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Abstract

In 1969, Arhangel’skiı̆ proved that |X| � 2χ(X)L(X) for every Hausdorff space X. This beautiful
inequality solved a nearly fifty-year old question raised by Alexandroff and Urysohn. In this paper we
survey a wide range of generalizations and variations of Arhangel’skiı̆’s inequality. We also discuss
open problems and an important legacy of the theorem: the emergence of the closure method as
a fundamental unifying device in cardinal functions.
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1. The problem and the solution

In 1923, Alexandroff and Urysohn asked: Does every compact first-countable Haus-
dorff space have cardinality at most 2ℵ0 ? Their question was obviously motivated by a
theorem that they had proved earlier, in 1922, but did not publish until 1929; this 1922 re-
sult states that every compact perfectly normal Hausdorff space has cardinality at most 2ℵ0 .
See Arhangel’skiı̆’s paper Mappings and Spaces for a further discussion of the problem,
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including some of his early attempts at a solution; see [1] for comments by Arhangel’skiı̆
on the special role played by Alexandroff in formulating the problem.

The solution to the problem was finally obtained almost 50 years later, in 1969. I refer,
of course, to the following beautiful inequality in cardinal functions.

Theorem 1.1 (Arhangel’skiı̆). For X Hausdorff, |X| � 2χ(X)L(X). In particular, every first-
countable Lindelöf Hausdorff space has cardinality at most 2ℵ0 .

By 1969, the year in which Arhangel’skiı̆’s inequality was published, cardinal functions
was a growing, active area of research in set-theoretic topology. For example, in 1965
de Groot proved, among other results, that |X| � 2hL(X) whenever X is a Hausdorff space.
And in 1967 Hajnal and Juhász published their two fundamental inequalities, namely |X| �
2χ(X)c(X) for Hausdorff spaces and |X| � 2ψ(X)s(X) for T1 spaces.

Given the two inequalities of Hajnal and Juhász, and the growing interest in cardinal
functions, Arhangel’skiı̆’s solution to Alexandroff’s problem was a welcome addition to
the field, and it immediately assumed its rightful position as the most important inequality
in cardinal invariants. English translations of the proof were quickly available. Juhász pub-
lished an English translation [19], Gillman distributed unpublished notes of a proof for the
special case in which X is a first-countable compact Hausdorff space, and Roy published
an alternate proof for this special case.

In 1970, Comfort gave a lecture on cardinal invariants at the International Conference
on General Topology held at the University of Pittsburgh, and in his talk he outlined the
key ideas of Arhangel’skiı̆’s proof (for details see [10]). As Comfort himself stated, the
Organizing Committee wanted Arhangel’skiı̆ to give the talk, but he was unable to come.

What makes a theorem great? There are at least two criteria:

• solves a long-standing problem;
• introduces new techniques and generates new results and open problems.

Arhangel’skiı̆’s Theorem obviously satisfies the first requirement. The remainder of this
paper explains why it also satisfies the second.

2. Definitions and examples

All spaces are at least T1. Standard set-theoretic notation is used: κ and λ denote in-
finite cardinals and α, β , and γ denote ordinals. Notation for cardinal functions is also
fairly standard: L, hL, wL, c, psw, χ , ψ , πχ , and t denote Lindelöf degree, heredi-
tary Lindelöf degree, weak Lindelöf degree, cellularity, point-separating weight, character,
pseudo-character, π -character, and tightness; see [13,17,20]. We now define additional car-
dinal functions that are not quite so well known.

The almost Lindelöf degree of X, denoted aL(X), is the smallest infinite cardinal κ

such that for every open cover V of X, there is a subcollection Vo of V such that |Vo| � κ

and {V −: V ∈ Vo} covers X. Note the following: aL(X) = L(X) whenever X is regular;
wL(X) � aL(X); if X is an H-closed space, then aL(X) = ω.
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Recall that a subset A of a topological space X is an H-set if given any collection V of
open sets in X that covers A, there is a finite subcollection of V , say {V1, . . . , Vk}, such
that {V −

1 , . . . , V −
k } covers A. It is well known that a closed subset of an H-closed space

need not be an H-set. This pathology carries over to the cardinal function aL, thereby
giving rise to a stronger cardinal function aLc (see [26]). The almost Lindelöf degree of
X with respect to closed sets, denoted aLc(X), is the smallest infinite cardinal κ such that
for every closed subset H of X and every collection V of open sets in X that covers H ,
there is a subcollection Vo of V such that |Vo| � κ and {V −: V ∈ Vo} covers H . We have:
aL � aLc � L, and equality holds for regular spaces.

In a similar vein, the weak Lindelöf degree of X with respect to closed sets, denoted
wLc(X), is the smallest infinite cardinal κ such that for every closed subset H of X and
every collection V of open sets in X that covers H , there is a subcollection Vo of V such that
|Vo| � κ and H ⊆ (

⋃
V0)

−. For normal spaces, wL = wLc. The following diagram and
the examples given below should clarify the relationship between these cardinal functions:

Example (aL < aLc < L). This example is discussed by Willard and Dissanayake in the
paper [26]. Let κω denote the Katětov extension of ω with the discrete topology. Recall
that κω = ω ∪ T , where T is a set of cardinality 22ω

that indexes the collection of all free
ultrafilters on ω. For t ∈ T let Ut be the ultrafilter indexed by t ; a local base for t is the
collection {{t} ∪ U : U ∈ Ut }. The space κω has the following properties:

(a) countable tightness;
(b) countable pseudo-character;
(c) Urysohn (hence Hausdorff);
(d) H-closed, hence aL(κω) = ω;
(e) aLc(κω) = 2ω (proof sketched below);
(f) L(κω) = 22ω

;
(g) separable, hence wLc(κω) = ω.

