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The Toeplitz pencil conjecture stated in [7,8] is equivalent to a con-

jecture for n × n Hankel pencils of the form Hn(x) = (ci+j−n+1),
where c0 = x is an indeterminate, cl = 0 for l < 0, and cl ∈ C∗ =
C \ {0}, for l � 1. In this paper it is shown to be implied by another

conjecture, which we call the root conjecture. The root conjecture

asserts a strong relationship between the roots of certain submax-

imal minors of Hn(x) specialized to have c1 = c2 = 1. We give

explicit formulae in the ci for these minors and prove the root

conjecture for minors mnn,mn−1,n of degree �6. This implies the

Hankel pencil conjecture for matrices up to size 8 × 8. The main

tools involved are a partial parametrization of the set of solutions

of systems of polynomial equations that are both homogeneous

and index sum homogeneous, and use of the Sylvester identity for

matrices.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

A 1981 conjecture by Bumby, Sontag, Sussmann, and Vasconcelos, asserts that the polynomial ring

C[y] is a so called Feedback Cyclization (FC) ring. Two exceptional cases of that conjecture remained

unsolved. More background on this material is found in a 2004 paper by Schmale and Sharma [8].

These authors showed that one of the cases referred would follow from the truth of a simple looking

conjecture they formulated for Toeplitz matrices. Here we find it advantageous to fomulate it in terms

of Hankel matrices.

For n� 3 consider the n × n Hankel matrix over C[x], Hn(x) = Hn(x; c1, . . . , cn+1) = (hij), i, j =
1, . . . , n, defined by
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hij =
⎧⎨
⎩
0 if i + j � n − 2

x if i + j = n − 1

ci+j−n+1 if i + j � n
.

That is,

Hn(x) = Hn(x; c1, . . . , cn+1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x c1 c2
x c1 c2 c3

...
...

x c1 . . . . . . cn−2 cn−1

c1 c2 . . . . . . cn−1 cn
c2 c3 . . . . . . cn cn+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

For example

H5(x) =

⎡
⎢⎢⎢⎢⎣

x c1 c2
x c1 c2 c3

x c1 c2 c3 c4
c1 c2 c3 c4 c5
c2 c3 c4 c5 c6

⎤
⎥⎥⎥⎥⎦ .

Conjecture 1.1 (Hankel Pencil Conjecture HPnC). If det Hn(x) = 0, and c1, . . ., cn, cn+1 ∈ C∗, then the

last two columns are linearly dependent.

The authors of [8] proved this conjecture for the cases n = 3, 4, and (via computational algebraic

geometry) the case n = 5; i.e. they proved HP3C, HP4C, HP5C. They posed the HPnC for general n as a

problem in [7]. In [2] a solution was proposed, but it was shown to have a significant gap [9].

In this paperwe report progress on the conjecture. In Section 2we show that it is sufficient to prove

it for the subclass of matrices Hn(x) for which c1 = c2 = 1. This is done via a general observation

on polynomial systems which satisfy a uniformity condition that we call index sum homogeneous.

In Section 3 we give an equivalent formulation of the conjecture using the Sylvester identity. We

formulate it as a conjecture for a certain class of polynomials for which in Section 4 we give explicit

formulae. In Section 5 we formulate a more general conjecture about certain monic polynomials of

degree n − 2 thatwe call the root conjecture.We abbreviate it as RnC if referring tomonic polynomials

of degree n − 2. We show that RnC implies HPnC. In Section 6 we prove RnC true for n� 8. Via the

new insights, the case n = 5, previously testing the limits of technology, can now be done by hand,

the case n = 6 with some patience as well. For n = 7, 8 we use a 1993 486-PC, and Mathematica v.

2.2, but the computations are rapid so that it is reasonable to expect that more modern models and

specialized software versions (or more patience) could extend our results to n� 10, at least. In Section

7we report briefly on other lines of attack and delimit our results via counterexamples tomore general

and related conjectures that may seem reasonable.

2. To show HPnC one can assume c2=c1= 1

Here we show it is sufficient to restrict attention to the subclass of matrices Hn(x) for which the

rightmost two entries of the first row are equal to 1.

We use the following definitions.

Definition 2.1. Let p = p(x1, . . . , xn) ∈ C[x1, . . . , xn] be a polynomial in n variables. Then p is degree-

homogeneous (d-homogeneous) of degree m if each of the monomials x
i1
1 x

i1
2 · · · xinn occurring in it sat-

isfies i1 + · · · + in = m. Furthermore, we say p is index sum homogeneous (is-homogeneous) of i-sum

k if each of the monomials x
i1
1 x

i2
2 · · · xinn occurring in it satisfies i1 + 2i2 + · · · + nin = k. For example

x52 − 4x1x
3
2x3 + 3x21x2x

2
3 + 3x21x

2
2x4 − 2x31x3x4 − 2x31x2x5 + x41x6 ,

is d-homogeneous of degree 5 and is is-homogeneous of i-sum 10.
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If p is a polynomial in C[x1, . . . , xn], then its variety V(p) is defined as V(p) = {c ∈ Cn : p(c) = 0}.
If p is d-homogeneous, we can describe the set of all solutions for which the first coordinate is nonzero

as

V·(p):=V(p) ∩ (C∗ × Cn−1) = {(c, cc2, . . . , ccn) : p(1, c2, . . . , cn) = 0, c ∈ C∗}.
We now give a similar description for the solutions with nonzero first and second coordinate of

polynomials that are both d- and is-homogeneous. So define V··(p):=V(p) ∩ ((C∗)2 × Cn−2).

Lemma 2.2. Let x = (x1, . . . , xn), and let p = p(x) ∈ C[x] be a d- and is-homogeneous polynomial. Then

V··(p) = {(c, ca, ca2c3, . . . , can−1cn) : c, a /= 0, p(1, 1, c3, . . . , cn) = 0}. (2.2)

Proof. Let d be the degree and k the index sum of p.

We claim that the following identity holds in C(x).

p(x1, . . . , xn)

xd1x
k−d
2

= p

(
x1

x1
,

x2

x1x2
,

x3

x1x
2
2

, . . . ,
xj

x1x
j−1
2

, . . . ,
xn

x1x
n−1
2

)
.

It suffices to show that for eachmonomial its coefficients on either side of the equation are the same. So

consider a monomial occurring in p, say x
i1
1 x

i2
2 · · · xinn . Upon substitution of xj by

xj

x1x
j−1
2

, j = 1, 2, . . . , n,

we obtain(
x1

x1

)i1
(

x2

x1x2

)i2 · · ·
(

xj

x1x
j−1
2

)ij

· · ·
(

xn

x1x
n−1
2

)in

.

