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Abstract

We consider dependence structures in multivariate time series that are characterized by deterministic
trends. Results from spectral analysis for stationary processes are extended to deterministic trend functions.
A regression cross covariance and spectrum are defined. Estimation of these quantities is based on wavelet
thresholding. The method is illustrated by a simulated example and a three-dimensional time series consisting
of ECG, blood pressure and cardiac stroke volume measurements.
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1. Introduction

We consider dependence structures in multivariate time series that are due to similarities in
underlying deterministic trends. Suppose that we observe a multivariate time series Y(i) =
(Y1(i), . . . , Yp(i))T , (i = 1, . . . , n). In classical spectral analysis, a time series and its autocorre-
lations are decomposed into sinusoidal components. Grenander and Rosenblatt [12] extended the
idea of spectral decomposition to parametric regression with deterministic explanatory variables.
They show that consistency and efficiency of least squares estimators depend on the regression
spectrum. For further results on the interplay between regression spectrum and spectral properties
of the stochastic part see e.g. Yajima [21].

In the present paper, spectral analysis of regression functions is extended to multivariate non-
parametric trend functions that are estimated by wavelet thresholding. The definitions of the
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regression cross covariance and regression cross spectrum are adapted to this context. Asymp-
totic properties of estimators of these quantities are derived. Specifically, the paper is organized
as follows. Basic definitions are given in Section 2. Estimation of the regression spectrum, the
regression cross covariances and their asymptotic distribution are considered in Section 3. Algo-
rithmic issues and a data example are discussed in Section 4. Final remarks in Section 5 conclude
the paper. Proofs are given in the Appendix.

2. Definition of the regression cross covariance and spectrum

2.1. Cross covariance and correlation

Assume that the observed time series Y(j) = (Y1(j), . . . , Yp(j))T is of the form

Y(j) = f(tj ) + ε(j), (1)

where tj = j/n (j = 1, . . . , n), f(t) = (f1(t), . . . , fp(t))T ∈ Cp (t ∈ R) is a multivariate
deterministic trend function and ε(j) is zero mean stationary noise. We will assume that fr(t) is
Lebesque measurable and

∫ 1
0 |fr(t)|2 dt < ∞, i.e. fr ∈ L2 where L2 = L2(C) denotes the space

of complex-valued functions that are square integrable on [0, 1]. For fr, fs ∈ L2, we define

〈fr, fs〉 =
∫ 1

0
fr(t)fs(t) dt.

Note that 〈, 〉 is a non-negative sesquilinear form. If we restrict attention to functions that are
periodic with period 1, then 〈, 〉 is a scalar product and the corresponding space L2[0, 1] is a
Hilbert space. Also note that, since ‖fr‖2 = 〈fr, fr 〉 < ∞, the mean vector

m(f ) =
∫ 1

0
f(t) dt

is well defined and finite. Without loss of generality (and since m(f ) can easily be estimated and
subtracted from the data), we will from now on assume m(f ) = 0. The corresponding space of
functions will be denoted by L2

o[0, 1] = {f ∈ L2[0, 1] : m(f ) = 0}.
We first define the autocorrelation function of f(t) ∈ L2

o. Grenander and Rosenblatt [12] intro-
duced a definition of cross- and autocorrelation �rs(u) between parametric regression functions
�r (t), �s(t) with t ∈ N (also see [20, Chapter 7]). In contrast, here, we consider nonparametric
regression functions fj (t) ∈ L2

o that are observed on an increasingly fine grid t1, t2, . . . , tn of
t-values in [0, 1]. A natural modification of the definition by Grenander and Rosenblatt definition
is therefore

�rs(u) = lim
n→∞

1

n

n∑
j=1

fr(tj + u)fs(tj ).(u ∈ [−1, 1])

and

�rs(u) = �rs(u)√
�r (0)�s(0)

.

This leads to
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Definition 1. Let f(t) = (f1(t), . . . , fp(t))T ∈ Cp (t ∈ R) be a p-dimensional deterministic
function as defined above, and such that, for each r ∈ {1, 2, . . . , p}, fr ∈ L2

o and ‖fr(t)‖ > 0.
Then the regression (cross-)covariance function �(u) = [�rs(u)]r,s=1,...,p and the regression
(cross-)correlation function R(u) = [�rs(u)]r,s=1,...,p of f(t) are defined by

�rs(u) = 〈fr(· + u), fs〉 =
∫ 1

0
fr(t + u)fs(t) dt

and

�rs(u) = �rs(u)√
�r (0)�s(0)

. (2)

The Hermitian property and non-negative definiteness of �rs(·) are obtained in the following:

Proposition 1. The regression cross correlation function �rs(u) defined in (2) is Hermitian and
non-negative definite.

In practice, �rs and �rs have to be estimated, since they depend on the unobservable
function f(t).

2.2. The spectrum

The function f(t) is observed for time points in the interval [0, 1] only. To extrapolate f beyond
the unit interval, we will assume that f(t) can be decomposed into a nonperiodic “long-term’’
trend component μ(t) (t ∈ R) and a component �(t) with �(t + T ) = �(t) for some T � 1

2 . To
simplify presentation, it will be assumed throughout the paper that μ ≡ 0, or μ has been estimated
and removed from the data. Thus,

f(t) = �(t)

with � periodic with period T � 1
2 .

Remark 1. The assumption of strict periodicity can be replaced by local periodicity, allowing
the periodic shape of � to change smoothly in time (see e.g. [13]). In this case, �rs(u) can be
approximated by extrapolating �, e.g. using local trigonometric polynomials [13] together with
nonparametric extrapolation (see e.g. [3]).

Consider now the characterization of f in the frequency domain. For t ∈ [0, 1], and fr ∈ L2
o

such that
∫ 1

0 |fr(t)| dt < ∞ we may write

f(t) =
∞∑

j=−∞
a(j) ei2�j t ,

where a(j) = (a1(j), a2(j), . . . , ap(j))T ∈ Cp are given by

ar(j) = 〈fr, e
i2�j ·〉 =

∫ 1

0
fr(t) e−i2�j t dt.
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Note that

m(f ) = a(0) = 0

and Parseval’s equation yields

‖fr‖2 =
∞∑

j=−∞
|ar(j)|2.

For the covariance function we then have

�(u) = ��(u)

where �� = [��;rs]r,s=1,...,p is a p × p matrix with

��;rs(u) = 〈�r (· + u), �s〉.
More explicitly, we have

��(u) =
∫ 1

0
�(t + u)�T (t) dt

=
∞∑

j=−∞
ei2�jua(j)aT (j)

and we may introduce the following:

Definition 2. The sequence of p × p matrices H(j) = [hrs(j)]r,s=1,...,p (j ∈ Z) defined by

H(j) = a(j)aT (j)

is called regression spectrum of �.

By definition we have the following relationship between regression spectrum and covariances:

��(u) =
∞∑

j=−∞
H(j) ei2�ju

and

H(j) =
∫ 1

2

− 1
2

e−i2�ju��(u) du,

where
∫ 1/2
−1/2 |��(u)| du < ∞. Writing H(j) in polar representation, the contribution of frequency

j can also be expressed in relative terms as follows:

Definition 3. Let H(j) = [hrs(j)]r,s=1,...,p be defined as above. Then, H̃ = [h̃rs]r,s=1,...,p with

h̃rs(j) = hrs(j)√
��;rr (0) · ��;ss(0)

= |ar(j)as(j)|√
��;rr (0) · ��;ss(0)

exp(i�rs(j))
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is called the standardized regression spectrum of �,

�rs(j) = |hrs(j)|√
��;rr (0) · ��;ss(0)

= |hrs(j)|
‖�r‖ · ‖�s‖

= |ar(j)as(j)|√∑
l |ar(l)|2 ∑m |as(m)|2

is the relative spectral modulus and �rs(j) the phase shift at frequency j.

Remark 2. Note that, in contrast to coherence for stochastic processes, the standardization√
��;rr (0) · ��;ss(0) is not frequency dependent. The reason is that, for a deterministic signal,

no frequency dependent variances can be observed. Alternatively, one may consider the classical
squared coherency function |hrs(j)|2/(|hrr (j)‖hss(j)|). However, this quantity is either 0 or 1.
In contrast, �rs(j) defined above can assume any number between 0 and 1, thus giving a relative
measure of the contribution of frequency j to the cross-covariance.

Example 1. Suppose that fs is a shifted version of fr , i.e.

fs(t) = c · fr(t + �)

for some �, c ∈ R. Then

fs(t) =
∑

as(j) exp(i2�j t) = c
∑

ar(j) exp(i2�j (t + �)),

with

as(j) = car(j) exp(i2�j�).

Hence

�rs(u) = c
∑

|ar(j)|2 exp(i2�j (u − �))

and

h̃rs(j) = |ar(j)|2∑
l |ar(l)|2 · exp(−i2��j)(j ∈ Z \ {0}).

