On Maillet Determinant

Kai Wang
Department of Mathematics, Wayne State University, Detroit, Michigan 48202 Communicated by Hans Zassenhaus
Received April 13, 1982

Abstract

For a positive integer m. let $A=\{1 \leqslant a<m / 2 \mid(a, m)=1\}$ and let $n=|\boldsymbol{A}|$. For an integer x, let $R(x)$ be the least positive residue of x modulo m and if $(x, m)=1$, let x^{\prime} be the inverse of x modulo m. If m is odd, then $\left|R\left(a b^{\prime}\right)\right|_{a, b \in A}=$ $-2^{1-n}\left(\prod_{\chi}\left(\sum_{a=1}^{m-1} a_{\chi}(a)\right)\right)$, where χ runs over all the odd Dirichlet characters modulo m.

1. Introduction

For an arbitrary positive integer m, let $A=\{1 \leqslant a<m / 2 \mid(a, m)=1\}$ and let $n=|A|$. For any integer x, let $R(x)$ be the least positive residue of x modulo m and for $(x, m)=1$, let x^{\prime} be the inverse of x modulo m. The Maillet determinant is an $n \times n$ determinant defined by

$$
D_{m}=\left|R\left(a b^{\prime}\right)\right|_{a, b \in A} .
$$

About twenty years ago, Carlitz and Olson $|2|$ proved the following interesting formula for $m=p$ an odd prime,

$$
D_{p}= \pm p^{(p-3) / 2} h,
$$

where h denotes the first factor of the class number of the cyclotomic field $k\left(e^{2 \pi i / p}\right)$. The purpose of this note is to study the Maillet determinant for an arbitrary m. The main result is

Theorem 1.1. Let m be a positive integer. If m is odd, then

$$
D_{m}=-2^{1-n} \prod_{\chi \text { odd }}\left(\sum_{a=1}^{m-1} a \chi(a)\right),
$$

where χ runs over all the odd Dirichlet characters modulo m.
Our approach which is different from [2] was motivated by our recent 306
study of Chowla's theorem [3,5]. Our method also yields information about the Maillet determinant when m is even and when A is an arbitrary coset representative of the subgroup $\{ \pm 1\}$ in the group Z_{m}^{x} of units modulo m. If $m=p$ a prime, then our formula reduces to Carlitz and Olson's formula. We are also able to determine the sign in their formula.

We refer to $[1,4]$ for the basic knowledge on Dirichlet characters and related results.

2. General Case

Let m be a fixed positive integer and let

$$
Z_{m}^{x}=\{1 \leqslant a<m \mid(a, m)=1\}
$$

be the group of units modulo m. Then the order of Z_{m}^{x} is equal to $\varphi(m)$, where $\varphi(m)$ is the euler function. Let A be a set of coset representatives of the subgroup $\{ \pm 1\}$ in Z_{m}^{x} in a fixed order. Then $|A|=\frac{1}{2} \varphi(m)$. For a Dirichlet character χ modulo m, let $S(\chi)=\sum_{a \in Z_{m}^{x}} \alpha \chi(a)$ and $T_{A}(\chi)=\sum_{a \in A} \chi(a)$. We will prove the formula for the Maillet determinant defined over A.

Theorem 2.1. With above notations,

$$
\left|R\left(a b^{\prime}\right)\right|_{a, b \in A}=2^{-\omega(m) / 2}\left(\prod_{x} S(\chi)\right)\left(1+\frac{2 m}{\varphi(m)} \Gamma_{x} \frac{\left|T_{A}(\chi)\right|^{2}}{S(\chi)}\right)
$$

where χ runs over all odd Dirichlet characters modulo m.
Proof. Recall that a Dirichlet character χ is odd if $\chi(-1)=-1$. Let $\left\{\chi_{1}, \ldots, \chi_{n}\right\}$ be the set of all odd Dirichlet characters modulo m, where $n=\varphi(m) / 2$. Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and let

$$
\Omega=n^{-1 / 2}\left|\chi_{i}\left(a_{j}\right)\right|_{1 \leqslant i, j \leqslant n} .
$$