• aLc(κω) � 2ω: This follows from the following lemma (see [9]): There is a collection
{Uα: 0 � α < 2ω} of 2ω free ultrafilters on ω such that for all α < 2ω, there exists
Uα ∈ Uα such that Uc

α ∈ Uβ for all β �= α.
• aLc(κω) � 2ω: This follows from the following observation. Let A ⊆ T , and for each

t ∈ A let Wt = {t} ∪ Vt be an open neighborhood of t . Define an equivalence relation
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∼ on A by s ∼ t ⇔ Vs = Vt . The number of distinct equivalence classes is � 2ω, and
if s ∼ t , then s ∈ W−

t .

Example (wLc < aL). Let S be the Sorgenfrey line. The space S × S is separable but not
Lindelöf; wLc(S × S) = ω and aL(S × S) = 2ω.

Example (aL < wLc). Let κ > ω and let X be the Katětov extension of κ with the discrete
topology; X is an H-closed space and so aL(X) = ω. On the other hand, wLc(X) = κ .
(The proof that wLc(X) � κ follows from the following observation: Given any infinite
cardinal κ , there is a pairwise disjoint collection {Aα: 0 � α < κ} of subsets of κ and a
collection {Uα: 0 � α < κ} of κ free ultrafilters on κ such that Aα ∈ Uα for all α < κ .)

The closed pseudo-character of a space X, denoted ψc(X), is the smallest infinite
cardinal κ such that for each x ∈ X, there is a collection {V (α,x): α < κ} of open neigh-
borhoods of x such that

⋂
α<κ V (α, x)− = {x}. The Hausdorff pseudo-character of X,

denoted Hψ(X), is the smallest infinite cardinal κ such that for each x ∈ X, there is a col-
lection {V (α,x): α < κ} of open neighborhoods of x such that if x �= y, then there exists
α,β < κ such that V (α,x) ∩ V (β,y) = ∅. These two cardinal functions are defined only
for Hausdorff spaces. The Urysohn pseudo-character of X, denoted Uψ(X), is similar to
Hψ(X) except that we require that V (α,x)− ∩ V (β,y)− = ∅. This cardinal function is
defined only for Urysohn spaces and was introduced by Stavrova in [24]. The following
hold:

(1) ψ(X) � ψc(X) � Hψ(X) � Uψ(X) � χ(X);
(2) ψc(X) � ψ(X)L(X) for every Hausdorff space X (see [20, p. 15]).

Later we will need the following variation of (2).

Lemma 2.1. Let X be a Urysohn space. Then ψc(X) � ψ(X)aLc(X).

Proof. Let ψ(X)aLc(X) = κ , let x ∈ X, and let {V (α,x): α < κ} be a collection of open
neighborhoods of x such that

⋂
α<κ V (α, x) = {x}. Fix α < κ , let H = X − V (α,x), and

for each y ∈ H let Uy and Vy be open sets in X such that

(a) x ∈ Uy and y ∈ Vy ;
(b) U−

y ∩ V −
y = ∅.

Now {Vy : y ∈ H } is an open cover of the closed set H and aLc(X) � κ ; hence there is a
subset A of H with |A| � κ such that H ⊆ ∪{V −

y : y ∈ A}. It easily follows that
⋂{

U−
y : y ∈ A

} ⊆ V (α,x).

In summary, for each α < κ there is a collection Uα of open neighborhoods of x such that
|Uα| � κ and

⋂{U−: U ∈ Uα} ⊆ V (α,x). Since
⋂

α<κ V (α, x) = {x}, we obtain ψc(X) �
κ as required. �
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Let X be a topological space and let H ⊆ X. A point x ∈ X is a θ -limit point of H if
V − ∩ H �= ∅ for every open neighborhood V of x. The θ -closure of H is the set Hθ =
{x: x ∈ H or x is a θ -limit point of H }, and H is θ -closed if H = Hθ . The following hold:

(1) H− ⊆ Hθ ;
(2) every θ -closed set is closed;
(3) for regular spaces, H− = Hθ ;
(4) for Urysohn spaces, |Hθ | � |H |χ(X) (due to Bella and Cammaroto);
(5) if H is a θ -closed set and x /∈ H , then there is an open neighborhood V of x such that

V − ∩ H = ∅ (“regularity with respect to θ -closed sets”).

3. Generalizations and variations of |X| � 2χ(X)L(X)

In this section we will discuss a long list of theorems from the literature, each of which
is either a generalization or a variation of Arhangel’skiı̆’s original inequality. We begin
with four generalizations; in each case the Hausdorff hypothesis is fixed and at least one of
character or Lindelöf degree is weakened.

(1) |X| � 2t (X)ψ(X)L(X) Arhangel’skiı̆, Šapirovskiı̆, 1974
(2) |X| � 2Hψ(X)L(X) Hodel, 1991
(3) |X| � 2t (X)ψc(X)πχ(X)aLc(X) Willard–Dissanayake, 1984
(4) |X| � 2t (X)ψc(X)aLc(X) Bella–Cammaroto, 1988

The inequality |X| � 2t (X)ψ(X)L(X) is perhaps our most elegant generalization of
Arhangel’skiı̆’s theorem. By replacing χ with ψ and t , we have isolated the precise prop-
erties of χ that are actually needed in the original proof. This result was first proved by
Arhangel’skiı̆ for regular spaces and later generalized to Hausdorff spaces by Šapirovskiı̆
[22].

The inequality |X| � 2Hψ(X)L(X) generalizes χ in a different way; it replaces χ with
Hψ , a local cardinal function that captures the Hausdorff property of X. At the same time
Hψ is a strengthening of ψ and so tightness can be omitted as a hypothesis.

In both (1) and (2) the hypothesis L is fixed and χ is generalized. In the two in-
equalities (3) and (4) the cardinal function L is weakened to aLc. Willard and Dis-
sanayake introduced this new cardinal function and then proved the inequality |X| �
2t (X)ψc(X)πχ(X)aLc(X). Somewhat later Bella and Cammaroto generalized their result by
showing that |X| � 2t (X)ψc(X)aLc(X). Note that (4) not only generalizes (3) but also (1)
(recall the inequality ψc(X) � ψ(X)L(X)).

