On Maillet Determinant

KAI WANG

Department of Mathematics, Wayne State University,
Detroit, Michigan 48202

Communicated by Hans Zassenhaus

Received April 13, 1982

For a positive integer \(m \), let \(A = \{ 1 \leq a < m/2 | (a, m) = 1 \} \) and let \(n = |A| \). For an integer \(x \), let \(R(x) \) be the least positive residue of \(x \) modulo \(m \) and if \((x, m) = 1 \), let \(x' \) be the inverse of \(x \) modulo \(m \). If \(m \) is odd, then

\[
R(ab') = \prod_{\chi} \left(\sum_{a=1}^{m-1} a\chi(a) \right),
\]

where \(\chi \) runs over all the odd Dirichlet characters modulo \(m \).

1. INTRODUCTION

For an arbitrary positive integer \(m \), let \(A = \{ 1 \leq a < m/2 | (a, m) = 1 \} \) and let \(n = |A| \). For any integer \(x \), let \(R(x) \) be the least positive residue of \(x \) modulo \(m \) and for \((x, m) = 1 \), let \(x' \) be the inverse of \(x \) modulo \(m \). The Maillet determinant is an \(n \times n \) determinant defined by

\[
D_m = |R(ab')|_{a,b\in A}.
\]

About twenty years ago, Carlitz and Olson [2] proved the following interesting formula for \(m = p \) an odd prime,

\[
D_p = \pm p^{(p-3)/2}h,
\]

where \(h \) denotes the first factor of the class number of the cyclotomic field \(k(e^{2\pi i/p}) \). The purpose of this note is to study the Maillet determinant for an arbitrary \(m \). The main result is

Theorem 1.1. Let \(m \) be a positive integer. If \(m \) is odd, then

\[
D_m = -2^{1-n} \prod_{\chi \text{ odd}} \left(\sum_{a=1}^{m-1} a\chi(a) \right),
\]

where \(\chi \) runs over all the odd Dirichlet characters modulo \(m \).

Our approach which is different from [2] was motivated by our recent work.
study of Chowla’s theorem [3, 5]. Our method also yields information about
the Maillet determinant when \(m \) is even and when \(A \) is an arbitrary coset
representative of the subgroup \(\{ \pm 1 \} \) in the group \(\mathbb{Z}_m^\times \) of units modulo \(m \). If
\(m = p \) a prime, then our formula reduces to Carlitz and Olson’s formula. We
are also able to determine the sign in their formula.

We refer to [1, 4] for the basic knowledge on Dirichlet characters and
related results.

2. General Case

Let \(m \) be a fixed positive integer and let

\[
\mathbb{Z}_m^\times = \{ 1 \leq a < m \mid (a, m) = 1 \}
\]

be the group of units modulo \(m \). Then the order of \(\mathbb{Z}_m^\times \) is equal to \(\varphi(m) \),
where \(\varphi(m) \) is the euler function. Let \(A \) be a set of coset representatives of
the subgroup \(\{ \pm 1 \} \) in \(\mathbb{Z}_m^\times \) in a fixed order. Then \(|A| = \frac{1}{2}\varphi(m) \). For a Dirichlet
character \(\chi \) modulo \(m \), let \(S(\chi) = \sum_{a \in \mathbb{Z}_m^\times} \chi(a) \) and \(T_\chi(\chi) = \sum_{a \in A} \chi(a). \) We
will prove the formula for the Maillet determinant defined over \(A \).

Theorem 2.1. With above notations,

\[
|R(ab')_{a, b \in A}| = 2^{-\varphi(m)/2} \left(\prod_\chi S(\chi) \right) \left(1 + \frac{2m}{\varphi(m)} \sum_\chi \left| T_\chi(\chi) \right|^2 \right).
\]

where \(\chi \) runs over all odd Dirichlet characters modulo \(m \).

Proof. Recall that a Dirichlet character \(\chi \) is odd if \(\chi(-1) = -1 \). Let
\(\{ \chi_1, \ldots, \chi_n \} \) be the set of all odd Dirichlet characters modulo \(m \), where
\(n = \varphi(m)/2 \). Let \(A = \{ a_1, \ldots, a_n \} \) and let

\[
\Omega = n^{-1/2} |\chi_i(a_j)|^{1 \leq i, j \leq n}.
\]

It follows immediately from the orthogonal relations of characters

\[
\frac{1}{\varphi(m)} \sum_{a \in \mathbb{Z}_m^\times} \chi_i(a) \chi_j(a) = \delta_{ij}
\]

that \(\Omega \) is unitary and

\[
\sum_{\chi \text{odd}} \chi(a) = \begin{cases}
 n & \text{if } a = 1, \\
 -n & \text{if } a = m-1, \\
 0 & \text{otherwise,}
\end{cases}
\]
and
\[\sum_{a \in A} \chi_i(a) \chi_j(a) = n \delta_{ij}. \]