Hence, for all integer frequencies j 
= 0

|hrs(j)| = |ar(j)|2∑
l |ar(l)|2

and the phase shift

�rs(j) = −2��j

is a linear function of the shifting parameter �. Thus, |hrs(j)| is equal to the relative contribution
of frequency j to total energy ‖fr‖2 of fr .
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3. Estimation

3.1. General considerations

The definitions above suggest the following approach to analyzing an observed multivariate time
series Y(j) = f(tj ) + ε(j). In a first step, the function f is estimated by a suitable nonparametric
method. In a second step, � is estimated by eliminating the mean m and the nonperiodic component
μ(t). The regression spectrum of �(t) can now be analyzed based on the resulting series

Ỹ(j) = Y(j) − m̂ − μ̂(t).

The issue of estimating μ(t) optimally in the given context is beyond the scope of this paper and
will be considered elsewhere. Note, however, that in some applications, the size of μ is negligible
compared to �. For instance, for high frequency financial data, the dominating feature in the
deterministic part is likely to be a (local) seasonal periodicity of one day. Similar comments apply
to physiological time series such as the heart beat data considered in Section 4.

In this section we consider estimation of f and the resulting estimation of the regression cross
covariance �� and the regression spectrum H.

3.2. Trend estimation

Since �� and the regression spectrum H are functionals of f (which we assume to be equal
to �—see remark at the end of the previous section), we first consider nonparametric estimation
of the trend function. Methods based on wavelets are known to have attractive features, such as
general applicability to L2-functions and localization in time and frequency (see e.g. [8,17]). We
therefore consider estimation of f via wavelet analysis. Let �(·) and �(·) be the father and mother
wavelet, respectively, i.e. �(·), �(·) ∈ L2(R) and the set of functions

{�l,k(x), �j,k(x), j, k, l ∈ Z, j � l},
with

�l,k(x) = 2
l
2 �(2lx − k),

�j,k(x) = 2
j
2 �(2j x − k), k, j ∈ Z,

form a basis in L2(R). The wavelet series expansion of a univariate function f ∈ L2(R) is then
given by

f (x) =
∑

k

�l,k�l,k(x) +
∞∑

j � l

∑
k

	j,k�j,k(x) (3)

for almost all x, where

�l,k =
∫

�l,k(x)f (x) dx,

	j,k =
∫

�j,k(x)f (x) dx.

For the univariate model

Y (j) = f (tj ) + ε(j),
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with f ∈ L2[0, 1] and ε(j) stationary with mean 0 and variance 
2, Nason [16] and Johnston and
Silverman [15] consider the estimator

f̂ (t) =
∑

k

�̂l,k�l,k(t) +
Jn∑

j � l

∑
k

	̂j,k�j,k(t), (4)

where

�̂l,k = 1

n

n∑
u=1

�l,k(tu)Y (u) (5)

and

	̂j,k = 1

n

n∑
u=1

�j,k(tu)Y (u), (6)

for some Jn. Under suitable regularity assumptions on f, on the wavelet basis and moment con-
ditions on ε(j), the parameter estimators �̂l,k and 	̂j,k are asymptotically normal and unbiased

(see [5,6]). These results carry over to the trend estimator f̂ , for suitable choices of Jn. Brillinger
[5,6] shows, in particular,

var (2− j
2 �̂j,k) = var (2− j

2 	̂j,k) = 2�hε(0)2−j n−1 + O(n−2),

cov (2− j
2 	̂j,k, 2− j ′

2 	̂j ′,k′) = O(n−2),

for (j, k) 
= (j ′, k′). Analogously, cov (2− l
2 �̂l,k, 2− j ′

2 �̂l′,k′) = O(n−2) for (l, k) 
= (l′, k′) and

cov (2− l
2 �̂l,k, 2− j ′

2 	̂j ′,k′) = O(n−2) for all l, k, j ′, k′. Here hε(·) denotes the spectral density
of ε(j). The error terms are uniform in j, j ′, k, k′, l. In wavelet thresholding, noise is removed
by shrinking wavelet coefficients towards zero at a suitable rate (see e.g. [9,10,1]). Here, a hard
thresholding method will be applied, i.e. each 	̂j,k is multiplied by ŵj,k := 1{|	̂j,k |�

√
var (	̂j,k)�j }

such that (4) changes to

f̂ (t) :=
∑

k

�̂l,k�l,k(t) +
Jn∑

j � l

∑
k

ŵj,k	̂j,k�j,k(t). (7)

To conclude this section, we state asymptotic results for f̂ that will be needed to derive properties
of �̂rs and ĥrs . The following two assumptions will be used:

(A1) The mother wavelet �(·) and the father wavelet �(·) are of bounded variation and have
compact support. Dilation and translation result in an orthonormal basis for a finite interval
containing [0, 1].

(A2) For each j, 1�j �p, the univariate functions fj (·) (1�j �p) are bounded, of bounded
variation on [0, 1] and vanish outside the interval. In addition, only a finite number of
coefficients in the wavelet representation is non-zero.

Brillinger [5] considers shrunken wavelet estimators for univariate f ∈ L2[0, 1] under the
assumptions (A1) and (A2) and shows that, almost everywhere in t, finite collections of f̂ (t) are
asymptotically normal with mean f (t). These results can easily be carried over to multivariate



J. Beran, M.A. Heiler / Journal of Multivariate Analysis 99 (2008) 684–714 691

trend functions:

Lemma 1. Assume model (1) together with (A1), (A2) and assumptions on the cumulants of ε(i)
as given in Brillinger [5]. For 1�r �p, let

�̂(r)
l,k = 1

n

n∑
u=1

�l,k(tu)Yr(u), (8)

	̂
(r)

j,k = 1

n

n∑
u=1

�j,k(tu)Yr(u), (9)

ŵ
(r)
j,k := 1

{|	̂(r)

j,k |�
√

var (	̂
(r)

j,k)�j }
,

Jn → ∞, n2−Jn/2 → ∞, �j such that 2
j
2 �j = o(n1/2) (j = l, l + 1, . . . , Jn) and

Jn∑
j � l

2
j
2 exp(−�2

j /(1 + �)2) = o(1)

for some � > 0. Define

f̂r (t) :=
∑

k

�̂(r)
l,k�l,k(t) +

Jn∑
j � l

∑
k

ŵ
(r)
j,k	̂

(r)

j,k�j,k(t), (10)

1�r �p. Also denote by hε = (hε;rs)1� r,s �p the matrix of cross spectral densities between
{εr (i), i ∈ N} and {εs(i), i ∈ N}. Then, almost everywhere in t ∈ [0, 1], finite collections of√

n(f̂r (t) − fr(t)) are asymptotically normal with mean zero. Moreover,

�f (x, y; r, s) = cov (f̂r (x), f̂s(y)) = 2�hε;rs(0)

n

∑
k

�l,k(x)�l,k(y)

+2�hε;rs(0)

n

J0∑
j,k

w
(r)
j,kw

(s)
j,k�j,k(x)�j,k(y) + r(n),

where w
(i)
j,k = 1{	(i)

j,k 
= 0}, J0 = J0(r, s) is the largest common integer such that w
(r)
j,kw

(s)
j,k 
= 0

for some j = Jo, and r(n) = O(22Jnn−2).

Remark 3. One possible threshold that satisfies the assumptions of Lemma 1 is given by �j =√
2 log(2−j n).

Remark 4. Note that additional asymptotic properties for the estimators of the wavelet coeffi-

cients are also easily carried over to the multivariate case. For instance, cov (	̂
(r)

j,k, 	̂
(s)

j ′,k′) = O(n−2)

for (j, k) 
= (j ′, k′).

Remark 5. If var (	(r)
j,k) is unknown, then the variance has to be estimated. See Brillinger [5] for

consistent estimation of the variance and asymptotic properties.



692 J. Beran, M.A. Heiler / Journal of Multivariate Analysis 99 (2008) 684–714

Remark 6. Lemma 1 implies var (f̂r (t)) = O(n−1), uniformly in t, so that f̂r (t) is a asymptot-
ically consistent estimator of fr(t), i.e. f̂r (t) → fr(t) in probability for almost all t in [0, 1].

3.3. Estimation of the regression cross covariance

3.3.1. Consistency
By assumption m(f ) = 〈f, 1〉 = 0, and μ(t) = 0 so that � = ��. Given f̂ , the cross covariance

�� can be estimated by

�̂�(u) = �̂(u) =
∫ 1

0
f̂(t + u)f̂T (t) dt (11)

and the regression spectrum by

Ĥ(j) =
∫ 1/2

−1/2
exp(−i2�ju)�̂�(u) du.