It follows immediately from the orthogonal relations of characters

$$
\frac{1}{\varphi(m)} \sum_{a \in \mathcal{Z}_{m}^{x}} \chi_{i}(a) \overline{\chi_{j}(a)}=\delta_{i j}
$$

that Ω is unitary and

$$
\begin{aligned}
\Sigma_{\chi \text { odd }} \chi(a)=n & \\
=-n & \\
& \text { if } \quad \text { if } \quad a=m-1 \\
& =0
\end{aligned} \quad \begin{aligned}
& \text { otherwise }
\end{aligned}
$$

and

$$
\searrow_{a \in A} \chi_{i}(a) \overline{\chi_{j}(a)}=n \delta_{i j}
$$

It is clear that

$$
\left|R\left(a b^{\prime}\right)\right|_{a, b \in A}=\left|\Omega\left[R\left(a b^{\prime}\right)\right] \Omega^{*}\right|=\left|\frac{1}{n} \sum_{a \in A} \sum_{b \in A} \chi_{i}(a) R\left(a b^{\prime}\right) \overline{\chi_{j}(b)}\right|
$$

For convenience, let

$$
x_{i j}=\sum_{a \in A} \sum_{b \in A} \chi_{i}(a) R\left(a b^{\prime}\right) \overline{\chi_{j}(b)}
$$

Note that

$$
\begin{aligned}
\sum_{a \in Z_{m}^{x}} & \sum_{b \in Z_{m}^{x}} \chi_{i}(a) R\left(a b^{\prime}\right) \overline{\chi_{j}(b)} \\
& =\sum_{c \in Z_{m}^{x}} \sum_{b \in Z_{m}^{x}} \chi_{i}(c b) R(c) \overline{\chi_{j}(b)} \\
& =\left(\sum_{b \in Z_{m}^{x}} \chi_{i}(b) \overline{\chi_{j}(b)}\right)\left(\sum_{c \in Z_{m}^{x}} R(c) \chi_{i}(c)\right) \\
& =\delta_{i j} \varphi(m) S\left(\chi_{i}\right)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \sum_{a \notin A} \quad \sum_{b \in A} \chi_{i}(a) R\left(a b^{\prime}\right) \overline{\chi_{j}(b)} \\
& \quad=\sum_{a \in A} \sum_{b \in A} \chi_{i}(m-a) R\left((m-a) b^{\prime}\right) \overline{\chi_{j}(b)} \\
& \\
& \left.=-\sum_{a \in A} \sum_{b \in A} \chi_{i}(a)\left(m-R\left(a b^{\prime}\right)\right) \overline{\chi_{j}(b)} \quad \text { (because } R(m-x)=m-R(x)\right) \\
& \quad=-m\left(\sum_{a \in A} \chi_{i}(a)\right)\left(\sum_{b \in A} \overline{\chi_{j}(b)}\right)+\sum_{a \in A} \sum_{b \in A} \chi_{i}(a) R\left(a b^{\prime}\right) \overline{\chi_{j}(b)} \\
& \\
& =m T_{A}\left(\chi_{i}\right) T_{A}\left(\overline{\chi_{j}}\right) \vdash x_{i j} .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
& \sum_{a \in A} \sum_{b \notin A} \chi_{i}(a) R\left(a b^{\prime}\right) \overline{\chi_{j}(b)}=-m T_{A}\left(\chi_{i}\right) T_{A}\left(\bar{\chi}_{j}\right)+x_{i j}, \\
& \sum_{a \notin A} \sum_{b \notin A} \chi_{i}(a) R\left(a b^{\prime}\right) \overline{\chi_{j}(b)}=x_{i j} .
\end{aligned}
$$

It follows that

$$
x_{i j}=\frac{n}{2} \delta_{i j} S\left(\chi_{j}\right)+\frac{m}{2} T_{A}\left(\chi_{i}\right) T_{A}\left(\bar{\chi}_{j}\right)
$$

for $1 \leqslant i, j \leqslant n$. Using the following formula for determinants,

$$
\left|\delta_{i j} y_{i}+1\right|_{1 \leqslant i, j \leqslant n}=\left(\prod_{i=1}^{n} y_{i}\right)\left(1+\sum_{i=1}^{n} \frac{1}{y_{i}}\right),
$$

