. We focus on a simple model consisting
of a massive vector field which is conformally coupled to matter.
The screening mechanism occurs due to a spontaneous symme-
try breaking, therefore is applicable to a whole class of theories
with different combinations of potential and conformal couplings
so that the vector field is either timelike or spacelike at the criti-
cal points after the symmetry breaking. Moreover, our mechanisms
also provides a way to restore Lorentz invariance in high dense re-
gions, while being broken in low dense regions. This is a novel
and unique signature of this mechanism. Notice also that in spite
of local gravity constraints being easily evaded, the cosmological
structure formation within these theories will be different from
both General Relativity and other screened-modified gravities, due
to the coupling between matter and the vector field. Finally the
screening mechanism operating on small scales opens a new av-
enue for fundamental vector fields strongly coupled to matter into
our theories.
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Appendix A

In this appendix we intend to briefly comment on the relation
of our action with the Stueckelberg action for a massive vector
field. To show that, we consider the theory in flat spacetime and
that the vector field is much smaller than the Planck mass. In such
a limit, the conformal relation can be approximated by

g̃μν �
(

1 + 2β A2

M2
p

)
ημν, (23)

with ημν the Minkowski metric. Then, we can plug this expression
into the action to obtain the following action for the vector field

S =
∫

d4x

[
−1

4
F 2 − 1

2

(
∂μ Aμ

)2 + 1

2
Meff A2

]
(24)

where we have defined

M2
eff ≡ − M2

2

(
1 + 2β

M2
p

g̃αβ T̃αβ

)
. (25)

Notice that this is nothing but the mass m2
0 obtained for the field

in the phase without symmetry breaking. Now, we remind the ac-
tion for a massive vector field in the Stueckelberg formalism (see
for instance [18])

S = 1

2

∫
d4x

[−∂μ Aν∂μ Aν + m2 A2 + ∂μϕ∂μϕ − m2ϕ2] (26)

where ϕ is a scalar field (the Stueckelberg field). After integrating
by parts, dropping surface terms and recasting the resulting terms,
the Stueckelberg action can be written as

S =
∫

d4x

[
−1

4
F 2 − 1

2

(
∂μ Aμ + mϕ

)2 + m2

2

(
Aμ + 1

m
∂μϕ

)2]
.

(27)

From this form of the action, it is more apparent that it exhibits a
gauge symmetry Aμ → Aμ + ∂μΛ, ϕ → ϕ + mΛ, with the gauge
function satisfying the wave equation (�+m2)Λ = 0. It is also ap-
parent that our action reduces to Stueckelberg action in a gauge
with ϕ = 0, which can be chosen since the restriction of the gauge
parameter coincides with the equation of ϕ . Another way of in-
terpreting our action is as the Stueckelberg action in which we
neglect ϕ (not necessarily imposed by a gauge condition). We also
remind here that to guarantee the consistency of the theory at the
quantum level, it is necessary to impose the following additional
subsidiary condition:

(
∂μ Aμ + mϕ

)(−)|phys〉 = 0 (28)

where, the superscript (−) denotes the positive frequency part
of the operator (i.e., it only involves annihilation operators) and
|phys〉 is the space of physical states. This is nothing but the anal-
ogous of the Gupta–Bleuler condition implemented for the massive
case. Thus, one works in a space of indefinite metric, but the phys-
ical states have positive norm and the Hamiltonian is also positive
definite on the physical space.

Instead of using our action without the Stueckelberg field, one
could alternatively consider the full action including ϕ . In such
a case, to maintain the gauge invariance, the conformal relation
should also include the Stueckelberg field
g̃μν = B2(x)gμν, (29)

where the argument of the conformal factor is x ≡ (Aμ + 1
m ∂μϕ)2.

It is important to notice that going from the flat spacetime ver-
sion of the action for a massive vector field to its curved spacetime
version is not free from the usual ambiguity when covariantising
a given action by replacing ordinary partial derivatives with co-
variant derivatives. One could covariantise either (26) or (27) and
one would end up with different curved spacetime versions of the
same theory in flat spacetime. The difference between both actions
will be a non-minimal coupling of the vector field to the curvature,
more precisely, a term Rμν Aμ Aν . Although this term would give
rise to a different cosmological evolution or different features in
contexts where curvature is relevant, it is important to note that,
since it vanishes in a Minkowski spacetime, it does not affect the
screening mechanism proposed in this Letter, which would equally
work for both versions of the covariant action.
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