Consistency of �̂(u) is given by

Theorem 1. Under the assumptions of Lemma 1, �̂(u) converges in probability to �(u) such that
�̂(u) − �(u) = Op(n−1/2).

The proof is based on the following

Lemma 2. Let fr be estimated as in Lemma 1, and denote the estimation error by

ε̃(r)
n (t) = f̂r (t) − fr(t).

Then, ∫
[0,1]

ε̃(r)
n (t) dt → 0 (12)

and ∫
[0,1]

|̃ε(r)
n (t)| dt → 0 (13)

almost surely, and both terms are of order Op(n−1/2).

3.3.2. Asymptotic normality
First, we derive the asymptotic covariance function of �̂rs(u).

Theorem 2. For u, v ∈ [−1, 1],

lim
n→∞ n cov (�̂rs(u), �̂rs(v)) = 
rs(u, v),
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where 
rs is finite and can be written as


rs(u, v) = 2�hε;ss(0)

⎡⎣∑
k

∫
fr(x + u)�l,k(x) dx

∫
fr(y + v)�l,k(y) dy

+
∑
l,k

w
(s)
l,k

∫
fr(x + u)�l,k(x) dx

∫
fr(y + v)�l,k(y) dy

⎤⎦
+2�hε;rs(0)

⎡⎣∑
k

∫
fs(x)�l,k(x + u) dx

∫
fr(y + v)�l,k(y) dy

+
∑
l,k

w
(r)
l,k w

(s)
l,k

∫
fs(x)�l,k(x + u) dx

∫
fr(y + v)�l,k(y) dy

⎤⎦
+2�hε;sr (0)

⎡⎣∑
k

∫
fr(x + u)�l,k(x) dx

∫
fs(y)�l,k(y + v) dy

+
∑
l,k

w
(r)
l,k w

(s)
l,k

∫
fr(x + u)�l,k(x) dx

∫
fs(y)�l,k(y + v) dy

⎤⎦
+2�hε;rr (0)

⎡⎣∑
k

∫
fs(x)�l,k(x + u) dx

∫
fs(y)�l,k(y + v) dy

+
∑
l,k

w
(r)
l,k

∫
fs(x)�l,k(x + u) dx

∫
fs(y)�l,k(y + v) dy

⎤⎦ + O(n−1/2).

In order to obtain the asymptotic distribution of �̂ the following additional condition on ε(i)
will be used.

(A3) For 1�r, s�p, define ε∗
t := εr (t), t = 1, . . . , n, and ε∗

t = εs(t − n), t = n + 1, . . . , 2n.
Let {Ft , t = 1, . . . , n} be a non-decreasing sequence of 
-fields of F sets and let the
sequence (ε∗

t , Ft , t = 1, . . . , n) be a square-integrable martingale difference array with
constant variance and E(ε∗2

t |Ft−1) = E(ε∗2
0 ).

Theorem 3. Let

n = n
1
2 [�̂rs(u1) − �rs(u1), �̂rs(u2) − �rs(u2), . . . , �̂rs(uk) − �rs(uk)]T

Then, under (A3) and the assumptions of Theorem 1,

n
d→ N(0, �)

where

� = [
rs(ui, uj )]r,s=1,...,p

and “
d→’’ denotes convergence in distribution.
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The proof is based on the following lemmas.

Lemma 3. Assume model (1) and the assumptions of Theorem 1. Then, for each s ∈ {1, . . . , p}
and for almost all x ∈ [0, 1],

(f̂s − fs) (x) = 1

n

n∑
u=1

εs(u)
∑

k

�l,k(u/n)�l,k(x)

+1

n

n∑
u=1

εs(u)

Jn∑
j � l

∑
k

ŵ
(s)
j,k�j,k(u/n)�j,k(x)

+r(s)(n),

where r(s)(n) = Op(n−1).

Lemma 4. Under the assumptions of Theorem 3, we have, for each pair (r, s), 1�r, s�p, and
each u ∈ [−1, 1]

√
n(�̂rs(u) − �rs(u))

d→ N (0, 
rs(u, u)),

where 
rs(u, u) is given in Theorem 2.

Theorem 3 can be extended to a functional limit theorem.

Theorem 4. Let Pn be the probability distribution of
√

n(�̂(n)
rs (u) − �rs(u)) in C[−1, 1], where

C[−1, 1] is equipped with the uniform topology defined by the metricd(f, g) = sup−1� t �1 |f (t)−
g(t)|. Then Pn converges asymptotically in C[−1, 1] (in the metric d) to the probability
distribution P of a Gaussian process where the finite-dimensional distributions are given in
Theorem 3.

3.4. Estimation of the regression cross spectrum

3.4.1. Asymptotic normality
Theorem 4 together with the continuous mapping theorem (see e.g. [13]) lead to

Theorem 5. Under the assumptions of Theorem 4, the vector

�n = √
n[ĥrs(j1) − hrs(j1), . . . , ĥrs(jm) − hrs(jm)]T

converges in distribution to an m-dimensional zero mean normal vector with covariance matrix

n cov (ĥrs(jk), ĥrs(jl)) =
∫∫

exp {−i2�(jku1 − jlu2)} 
rs(u1, u2) du1 du2,

where 
rs(u1, u2) it is defined in Theorem 2.

3.4.2. Estimation of amplitude and phase spectrum
Theorem 5 shows that finite vectors of the regression cross spectrum ĥrs(j) converge to a

complex-valued normal random variable. Let crs(j) = Re(hrs(j)) and qrs(j) = Im(hrs(j)) so
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that hrs(j) = crs(j) + iqrs(j). Then we have estimators

ĉrs(j) = 1

2
(ĥrs(j) + ĥsr (j)) (14)

and

q̂rs(j) = 1

2i
(ĥrs(j) − ĥsr (j)). (15)

Due to Theorem 5, the vector

√
n[ĉrs(j) − crs(j), q̂rs(j) − qrs(j)]T

converges in distribution to a bivariate normal variable with mean 0 and asymptotic covariance
matrix

�(j) =
(

�cc(j) �cq(j)

�qc(j) �qq(j)

)
.

The asymptotic distribution of the amplitude and phase spectrum then follows by straightforward
calculations. Let �∗

rs(j) be the non-normalized spectral modulus. Then we have

Corollary 1. Let �∗
rs(j) = |hrs(j)| and

�̂∗
rs(j) = (ĉrs(j)2 + q̂rs(j)2)

1
2 .

Then

√
n(�̂∗

rs(j) − �∗
rs(j))

d−→ N (0, 
2
�;rs(j)),

where


2
�;rs(j) = 1

c2
rs(j) + q2

rs(j)

(
c2
rs(j)�cc(j) + q2

rs(j)�qq(j) + 2crs(j)qrs(j)�cq(j)
)

.

(16)

Corollary 2. Let �rs(j) = arg hrs(j) and

�̂rs(j) = arg(ĉrs(j) + iq̂rs(j)) ∈ (−�, �].
Then

√
n(�̂rs(j) − �rs(j))

d−→ N (0, 
2
�;rs(j)),

where


2
�;rs(j)= 1

(c2
rs(j) + q2

rs(j))2

(
q2
rs(j)�cc(j)+c2

rs(j)�qq(j)−2crs(j)qrs(j)�cq(j)
)

.

(17)
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4. Algorithm and data examples

4.1. General considerations

Consider Example 1 with two functions that are shifted versions of each other. In this case,
the phase spectrum consists of a straight line modulo 2�, with the slope being proportional to
the shift. Discontinuities occur at frequencies where �rs(j) crosses −� or �. More generally, if
we are given a plot of a phase spectrum between two deterministic functions the detection of any
linear or piecewise linear curve may be interpreted as a constant lag over this particular range of
frequencies. However, if f and H(j) have to be estimated, we have a superposition of the linear
structure of the phase spectrum with the phase spectrum of the noise component. Comparing (16)
with (17) we see that 
2

�;rs(j) and 
2
�;rs(j) essentially differ by the factor �∗

rs(j)−2. Therefore,


2
�;rs(j) will be relatively large compared to 
2

�;rs(j) for all frequencies where the corresponding
spectral modulus is small, and it will be relatively small where the spectrum modulus is large. Thus,
in general, the phase spectrum will look more erratic than the amplitude spectrum, and estimation
of common frequencies in a multivariate trend function might be easier than estimation of the
phase shift. A pure visual inspection of the phase spectrum may not be sufficient to detect linear
structure. In the next section, we propose a simple algorithm that takes this into account. In a first
step, frequencies are identified where the amplitude spectrum is significantly larger than 0. In a
second step, the phase shift is estimated using theses frequencies only.

4.2. Algorithm

A data-driven algorithm for estimating the regression cross spectrum can be defined as follows.