The denominator of this expression is x
i1+···+in
1 x

i2+2i3+3i4+···+(n−1)in
2 . Thus the exponent of x1 in the

denominator is d and the exponent of x2 is
∑n

ν=1(ν − 1)iν = k − d. The claim follows.

Nowconsideranyu = (u1, . . . , un) ∈ V··(p). Sinceu1, u2 /= 0wecandefine c, a /= 0, c3, . . . , cn such
that u1 = c, u2 = ca, and uj = caj−1cj , for j = 3, . . . , n. So u = (c, ca, ca2c3, . . . , ca

n−1cn) ∈ V··(p) ⊆
V·(p) implies by the characterization of V·(p) that p(1, a, a2c3, . . . , an−1cn) = 0. But then the identity

implies

p(1, 1, . . . , aj−1cj

/
(1aj−1), . . .) = p(1, 1, c3, . . . , cn) = 0.

SoV··(p) is a subset of the righthand side in Eq. (2.2). Nowapply p to an element of the righthand side of

(2.2). Thend-and is-homogeneities, and the identityyield thecomputationp(c, ca, ca2c3, . . . , ca
n−1cn)= cdp(1, a, a2c3, . . . , a

n−1cn) = cdp(1, 1, c3, . . . , cn) = 0, so (c, ca, ca2c3, . . . , ca
n−1cn) ∈ V··(p). �

Corollary 2.3. Assume we are given a system of d- and is-homogeneous polynomials p1, . . . , pm ∈ C[x].
If the system of equations

p1(1, 1, x3:n) = 0, . . . , pm(1, 1, x3:n) = 0

allows only the solution x3:n = (1, 1, . . . , 1) ∈ (C∗)n−2, then the set of all solutions in (C∗)2 × Cn−2 of

the system

p1(x) = 0, . . . , pm(x) = 0 (2.3)

is given by {c(1, a, a2, . . . , an−1) : c, a ∈ C∗}.
Proof. The set of all the solutions sought for in (2.3) is

⋂m
i=1 V··(pi). Using the description of the sets

V··(pj) given in Lemma 2.2, the claim is easily deduced. �

Now consider a matrix Hn(x) as in Section 1. Obviously det Hn(x) is a polynomial in x with coef-

ficients that are polynomials in c1, . . . , cn+1. As long as we treat the cj as indeterminates, we have

polynomials hj ∈ C[c1, . . . , cn+1], so that

det Hn(x) = h0 + h1 · x + h2 · x2 + · · · + hn−2 · xn−2.
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Lemma 2.4. The polynomials hj , j = 0, 1 . . . , n − 2, associated toHankelmatrixHn(x) are d-homogenous

of degree n − j and is-homogeneous of index sum 2n.

Proof. Writing c0 for x, the entries of Hn can be written

hij =
{
0 if i + j � n − 2

ci+j−n+1 if i + j � n − 1
.

A monomial in any hj originates in a diagonal product h1,σ(1)h2,σ(2) · · · hn,σ(n), occurring in a term

in the determinant det Hn(x); here σ is a permutation on {1, . . . , n}. For j fixed, exactly j of the h∗∗
are equal to x = c0, and n − j are equal to some ci with i � 1. This shows that hj is homogeneous of

degree n − j. The i-sum of the diagonal product is the sum of the indices of the c∗’s in it. The i-sum of

the diagonal product is
∑n

i=1(i + σ(i) − n + 1) = 2
∑n

i=1 i − n2 + n = 2n. Note that x has i-sum 0.

Therefore the i-sum of any monomial in hj is 2n. �

Corollary 2.5. If HPnC is true for the subclass of admissible matrices for which c1 = c2 = 1, then HPnC is

true in general.

Proof. Admitting throughout only i ∈ {0, . . . , n − 2}, j ∈ {1, . . . , n + 1}, and l ∈ C∗, the general HPnC
can be written in the form

∀i, j hi(c) = 0 & cj ∈ C∗ ⇒ ∃l ∀j cj = lj−1c1.

Since c2 = c1 = 1 implies l = 1, the restricted HPnC has the form

∀i, j hi(1, 1, c3:n+1) = 0 & cj ∈ C∗ ⇒ ∀j cj = 1.

By Lemma 2.4, the polynomials hj(c1, . . . , cn+1) are d- and is-homogeneous. So if we assume correct-

ness of the restricted HPnC, then by Corollary 2.3, the solution of a system satisfying the hypothesis of

general HPnC is given by cj = caj−1 for some c, a ∈ C∗. But this is precisely the claim. �

3. An equivalent formulation of HPnC

Given a square matrix partitioned as A =
[
E F
G H

]
with A n × n, and E k × k, one can form the

n − k × n − k matrix of minors (det A[{1, . . . , k} ∪ {i}|{1, . . . , k} ∪ {j}])i,j=k+1,...,n. obtained by all

possible extensions of E by one row and one column. The Sylvester-identity says that the determinant

of this n − k × n − k matrix satisfies

det((det A[{1, . . . , k} ∪ {i}|{1, . . . , k} ∪ {j}])i,j=k+1,...,n) = (det E)n−k−1 det A;
see Brualdi and Schneider [3] for a lucid introduction to determinantal identities. Now define the

polynomial mij(x) = det Hn(x)[ic|jc], where for s = i, j ∈ {n − 1, n}, sc = {1, . . . , n} \ {s}. With one

exception to which we alert the notation mij will be used for n × nmatrices.

In the proof of the following proposition and in the next section,wewill use the quantity δn, defined
for integers n� 0 by

δn =
{−1 if n ≡ 0, 3 mod 4

1 if n ≡ 1, 2 mod 4
, or equivalently, by δn = (−1)�(n−1)/2�.

Check that then for n� 3, δn−1 = sgn(n − 2, . . . , 1).

Proposition 3.1. The HPnC is equivalent to the statement

mnn(x)mn−1,n−1(x) = m2
n−1,n(x) & cj ∈ C∗ ⇒ cj = aj−1c1

for some a ∈ C, and j = 1, . . . , n + 1.
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Proof. Applying the Sylvester identity with A = Hn(x), k = n − 2, we find that

mnn(x) · mn−1,n−1(x) − m2
n−1,n(x)

= det

[
mnn(x) mn−1 n(x)

mn−1 n(x) mn−1 n−1(x)

]
= δn−1x

n−2 · det Hn(x).

Thus the hypothesis of HPnC is equivalent to the righthand side of the above implication; the claim

follows. �

4. Formulae for the polynomials mij(x) and their modified reciprocals

The reciprocal of a polynomial p(x) = ∑n
j=0 pjx

j ∈ C[x] of degree n can alternatively be defined as∑n
j=0 pn−jx

j or as xnp(1/x) (the latter expression lives in C(x), but not in C[x]). Assuming p0 /= 0, the

reciprocal of p has as roots precisely the inverses of the roots of p.