We now turn to variations of |X| � 2χ(X)L(X); in each case the Hausdorff hypothesis is
strengthened and at the same time the Lindelöf degree (and perhaps character) is weakened.

(5) For X normal, |X| � 2χ(X)wL(X) Bell, Ginsburg, Woods, 1978
(6) For X regular, |X| � 2χ(X)wLc(X) Arhangel’skiı̆, 1979
(7) For X Urysohn, |X| � 2χ(X)wLc(X) Alas, 1993
(8) For X Urysohn, |X| � 2χ(X)aL(X) Bella–Cammaroto, 1988
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(9) For X Urysohn, |X| � 2Uψ(X)aL(X) Stavrova, 2000
(10) For X Urysohn, |X| � 2t (X)ψ(X)aLc(X) (4) and Lemma 2.1

The inequality |X| � 2χ(X)wL(X) for normal spaces is due to Bell et al. [6]; this was the
first variation of Arhangel’skiı̆’s inequality to use the cardinal function wL. At about the
same time, Arhangel’skiı̆ [3] proved the inequality |X| � 2χ(X)wLc(X) for regular spaces.
Since wL(X) = wLc(X) for normal spaces, (6) is a generalization of (5).

In 1993 Alas proved that |X| � 2χ(X)wLc(X) holds for the class of Urysohn spaces,
thereby generalizing both (5) and (6). Prior to this result, Bella and Cammaroto had ob-
tained the inequality |X| � 2χ(X)aL(X) for Urysohn spaces. Thus we have two variations
of Arhangel’skiı̆’s inequality for the class of Urysohn spaces, neither of which implies the
other. Moreover, both proofs use an interesting new strategy: build up a θ -closed set that
is all of X (instead of just a closed set; more on this later). We also note that the inequality
|Hθ | � |H |χ(X) plays a key role in both proofs.

The Bella–Cammaroto inequality |X| � 2χ(X)aL(X) does not hold for Hausdorff spaces.
In 1998 Bella and Yaschenko obtained the following result: if κ is a non-measurable car-
dinal, then there is a first-countable almost Lindelöf Hausdorff space X such that |X| > κ .

In 2000 Stavrova [24] obtained a very nice generalization of the Bella–Cammaroto
inequality by showing that |X| � 2Uψ(X)aL(X) for Urysohn spaces. This result is a “com-
panion” of the inequality |X| � 2Hψ(X)L(X) for Hausdorff spaces. Finally, the inequal-
ity |X| � 2t (X)ψ(X)aLc(X) for Urysohn spaces is a consequence of the two inequalities
|X| � 2t (X)ψc(X)aLc(X) (which holds for Hausdorff spaces) and ψc(X) � ψ(X)aLc(X)

(which holds for Urysohn spaces; see Lemma 2.1). Compare this with the way in which
(1) follows from (4) and ψc(X) � ψ(X)L(X) for Hausdorff spaces.

Let us summarize the results discussed thus far. If we eliminate the inequalities that
follow from more general ones, we have:

Hausdorff spaces Urysohn spaces

(2) |X| � 2Hψ(X)L(X) (7) |X| � 2χ(X)wLc(X)

(4) |X| � 2t (X)ψc(X)aLc(X) (9) |X| � 2Uψ(X)aL(X)

The proofs of these four inequalities have a common construction that is inspired by
Arhangel’skiı̆’s original proof. Theorem 3.1 below captures this common core; in most
applications of the theorem, c will be the closure operator and d the identity function.

Theorem 3.1. Let X be a set, let κ and λ be infinite cardinals with λ � 2κ , let c :P(X) →
P(X) and d :P(X) → P(X) be operators on X, and for each x ∈ X let {V (γ, x): γ < λ}
be a collection of subsets of X. Assume the following:

(T) if x ∈ c(H), then there exists A ⊆ H with |A| � κ such that x ∈ c(A) (tightness
condition);

(C) if A ⊆ X with |A| � κ , then |c(A)| � 2κ (cardinality condition);
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(C-S) if H �= ∅, c(H) ⊆ H , and q /∈ H , then there exist A ⊆ H with |A| � κ and a func-
tion f :A → λ such that H ⊆ d(

⋃
x∈A V (f (x), x)) and q /∈ d(

⋃
x∈A V (f (x), x))

(cover-separation condition).

Then |X| � 2κ .

Proof. We will use the closure method (more on this in Section 6). Construct a sequence
{Hα: 0 � α < κ+} of subsets of X such that for 0 � α < κ+:

(a) |Hα| � 2κ (H0 is any non-empty subset of X of cardinality at most 2κ );
(b) for all A ⊆ ⋃

β<α Hβ such that |A| � κ :
(b1) c(A) ⊆ Hα (the cardinality condition (C) is used here);
(b2) if f :A → λ and d(

⋃
x∈A V (f (x), x)) �= X,

then Hα − d(
⋃

x∈A V (f (x), x)) �= ∅ (λ � 2κ used here).

Let H = ⋃{Hα: α < κ+}.

• |H | � 2κ ;
• c(H) ⊆ H (use the tightness condition (T) and (b1));
• H = X. Suppose that q /∈ H . By the cover-separation condition (C-S), there exists

A ⊆ H with |A| � κ and f :A → λ such that
(i) H ⊆ d(

⋃
x∈A V (f (x), x));

(ii) q /∈ d(
⋃

x∈A V (f (x), x)).