1. Choose a wavelet basis {�l,k(x), �j,k(x), j, k, l ∈ Z, j � l} and thresholds �j , j = 1, . . . , Jn,
according to Eq. (10), and estimate fr , r = 1, . . . , p. This step can be carried out, for instance,
using the function WAVESHRINK in the S-Plus wavelet module.

2. Apply the fast Fourier transform to obtain

âr (j) = 1

n

n∑
t=1

f̂r (t/n) e−i2�j t/n, r = 1, . . . , p,

and calculate the regression cross spectrum

ĥrs(j) = âr (j)âs(j)

and estimators of the amplitude and phase spectrum (Section 3.4.2).
3. Estimate the cross spectrum hε,rs(0) of ε(i) from the estimated residuals ε̂ = Ŷ − f̂ .
4. Use Eq. (16) to calculate 
2

�;rs(j) and determine the set

J ∗ =
{
j : �̂∗

rs(j) > c�;rs ·
√


2
�;rs(j)

}
for a suitably chosen c�;rs ∈ R.

5. To estimate the phase shift, apply a local robust regression to the points {(j, �rs(j)) : j ∈ J ∗},
taking into account possible 2�-jumps.
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4.3. Examples

The application of the asymptotic results and the practical performance of the algorithm are
illustrated by two data examples.

4.3.1. Simulated example
The trend function f(x) = (f1(x), f2(x))T (x ∈ [0, 1]) is defined by

f1(x) = − sin(4�x) − sin(10�x) − sin(20�x) − sin(30�x) − sin(51�x),

f2(x) = f1(x + �),

and

� = 0.03125.

Moreover, ε1(i), ε2(i) are iid N(0, 
2
ε) with 
2

ε = 4 and ε1, ε2 independent of each other.
Fig. 1 shows the simulated series (Figs. 1a, b), the true trend functions f1 and f2 (Figs. 1c,
d), and the true regression cross spectrum in terms of the amplitude (Fig. 1e) and the phase
spectrum (Fig. 1f). The sample size is n = 2048. For better visibility, only the lowest 80 fre-
quencies are used in the spectral plots. The estimated spectral modulus and the phase spectrum
between f̂1 and f̂2, obtained by wavelet thresholding with s12-wavelets (see e.g. [7,8]) and �j

as in Remark 3, are displayed in Figs. 1g and h. While the common frequencies are identified
quite accurately, the linear structure of the theoretical regression phase spectrum is lost almost
entirely in its (unweighted) empirical counterpart. However, if we consider only values of �̂12
where �̂∗

12(j) exceeds four times its standard deviation (horizontal line in Fig. 1g), the linear
structure can be identified. In Fig. 1h, the five frequencies corresponding to the five highest values
of �̂∗

12(j) are marked by black squares. The estimate of the phase line based on these frequencies
is very close to the true line.

To check the accuracy of our estimates, a small simulation study was carried out. For n =256,
512, 1024 and 2048, 500 series were simulated, and the spectral density and the lag between f1
and f2 were estimated. Fig. 2 shows a comparison of the simulated standard deviation of �̂∗

12(j)

and the values of 
�;12 (Eq. (16)) calculated by plugging in the true and the estimated functions
fj , respectively. The standard deviations are fairly close together for n = 256 and almost identical
for n = 2048. This confirms the theoretical results.

Detailed results for the lag estimates are listed in Table 1. Boxplots in Fig. 2 illustrate the fast
convergence of �̂ to the true value � = −0.03125. Note that for small sample sizes, the true
frequencies in the amplitude spectrum might fail to show up due to insufficient accuracy of the
trend estimates. In particular, high deterministic frequencies may be hidden or smoothed out by
the shrinkage estimate. Moreover, the true lead-lag structure may not be detected due to effects
of the noise component. In the example here, a reliable estimate of � is obtained for n = 512,
whereas n = 256 seems to be too small.

4.3.2. ECG data
We consider a trivariate time series consisting of electrocardiogram (ECG), blood pressure (BP)

and the cardiac stroke volume (SV) measurements of a sleeping patient, recorded at the Beth Israel



698 J. Beran, M.A. Heiler / Journal of Multivariate Analysis 99 (2008) 684–714
f1

+
e
p
s1

0 500 1000 1500 2000 0 500 1000 1500 2000

tr
u
e
 f
1

0 500 1000 1500 2000 0 500 1000 1500 2000

e
st

. 
m

o
d
. 
&

 4
*S

D

5

0

-5

4

2

0

-2

tr
u
e
 f
2

4

2

0

-2

0.25

0.25

0.15

0.05

0.0

tr
u
e
 s

p
e
ct

ra
l m

o
d
u
lu

s

0.15

0.05

0.0

5

0

-5

-10

3

2

1
0

-1
-2
-3tr

u
e
 p

h
a
se

 s
p
e
ct

ru
m

3

2

1
0

-1
-2
-3e

st
. 
a
rg

. 
&

 p
h
a
se

 li
n
e

f2
+

e
p
s2

0 20 40 60 800 20 40 60 80

0 20 40 60 800 20 40 60 80

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1. Simulated series (Y1, Y2) of length n = 2048 (a, b), true trend functions (f1, f2) (c, d), amplitude and phase
spectrum (e, f) and estimated amplitude and phase spectrum (g, h). The horizontal line in g represents 4

√
var(�∗

rs (j)),
the solid line in h corresponds to the estimated phase line.

Table 1
Detailed summary of the lag estimation for various sample sizes, in each case running 500 simulations.

n 256 512 1024 2048

True value −0.03125 −0.03125 −0.03125 −0.03125
Median −0.0337069 −0.0317893 −0.0312525 −0.0312118
Mean −0.0429855 −0.0319160 −0.0312776 −0.0311385
Std. dev. 0.1490462 0.01350248 0.00311929 0.00208201
MSE 0.02768125 0.00417189 0.00391940 0.00389665
Skewness 0.78195065 0.48571213 0.01500243 0.18100068

Deaconess Medical Center in Boston [11]. The data are represented in units of 50 mV (ECG),
50 mmHG (BP) and 50 ml (SV). The observational period consists of n = 8192 observations
recorded at a rate of 200 observations per second. A detailed description of the data set can be
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Fig. 2. Simulated, estimated and true asymptotic standard deviation of the amplitude spectrum. Boxplots of the lag
estimates are also given for n = 256, 512, 1024 and n = 2048.

found in Ichimaru and Moody [14]. For better visibility, only the first 1000 observations (5 s) of
the raw time series are displayed in Fig. 3. The analysis is carried out for all 8192 observations.
As expected, all time series mainly consist of a deterministic almost periodic movement, with a
period of about 200 observations, indicating a heart rate around 60 beats per minute. The ECG
signal starts with a small bump indicating the atrial contraction and is followed by a sharp peak
representing the contraction of the ventricles. The third peak represents the repolarization period.
At the same time, contraction of the ventricles causes the SV to increase up to a peak value,
after which it falls back to its minimum shortly after the repolarization. The growing amount of
blood pushed into the arteries also induces a rise in BP. The ECG receives information directly
from the heart whereas the BP is measured by a catheder in the radial artery. Therefore, the delay
represents the time it takes the pressure wave, initialized by a heart beat, to reach the catheder.
Consider now the regression cross spectra in Fig. 4. All three amplitude spectra reveal dominating
common frequencies around j = 40 indicating a common period of length around 1 s. Moreover,
the phase spectrum of ECG and BP exhibits linear structures over certain ranges of frequencies.
The phase spectrum between ECG and BP for the interval j ∈ [34, 40] is drawn in the lower
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SV

BP

ECG

Fig. 3. Electrocardiogram (ECG), blood pressure (BP) and cardiac stroke volume (SV) of a sleeping person over a period
of 5 s (1000 observations).

left panel of Fig. 4. We see an almost perfectly linear structure in the phase spectrum and the
estimated phase shift is about 26 time units indicating a lead of BP against ECG. Note, however,
that for the corresponding dominating lag the regression cross correlation is negative. This effect
can be noticed visually when comparing e.g. local maxima of the BP signal with minima of the
ECG signal after the repolarization period (local maxima of the BP occur shortly before the ECG
signal reaches its minimum). Due to the physiological fact that the peaks in ECG representing
contractions of the ventricals are constantly around 94 data points away from the minimum after
the repolarization period, we estimate a lag between the contraction of the ventricals and the
maximum of the BP of around 94 − 26 = 68 time units which is equivalent to a time delay of
340 ms. A similar analysis between ECG and SV results in a lead of the ECG signal of about 11
data points or 55 ms.