In this section we establish formulae for the polynomialsmij(x) = det Hn(x)[ic|jc], and theirmod-

ified reciprocals m̂ij(x) = δnx
n−2mij(1/x).

To make the proof of Theorem 4.2b more precise we begin with a purely combinatorial Lemma of

interest in its own right.

Let O(n) be the set of compositions of the positive integer n into an odd number of parts, and P(n)
the familyof all compositionsofn respectively. Examplesof elements inO(8) include134, 22211, 31211,
etc. Here 134 for example is a shorthand for (1,3,4). Elements in P(7) include 61, 241, 1114, etc.

Now let o = (n1, . . . , n2k+1) be a composition in O(n). Examine ni, i = 1, 2, 3, . . . , successively
from left to right and write the following:

if i is odd, write a string of form 111…1 of length ni − 1; if this value is 0, let the string be void.

if i is even write the integer ni + 1.

Thus applying φ to an element of O(n), we obtain a string of positive integers whose sum is

(n1 − 1) + (n2 + 1) + · · · + (n2k−1 − 1) + (n2k + 1) + n2k+1 − 1 = n − 1. Therefore the image is

inP(n − 1)and it is evident thatwehaveconstructedan injectivemapO(n)
φ→ P(n − 1). For example,

we have O(13) � 31531
φ�→ 11211114 ∈ P(12).

Conversely, let be given any positive composition of n − 1. One can find on it from left to right for

certain integers n′
1, n

′
2, . . .: a n′

1-string of 1s, a number n′
2 � 2, a n′

3-string of 1s, a number n′
4 � 2,…, a

n′
k+1 string of 1s, etc., where each of n′

1, n
′
3, . . . can be zero. This reading is unique and defines integers

n′
1, n

′
2, . . .. From left to right now:

if i is odd: write the integer n′
i + 1.

if i is even: write the integer n′
i − 1.

So for theexampleabove, startingwith11211114 ∈ P(12),wefindn′
1 = 2, n′

2 = 2, n′
3 = 4, n′

4 = 4, n′
5 =

0. Applying the construction process just outlined leads back to 31531.

These arguments prove the first part of the following proposition.

Proposition 4.1

a. The map φ : O(n) → P(n − 1) is bijective.
b. Under this bijection the set of all compositions in O(n) for which the sum of the entries at even

positions is l corresponds to the elements in P(n − 1) of length n − l − 1.

Proof. Only (b) needs aproof. Fix l. LetO(n, l) the compositions ofO(n) forwhich the sumof the entries

at even positions is l, and let P(n − 1, n − l − 1) denote the set of all compositions in P(n − 1) of

length n − l − 1. Consider o = (n1, n2, . . . , n2k , n2k+1) ∈ O(n, l). Then

length(φ(o)) = (n1 − 1) + 1 + (n3 − 1) + 1 + · · · + (n2k−1 − 1) + 1 + n2k+1 − 1

= n1 + n3 + · · · + n2k+1 − 1 = (n − l) − 1.
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So we have an injective map φ|O(n, l) : O(n, l) → P(n − 1, n − l − 1); hence #O(n, l) �#P(n −
1, n − l − 1). Since O(n) = ⊎

l � 1 O(n, l), and P(n − 1) = ⊎
l � 1 P(n − 1, l), and #O(n) = #P(n −

1) by part (a), we find #O(n, l) = #P(n − 1, n − l − 1), and so the map is bijective. �

Theorem 4.2. With the understanding that all indices occuring are positive integers, there hold the follow-

ing formulae:

a. mnn(x) = δn
∑n−2

j=0

(∑{ci1ci2 · · · cin−j−1
: i1 + i2 + · · · + in−j−1 = n − 1}

)
· (−x)j ,

b. mn−1,n(x) = δn
∑n−2

j=0

(∑{ci1ci2 · · · c1+in−j−1
: i1 + i2 + · · · + in−j−1 = n − 1}

)
· (−x)j.

c. mn−1,n−1(x) = δn
∑n−3

j=0

(∑{ci1ci2 · · · c1+in−j−2
c1+in−j−1

: i1 + i2 + · · · + in−j−1 = n − 1}
)

× (−x)j + δncn+1(−x)n−2.

Proof. For smalln these formulae are verifieddirectly.Wenowshowthemtohold trueby induction. By

definitionmnn(x) is the left upper n − 1 × n − 1minor ofHn(x). Thus, by expanding the determinant

along its first row, we find

mnn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣

x c1
x c1 c2

...
x c1 . . . . . . cn−2

c1 c2 . . . . . . cn−1

∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n−3x

∣∣∣∣∣∣∣∣∣∣∣∣

x c2
x c1 c3

...
x c1 . . . . . . cn−2

c1 c2 . . . . . . cn−1

∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
=:|A|

+ (−1)n−2c1

∣∣∣∣∣∣∣∣∣∣∣∣

x c1
x c1 c2

...
x c1 . . . . . . cn−3

c1 c2 . . . . . . cn−2

∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
=:|B|

Note that the matrices A, B are n − 2 × n − 2, and |A| = mn−1,n−2 = mn−2,n−1, |B| = mn−1,n−1(x),
relatively to Hn−1(x). So we have by induction assumption the formulae:

|B| = δn−1

n−3∑
j=0

(∑{ci1ci2 · · · cin−j−2
: i1 + i2 + · · · + in−j−2 = n − 2}

)
· (−x)j.

|A| = δn−1

n−3∑
j=0

(∑{ci1ci2 · · · c1+in−j−2
: i1 + i2 + · · · + in−j−2 = n − 2}

)
· (−x)j.

Next, with A′ :=|A|/δn−1, B
′ :=|B|/δn−1, we can write

mnn(x) = (−1)n−3(x|A| − c1|B|) = (−1)n−3δn−1(xA
′ − c1B

′). (4.2a)

Write coeff(p, xl) for the coefficient of xl in polynomial a p.

Noting coeff(xA′, xl) = coeff(A′, xl−1), check for l = 1, 2, . . . , n − 2, that

coeff(xA′, xl) = (−1)l+1
∑{ci1ci2 · · · c1+in−l−1

: i1 + i2 + · · · + in−l−1 = n − 2}
and

coeff(−c1B
′, xl) = (−1)l+1

∑{ci1ci2 · · · cin−l−2
· c1 : i1 + i2 + · · · + in−l−2 = n − 2}
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We can write this in an alternative way as

coeff(xA′, xl) = (−1)l+1
∑

al1l2...ln−1
c
l1
1 c

l2
2 · · · cln−1

n−1,

and coeff(−c1B
′, xl) = (−1)l+1∑ bl1l2...ln−1

c
l1
1 c

l2
2 · · · cln−1

n−1, where

al1l2...ln−1
equals thenumberofn − l − 1-tuples (i1, . . . , in−l−2, 1 + in−l−1)containing l1 entries

1, l2 entries 2, …, ln−1 entries n − 1, while (i1, . . . , in−l−1) ranges over all positive n − l −
1-tuples of sum n − 2; and
bl1l2...ln−1

equals the number of n − l − 1-tuples (i1, . . . , in−l−2, 1) containing l1 entries 1, l2
entries 2, …, ln−1 entries n − 1, while (i1, . . . , in−l−2) ranges over all positive n − l − 2-tuples

of sum n − 2.