Now choose α < κ+ such that A ⊆ ⋃
β<α Hβ . By (ii) and (b2), Hα − d(

⋃
x∈A V (f (x),

x)) �= ∅. This contradicts (i). �
We emphasize that the statement of Theorem 3.1 is not far removed from General The-

orem 2 in Arhangel’skiı̆’s original paper! In particular, for c the closure operator, condition
(T) and a variation of (C) both appear. To emphasize this point, let us use Theorem 3.1 to
prove a result that Arhangel’skiı̆ derives from General Theorem 2 in [1].

Theorem 3.2 (Arhangel’skiı̆). Let X be a sequential Lindelöf Hausdorff space with ψ(X) �
2ω. Then |X| � 2ω.

Proof. We need to check the following.

(T) If x ∈ H−, then there is a countable set A ⊆ H such that x ∈ A−; this follows from
the fact that every sequential space has countable tightness.

(C) If A ⊆ X and A is countable, then |A−| � 2ω (this holds in any sequential Hausdorff
space).

(C-S) This follows from the Lindelöf and the pseudo-character hypotheses. �
We will now use Theorem 3.1 to prove (7) and (2) and leave (4) and (9) to the reader.

Each of (7) and (2) has a “non-standard” choice for c. Let us also mention another
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common thread in the proofs of all four of these inequalities: in each case the verifica-
tion of the cardinality condition (C) is inspired by the standard proof of the inequality
|X| � d(X)χ(X).

Proof that |X| � 2χ(X)wLc(X) for Urysohn spaces. Let χ(X)wLc(X) = κ , for each x ∈
X let {V (γ, x): γ < κ} be a local base for x, let c(H) = Hθ , and let d(H) = H−. We need
to check the following.

(T) If x ∈ Hθ , then there exists A ⊆ H with |A| � κ such that x ∈ Aθ (the hypothesis
χ(X) � κ proves this).

(C) If A ⊆ X and |A| � κ , then |Aθ | � 2κ (this follows from the inequality |Hθ | �
|H |χ(X) in [7]; the Urysohn hypothesis is used here).

(C-S) Let H be a θ -closed set and let q /∈ H . There exists γ < κ such that V (γ, q)− ∩H =
∅. For each x ∈ H there exists γx < κ such that V (γx, x) ∩ V (γ, q) = ∅. Now H is
closed, {V (γx, x): x ∈ H } covers H , and wLc(X) � κ ; it follows that there exists
A ⊆ H with |A| � κ such that H ⊆ (

⋃
x∈A V (γx, x))−. Now (

⋃
x∈A V (γx, x)) ∩

V (γ, q) = ∅ and so q /∈ (
⋃

x∈A V (γx, x))−. The required function f :A → κ is
f (x) = γx . �

Proof that |X| � 2Hψ(X)L(X) for Hausdorff spaces. Let Hψ(X)L(X) = κ , and for each
x ∈ X let Ux be a collection of open neighborhoods of x with |Ux | � κ , closed under
finite intersections, and such that if x �= y, then there exist U ∈ Ux and V ∈ Uy such that
U ∩ V = ∅. Let Ux = {V (γ, x): γ < κ}. Define c and d by c(H) = {x: V (γ, x) ∩ H �= ∅
for all γ < κ} and d(H) = H . We need to check the following.

(T) If x ∈ c(H), then there exists A ⊆ H with |A| � κ such that x ∈ c(A). (Here we see
why tightness can be omitted—c is not the usual closure operator!)

(C) If A ⊆ X and |A| � κ , then |c(A)| � 2κ (follows from |c(A)| � |A|κ ; see the proof
of Theorem 3.3 below for details).

(C-S) Again see the proof of Theorem 3.3. �
In recent years there has been considerable interest in relative versions of cardinal func-

tion inequalities; see, for example, [4,16,24]. Theorem 3.3 below gives a unified approach
to several such results that are related to Arhangel’skiı̆’s inequality. For example, we will
use Theorem 3.3 to obtain a relative version of (9). Note that the cardinality condition (C)
of Theorem 3.1 has been incorporated into the proof of Theorem 3.3.

Theorem 3.3. Let X be a set, let Y ⊆ X, and for each x ∈ X let {V (γ, x): γ < κ} be a
collection of subsets of X such that x ∈ V (γ, x) for all γ < κ . Assume the following:

(I) given α,β < κ , there exists γ < κ such that V (γ, x) ⊆ V (α,x)∩V (β,x) (intersection
condition);

(H) if x �= y, then there exists α,β < κ such that V (α,x) ∩ V (β,y) = ∅ (Hausdorff con-
dition);
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(C) if f :X → κ , then there exists A ⊆ X with |A| � κ such that Y ⊆ ⋃
x∈A V (f (x), x)

(cover condition).

Then |Y | � 2κ .

Proof. For A ⊆ X, define c(A) = {x: V (γ, x) ∩ A �= ∅ for all γ < κ}. We first verify the
inequality

∣∣c(A)
∣∣ � |A|κ .

Let x ∈ c(A); there exists Ax ⊆ A such that |Ax | � κ and x ∈ c(Ax). Define Φ : c(A) →
Pκ(Pκ(A)) by

Φ(x) = {
V (γ, x) ∩ Ax : γ < κ

}
.

By condition (I), x ∈ c(V (γ, x) ∩ Ax) for all γ < κ . From this it follows that Φ is one-to-
one (use condition (H) here).

Now construct a sequence {Hα: α < κ+} of subsets of X such that for 0 � α < κ+,

(a) |Hα| � 2κ (H0 is any non-empty subset of X of cardinality at most 2κ );
(b) for all A ⊆ ∪β<αHβ such that |A| � κ :

(b1) c(A) ⊆ Hα (the inequality |c(A)| � |A|κ is used here);
(b2) if f :A → κ , W = ⋃

x∈A V (f (x), x), and Y − W �= ∅, then (Hα ∩ Y) − W �= ∅.

Let H = ⋃{Hα: α < κ+}. Clearly |H | � 2κ , and c(H) = H by (b1). It remains to prove
that Y ⊆ H . Suppose that q ∈ Y − H .