5. Final remarks

We defined the regression cross covariance and cross spectrum for multivariate deterministic
trend functions. This is a nonparametric multivariate extension of an analogous concept used by
Grenander and Rosenblatt to obtain asymptotic results in the context of parametric regression.
The usefulness of the nonparametric regression spectrum goes far beyond a purely mathematical
device. It can be used as a data analytical tool to identify common frequencies and lead-lag effects
in multivariate time series with strong deterministic components. The physiological series con-
sidered above is a typical example. Other examples can be found, for instance, in high frequency
data with a strong daily seasonality and a large number of intra-day measurements. The greatest
challenge appears to be estimation of the phase spectrum. The question in how far more accu-
rate methods than the algorithm proposed here can be devised, will be worth pursuing in future
research.
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Appendix. Proofs

Proof 1 (Proposition 1). For u�0,

�rs(−u) = 〈fr(· − u), fs〉
‖fr‖ · ‖fs‖ = 〈fs(· + u), fr 〉

‖fr‖ · ‖fs‖ = �sr (u).

Hence �rs is Hermitian. Consider now �rs , u1, . . . , un ∈ [0, 1], and let �1, . . . , �n be arbitrary
coefficients in C. Then

n∑
i,j=1

p∑
r,s=1

�i�rs(ui − uj )�j =
∑
i,j

∑
r,s

�i

∫
fr(x + ui − uj )fs(x) dx√∫ |fr(x)|2 dx

∫ |fs(x)|2 dx

�j .
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Since the denominator does not depend on i and j, non-negative definiteness follows from∫ ∑
r

∑
i

�ifr (x + ui)
∑

s

∑
j

�j fs(x + uj ) dx=
∫ ∣∣∣∣∣∑

r

∑
i

�ifr (x+ui)

∣∣∣∣∣
2

dx�0. �

Proof 2 (Lemma 1). The proof essentially follows directly from Theorem 3 in Brillinger [5]. To
see uniform convergence of r(n) consider

cov (f̂r (x), f̂s(y)) =
∑
k,k′

cov(�̂l,k, �̂l,k′)�l,k(x)�l,k′(y) (18)

+
∑

j,k,j ′,k′
cov (ŵ

(r)
j,k	̂

(r)

j,k, ŵ
(s)

j ′,k′ 	̂
(s)

j ′,k′)�j,k(x)�j ′,k′(y) (19)

+
∑

k,j ′,k′
cov (�̂l,k, ŵ

(s)

j ′,k′ 	̂
(s)

j ′,k′)�l,k(x)�j ′,k′(y) (20)

+
∑
j,k,k′

cov (ŵ
(r)
j,k	̂

(r)

j,k, �̂l,k′)�j,k(x)�l,k′(y). (21)

The remainder r(n) essentially consists of terms with (j, k) 
= (j ′, k′). Separate e.g. (19) into∑
j,j ′ �J0

∑
k,k′

cov (ŵ
(r)
j,k	̂

(r)

j,k, ŵ
(s)

j ′,k′ 	̂
(s)

j ′,k′)�j,k(x)�j ′,k′(y)

+
∑

j>J0∨j ′>J0

∑
k,k′

cov (ŵ
(r)
j,k	̂

(r)

j,k, ŵ
(s)

j ′,k′ 	̂
(s)

j ′,k′)�j,k(x)�j ′,k′(y). (22)

For j, j ′ �J0 and suitable constants A1 and A2, we have∣∣∣∣∣∣
J0∑

j 
=j ′

∑
k 
=k′

cov(ŵ
(r)
j,k	̂

(r)

j,k, ŵ
(s)

j ′,k′ 	̂
(s)

j ′,k′)�j,k(x)�j ′,k′(y)

∣∣∣∣∣∣
�

J0∑
j 
=j ′

∑
k 
=k′

|cov (ŵ
(r)
j,k	̂

(r)

j,k, ŵ
(s)

j ′,k′ 	̂
(s)

j ′,k′)| · 2
j
2 2

j ′
2 sup

x
{�(x)2}

�A1

J0∑
j 
=j ′

∑
k 
=k′

|cov (	̂
(r)

j,k, 	̂
(s)

j ′,k′)|2 j
2 2

j ′
2

�A2

J0∑
j 
=j ′

∑
k 
=k′

n−22j 2j ′ = O(n−2).

Now for j > J0 or j ′ > J0, we have, recalling that |cov (	̂
(r)

j,k, 	̂
(s)

j ′,k′)| = O(2j/22j ′/2n−2) for
(j, k) 
= (j ′, k′),∣∣∣∣∣∣

∑
j>J0∨j ′>J0

∑
k,k′

cov (ŵ
(r)
j,k	̂

(r)

j,k, ŵ
(s)

j ′,k′ 	̂
(s)

j ′,k′)�j,k(x)�j ′,k′(y)

∣∣∣∣∣∣
�

∑
j>J0∨j ′>J0

∑
k,k′

∣∣∣cov (ŵ
(r)
j,k	̂

(r)

j,k, ŵ
(s)

j ′,k′ 	̂
(s)

j ′,k′)
∣∣∣ ∣∣�j,k(x)�j ′,k′(y)

∣∣
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�
∑

j>J0∨j ′>J0

∑
k,k′

∣∣∣cov (	̂
(r)

j,k, 	̂
(s)

j ′,k′)
∣∣∣ · A12j/22j ′/2

�A2n
−2

∑
j>J0∨j ′>J0

2j 2j ′
sup
x

{�(x)2}

= O(22Jnn−2), (23)

uniformly in x and y where A1, A2 are suitable constants. �

Proof 3 (Lemma 2). As mentioned in Remark 6, Brillinger shows that for each r, 1�r �p, the
variance of the thresholding estimators, var (f̂r (x)), is of order n−1. To indicate its dependence
on �, we write ε̃

(r)
n (�, x) instead of ε̃

(r)
n (x). Define X := [0, 1], let � be the Lebesgue measure

on (X , FX ) and denote by F� the 
-algebra generated by the open subsets of �. We consider the
product space (� × X ) with 
-algebra F = F� ⊗ FX and corresponding measure P ⊗ �. Due
to the uniform convergence of var [f̂r (x)],∫

X

∫
�
(̃ε(r)

n (�, x) − E [̃ε(r)
n (�, x)])2 dP dx → 0

and

n

∫
X

∫
�
(̃ε(r)

n (�, x) − E [̃ε(r)
n (�, x)])2 dP dx = O(1).

This implies∫
X

∫
�

ε̃(r)
n (�, x)2 dP dx = O(n−1). (24)

Note that X is a finite interval so that (P ⊗�)(�×X ) < ∞. Square integrability in finite measure
spaces implies that∫

X

∫
�

|̃ε(r)
n (�, x)| dP dx = O(n−1/2).

Due to the existence of both integrals we can apply Fubini’s theorem so that∫
�

∫
X

|̃ε(r)
n (�, x)| dx dP → 0, n → ∞.

Define the random variable zn = ∫
X |̃ε(r)

n (x)| dx. Then zn �0 for all n and E[zn] → 0. Hence,∫
[0,1]

ε̃(r)
n (�, x) dx → 0

almost surely. �

Proof 4 (Theorem 1). Without loss of generality it suffices to show that the theorem is true for
real-valued functions fr and for non-negative values of u. By adding and subtracting terms, we
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split the regression covariance into four terms

(I) =
∫ 1

0

(
f̂r (x + u) − fr(x + u)

) (
f̂s(x) − fs(x)

)
dx,

(II) =
∫ 1

0
fr(x + u)

(
f̂s(x) − fs(x)

)
dx,

(III) =
∫ 1

0

(
f̂r (x + u) − fr(x + u)

)
fs(x) dx,

(IV) =
∫ 1

0
fr(x + u)fs(x) dx.

The functions fr and fs are bounded and of bounded variation. Then

|(III)|�A

∫
ε̃(r)
n (x + u) dx,

which tends to 0 almost surely according to Lemma 2. The same holds for term (II). Moreover,
the Cauchy–Schwarz inequality implies∣∣∣∣∫ (

f̂r (x + u) − fr(x + u)
) (

f̂s(x) − fs(x)
)

dx

∣∣∣∣
�

(∫
(f̂r (x + u) − fr(x + u))2 dx

) 1
2
(∫

(f̂s(x) − fs(x))2 dx

) 1
2

. (25)

The proof of Lemma 2 shows that both factors converge to zero almost surely. Therefore,

�̂rs(u)
P→

∫ 1

0
fr(x + u)fs(x) dx = �rs(u). �

Proof 5 (Theorem 2). Recall, that

�̂rs(u) − �rs(u) =
∫

[fr(x + u)̃ε(s)
n (x) + ε̃(r)

n (x + u)fs(x) + ε̃(r)
n (x + u)̃ε(s)

n (x)] dx.