With these definitions, the coefficient of xl of the righthand side of (4.2a), is given by

coeff(mnn(x), x
l) = (−1)n+l−2δn−1

∑
(al1l2...ln−1

+ bl1l2...ln−1
).

At the other hand by similar considerations as above for the a∗’s and b∗’s, this coefficient is claimed

to be

(−1)lδn
∑{ci1ci2 · · · cin−l−1

: i1 + i2 + · · · + in−l−1 = n − 1},
or equivalently

(−1)lδn
∑

wl1l2...ln−1
c
l1
1 c

l2
2 · · · cln−1

n−1,

where wl1l2...ln−1
equals the number of positive n − l − 1-tuples of sum n − 1 containing l1 entries 1,

l2 entries 2, …, ln−1 entries n − 1.

Now wl1l2...ln−1
is the cardinality of a set that we can divide into two disjoint subsets: namely the

subset of tuples whose last component is at least 2, and the subset of tuples whose last component

is 1. It is now easy to see that these subsets have cardinalities al1l2...ln−1
and bl1l2...ln−1

respectively.

Hence
∑

wl1l2...ln−1
= ∑

al1l2...ln−1
+ bl1l2...ln−1

. Finally one checks that δn = (−1)nδn−1 so that we

have proved our claim concerning mnn(x).
b. Consider once more the determinant defining mnn(x). It has x’s in columns 1, . . . , n − 2 and no

x in column or row n − 1. Circle some, say l, x’s. In the length n sequence 0 1 2 3 · · · n − 2 n − 1,

underline those integers j that are column indices of circled x’s. Call a set of consecutive underlined

integers an u-interval; a set of consecutive not underlined integers a nu-interval. The treated sequence

necessarily begins and ends in nu-intervals. Now going from left to right write down the sequence of

lengths (i.e. cardinalities) of these intervals. This sequence is of odd length and represents the integer

n as a composition. It is o = (n1, n2, . . . , n2k+1) ∈ O(n), say. It has at its even positions the lengths of

the u-intervals. The sumof these lengths equals the number of circled x’s. A little reflection shows now

the following. There is one and only one possibility of circling (n − l)cs such that the l + (n − l) = n

circles lie all in different rows and columns, i.e. such that they form a permutation. Indeed the indices

of the circled c’swritten downas appearing from left to right coincide preciselywithφ(o) ∈ P(n − 1).⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x ©1
©x 1 2

x 1 ©2 3

x ©1 2 3 4

©x 1 2 3 4 5

©x 1 2 3 4 5 6

x 1 2 ©3 4 5 6 7

x ©1 2 3 4 5 6 7 8

©1 2 3 4 5 6 7 8 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To illustrate this process, consider the 9 × 9 matrix shown whose determinant defines m10,10(x).
(For readibility we suppressed the c’s.) We circled three x’s; the associated underlined sequence is
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0 1 2 3 4 5 6 7 8 9. The sequence of lengths of nu- and u-intervals thus is o = 32212 ∈ o(10). Thus
φ(o) = 113121. To the circles chosen corresponds the word c1c1xxc3c1xc2c1, or after eliminating the

x’s, c1c1c3c1c2c1.

What is the bearing of this discussion for our problem?Wehave shown in part a that the coefficient

of xl ofmnn(x) is apart from signing equal to∑{ci1ci2 · · · cin−l−1
: i1 + i2 + · · · + in−l−1 = n − 1}.

By Proposition 4.1 we can understand this sum now as the sum over all products ci1ci2 · · · cin−l−1
for

which (i1, . . . , in−l−1) = φ(o), as o ranges over all compositions of n of odd length with sum of even

entries equal to l. Now, by symmetrymn−1,n(x) = mn,n−1(x), and this latter polynomial can be simply

obtained by adding 1 to the indices of the last column of the determinantal expression for mnn. Our

combinatorial interpretation of the sum above now yields the formula (b).

c. The formula in (b) can also be written

mn−1,n(x) = δn

n−2∑
j=0

(∑{c1+i1ci2 · · · cin−j−1
: i1 + i2 + · · · + in−j−1 = n − 1}

)
· (−x)j.

And the coefficients of xl interpreted as the sum of the words in the c’s obtained in the transposed of

the determinantal expression considered in (b). The transposed has as last index row [2, 3, . . . , n], so
all entries are�2. The complex number c1+i1 would represent the c chosen in the last row (necessarily

the leftmost) and cin−j−1
represents in all cases the c chosen in the last column. Now to obtain from our

transposed minor the minor mn−1,n−1 we have to increment each index by 1 in the last column, and

thus can largely use the reasoning we used in part b. There is one point to observe: if the coefficient

consists of only one letter, i.e. if n − j − 1 = 1, so j = n − 2, then the index has to be augmented by

2, for then the letter is found in the lower right corner and so has been increased by 1 as being in the

last row, and once from augmenting as lying in the last column. Our formula given in part c reflects

these facts. �

Corollary 4.3. The following hold:

a. m̂nn(x) = (−1)n
∑n−2

j=0 (
∑{ci1 · · · cij+1

: i1 + · · · + ij+1 = n − 1})(−x)j.

a′. m̂nn(x)=(−1)n
∑n−2

j=0 (
∑{

(
j + 1

l1, l2, . . . , ln−1

)
c
l1
1 c

l2
2 · · · cln−1

n−1 : 1l1 + 2l2 + · · · + (n − 1)ln−1=n

− 1})(−x)j.

b. m̂n−1,n(x) = (−1)n
∑n−2

j=0 (
∑{ci1 · · · c1+ij+1

: i1 + · · · + ij+1 = n − 1})(−x)j.

c. m̂n−1,n−1(x) = (−1)ncn+1 + (−1)n
∑n−2

j=1 (
∑{ci1 · · · c1+ij c1+ij+1

: i1 + · · · + ij+1 = n − 1})
(−x)j.

d. If c1 = c2 = 1, then all the polynomials m̂ij , i, j ∈ {n − 1, n} are monic.

Proof. a,b,c. These formulae follow directly from the definitions of m̂nn, m̂n−1,n, and m̂n−1,n−1, respec-

tively.

a′. We can write the inner sum in part a as∑
al1l2...ln−1

c
l1
1 c

l2
2 · · · cln−1

n−1,

where al1l2...ln−1
= number of positive j + 1-tuples of sum n − 1 containing l1 entries 1, l2 entries 2,

…, ln−1 entries n − 1.