we have

$$
\begin{aligned}
\left|R\left(a b^{\prime}\right)\right|_{a, b \in A}= & n^{-n}\left|x_{i j}\right| \\
= & n^{-n}\left|\frac{n}{2} \delta_{i j} S\left(\chi_{j}\right)+\frac{m}{2} T_{A}\left(\chi_{i}\right) T_{A}\left(\bar{\chi}_{j}\right)\right| \\
= & n^{-n}\left(\frac{m}{2}\right)^{n} \prod_{i=1}^{n} T_{A}\left(\chi_{i}\right) \prod_{j=1}^{n} T_{A}\left(\bar{\chi}_{j}\right)\left|\frac{n}{m} \delta_{i j} \frac{S\left(\chi_{j}\right)}{T_{A}\left(\chi_{i}\right) T_{A}\left(\bar{\chi}_{j}\right)}+1\right| \\
= & \left(\frac{m}{2 n}\right)^{n}\left(\prod_{i=1}^{n} T_{A}\left(\chi_{i}\right) T_{A}\left(\bar{\chi}_{i}\right)\right)\left(\prod_{i=1}^{n} \frac{n}{m} \frac{S\left(\chi_{j}\right)}{T_{A}\left(\chi_{i}\right) T_{A}\left(\bar{\chi}_{i}\right)}\right. \\
& \times\left(1+\sum_{i=1}^{n} \frac{m T_{A}\left(\chi_{i}\right) T_{A}\left(\bar{\chi}_{i}\right)}{n S\left(\chi_{i}\right)}\right) \\
= & 2^{-n}\left(\prod_{i=1}^{n} S\left(\chi_{i}\right)\right)\left(1+\frac{m}{n} \sum_{i=1}^{n} \frac{\left|T_{A}\left(\chi_{i}\right)\right|^{2}}{S\left(\chi_{i}\right)}\right) .
\end{aligned}
$$

This completes the proof of Theorem 2.1.

3. Odd Case

In this section, let m be an odd integer and let

$$
A=\left\{a \in Z_{m}^{x} \mid 1 \leqslant a<m / 2\right\}
$$

We will show that the formula in Theorem 2.1 can be greatly simplified. For simplicity, let $T(\chi)=T_{A}(\chi)$. We will need

Lemma 3.1. Let χ be an odd Dirichlet character modulo m. Then

$$
\left.T(\chi)=\frac{1}{m} \overline{(\chi(2)}-2\right) S(\chi)
$$

Proof. In the following computations, $a, b \in Z_{m}^{x}$.

$$
\begin{aligned}
(1-2 \chi(2)) S(\chi) & =\text { ป } a \chi(a)-\searrow 2 a \chi(2 a) \\
& =\sum_{a \text { odd }} a \chi(a) \sum_{m>a>m / 2} 2 a \chi(2 a) \\
& =\sum_{a \text { odd }} a \chi(a)-\sum_{m>a>m / 2} 2 a \chi(2 a-m) \\
& =\sum_{a \text { odd }}^{\prime} a \chi(a)-\sum_{b \text { odd }}(m+b) \chi(b) \\
& =-m \sum_{a \text { odd }}^{\prime} \chi(a)=m \sum_{a \text { odd }} \chi(m-a) \\
& =m \chi(2) \sum_{1<b<m / 2} \chi(b)=m \chi(2) T(\chi) .
\end{aligned}
$$

This implies the lemma.
THEOREM 3.2. If m is odd and $A=\left\{a \in Z_{m}^{x} \mid 1 \leqslant a<m / 2\right\}$, then

$$
\left|R\left(a b^{\prime}\right)\right|_{a, b \in A}=(-1) 2^{1-(1 / 2) \omega(m)} \prod_{x \text { odd }} S(\chi)
$$

Proof. By Lemma 3.1,

$$
\begin{aligned}
\sum_{\chi \text { odd }} \frac{|T(\chi)|^{2}}{S(\chi)} & =\frac{1}{m} \sum_{\chi \text { odd }}(\bar{\chi}(2)-2) T(\bar{\chi}) \\
& =\frac{1}{m}\left(\sum_{\chi \text { odd }} \chi(2) T(\chi)-2 \sum_{\chi \text { odd }} T(\chi)\right) \\
& =\frac{1}{m}\left(\sum_{a \in A} \sum_{\chi \text { odd }}^{\prime} \chi(2 a)-2 \sum_{a \in A} \sum_{\chi \text { odd }} \chi(a)\right) \\
& =\frac{1}{m}(-\varphi(m)-2 \varphi(m))=\frac{-3}{2} \varphi(m),
\end{aligned}
$$

since

$$
\begin{aligned}
\sum_{\chi \text { odd }} \chi(a)=1 \quad & \quad \text { if } \quad a=1 \\
& =-1 \\
& =0 \quad
\end{aligned} \quad \begin{aligned}
& \text { if } \quad a=m-1 \\
&
\end{aligned}
$$

Now Theorem 3.2 follows easily from Theorem 2.1.