• For each x ∈ H choose γx < κ such that q /∈ V (γx, x).
• For each x /∈ H choose γx < κ such that V (γx, x) ∩ H = ∅ (recall that c(H) = H ).

Define f :X → κ by f (x) = γx . By the cover condition (C), there exists B ⊆ X with |B| �
κ such that Y ⊆ ⋃

x∈B V (f (x), x). Let A = B ∩ H , so A ⊆ H and |A| � κ . Moreover,
{V (f (x), x): x ∈ A} covers H ∩ Y . Let W = ⋃{V (f (x), x): x ∈ A}, and note that (H ∩
Y) ⊆ W and q /∈ W . Choose α < κ+ such that A ⊆ ⋃

β<α Hβ . By (b2), there exists z ∈
(Hα ∩ Y) − W , a contradiction of (H ∩ Y) ⊆ W . �

From Theorem 3.3 we can derive the two inequalities |X| � 2Hψ(X)L(X) and |X| �
2Uψ(X)aL(X). In fact, let us extend the latter to a relative inequality. For this we need a
relative version of aL. Let X be a topological space and let Y ⊆ X. The cardinal function
aL(Y,X) is the smallest infinite cardinal κ such that if V is any open cover of X, then there
is a subcollection V0 of V such that |V0| � κ and {V −: V ∈ V0} covers Y . For Y = X this
reduces to aL(X).

Corollary 3.4. Let X be a Urysohn space and let Y ⊆ X. Then |Y | � 2Uψ(X)aL(Y,X).

Proof. Let Uψ(X)aL(Y,X) = κ , and for each x ∈ X let Ux be a collection of open neigh-
borhoods of x with |Ux | � κ , closed under finite intersections, and such that if x �= y, then
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there exists U ∈ Ux and V ∈ Uy such that U− ∩ V − = ∅. Let Ux = {U(γ,x): γ < κ}, and
for x ∈ X and γ < κ let V (γ, x) = U(γ,x)−. The three conditions (I), (H), and (C) of
Theorem 3.3 are easy to check. �

Corollary 3.4 also generalizes Theorem 12 in [8]: Let X be a Urysohn space and let Y

be a relatively H-closed subset of X (if V is any open cover of X, then there is a finite
subcollection V0 of V such that {V −: V ∈ V0} covers Y ). Then |Y | � 2χ(X).

Theorems 3.1 and 3.3 are tailored to prove cardinal function inequalities that are re-
lated to Arhangel’skiı̆’s inequality. Arhangel’skiı̆ has a much more general approach (an
“algorithm”) for proving relative versions of cardinal inequalities. In the paper A generic
theorem in the theory of cardinal invariants of topological spaces he states:

We formulate a general technical theorem, after which the proofs of many original re-
sults on cardinal inequalities acquire almost algorithmic character—they turn into a
rather easy (though still not quite routine) verification of certain natural (mostly, tech-
nical) conditions.

An example of an application of his algorithm is the following partial solution to Question 2
in Section 5; for details, see [4]. We state the countable version only. Stavrova [23] has also
given a unified approach to a wide range of inequalities in cardinal invariants.

Theorem 3.5 (Arhangel’skiı̆). Let X be a first-countable Hausdorff space such that the
following holds for every closed subset H of X: if V = ⋃

Vn is a collection of open
sets in X that covers H , then each Vn has a countable subcollection Wn such that
H ⊆ ⋃

n∈ω(
⋃

Wn)
−. Then |X| � 2ω.

Finally we arrive at what is undoubtedly the most complicated (to prove) variation of
Arhangel’skiı̆’s inequality. Recall that a space X is linearly Lindelöf if every increas-
ing open cover of X has a countable subcover. This is equivalent to: every uncountable
subset of X of regular cardinality has a complete accumulation point. In recent years
Arhangel’skiı̆ has emphasized the following general problem: What theorems about Lin-
delöf spaces extend to linearly Lindelöf spaces? Arhangel’skiı̆ and Buzyakova prove:

Theorem 3.6 (Arhangel’skiı̆–Buzyakova). Let X be a completely regular space that is se-
quential, linearly Lindelöf, and has ψ(X) � 2ω. Then |X| � 2ω.

Arhangel’skiı̆ and Buzyakova first prove:

Theorem 3.7. Let X be a T1 space such that

(1) X is ω1-Lindelöf (every open cover of X of cardinality � ω1 has a countable
subcover);

(2) X has countable tightness;
(3) if A ⊆ X with |A| � 2ω, then |A−| � 2ω;
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(4) for each closed subset H of X of cardinality � 2ω, there is a collection VH of open
sets in X with |VH | � 2ω and

⋂
VH = H .

Then |X| � 2ω.

First note that every linearly Lindelöf space is ω1-Lindelöf. The proof of Theorem 3.7
is given below and is an interesting variation of the closure arguments given thus far. More-
over, the statement itself is reminiscent of General Theorem 2 in [1]. We emphasize that
the derivation of Theorem 3.6 from Theorem 3.7 requires considerable effort. The difficult
to verify property is (4). Note that (4) is easy to prove if (a) X is Lindelöf or (b) CH holds.
But for the case in which X is just linearly Lindelöf, the verification of (4) is extremely
delicate; see [5] for details.

Proof of Theorem 3.7. Construct a sequence {Hα: α < ω1} of closed subsets of X (use
hypothesis (3) here) such that for 0 � α < ω1:

(a) |Hα| � 2ω;
(b) if A is a countable subset of

⋃{Hβ : β < α}, then A− ⊆ Hα ;
(c) if W is a countable union of elements of {V : V ∈ VHβ and β < α} and W �= X, then

Hα − W �= ∅.