Using the definition of the multinomial coefficient occurring in a′, see [1, p. 77], the claim follows.

d. The leading coefficient in the polynomials above is found considering only the terms correspond-

ing to j = n − 2. This choice forces the inner sums to collapse to c
n−1
1 , c

n−2
1 c2, and c

n−3
1 c22, respectively.

The claim follows. �
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5. A more general conjecture: the root conjectures RnC

On the basis of Sections 2–4 we can formulate HPnC as follows

Proposition 5.1. HPnC is equivalent to the following assertion for modified reciprocal polynomials.

m̂nn(x) · m̂n−1,n−1(x) = m̂2
n−1,n(x) & c1 = c2 = 1 ⇒ c3 = · · · = cn+1 = 1.

Proof. Assume (5.1) correct. Consider the formulation of HPnC as given in Proposition 3.1. In view of

the result of Section 2, we can formulate it as

mnn(x) · mn−1,n−1(x) = m2
n−1,n(x) & c1 = c2 = 1 ⇒ c1 = c2 = · · · = cn = cn+1 = 1.

Since passing to themodified reciprocal of a degree n − 2 polynomial is an involutive process, one sees

that the first of the hypothesis is equivalent to m̂nn(x) · m̂n−1,n−1(x) = m̂2
n−1,n(x). Thus (5.1) implies

HPnC. The discussion shows that the converse also holds true. �

For a polynomial p ∈ C[x] define roots(p) = {c ∈ C : p(c) = 0}.
Proposition 5.2. Suppose c1 = c2 = 1. Then the following are equivalent.

i. roots(m̂n−1,n) = {1}.
ii. c3 = c4 = · · · = cn = 1.
iii. m̂n−1,n = m̂nn.
iv. ∃a ∈ C∗ roots(m̂n,n) = {a}.

Proof. i⇐ ii: If ci = 1 for all i = 1, . . . , n, then from the simple combinatorial fact [1, p. 80] that

#{i ∈ Z
j+1
� 1 : i1 + . . . + ij+1 = n − 1} =

(
n−2

j

)
, for j = 0, . . . , n − 2, and the formula in Corollary

4.3b, we get that m̂n−1,n = (x − 1)n−2.

i⇒ ii: By Corollary 4.3d, m̂n−1,n is monic. The hypothesis implies that∑{ci1ci2 · · · cij c1+ij+1
: i1 + · · · + ij+1 = n − 1} =

(
n − 2

j

)
, j = 0, 1, 2, . . . , n − 2.

For a fixed j, consider (i1, . . . , ij+1) as ranging over the set P = P(n − 1, j + 1) of all positive integer

j + 1-tuples of sum n − 1. Then

max{max(i1, . . . , ij , 1 + ij+1) : (i1, . . . , ij+1) ∈ P} = n − j,

and this value is achieved exactly once namely when (i1, . . . , ij , 1 + ij+1) = (1, 1, . . . , 1, n − j). Writ-

ing above equation for j = n − 2, n − 3, . . . , 1, 0 successively, and using c1 = c2 = 1, one finds c3 =
1, c4 = 1, . . . , cn = 1.

ii⇔ iii. We use similar ideas. Part iii is equivalent to saying that∑{ci1 · · · cij+1
: i1 + · · · + ij+1=n − 1}=∑{ci1 · · · c1+ij+1

: i1 + · · · + ij+1 = n − 1}, j=n − 2,

n − 3, . . . , 0.
All indices occurring in either side are at most n. So if ii is satisfied, then so is iii. Conversely,

suppose iii. We know c1 = c2 = 1. Assume c1 = c2 = . . . = cn−k−1 = 1 already established. Write

the equation for j = k. Then the lefthand side is a sum of 1s, while the right hand side is also a sum of

1s except for one term that is cn−k . Since both sides have the same number of terms, we find cn−k = 1.

So induction yields ii.

ii⇐ iv. Suppose m̂nn(x) = (x − a)n−2 = ∑n−2
j=0

(
n − 2

j

)
xj(−a)n−2−j . So, using the formulae of

Corollary 4.3, we have(
n − 2

j

)
an−2−j = coeff(m̂nn, (−1)n−2−jxj) = ∑{ci1ci2 · · · cij cij+1

: i1 + · · · + ij+1 = n − 1}, j =
0, 1, 2, . . . , n − 2. Choosing j = n − 3, this specializes to (n − 2)a = n − 2. Hence a = 1. With this
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then going into the comparison of coefficients above, and choosing j = n − 3, . . . , 0 successively, one

finds ii proceeding similarly as in the proof of implication ‘i⇒ ii’ above.

ii⇒ iv. Supposing ii,wefindbyalmostexactly the samereasoningas in ‘i⇐ ii’ before, that m̂nn(x) =
(x − 1)n−2. So roots(m̂nn(x)) = {1}, hence iv holds. �

The previous result and the Proposition 5.4 below motivate the following conjecture.

Conjecture 5.3 (Root conjecture RnC). If roots(m̂n,n) ⊆ roots(m̂n−1,n) & c1 = c2 = 1, then roots

(m̂n−1,n) = {1}.
Proposition 5.4. For every n� 3, RnC implies HPnC.

Proof. Assume the hypothesis of HPnC, that is, the lefthand side of (5.1) in Proposition 5.1 satis-

fied. Obviously, then roots(m̂nn) ⊆ roots(m̂n−1,n). Consequently by RnC and Proposition 5.2, c1 =
c2 = . . . = cn = 1. Polynomialmultiplicationalso tellsus, that coeff(m̂nn, x

0) · coeff(m̂n−1,n−1, x
0) =

coeff(m̂n−1,n, x
0)2. By the formulae in Corollary 4.3, this says cn−1cn+1 = c2n . So cn+1 = 1. �

6. Proofs for RnC and HPnC for n � 8

In this section we prove that the RnC and hence the HPnC holds for each n� 8. We also show that

proofs for RnC for larger n can in principle be tried by the same ideas as those we employ for n = 7, 8.

We assume throughout c1 = c2 = 1 and will routinely use that the roots of by Corollary 4.3d monic

polynomials m̂ij , i, j ∈ {n − 1, n}, determine them completely and that the sum of the multiplicities of

the roots equals n − 2.

Lemma 6.1. Let c1 = c2 = 1 and consider with indeterminates ej and êj , the two systems of (n − 1) +
(n − 1) equations∑{ci1 · · · cij+1

: i1 + · · · + ij+1 = n − 1} = ên−2−j , j = 0, . . . , n − 2;∑{ci1 · · · c1+ij+1
: i1 + · · · + ij+1 = n − 1} = en−2−j , j = 0, . . . , n − 2.