Hence,

lim
n→∞ n cov (�̂rs(ui), �̂rs(uj ))

= lim
n→∞ nE

[∫ (
fr(x + ui )̃ε

(s)
n (x) + fs(x)̃ε(r)

n (x + ui) + ε̃(r)
n (x + ui )̃ε

(s)
n (x)

)
dx

×
∫ (

fr(y + uj )̃ε
(s)
n (y) + fs(y)̃ε(r)

n (y + uj ) + ε̃(r)
n (y + uj )̃ε

(s)
n (y)

)
dy

]
=: (I) + (II) + (III),

where

(I) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lim

n→∞ n
{
E[∫∫ fr(x + ui)fr(y + uj )̃ε

(s)
n (x)̃ε

(s)
n (y) dx dy]

+E[∫∫ fs(x)fr(y + uj )̃ε
(r)
n (x + ui )̃ε

(s)
n (y) dx dy]

+E[∫∫ fr(x + ui)fs(y)̃ε
(s)
n (x)̃ε

(r)
n (y + uj ) dx dy]

+E[∫∫ fs(x)fs(y)̃ε
(r)
n (x + ui )̃ε

(r)
n (y + uj ) dx dy]

}
,
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(II) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lim

n→∞ n
{
E[∫∫ fr(x + ui )̃ε

(s)
n (x)̃ε

(r)
n (y + uj )̃ε

(s)
n (y) dx dy]

+E[∫∫ fs(x)̃ε
(r)
n (x + ui )̃ε

(r)
n (y + uj )̃ε

(s)
n (y) dx dy]

+E[∫∫ fr(y + uj )̃ε
(s)
n (y)̃ε

(r)
n (x + ui )̃ε

(s)
n (x) dx dy]

+E[∫∫ fs(y)̃ε
(r)
n (y + uj )̃ε

(r)
n (x + ui )̃ε

(s)
n (x) dx dy]

}
,

(III) = lim
n→∞ n

{
E[

∫∫
ε̃(r)
n (x + ui )̃ε

(s)
n (x)̃ε(r)

n (y + uj )̃ε
(s)
n (y) dx dy]

}
.

Consider just one part of the sum in part (I). Due to Fubini’s theorem

lim
n→∞ nE

[∫∫
fr(x + ui)fr(y + uj )̃ε

(s)
n (x)̃ε(s)

n (y)

]
dx dy

= lim
n→∞ n

∫∫
fr(x + ui)fr(y + uj )E [̃ε(s)

n (x)̃ε(s)
n (y)] dx dy

=
∫∫

fr(x + ui)fr(y + uj ) lim
n→∞ nE [̃ε(s)

n (x)̃ε(s)
n (y)] dx dy, (26)

where the second equation is due to Lebesgue’s theorem. By applying the results of Lemma 1,

(26) =
∫∫

fr(x + ui)fr(y + uj ) lim
n→∞ n cov

(
f̂s(x), f̂s(y)

)
dx dy

=
∫∫

fr(x + ui)fr(y + uj )

⎡⎣2�hε(ss) (0)
∑

k

�l,k(x)�l,k(y)

+ 2�hε(ss) (0)
∑

j � l,k

w
(s)
j,k�j,k(x)�j,k(y) + O(n−1)

⎤⎦ dx dy.

Rearranging the sums and integrals results in

2�hε(ss) (0)
∑

k

∫
fr(x + ui)�l,k(x) dx

∫
fr(y + uj )�l,k(y) dy

+2�hε(ss) (0)
∑

j � l,k

w
(s)
j,k

∫
fr(x + ui)�j,k(x) dx

∫
fr(y + uj )�j,k(y) dy

+O(n−1).

Analogous results for the other parts of (I ) yield 
rs(ui, uj ). It remains to show that the remaining

parts converge to 0. By Lemma 2,
∫

ε̃
(r)
n (x) dx → 0 almost surely with rate n−1/2. Then (24)

together with the Cauchy–Schwarz inequality yield
∫

ε̃
(r)
n (y +uj )̃ε

(s)
n (y) dy = Op(n−1). Hence,

lim
n→∞ n

∣∣∣∣E [∫∫
fr(x + ui )̃ε

(s)
n (y)̃ε(r)

n (y + uj )̃ε
(s)
n (x) dx dy

]∣∣∣∣
� lim

n→∞ n · AE

⎡⎢⎢⎢⎢⎣
∫

|̃ε(s)
n (x)| dx︸ ︷︷ ︸

=Op(n−1/2)

∣∣∣∣∫ ε̃(r)
n (y + uj )̃ε

(s)
n (y) dy

∣∣∣∣︸ ︷︷ ︸
=Op(n−1)

⎤⎥⎥⎥⎥⎦
= 0.

Analogous considerations imply that (III) converges to 0. �
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Proof 6 (Lemma 3). Consider the shrinkage estimator

f̂s(x) =
∑

k

�̂(s)
l,k�l,k(x) +

Jn∑
j � l

∑
k

ŵ
(s)
j,k	̂

(s)

j,k�j,k(x). (27)

As above, let J0 be the largest number such that the corresponding resolution component of fs

contains at least one non-zero coefficient. Hence,

(f̂s − fs)(x) =
∑

k

�̂(s)
l,k�l,k(x) −

∑
k

�(s)
l,k�l,k(x)︸ ︷︷ ︸

=:S(x)

+
Jn∑

j � l

∑
k

ŵ
(s)
j,k	̂

(s)

j,k�j,k(x) −
J0∑

j � l

∑
k

	(s)
j,k�j,k(x)

︸ ︷︷ ︸
=:D(x)

= S(x) + D(x).

Inserting the empirical Fourier coefficients yields

S(x) =
∑

k

[
1

n

n∑
u=1

Ys(u)�l,k(u/n) − �(s)
l,k

]
�l,k(x)

=
∑

k

[
1

n

n∑
u=1

(Ys(u) − E[Ys(u)] + E[Ys(u)])�l,k(u/n) − �(s)
l,k

]
�l,k(x)

=
∑

k

[
1

n

n∑
u=1

(εs(u)�l,k(u/n) + fs(u/n)�l,k(u/n)) − �(s)
l,k

]
�l,k(x)

= 1

n

n∑
u=1

εs(u)
∑

k

�l,k(u/n)�l,k(x) +
∑

k

[
1

n

n∑
u=1

fs(u/n)�l,k(u/n) − �(s)
l,k

]
�l,k(x).

Now ∣∣∣∣∣1

n

n∑
u=1

fs(u/n)�l,k(u/n) −
∫ 1

0
fs(x)�l,k(x) dx

∣∣∣∣∣
=

∣∣∣∣∣1

n

n∑
u=1

fs(u/n)�l,k(u/n) − �(s)
l,k

∣∣∣∣∣ �
V (fs�l,k)

n
, (28)

where V (·) denotes total variation (see e.g. [19]). Hence,

S(x) = 1

n

n∑
u=1

εs(u)
∑

k

�l,k(u/n)�l,k(x) + O(n−1). (29)

For n large enough such that Jn > J0:

D(x) =
Jn∑
j

∑
k

ŵ
(s)
j,k	̂

(s)

j,k�j,k(x) −
J0∑
j

∑
k

	(s)
j,k�j,k(x)

=
J0∑
j

∑
k

(ŵ
(s)
j,k	̂

(s)

j,k − 	(s)
j,k)�j,k(x) +

Jn∑
j=J0+1

∑
k

ŵ
(s)
j,k	̂

(s)

j,k�j,k(x). (30)
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Now,
J0∑
j

∑
k

(ŵ
(s)
j,k	̂

(s)

j,k − 	(s)
j,k)�j,k(x)

=
∑
j,k

(ŵ
(s)
j,k

1

n

n∑
u=1

�j,k(u/n)Ys(u) − 	(s)
j,k)�j,k(x)

=
∑
j,k

{
ŵ

(s)
j,k

[
1

n

n∑
u=1

�j,k(u/n)(Ys(u) − E[Ys(u)] + E[Ys(u)])
]

− 	(s)
j,k

}
�j,k(x)

=
∑
j,k

{
ŵ

(s)
j,k

1

n

n∑
u=1

�j,k(u/n)εs(u) + ŵ
(s)
j,k

1

n

n∑
u=1

�j,k(u/n)fs(u/n) − 	(s)
j,k

}
�j,k(x)

=
∑
j,k

ŵ
(s)
j,k

1

n

n∑
u=1

�j,k(u/n)εs(u)�j,k(x) (31)

+
∑
j,k

[ŵ(s)
j,k

1

n

n∑
u=1

�j,k(u/n)fs(u/n) − 	(s)
j,k]�j,k(x). (32)

For the term in (32), we have∣∣∣∣∣1

n

n∑
u=1

�j,k(u/n)fs(u/n) − 	(s)
j,k

∣∣∣∣∣ �
V (�j,kfs)

n
,

where the total variation is A · 2
j
2 , with A a suitable constant. Consider now the binary ran-

dom variable ŵ
(s)
j,k . We distinguish between the cases 	(s)

j,k = 0 and 	(s)
j,k 
= 0. In the first case,

n−1 ∑n
u=1 �j,k(u/n)fs(u/n) = O(2

j
2 n−1). Recall that j �J0. This implies that (32) converges

in probability to 0 and is of order Op(n−1). If 	(s)
j,k 
= 0, consider first the case ŵ

(s)
j,k = 1. Then,

the rate of convergence in Eq. (32) is n−1. Moreover,

P(ŵ
(s)
j,k = 1) = P(|	̂(s)

j,k| > �j ·
√

var (	̂
(s)

j,k)) → 1.