Let H = ⋃{Hα: α < ω1}; clearly |H | � 2ω. Now verify: H is closed [by (b) and t (X) �
ω]; H = X [use (c) and the fact that H is ω1-Lindelöf]. �

It is not known if the Arhangel’skiı̆–Buzyakova inequality extends to regular or Haus-
dorff spaces. However, Buzyakova has recently proved:

Theorem 3.8 (Buzyakova). Every first-countable ω1-Lindelöf Hausdorff space has cardi-
nality at most 22ω

.

4. Gryzlov’s theorems and generalizations

In 1980 Gryzlov proved two variations of Arhangel’skiı̆’s equality, each of which an-
swers the original question of Alexandroff and Urysohn. His first result is as follows.

Theorem 4.1 (Gryzlov). Let X be a compact T1 space. Then |X| � 2ψ(X).

Recall that a compact T1-space need not be Hausdorff. The proof of Theorem 4.1 is
a standard closure argument: construct a set H = ⋃{Hα: α < κ+}, where each Hα has
size at most 2κ , and then prove that H = X. However, the sequence {Hα: α < κ} is con-
structed to insure that H is compact (as opposed to closed as in previous proofs). The key
is Lemma 4.2 below, easily the most difficult and ingenious step in Gryzlov’s proof (given
that closure arguments are by now well understood).
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Lemma 4.2. Let X be a compact T1 space with ψ(X) � κ and let H be a subset of X such
that every infinite subset of H of cardinality � κ has a complete accumulation point in H .
Then H is compact.

Once Lemma 4.2 is available, the proof of Theorem 4.1 proceeds as follows.

Proof of Theorem 4.1. Let X be a compact T1-space, let ψ(X) = κ , and for each x ∈ X

let Vx be a collection of open neighborhoods of x such that |Vx | � κ and
⋂{V : V ∈ Vx} =

{x}. Construct a sequence {Hα: α < κ+} of subsets of X such that for 0 � α < κ+:

(a) |Hα| � 2κ ;
(b) if A is an infinite subset of

⋃
β<α Hβ of cardinality � κ , then some point of Hα is a

complete accumulation point of A;
(c) if W is a finite union of elements of {V : V ∈ Vx and x ∈ ⋃

β<α Hβ} and W �= X, then
Hα − W �= ∅.

Let H = ⋃{Hα: α < κ+}; clearly |H | � 2κ . Now check: H is compact (use (b) and
Lemma 4.2); H = X (use (c) and the compactness of H ). �

In 1983 Stephenson generalized Gryzlov’s Theorem as follows.

Theorem 4.3 (Stephenson). Let X be a 2κ -total T1 space with ψ(X) � κ . Then |X| � 2κ

and X is compact.

Stephenson’s proof is interesting from the following point of view: he proves the com-
pactness of X by first obtaining an upper bound on the cardinality of X. A space X is
κ-total if for every subset H of X with |H | � κ , every filter base on H has an adherent
point in X. This class of spaces was introduced by Vaughan in connection with problems
on compactness-like properties of product spaces.

Now let us turn to Gryzlov’s second theorem.

Theorem 4.4 (Gryzlov). Let X be an H-closed space with ψc(X) = ω. Then |X| � 2ω.

Again the proof is a closure argument, but the technical details are even more delicate.
The idea is to construct the sequence {Hα: α < ω1} so that the union is an H-set. (Recall
that a closed subset of an H-closed space need not be an H-set.) To do this, Gryzlov uses
θ -accumulation points rather than complete accumulation points. However, this method of
proof does not seem to extend to higher cardinality, and in 1982 Porter and Dow used a
quite different attack to prove the general case.

Theorem 4.5 (Dow–Porter). Let X be an H-closed space. Then |X| � 2ψc(X).

A suitable modification of Gryzlov’s original construction does extend to higher cardi-
nality. The key is to replace θ -accumulation points with θ -cluster points. We now outline
this approach. First of all, we will work with nets of the form ξ = {xF : F ∈ κ<ω};
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here κ<ω is the directed set that consists of all finite subsets of κ . Let A ⊆ X and let
ξ = {xF : F ∈ κ<ω} be a net in A. A point x ∈ A is a θ -cluster point of ξ relative to A if
given any open set R of X with x ∈ R and any α < κ , there exists F ∈ κ<ω such that α ∈ F

and xF ∈ (R ∩ A)−. If A = X, we say that x is a θ -cluster point of ξ . It is easy to prove
that for an H-closed space X, every net ξ = {xF : F ∈ κ<ω} in X has a θ -cluster point. We
will use the following well-known characterization of H-sets.

Lemma 4.6. Let A ⊆ X. The following are equivalent:

(1) A is an H-set.
(2) If V is a collection of open sets in X, closed under finite intersections, and such that

A ∩ V �= ∅ for all V ∈ V , then there exists x ∈ A such that x ∈ V − for all V ∈ V .

The following replaces Lemma 3 in [15].

Lemma 4.7. Let X be an H-closed space with ψc(X) � κ and let A be a subset of X with
the following property (θCP):

For every net ξ = {xF : F ∈ κ<ω} in A, there exists x ∈ A such that x is a θ -cluster
point of ξ relative to A.

Then A is an H-set.

Proof. First note that (θCP) implies that A has the following cover property (C):

If {Rα: α < κ} is a collection of open sets in X that covers A, then there exists F ∈ κ<ω

such that A ⊆ ⋃
α∈F (Rα ∩ A)−.

Indeed, the definition of a θ -cluster point is motivated by the proof that (θCP) implies (C).
We will prove that A is an H-set by verifying condition (2) of Lemma 4.6. Let V be

a collection of open sets in X, closed under finite intersections, and such that V ∩ A �= ∅
for all V ∈ V . By Zorn’s Lemma, we may assume that V is maximal with respect to these
two properties. (Thus, if R is an open set and R /∈ V , then there exists V ∈ V such that
R ∩ A ∩ V = ∅.) Since X is H-closed, there exists x ∈ X such that x ∈ V − for all V ∈ V .
The proof is complete if we can show that x ∈ A.