Then these systems imply respectively

a. cj ∈ Q[ê2, . . . , êj−1], for j = 3, . . . , n − 2, n − 1;
b. cj ∈ Z[e1, . . . , ej−2], for j = 3, . . . , n.

If in addition, roots(m̂n,n) = {z′1, . . . , z′n−2}, roots(m̂n−1,n) = {z1, . . . , zn−2},asmultisets respectingmul-

tiplicities, and êj = ej(z
′
1, . . . , z

′
n−2), ej = ej(z1, . . . , zn−2), where ej(. . .) denotes the j-th elementary

symmetric function in n − 2 variables. Then

c. The two systems of equations above express true equalities for complex numbers and;

0 = ê1 + 2 − n

0 = ê2 + d1(e1)

0 = ê3 + d2(e1, e2)

...

0 = ên−2 + dn−3(e1, e2, . . . , en−3),

d. If roots(m̂n,n) ⊆ roots(m̂n−1,n) as sets, not necessarily respecting multiplicities, then these complex

numbers satisfy n − 2 relations of the form shown with certain polynomials dj ∈ Z[x1, . . . , xj],
j = 1, . . . , n − 3.
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Proof. For later note that by Corollary 4.3, the lefthand sides of the systems given describe the coeffi-

cient of (−1)n−2−jxj of m̂nn(x) and m̂n−1,n(x) respectively.
a. We use ideas already found in the proof of Proposition 5.2. For a fixed j, consider (i1, . . . , ij+1)

as ranging over the set P = P(n − 1, j + 1) of all positive integer j + 1-tuples of sum n − 1. Then

max{max(i1, . . . , ij , ij+1) : (i1, . . . , ij+1) ∈ P} = n − j − 1, and this value is achieved exactly when

(i1, . . . , ij , ij+1) is a permutation of (1, 1, . . . , 1, n − j − 1). There are j + 1 such permutations. Conse-

quently, and with the understanding p1 = pn−2 = 0, p2():=number of compositions of n − 1 into

n − 3 parts containing only entries 1 and 2, we can write, for certain integer polynomials pj in j − 2

variables,
∑{ci1 · · · cij+1

: i1 + · · · + ij+1 = n − 1} = (j + 1)cn−j−1 + pn−j−2(c3, . . . , cn−j−2). Thus

we have (j + 1)cn−j−1 + pn−j−2(c3, . . . , cn−j−2) = ên−j−2. Reading this now for j = n − 3, . . . , 0 in

succession, we find the system given below on the left, which we call naturally m̂nn-system

m̂nn − system

(n − 2) = ê1
(n − 3)c3 + p2() = ê2
(n − 4)c4 + p3(c3) = ê3
(n − 5)c5 + p4(c3, c4) = ê4
...

...
...

2cn−2 + pn−3(c3, . . . , cn−2) = ên−3

cn−1 = ên−2

m̂n−1,n − system

c3 + q2() = e1
c4 + q3(c3) = e2
c5 + q4(c3, c4) = e3
c5 + q5(c3, c4, c5) = e3
...

...
...

cn−1 + qn−2(c3, . . . , cn−2) = en−3

cn = en−2

We will need the first of the equations of the m̂nn-system later. From the second of the equations one

finds that c3 is a polynomial in ê2, then from the third, that c4 a polynomial in ê2, ê3, and so forth. It is

clear that the coefficients of these polynomials are all rationals, establishing part a.

b.We apply similar reasoning, with the difference that one examines where themaximum entry of

(i1, . . . , in−3, 1 + ij+1) is assumed as (i1, . . . , ij+1) ranges overP . One finds that there are polynomials

qj with coefficients in Z in j − 2 variables, so that the system given above transforms into the m̂n−1,n-

system as one chooses successively j = n − 3, n − 1, . . . , 0. Inspection yields that here q2() =number

of n − 2-tuples of form (i1, . . . , in−3, 1 + in−2) and of sum n containing only parts 1 and 2, while

(i1, . . . , in−2) ranges over P(n − 1, n − 2). From the m̂n−1,n-system, similarly as before one finds that

cj can be written as a polynomial in e1, . . . , ej−2, this time for j = 3, . . . , n. Thanks to the fact that the

cj are introduced in the m̂n−1,n-system with coefficient 1, we can this time infer that the cj are integer

polynomials of the e1, . . . , ej−2.

c. This statement follows from the Vietá -formulae and the formulae for polynomials m̂n−1,n, m̂n,n

given in Corollary 4.3.

d. For this statement note that the first equation is evidently equivalent to the first equation of the

m̂nn-system, the other equations follow from the remaining equations of that system and part b of the

Lemma. �

We now proceed first to proving RnC for n = 3, 4, 5. The cases n = 3, 4 are very simple. The case 5

is also relatively easy and we need not establish the generic system of Lemma 6.1d.

Case n = 3. In this case m̂33 = −1 + x, m̂23 = −c3 + x. So from the hypothesis of R3C, {1} =
roots(−1 + x) ⊆ roots(−c3 + x) = {c3}. This yields c3 = 1, proving R3C by Proposition 5.2, since ii

there is true.

For n� 4, to prove RnC, we may assume that m̂nn has a double root, for otherwise the hypothesis

of RnC implies m̂n−1,n = m̂n,n, and so again by Proposition 5.2, we are done.

Case n = 4. In this case assuming thedegree 2polynomial m̂44 has a double root, then in Proposition

5.2 conclusion iv holds, so R4C is true.

(Alternatively, use m̂44 = c3 − 2x + x2, m̂34 = c4 − (1 + c3)x + x2. If m̂44 has a double root, then

its discriminant Δ = 4 − 4c3 = 0, so c3 = 1, and roots(m̂44) = {1} ⊆ roots(m̂34) implies c4 − 2 ·
1 + 1 = 0 so c4 = 1.)

Casen = 5.Here m̂55 = −c4 + (1 + 2c3)x − 3x2 + x3, m̂45 = −c5 + (2c3 + c4)x − (2 + c3)x
2 +

x3.
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Let roots(m̂45) = {a, b, g}. We need only consider the subcase 21, namely roots(m̂55) = {a, a, b}.
Then Vietá’s formulae permit us to write the equations below.

3
1= 2a + b

1 + 2c3
1′= a2 + 2ab

c4
1
′′

= a2b

,

2 + c3
2= a + b + g

2c3 + c4
2′= ab + ag + bg

(c5
2
′′

= abg)

Using ‘
1=’ one has b = 3 − 2a. Then ‘

1′=’ yields c3 = 1
2
(−3a2 + 6a − 1), and then by ‘

2=’, g =
− 3

2
a2 + 4a − 3

2
, while ‘

1
′′

=’ gives c4 = −2a3 + 3a2. Substituting these expressions in a in ‘
2′=,’ yields

0 = 7
2
(a − 1)3. Hence a = 1. Thus b = 1, and g = 1, showing roots(m̂45) = {1}.