It is clear that
\[|R(ab')|_{a,b \in A} = \left| \Omega[R(ab')] \Omega^* \right| = \left| \frac{1}{n} \sum_{a \in A} \sum_{b \in A} \chi_i(a) R(ab') \chi_j(b) \right|. \]

For convenience, let
\[x_{ij} = \sum_{a \in A} \sum_{b \in A} \chi_i(a) R(ab') \chi_j(b). \]

Note that
\[\sum_{a \in Z_m^x} \sum_{b \in Z_m^x} \chi_i(a) R(ab') \chi_j(b) \]
\[= \sum_{c \in Z_m^x} \sum_{b \in Z_m^x} \chi_i(cb) R(c) \chi_j(b) \]
\[= \left(\sum_{b \in Z_m^x} \chi_j(b) \chi_j(b) \right) \left(\sum_{c \in Z_m^x} R(c) \chi_i(c) \right) \]
\[= \delta_{ij} \varphi(m) S(\chi_i). \]

On the other hand,
\[\sum_{a \notin A} \sum_{b \in A} \chi_i(a) R(ab') \chi_j(b) \]
\[= \sum_{a \in A} \sum_{b \in A} \chi_i(m-a) R((m-a)b') \chi_j(b) \]
\[= - \sum_{a \in A} \sum_{b \in A} \chi_i(a)(m-R(ab')) \chi_j(b) \quad \text{(because } R(m-x) = m - R(x)) \]
\[= -m \left(\sum_{a \in A} \chi_i(a) \right) \left(\sum_{b \in A} \chi_j(b) \right) + \sum_{a \in A} \sum_{b \in A} \chi_i(a) R(ab') \chi_j(b) \]
\[= m T'_A(\chi_i) T_A(\chi_j) \chi_{ij}. \]

Similarly, we have
\[\sum_{a \notin A} \sum_{b \notin A} \chi_i(a) R(ab') \chi_j(b) = -m T'_A(\chi_i) T_A(\chi_j) + x_{ij}, \]
\[\sum_{a \notin A} \sum_{b \notin A} \chi_i(a) R(ab') \chi_j(b) = x_{ij}. \]
It follows that

\[x_{ij} = \frac{n}{2} \delta_{ij} S(\chi_j) + \frac{m}{2} T_A(\chi_i) T_A(\chi_j), \]

for \(1 \leq i, j \leq n \). Using the following formula for determinants,

\[|\delta_{ij} y_i + 1|_{1 \leq i, j \leq n} = \left(\prod_{i=1}^{n} y_i \right) \left(1 + \sum_{i=1}^{n} \frac{1}{y_i} \right), \]

we have

\[|R(ab')|_{a, b \in A} = n^{-n} |x_{ij}| \]

\[= n^{-n} \left| \frac{n}{2} \delta_{ij} S(\chi_j) + \frac{m}{2} T_A(\chi_i) T_A(\chi_j) \right| \]

\[= n^{-n} \left(\frac{m}{2} \right)^n \prod_{i=1}^{n} T_A(\chi_i) \prod_{j=1}^{n} T_A(\chi_j) \left| \frac{n}{m} \frac{S(\chi_j)}{T_A(\chi_i) T_A(\chi_j)} + 1 \right| \]

\[= \left(\frac{m}{2n} \right)^n \left(\prod_{i=1}^{n} T_A(\chi_i) T_A(\chi_i) \right) \left(\prod_{i=1}^{n} \frac{n}{m} \frac{S(\chi_j)}{T_A(\chi_i) T_A(\chi_i)} \right) \times \left(1 + \sum_{i=1}^{n} \frac{m T_A(\chi_i) T_A(\chi_j)}{n S(\chi_i)} \right) \]

\[= 2^{-n} \left(\prod_{i=1}^{n} S(\chi_i) \right) \left(1 + \frac{m}{n} \sum_{i=1}^{n} \frac{|T_A(\chi_i)|^2}{S(\chi_i)} \right). \]

This completes the proof of Theorem 2.1.

3. Odd Case

In this section, let \(m \) be an odd integer and let

\[A = \{ a \in \mathbb{Z}_m^* | 1 \leq a < m/2 \}. \]

We will show that the formula in Theorem 2.1 can be greatly simplified. For simplicity, let \(T(\chi) = T_A(\chi) \). We will need

Lemma 3.1. Let \(\chi \) be an odd Dirichlet character modulo \(m \). Then

\[T(\chi) = \frac{1}{m} \overline{\chi(2) - 2) S(\chi)}. \]
Proof: In the following computations, \(a, b \in \mathbb{Z}_m\).

\[
(1 - 2\chi(2)) S(\chi) = \sum_{a \text{ odd}} a\chi(a) - \sum_{m > a > m/2} 2a\chi(2a)
\]

\[
= \sum_{a \text{ odd}} a\chi(a) - \sum_{m > a > m/2} 2a\chi(2a - m)
\]

\[
= \sum_{a \text{ odd}} a\chi(a) - \sum_{b \text{ odd}} (m + b)\chi(b)
\]

\[
= -m \sum_{a \text{ odd}} \chi(a) = m \sum_{a \text{ odd}} \chi(m - a)
\]

\[
= m\chi(2) \sum_{1 < b < m/2} \chi(b) = m\chi(2) T(\chi).
\]

This implies the lemma.