This implies that there exists a sequence of subspaces �n ↑ � such that P(�n) → 1 and

P(ŵ
(s)
j,k = 1|� ∈ �n) = 1.

Define �c
n = � − �n. Then, for a suitable constant A,

P

(∣∣∣∣∣ŵ(s)
j,k

1

n

n∑
u=1

�j,k(u/n)fs(u/n) − 	(s)
j,k

∣∣∣∣∣ �
V (�j,kfs)

n

)

= P

(∣∣∣∣∣ŵ(s)
j,k

1

n

n∑
u=1

�j,k(u/n)fs(u/n) − 	(s)
j,k

∣∣∣∣∣ �
V (�j,kfs)

n

∣∣∣∣∣�n

)
P(�n)

+P

(∣∣∣∣∣ŵ(s)
j,k

1

n

n∑
u=1

�j,k(u/n)fs(u/n) − 	(s)
j,k

∣∣∣∣∣ �
V (�j,kfs)

n

∣∣∣∣∣�c
n

)
P(�c

n)

→ 1.
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Term (32) contains a finite amount of coefficients 	(s)
j,k 
= 0 so that convergence is uniform

(= Op(n−1)). The second part of (30) is given by

Jn∑
j=J0+1

∑
k

ŵ
(s)
j,k	̂

(s)

j,k�j,k(x). (33)

For all j, k ∈ Z, 	̂
(s)

j,k is a root-n consistent estimator for 	(s)
j,k (s = 1, . . . , p) and for all j > J0,

	(s)
j,k = 0. With the preliminary remarks of Section 3.2 about var (	̂

(s)

j,k), consider the estimator

ŵ
(s)
j,k in the case w

(s)
j,k = 0.

P(ŵ
(s)
j,k = 1) = P(|	̂(s)

j,k| > �j ·
√

var (	̂
(s)

j,k))

= P(
√

n|	̂(s)

j,k| > �j

√
n ·

√
var (	̂

(s)

j,k))

� P(
√

n|	̂(s)

j,k| > A�j )

� P(
√

n|	̂(s)

j,k| > �) → 0

for a suitable constant A and � > 0. Convergence is uniform in j so that (33) can be neglected
asymptotically. Rearranging (31) and combining this with (29) yields the desired result. �

Proof 7 (Lemma 4). It is sufficient to show the assertion for positive values of u.

√
n(�̂rs(u) − �rs(u)) = √

n

∫ 1

0
[fr(x + u)̃ε(s)

n (x)

+fs(x)̃ε(r)
n (x + u) + ε̃(r)

n (x + u)̃ε(s)
n (x)] dx.

Applying Lemma 3, the first part leads to

√
n

∫
fr(x + u)

⎡⎣1

n

n∑
u=1

εs(u)
∑

k

�l,k(u/n)�l,k(x)

+ 1

n

n∑
u=1

εs(u)
∑
j,k

ŵ
(s)
j,k�j,k(u/n)�j,k(x) + Op(n−1)

⎤⎦ dx

= 1√
n

n∑
u=1

εs(u)
∑

k

�l,k(u/n)

∫
fr(x + u)�l,k(x) dx

+ 1√
n

n∑
u=1

εs(u)
∑
j,k

ŵ
(s)
j,k�j,k(u/n)

∫
fr(x + u)�j,k(x) dx + Op(n−1/2)

=:
n∑

u=1

εs(u)w(s)
u,n + Op(n−1/2), (34)
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where w
(s)
u,n is a triangular array of partly deterministic weights given by

w(s)
u,n := 1√

n

⎛⎝∑
k

�l,k(u/n)

∫
fr(x + u)�l,k(x) dx

+
∑
j,k

ŵ
(s)
j,k�j,k(u/n)

∫
fr(x + u)�j,k(x) dx

⎞⎠ .

Therefore,

√
n

∫
fs(x)̃ε(r)

n (x + u) =
n∑

u=1

εr (u)w(r)
u,n + Op(n−1/2),

where

w(r)
u,n ≈ 1√

n

∑
k

�l,k(u/n)

∫
fs(x)�l,k(x + u) dx

+ 1√
n

∑
j,k

w
(r)
j,k�j,k(u/n)

∫
fs(x)�j,k(x + u) dx.

As a result of the proof of Theorem 1

n

∫
ε̃(r)
n (x + u)̃ε(s)

n (x) dx = Op(1).

It follows that

√
n(�̂rs(u) − �rs(u)) =

n∑
u=1

(w(r)
u,nεr (u) + w(s)

u,nεs(u)) + Op(n−1/2),

=
2n∑

u=1

ε∗
uw

∗
u,n + Op(n−1/2),

where ε∗
u = εr (u), u = 1, . . . , n, and ε∗

u = εs(u − n), u = n + 1, . . . , 2n, with the weights w∗
u,n

defined accordingly. Denote by B̂n(u) the random part of w
(s)
u,n. Then,

w(s)
u,n := An(u) + B̂n(u) = An(u) + Bn(u) + (B̂n(u) − Bn(u)),

with

An(u) = 1√
n

∑
k

�l,k(u/n)

∫
fr(x + u)�l,k(x) dx,

B̂n(u) = 1√
n

∑
j,k

ŵ
(s)
j,k�j,k(u/n)

∫
fr(x + u)�j,k(x) dx,

Bn(u) = 1√
n

∑
j,k

w
(s)
j,k�j,k(u/n)

∫
fr(x + u)�j,k(x) dx,

n∑
u=1

εs(u)w(s)
u,n =

n∑
u=1

ε(s)
u (An(u) + Bn(u)) +

n∑
u=1

εs(u)(B̂n(u) − Bn(u)) (35)
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and

n∑
u=1

εs(u)(B̂n(u) − Bn(u)) = 1√
n

n∑
u=1

⎡⎣∑
j,k

(ŵ
(s)
j,k − w

(s)
j,k)�j,k

(u

n

)
b

(r)
j,k

⎤⎦ εs(u), (36)

where b
(r)
j,k := ∫

fr(x + u)�j,k(x) dx. Since

ŵ
(s)
j,k − w

(s)
j,k = 1

{|	̂(s)

j,k |�
√

var (	̂
(s)

j,k)�j }
− 1{|	(s)

j,k |>0},

(36) only contains non-zero elements for those indices (j, k) where either |	̂(s)

j,k|�
√

var (	̂
(s)

j,k)�j

and 	(s)
j,k = 0 or |	̂(s)

j,k| <

√
var (	̂

(s)

j,k)�j and 	(s)
j,k 
= 0. Consider first (j, k) with 	(s)

j,k 
= 0. Since

P(ŵ
(s)
j,k = 1) → 1, ŵ

(s)
j,k − w

(s)
j,k → 0 in probability. Convergence is uniform in the set of (j, k)

with 	(s)
j,k 
= 0, since this set is finite. For 	(s)

j,k = 0,

(36) =
n∑

u=1

B̂n(u)εs(u).

and P(ŵ
(s)
j,k = 1) → 0 uniformly in j, k. Consider B̂n(u) for the case u = k2−j with (j, k)

arbitrary. In this case there is at most a finite number of b
(r)
j,k 
= 0. For each � > 0 and a suitable

constant A,

P(|√nB̂n(u)| > �) = P

⎛⎝∣∣∣∣∣∣
Jn∑
j

∑
k

ŵ
(s)
j,k�j,k

(u

n

)
b

(r)
j,k

∣∣∣∣∣∣ > �

⎞⎠
� P

⎛⎝A

J0∑
j

∑
k

|ŵ(s)
j,k| > �

⎞⎠ → 0. (37)

Consider now u 
= k2−j . For sufficiently large n there exists an integer k such that |u−k ·2−Jn | <

2−Jn . For suitable constants A1, A2∣∣∣∣∫ fr(x + u)�j,k(x) dx −
∫

fr(x + k2−Jn)�j,k(x) dx

∣∣∣∣
�A1 · 2j/2

∫
|fr(x + u) − fr(x + k2−Jn)| dx

�A1 · 2j/2 sup
x

|fr(x + u) − fr(x + k2−Jn)| · |u − k2−Jn |.
�A2 · 2−Jn → 0.