For the remaining cases n = 6, 7, 8 note that the hypothesis roots(m̂n,n) ⊆ roots(m̂n−1,n) decom-

poses into various subcases that are naturally parametrized by the decreasing partitions of n − 2.

Namely, if we assume roots(m̂n−1,n) = {z1, . . . , zn−2}, symmetry allows us to write roots(m̂n,n) =
{z1, . . ., z1, z2, . . ., z2, . . .., zn−2, . . ., zn−2} where zi occurs μi times with μ1 � μ2 � . . . � μn−2 and∑

μi = n − 2. For n = 6, 7, 8 we will consider the ‘subcases μ1 . . . μn−2’. The subcases μ1 = n − 1

andμn−2 = 1 correspond to the cases iv and iii of Proposition 5.2 and need not be considered further,

since by that proposition, RnC is true under these additional hypothesis.

If we order the partitions lexicographically say, then two successive partitions differ in exactly

two entries and such a transition corresponds to the (de)specialization of one variable. For example

for n = 8, n − 2 = 6, the transition from 3111 to 321 can be identified with passing from assuming

roots(m̂nn) = {a, a, a, b, c, d} to roots(m̂nn) = {a, a, a, b, b, c}, so d is specialized to b. In the generic

system this corresponds to replacing êj = ej(a, a, a, b, c, d) by êj = ej(a, a, a, b, b, c). Since quite gen-

eral, enj (.., u, ..) = e
n−1
j (.., , ..) + ue

n−1
j (.., , ..), where upper index denotes the number of variables,

and ‘„’ means omission, such a replacement enj (.., u, ..) → enj (.., v, ..) corresponds to adding

(v − u)en−1
j (.., , ..) to enj (.., u, ..); so one has not to change very much in each transition in the generic

systems of Lemma 6.1d. It also reinforces the belief that ‘all roots equal to 1′ is the only solution to the

generic system, given that we know it is the only solution if we do no a priori specialization at all, and

put êj = ej = ej(z1, . . ., zn−2).
Case n = 6. Here polynomials m̂56, m̂66 are given by

m̂56 = c6 − (c23 + 2c4 + c5)x + (1 + 4c3 + c4)x
2 − (3 + c3)x

3 + x4;
m̂66 = c5 − (2c3 + 2c4)x + (3 + 3c3)x

2 − 4x3 + x4;
We can assume that roots(m̂5,6) = {a, b, g, h} which we do not assume necessarily distinct. We have

to show that each of the following subcases 31, 22, 211 implies a = b = g = h = 1.

4 = ê1
3 + 3c3 = ê2
2c3 + 2c4 = ê3
c5 = ê4

,

3 + c3 = e1
1 + 4c3 + c4 = e2
c23 + 2c4 + c5 = e3
(c6 = e4),

0 = ê1 − 4

0 = ê2 − 3e1 + 6

0 = ê3 − 2e2 + 6e1 − 16

0 = ê4 − e3 + 2e2 + e21 − 14e1 + 31

The Vieta formulae yield the two systems of equations at the left, where in subcase 31 one has to

read êk = ek(a, a, a, b), in subcase 22 êk = ek(a, a, b, b), etc., while in all cases, in the second system

ek = ek(a, b, g, h), k = 1, 2, 3, 4. By considerations as in Lemma 6.1, one then arrives at the system at

the right. In each of the subcases this is a system purely in a, b, g, h.

Subcase 211 (i.e. aabg): We could solve this subcase by similar systematic technique as the other

two subcases below. But it is more illuminating to proceed as follows.

Note that the elementary symmetric functions of four variables can be written in terms of those of

three variabes as ej(x1, x2, x3, x4) = ej(x1, x2, x3) + x4ej−1(x1, x2, x3). So, introducing ěj = ej(a, b, g),
we find the relations

êj = ěj + aěj−1 ej = ěj + hěj−1, j = 1, 2, 3, 4,

with the conventions ě4 = 0, ě0 = e0 = 1. Substituting these in the system above, we get 0 =xpri for

i= 1, 2, 3, 4 below, while 0 =xpr5 is a consequence of a natural algebraic dependence of a, ě1, ě2, ě3.
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0 = xpr1:= − 4 + a + ě1
0 = xpr2:=6 − 3ě1 + aě1 + ě2 − 3h

0 = xpr3:= − 16 + 6ě1 − 2ě2 + aě2 + ě3 + 6h − 2ě1h

0 = xpr4 :=31 − 14ě1 + ě21 + 2ě2 − ě3 + aě3 − 14h + 4ě1h − ě2h + h2

0 = xpr5:=a3 − a2ě1 + aě2 − ě3.

From xpr1, xpr2, xpr3, we successively obtain expressions for ě1, ě2, ě3, in terms of a, h; namely

ě1 = 4 − a, ě2 = 6 − 7a + a2 + 3h, ě3 = 4 − 14a + 9a2 − a3 + 8h − 5ah.

Using these in the last two equations, they turn into

0 = xpr4′ := − 1 + 10a − 20a2 + 10a3 − a4 − 6h + 16ah − 6a2h − 2h2

0 = xpr5′ := − 4 + 20a − 20a2 + 4a3 − 8h + 8ah = 4(−1 + a)(1 − 4a + a2 + 2h)

Therefore a = 1 or h = (−1 + 4a − a2)/2. In the latter case, substituting in xpr4′, we find 0 =
(3 ∗ (−1 + a)4)/2. So a = 1 in any case. Then 0 = xpr4′ yields h = 1. Consequently ě1 = 3, ě2 =
3, ě3 = 1. Since the values of the elementary symmetric functions determine the values of their

variables up to permutation – this is a consequence of Vietá again – this yields a = b = g = 1.

We are somewhat dismayed, that we could not exhibit the following two subcases as specialization

to the previous case, and so have to do everything all over again.

Subcase 22 (aabb): In this case the generic system reads

0 = expr1:= − 4 + 2a + 2b

0 = expr2:= 6 − 3a + a2 − 3b + 4ab + b2 − 3g − 3h

0 = expr3:= − 16 + 6a + 6b − 2ab + 2a2b + 2ab2 + 6g

− 2ag − 2bg + 6h − 2ah − 2bh − 2gh

0 = expr4 := 31 − 14a + a2 − 14b + 4ab + b2 + a2b2

− 14g + 4ag + 4bg − abg + g2 − 14h

+ 4ah + 4bh − abh + 4gh − agh − bgh + h2

Again we do the obvious, substituting b = 2 − a in expr2, expr3, expr4, obtaining after multiplication

with suitable integers,

0 = expr2n:= , 4 + 4a − 2a2 − 3g − 3h

0 = expr3n:= − 4 + 4a − 2a2 + 2g + 2h − 2gh

0 = expr4n:= 7 + 4a + 2a2 − 4a3 + a4 − 6g − 2ag + a2g + g2

− 6h − 2ah + a2h + 2gh + h2

Next reducing expr3n and expr4n via expr2n, we get after multiplication with 3 and 9 respectively

0 = expr3n1 = −4 + 20a − 10a2 − 8g − 8ag + 4a2g + 6g2

0 = expr4n1 = 7 − 28a + 42a2 − 28a3 + 7a4 = 7(−1 + a)4

Thus a = 1 is a root. From 0 =expr1, b = 1; from 0 = expr3n1, g = 1, and from 0 = expr2n, h = 1.