Theorem 3.2. If \(m\) is odd and \(A = \{a \in \mathbb{Z}_m^x \mid 1 \leq a < m/2\}\), then

\[
|R(ab'|_{a, b \in A}) - (-1)^{1/2}\varphi(m)| S(\chi).
\]

Proof: By Lemma 3.1,

\[
\sum_{\chi \text{ odd}} \frac{|T(\chi)|^2}{S(\chi)} = \frac{1}{m} \sum_{\chi \text{ odd}} (\bar{\chi}(2) - 2) T(\bar{\chi})
\]

\[
= \frac{1}{m} \left(\sum_{\chi \text{ odd}} \chi(2) T(\chi) - 2 \sum_{\chi \text{ odd}} T(\chi) \right)
\]

\[
= \frac{1}{m} \left(\sum_{a \in A} \sum_{\chi \text{ odd}} \chi(2a) - 2 \sum_{a \in A} \sum_{\chi \text{ odd}} \chi(a) \right)
\]

\[
= \frac{1}{m} (-\varphi(m) - 2\varphi(m)) = -\frac{3}{2} \varphi(m),
\]

since

\[
\sum_{\chi \text{ odd}} \chi(a) = 1 \quad \text{if} \quad a = 1,
\]

\[
= -1 \quad \text{if} \quad a = m - 1,
\]

\[
= 0 \quad \text{otherwise}.
\]

Now Theorem 3.2 follows easily from Theorem 2.1.
Corollary 3.3. If $m = p$, an odd prime, then

$$|R(ab')|_{a,b \in A} = (-p)^{(1/2)(p-3)}h,$$

where h is the first factor of the class number of the cyclotomic field $k(e^{2\pi i/p})$.

Proof. It is known [4] that under the assumption

$$h = 2^{1-n}p \prod_{\chi \text{odd}} \left| \frac{T(\chi)}{2 - \chi(2)} \right|,$$

where $n = \frac{1}{2}(p - 1)$. By Theorem 3.2 and Lemma 3.1,

$$|R(ab')|_{a,b \in A} = (-1)^{2^{1-n}} \prod_{\chi \text{odd}} \frac{pT(\chi)}{\chi(2) - 2}$$

$$= (-1)^{n+1}2^{1-n}p^n \frac{T(\chi)}{\chi(2) - 2}$$

$$= (-1)^{n+1}p^{n-1}h = (-p)^{n-1}h.$$

Corollary 3.4. If m is odd and $B = \{ka | a \in A \}$, where $(k, m) = 1$, then

$$|R(ab')|_{a,b \in B} = (-1)^{2^{1-(1/2)\omega(m)}} \prod_{\chi \text{odd}} S(\chi).$$

Proof. This follows immediately from the observation

$$|T_B(\chi)|^2 = \left| \sum_{a \in A} \chi(ka) \right|^2 = |\chi(k)T(\chi)|^2 = |\chi(k)|^2 |T(\chi)|^2 = |T(\chi)|^2.$$

4. Even Case

There is not much that can be done to the formula for the Maillet determinant where $m \equiv 2$ (mod 4). However, when $m \equiv 0$ (mod 4), the formula can also be simplified as in the odd case as shown in Theorem 4.1.

Theorem 4.1. Suppose that $m > 4$ and $m \equiv 0$ (mod 4). Let $A = \{a \in \mathbb{Z}_m^* | 1 \leq a < m/2 \}$. Then

$$|R(ab')|_{a,b \in A} = -2^{-\omega(m)/2} \prod_{\chi \text{odd}} S(\chi).$$

We will only outline the proofs and leave the details to the readers. Let $m = 4k$, $k > 1$. Since $(2k - 1)^2 \equiv 1$ (mod m), $\chi(2k - 1) = \pm 1$. Note that
there are exactly $\frac{1}{2}\phi(m)$ odd Dirichlet characters χ such that $\chi(2k - 1) = 1$ (resp. -1). Let χ be an odd Dirichlet character. If $\chi(2k - 1) = 1$, then $S(\chi) = -(m/2) T(\chi)$ and if $\chi(2k - 1) = -1$, then $T(\chi) = 0$. This implies that

$$1 + \frac{2m}{\phi(m)} \sum_{\chi \text{ odd}} \frac{|T(\chi)|^2}{S(\chi)} = -1,$$

and our formula.

References