due to Assumption (A2). Therefore,

P

⎛⎝∣∣∣∣∣∣
∑
j,k

ŵ
(s)
j,k�j,k

(u

n

)
b

(r)
j,k

∣∣∣∣∣∣ > �

⎞⎠
�P

⎛⎝∑
j,k

∣∣∣ŵ(s)
j,k�j,k

(u

n

)∣∣∣ [∫ |fr(x + k2−j )�j,k(x) dx| + A22−Jn

]
> �

⎞⎠
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�P

⎛⎝∑
j,k

∣∣∣ŵ(s)
j,k�j,k

(u

n

)∣∣∣ ∫ |fr(x + k2−j )�j,k(x) dx| >
�

2

⎞⎠ (38)

+P

⎛⎝A22−Jn
∑
j,k

∣∣∣ŵ(s)
j,k�j,k

(u

n

)∣∣∣ >
�

2

⎞⎠ . (39)

(38) converges to 0 in probability according to (37). Moreover,

P

⎛⎝∣∣∣∣∣∣A22−Jn

Jn∑
j,k

|ŵ(s)
j,k�j,k

(u

n

)∣∣∣∣∣∣ >
�

2

⎞⎠ �P

⎛⎝∣∣∣∣∣∣A22−Jn

Jn∑
j

2j/2

∣∣∣∣∣∣ >
�

2

⎞⎠ → 0,

so that P(
√

nB̂n(u)| > �) → 0. Since ε
(s)
u form a square-integrable martingale difference ar-

ray with constant variance, n− 1
2
∑n

u=1 εs(u) converges in distribution to a normal variable and∑n
u=1 B̂n(u)εs(u) → 0 in probability. Combining all cases,

∑
u εs(u)(B̂n(u) − Bn(u)) → 0 in

probability so that asymptotically the second part of the sum in (35) can be neglected. Hence,
w

(s)
u,n reduce to the deterministic weights:

w̃(s)
u,n = An(u) + Bn(u) = 1√

n

∑
k

�l,k(u/n)

∫
fr(x + u)�l,k(x) dx

+ 1√
n

∑
j,k

w
(s)
j,k�j,k(u/n)

∫
fr(x + u)�j,k(x) dx.

Similarly, w
(r)
u,n can be replaced by w̃

(r)
u,n and hence also w∗

u,n by w̃∗
u,n. Defining 
2

n := var [∑n
u=1

w̃∗
u,nε

∗
u], we have 
2

n → 
rs(u, u). Since w
(s)
j,k = 0, j > J0,

max
1�u�n

|w(s)
u,n| = max

1�u�n

∣∣∣∣∣∣ 1√
n

∑
k

�l,k(u/n)

∫
fr(x + u)�l,k(x) dx

+ 1√
n

∑
j,k

w
(s)
j,k�j,k(u/n)

∫
fr(x + u)�j,k(x) dx

∣∣∣∣∣∣
� A√

n

∑
k

∫
|fr(x + u)�l,k(x)| dx

+ A√
n

J0∑
j,k

∫
|fr(x + u)�j,k(x)| dx,

= O(n−1/2),

where A is a suitable constant, we have

max
1�u�n

|w∗
u,n| = max

1�u�n
|w(r)

u,n + w(s)
u,n| → 0.

From Theorem 2 and the approximation of w∗
u,n by w̃∗

u,n we obtain var [∑n
u=1 w̃∗

u,nε
∗
u] = O(1).

Hence,

max
1�u�n

|w∗
u,n|

n

→ 0, n → ∞.
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Then Theorem 4 in Beran and Feng [2] together with (A3) imply∑
u w∗

u,nε
∗
u


n

d→ N (0, 1),

and hence
√

n(�̂rs(u) − �rs(u))
d→ N (0, 
rs(u, u)). �

Proof 8 (Theorem 3). Applying the Cramér–Wold device, we show that for any constants �l ,
l = 1, . . . , q, q ∈ N, not all equal to zero,

n
1
2

q∑
l=1

�l (�̂rs(ul) − �rs(ul))
d→ N (0, 
̃2),

where 
̃2 :=
q∑

l=1

q∑
m=1

�l�m
rs(ul, um) > 0. Note that

n
1
2

q∑
l=1

�l (�̂rs(ul) − �rs(ul)) = n
1
2

∫ [̃
ε(s)
n (x)

q∑
l=1

�lfr (x + ul)︸ ︷︷ ︸
=:A

+ fs(x)

q∑
l=1

�l̃ε
(r)
n (x + ul)︸ ︷︷ ︸

=:B

+ ε̃(s)
n (x)

q∑
l=1

�l̃ε
(r)
n (x + ul)

]
dx︸ ︷︷ ︸

=:C

. (40)

As shown earlier, the first part (A) can be written approximately as
n∑

u=1

εs(u)

⎡⎣n− 1
2
∑

k

�l,k(u/n)

q∑
l=1

�l

∫
fr(x + ul)�l,k(x) dx

+ n− 1
2
∑
j,k

ŵ
(s)
j,k�j,k(u/n)

q∑
l=1

�l

∫
fr(x + ul)�j,k(x) dx

⎤⎦ ,

where the term in brackets is a weight function for the individual εs(u). We denote the weights by
w

(s∗)
u,n and the analogous weights of term (B) by w

(r∗)
u,n . As above, (C) converges to 0 almost surely.

Note that 
̃ :=
√

var [∑w
(r∗)
u,n εr (u) + ∑

w
(s∗)
u,n εs(u)]. Then a simple consequence of previous

arguments is that

max
1�u�n

|w(r∗)
u,n + w

(s∗)
u,n |


̃
→ 0.

Hence, the Central Limit Theorem for the weighted sum holds such that∑
w(r∗)

u,n εr (u) +
∑

w(s∗)
u,n εs(u)

d→ N(0, 
̃2).

By applying the Cramér–Wold Device, this is equivalent to finite collections of �̂rs(u) being
asymptotically jointly normal with mean zero and covariance matrix (
rs(ul, um)), l, m =
1, . . . , q, i.e.

n
1
2 (�̂rs(u) − �rs(u))→N (0, (�rs(ul, um))1� l,m�q). � (41)
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Proof 9 (Theorem 4). Let Pn be the probability distribution of �̂(n)
rs (u) in C[−1, 1] with corre-

sponding 
-algebra C and let C[−1, 1] be given the uniform topology induced by the metric
d(f, g) = sup−1� t �1 |f (t) − g(t)|. Then for any Borel subset B: Pn(B) = P(�̂(n)

rs (u) ∈ B). It

remains to prove tightness of the family Pn of probability distributions of �̂(n)
rs (u) [4]. Define the

modulus of continuity of an element f ∈ C[−1, 1] by

wf (�) = w(f, �) = sup
|s−t |<�

|f (s) − f (t)|, 0 < ��2.

Then the sequence {Pn} is tight if and only if

(i) for each positive � there exists a constant A such that

Pn(|�̂(n)
rs (0)| > A)��, n�1, (42)

(ii) For each positive �1 and �2, there exists � (0 < � < 2) and n0 ∈ N such that

Pn(w�̂(n)
rs

(�) > �1)��2, n�n0. (43)

We first note that the probability distributions of �̂(n)
rs (0) are tight.

�̂(n)
rs (0) =

∫
fr(x)fs(x) dx +

∫
fr(x)̃ε(s)

n (x) dx

+
∫

fs(x)̃ε(r)
n (x) dx +

∫
ε̃(r)
n (x)̃ε(s)

n (x) dx.

Lemma 2 shows that all parts of the sum in �̂(n)
rs (0) converge to 0 almost surely except

∫
fr(x)

fs(x) dx. Tightness of �̂(n)
rs (0) is not influenced by

∫
fr(x)fs(x) dx and each of the other parts

of the sum converges to 0 in probability due to Lemma 2. This implies that for each A > 0 and
each � > 0 there exists an n0 ∈ N with e.g. Pn(|

∫
fs(x)̃ε

(r)
n (x) dx| > A) < � for all n�n0. For

the first indices 1, . . . , n0 − 1 the statement is trivial since finitely many random variables are
always tight. For the second condition note that w�̂(n)

rs
(�) = sup|u2−u1|<� |�̂n(u2) − �̂n(u1)|. The

continuity of the integral together with the results of Lemma 2 imply that there exists an n0 such
that condition (ii) is satisfied for all �1, �2 > 0.

Therefore, Pn is tight such that �̂(n)
rs (u) converges to a Gaussian process where the finite dimen-

sional distributions are given in Eq. (41). �

Proof 10 (Theorem 5). Define Xn(u) := √
n(�̂rs(u) − �rs(u)). The preceding discussion has

shown that Xn is a random element in C[−1, 1] that converges in distribution to a stochastic
process whose finite dimensional distributions are asymptotically normal. Theorem 5 then follows
by the continuous mapping theorem (see e.g. [18]).
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