Corollary 3.3. If $m=p$, an odd prime, then

$$
\left|R\left(a b^{\prime}\right)\right|_{a, b \in A}=(-p)^{(1 / 2)(p-3)} h
$$

where h is the first factor of the class number of the cyclotomic field $k\left(e^{2 \pi i / p}\right)$.
Proof. It is known [4] that under the assumption

$$
h=2^{1-n} p \prod_{\chi \text { odd }}\left|\frac{T(\chi)}{2-\chi(2)}\right|,
$$

where $n=\frac{1}{2}(p-1)$. By Theorem 3.2 and Lemma 3.1,

$$
\begin{aligned}
\left|R\left(a b^{\prime}\right)\right|_{a, b \in A} & =(-1) 2^{1-n} \prod_{\chi \text { odd }} \frac{p T(\chi)}{\overline{\chi(2)}-2} \\
& =(-1)^{n+1} 2^{1-n} p^{n} \frac{\chi \prod_{\text {odd }}^{T(x)}}{\chi \prod_{\text {odd }}^{2-x^{2 \prime}}} \\
& =(-1)^{n+1} p^{n-1} h=(-p)^{n-1} h .
\end{aligned}
$$

Corollary 3.4. If m is odd and $B=\{k a \mid a \in A\}$, where $(k, m)=1$, then

$$
\left|R\left(a b^{\prime}\right)\right|_{a, b \in B}=(-1) 2^{1-(1 / 2) \omega(m)} \prod_{\chi \text { odd }} S(\chi) .
$$

Proof. This follows immediately from the observation

$$
\left|T_{B}(\chi)\right|^{2}=\left|\sum_{\pi \in A} \chi(k a)\right|^{2}=|\chi(k) T(\chi)|^{2}=|\chi(k)|^{2}|T(\chi)|^{2}=|T(\chi)|^{2}
$$

4. Even Case

There is not much that can be done to the formula for the Maillet determinant where $m \equiv 2(\bmod 4)$. However, when $m \equiv 0(\bmod 4)$, the formula can also be simplified as in the odd case as shown in Theorem 4.1.

Theorem 4.1. Suppose that $m>4$ and $m \equiv 0(\bmod 4)$. Let $A=$ $\left\{a \in Z_{m}^{x} \mid 1 \leqslant a<m / 2\right\}$. Then

$$
\left|R\left(a b^{\prime}\right)\right|_{a, b \in .4}=-2^{-\omega(m) / 2} \prod_{\chi \text { odd }} S(\chi)
$$

We will only outline the proofs and leave the details to the readers. Let $m=4 k, k>1$. Since $(2 k-1)^{2} \equiv 1(\bmod m), \chi(2 k-1)= \pm 1$. Note that
there are exactly $\frac{1}{4} \varphi(m)$ odd Dirichlet characters χ such that $\chi(2 k-1)=1$ (resp. -1). Let χ be an odd Dirichlet character. If $\chi(2 k-1)=1$, then $S(\chi)=-(m / 2) T(\chi)$ and if $\chi(2 k-1)=-1$, then $T(\chi)=0$. This implies that

$$
1+\frac{2 m}{\varphi(m)} \underset{\chi \text { odd }}{ } \frac{|T(\chi)|^{2}}{S(\chi)}=-1
$$

and our formula.

References

1. Z. Borevich and I. Shafarevich, "Number Theory," Academic Press, New York, 1966.
2. L. Carlitz and F. R. Olson, Maillet's determinant, Proc. Amer. Math. Soc. 6 (1955), 265-269.
3. S. Chowla, The nonexistence of nontrivial linear relations between the roots of a certain irreducible equation, J. Number Theory 2 (1970), 120-123.
4. D. A. Marcus, "Number Field," Springer-Verlag, New York, Berlin, 1977.
5. K. Wang, On a theorem of S. Chowla, J. Number Theory 14 (1982), 1-4.