Since ψc(X) � κ , there is a collection {Wα: α < κ} of open neighborhoods of x such
that

⋂
α<κ W−

α = {x}. For each α < κ , there exists Vα ∈ V such that (Vα ∩ A)− ⊆ W−
α . To

see this, let R = X − W−
α . Clearly x /∈ R− and so R /∈ V . Hence there exists Vα ∈ V such

that Vα ∩ A ∩ R = ∅, and from this we obtain (Vα ∩ A)− ⊆ W−
α .

Property (C) can now be used to show that A ∩ (
⋂

α<κ(Vα ∩ A)−) �= ∅. (Otherwise,
{X − (Vα ∩ A)−: α < κ} is an open collection in X that covers A; use the fact that A ∩
Vα1 ∩· · ·∩Vαk

�= ∅ for any α1, . . . , αk ∈ κ .) Let p ∈ A∩ (
⋂

α<κ(Vα ∩A)−). We then have:
p ∈ A and p ∈ ⋂

α<κ W−
α ; so p = x and x ∈ A as required. �

The following replaces Lemma 4 in [15].
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Lemma 4.8. Let X be an H-closed space with χ(X) � κ and let ξ = {xF : F ∈ κ<ω} be a
net in X. Then there is a subset Aξ of X such that

(1) ξ ⊆ Aξ and |Aξ | � κ ;
(2) some point of Aξ is a θ -cluster point of ξ relative to Aξ .

Proof. Let x be a θ -cluster point of ξ , and for each y ∈ X let {V (γ, y): γ < κ} be a local
base for y.

• We have: for each γ < κ and each α < κ , there exists F ∈ κ<ω such that α ∈ F and
xF ∈ V (γ, x)−.

• We want: for each γ < κ and each α < κ , there exists F ∈ κ<ω such that α ∈ F and
xF ∈ (V (γ, x) ∩ Aξ )

−.

For each γ < κ and each F ∈ κ<ω such that xF ∈ V (γ, x)−, let x(γ,F,β) ∈ V (γ, x) ∩
V (β,xF ), 0 � β < κ . The required set is

Aξ = {x} ∪ ξ ∪ {
x(γ,F,β): γ < κ, F ∈ κ<ω, xF ∈ V (γ, x)−, β < κ

}
. �

Theorem 4.9 (Gryzlov for κ = ω; Dow–Porter). Let X be an H-closed space. Then |X| �
2χ(X).

Proof. Let χ(X) = κ , and for each x ∈ X let Vx be a local base for x such that |Vx | � κ .
For each net ξ = {xF : F ∈ κ<ω} in X let Aξ be a subset of X that satisfies (1) and (2) of
Lemma 4.8. Construct a sequence {Aα: α < κ+} of subsets of X such that for 0 � α < κ+:

(a) |Aα| � 2κ ;
(b) if ξ = {xF : F ∈ κ<ω} is a net in

⋃
β<α Aβ , then Aξ ⊆ Aα ;

(c) if W is a finite union of elements of {V : V ∈ Vx and x ∈ ⋃
β<α Hβ} and W− �= X,

then Aα − W− �= ∅.

Let A = ⋃{Aα: α < κ+}; clearly |A| � 2κ . By (b), the set A satisfies (θCP); Lemma 4.7
now applies and A is an H-set. Finally, A = X by (c) and the fact that A is an H-set. �

Let 〈X,τ 〉 be an H-closed space and let RO(X) be the collection of all regular open
subsets of X. Then RO(X) is a base for a courser topology τS on X. Moreover, 〈X,τS〉 is
an H-closed space and χ(〈X,τS〉) � ψc(〈X,τ 〉). From these observations we have:

Corollary 4.10. Let X be an H-closed space. Then |X| � 2ψc(X).

5. Problems

This section is devoted to problems that are related to generalizations or variations of
Arhangel’skiı̆’s inequality. The first two come from Section 3.
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Question 1. Let X be a regular space. Is |X| � 2χ(X)wL(X)?

This question is due to Bell, Ginsburg, and Woods and also Arhangel’skiı̆ [3]. For Haus-
dorff spaces, the answer is NO; see Example 2.3 in [6]. On the other hand, for normal
spaces, the answer is YES (see inequality (5) in Section 3). What happens for Urysohn
spaces? For regular spaces?

Question 2. Let X be a Hausdorff space. Is |X| � 2χ(X)wLc(X)?

This question is due to Arhangel’skiı̆ (1979). The answer is YES for Urysohn spaces
(due to Alas). A positive solution to Question 2 would give a unified approach to these two
fundamental inequalities for Hausdorff spaces: |X| � 2χ(X)L(X) and |X| � 2χ(X)c(X).

Now let us turn to questions of the following general form. Suppose that X is a Lindelöf
space with countable pseudo-character. What can we say about the cardinality of X? Note
that X is T1; for now we do not assume the Hausdorff hypothesis. This question is very
natural and was raised by Arhangel’skiı̆ in [2]. Tall’s paper [25] is the best and most com-
prehensive source of information on questions of this type. The situation is rather negative
and can be summarized by the following two results.

Theorem 5.1 (Arhangel’skiı̆). Let X be a Lindelöf space with countable pseudo-character.
Then |X| < first measurable cardinal (if it exists).

Theorem 5.2. (Juhász [20]) Let λ0 = ω,λn+1 = 22λn , and κ = sup{λn: n ∈ ω}. Then there
is a Lindelöf space with countable pseudo-character and of cardinality κ . (This construc-
tion works for any choice of λ0 below the first measurable cardinal.)

The cardinal κ of Theorem 5.2 has countable cofinality. In [25] Tall proves: it is consis-
tent that for each regular cardinal κ < first measurable cardinal, there is a Lindelöf space
with countable pseudo-character and of cardinality κ .

Two partial (positive) result are:

Theorem 5.3 (Charlesworth). Let X be a Lindelöf space with countable pseudo-character
and a separating open cover S such that ord(x,S) � 2ω for all x ∈ X. Then |X| � 2ω.

Theorem 5.4 (Buzyakova). Let X be a countably paracompact Lindelöf space with count-
able pseudo-character and countable tightness. Then |X| � 2ω.

Now suppose that X is a Lindelöf space with countable pseudo-character that is also
Hausdorff. Again, what can we say about the cardinality of X? The following result by
Shelah (proved in 1978 but not published until 1996) shows that we cannot prove |X| � 2ω

without extra set-theoretic axioms.

Theorem 5.5 (Shelah). The following is consistent with ZFC + 2ω = ℵ1: there is a zero-
dimensional Lindelöf space with countable pseudo-character of cardinality ℵ2.
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Can we prove that |X| � ℵ2,ℵ3, and so on? The answer is NO.

Theorem 5.6 (Gorelic). Let κ be a cardinal. The following is consistent with ZFC + 2ω =
ℵ1: κ < 2ℵ1 and there is a zero-dimensional Lindelöf space with countable pseudo-
character and of cardinality 2ℵ1 .

There is a partial (positive) result.

Lemma 5.7 (Toroni). Let X be a pseudo-radial space. Then t (X) � ψ(X).

Theorem 5.8 (Toroni). Let X be a pseudo-radial Hausdorff space. Then |X| � 2ψ(X)L(X).

Proof. Follows from Lemma 5.7 and the inequality |X| � 2ψ(X)t (X)L(X). �
The consistency result of Gorelic suggests the following question.

Question 3. Let X be a Lindelöf Hausdorff space with countable pseudo-character. Can
we prove that |X| � 2ℵ1 ?

There is a theorem in [25], proved independently by Alas and Tall, that gives a partial
solution to Question 3 and perhaps shows that the question is not unreasonable. Recall that
every ℵ1-compact meta-Lindelöf space is Lindelöf.

Theorem 5.9 (Alas–Tall). Let X be an ℵ1-compact space with countable pseudo-character
such that every subspace of X of cardinality at most 2ℵ1 is meta-Lindelöf. Then |X| � 2ℵ1 .

A somewhat more general result, with proof, follows.

Theorem 5.10. Let X be an ℵ1-compact space, and assume that X satisfies

(1) ψ(X) � 2ℵ1 ;
(2) if Y ⊆ X and |Y | � 2ℵ1 , then Y is meta-Lindelöf.

Then |X| � 2ℵ1 .

Proof. For each x ∈ X let Vx be a collection of open neighborhoods of x such that |Vx | �
2ℵ1 and

⋂{V : V ∈ Vx} = {x}. Construct a sequence {Hα: α < ℵ2} of subsets of X such
that for 0 � α < ℵ2:

(a) |Hα| � 2ℵ1 ;
(b) if A ⊆ ⋃

β<α Hβ with |A| = ℵ1, then some point of Hα is a limit point of A;
(c) if W is a countable union of elements of {V : V ∈ Vx and x ∈ ⋃

β<α Hβ} and W �= X,
then Hα − W �= ∅.



R.E. Hodel / Topology and its Applications 153 (2006) 2199–2217 2215
Let H = ⋃{Hα: α < ℵ2}; clearly |H | � 2ℵ1 , and by (b), H is ℵ1-compact. By (2), H is
also meta-Lindelöf. Now use (c) and the fact that H is Lindelöf to prove that H = X. �

Finally, there is an obvious question about which very little is known.

Question 4. Let X be a Lindelöf first-countable T1-space. Can we prove that |X| � 2ℵ0 ?

6. The closure method and elementary submodels

Throughout this paper we have used the closure method to prove a wide range of in-
equalities, all inspired by Arhangel’skiı̆’s original theorem. The closure method emerged
from Arhangel’skiı̆’s original proof, with simplifications by Šapirovskiı̆ [22] and Pol [21].
As an early example of a proof by the closure method, let us mention Rudin’s 1964 proof
that every countably compact space with a point-countable base has a countable base (see
[11]).

Pol [21] used the closure method to prove the Arhangel’skiı̆ inequality |X| � 2χ(X)L(X)

and also the Hajnal–Juhász inequality |X| � 2χ(X)c(X); somewhat later I used this method
to prove the inequality |X| � 2ψ(X)s(X). The original proofs of the two inequalities by
Hajnal and Juhász used the Erdös–Rado Partition Theorem, which itself can be proved
using the closure method (see [18]). By now it is generally recognized that the closure
method is a unifying device for most of the deeper inequalities in cardinal invariants. In
summary, the development of the closure method is one of the most important legacies of
the Arhangel’skiı̆ inequality.

In 1980 Hajnal and Juhász proved the following remarkable reflection theorem: if every
subspace of X of cardinality � ℵ1 has a countable base, then X itself has a countable base.
Their proof is a highly original application of the closure method. In 1988, Dow answered a
question raised by Juhász by proving the following equally remarkable reflection theorem:
if X is countably compact, and every subspace of X of cardinality � ℵ1 is metrizable,
then X itself is metrizable. Dow’s method of proof introduced a new technique into set-
theoretic topology: elementary submodels. Roughly speaking, this is a deeper and more
sophisticated version of the closure method. See [12] for a detailed discussion of Dow’s
proof.

A recent paper by Fedeli and Watson is highly recommended to anyone who wants to
understand and use this important new tool. They show that a wide variety of results in set-
theoretic topology can be proved using elementary submodels. An especially nice feature
of their paper is the use of the Lowenheim–Skölem Theorem to give a clear explanation of
why the method works. Another nice feature is that on several occasions the authors give
two proofs: a “formal” proof in which the required formulas are actually constructed, and
an “in practice” proof in which the language of elementary submodels is used. Finally, we
note that in each of the papers [12,14] there is a proof of the Arhangel’skiı̆ inequality using
elementary submodels.
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