Subcase 31 (aaab): Then the generic equations turn into

0 = expr1:= − 4 + 3a + b

0 = expr2:=6 − 3a + 3a2 − 3b + 3ab − 3g − 3h

0 = expr3:= − 16 + 6a + a3 + 6b − 2ab + 3a2b + 6g

− 2ag − 2bg + 6h − 2ah − 2bh − 2gh

0 = expr4 :=31 − 14a + a2 − 14b + 4ab + a3b + b2 − 14g

+ 4ag + 4bg − abg + g2 − 14h

+ 4ah + 4bh − abh + 4gh − agh − bgh + h2

We first do the obvious: using 0 =expr1, we eliminate b. With this Eqs. (2)–(4) become

0 = expr2n:= − 6 + 18a − 6a2 − 3g − 3h

0 = expr3n:=8 − 20a + 18a2 − 8a3 − 2g + 4ag − 2h + 4ah − 2gh

0 = expr4n:= − 9 + 20a − 2a2 + 4a3 − 3a4 + 2g − 12ag + 3a2g + g2

+ 2h − 12ah + 3a2h + 2agh + h2



1522 A. Kovačec, M.C. Gouveia / Linear Algebra and its Applications 431 (2009) 1509–1525

We eliminate h from (new) expr3n, expr4n via reducing by expr2n. The results are new expressions

expr3n1, expr4n1, shown here as the rhs of the following equations.

0 = expr3n1:=12 − 40a + 46a2 − 16a3 + 4g − 12ag + 4a2g + 2g2

0 = expr4n1:= − 9 + 32a − 40a2 + 22a3 − 5a4 + 4g − 16ag

+ 16a2g − 4a3g + 2g2 − 2ag2

Next, we reduce expr4n1 via expr3n1 obtaining

0 = −21 + 84a − 126a2 + 84a3 − 21a4 = −21(−1 + a)4. Thus a = 1 is a root. 0 =expr1 im-

plies b = 1. Then 0 =expr3n1 yields g = 1 and this, then yields h = 1 from 0 =expr4.

This concludes the proof of the case n = 6.

If one does this case relying on automatic Groebner basis computations instead of interactivity it

can be done within seconds.

The cases n = 7, 8 are currently viable only by computer.

Case n = 7. In this case the generic system takes the form

0 = −5 + ê1

0 = 10 − 4e1 + ê2

0 = −40 + 12e1 − 3e2 + ê3

0 = 150 − 54e1 + 3e21 + 6e2 − 2e3 + ê4

0 = −376 + 164e1 − 16e21 − 16e2 + 2e1e2 + 2e3 − e4 + ê5

Departing from here we did Groebner basis computations. We assume roots(m̂n−1,n) = {a, b, g, h, l}.
We need to explore the several cases roots(m̂n,n) ⊆ {a, b, g, h, l}. The subcases are 5, 41, 32, 311, 221,

2111, 11111, but the first and the last case need not be considered.

Let ls denote the list of polynomials on the rhs of above system. In any given case, read êj as

being obtained by substituting in ej(x), x = (x1, x2, x3, x4, x5, x6), by the corresponding sequence of

roots; e.g. in case 411, in the list ls êj = ej(a, a, a, a, b, g); while in all cases, ej = ej(a, b, g, h, l,m). In

each case issue the Mathematica( command gb=GroebnerBasis[ls,l,h,g,b,a]. The result is that a

Groebner basis corresponding to inverse lex order is given for the ideal generated by ls. It would be

too space consuming to give the full bases, so we limit ourselves to indicate the statistics for these

cases. ‘Time’ indicates the time it took to compute gb, ‘NpolysGb’ is the number of polynomials in the

Groebner basis found, ‘Lengths’ gives the list of the numbers of terms the polynomials in gb comprise,

Factorization: gives the factorizationof thefirst element ingb (this turnedout tobealwaysapolynomial

in a only), finally max.coeff gives the modulus of the largest coefficient in any of the polynomials of

gb.
Subcase 41 {a, a, a, a, b}: Time: 1s. NpolysGb: 5. Lengths: {6, 3, 13, 13, 6}. Factorization: (−1 + a)5

max.coeff: 6330.

Subcase 32 {a, a, a, b, b}: Time: 1s. NpolysGb: 5. Lengths: {6, 3, 13, 13, 6}. Factorization: (−1 + a)5

max.coeff: 18870.

Subcase 311 {a, a, a, b, g}: Time: 1.5s. NpolysGb: 6. Lengths: {8, 15, 15, 4, 16, 8} Factorization: (−1 +
a)7 max.coeff: 2715.

Subcase221 {a, a, b, b, g}: Time:2.04s.NpolysGb:8. Lengths: {9, 15, 18, 18, 15, 4, 17, 8}Factorization:
(−1 + a)8. max.coeff: 4060850500.

Subcase 2111 {a, a, b, g, h}: Time: 3.46. NpolysGb: 8. Lengths: {8, 22, 21, 28, 18, 31, 5, 11}. Factoriza-
tion: (−1 + a)7. max.coeff: 9768.

In each of these cases one proceeds, given gb, by showing that the only solution to the sys-

tem obtained by putting the polynomials of gb all equal to 0, is a = b = g = h = l = 1. This is

done somewhat analougously as in the case n = 6 treated before. First, (−1 + a)k1 = 0 allows us

to say that every solution has a = 1. Using this a certain polynomial in gb specializes to (−1 +
b)k2 , so b = 1. Next using a = b = 1 one gets in gb a polynomial of the form (−1 + g)k3 , so g = 1,

etc.
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Case n = 8. Here the generic system takes the form

0 = −6 + ê1

0 = 15 − 5e1 + ê2

0 = −80 + 20e1 − 4e2 + ê3

0 = 441 − 132e1 + 6e21 + 12e2 − 3e3 + ê4

0 = −2076 + 750e1 − 60e21 − 60e2 + 6e1e2 + 6e3 − 2e4 + ê5

0 = 6392 − 2740e1 + 314e21 − 6e31 + 210e2 − 36e1e2 + e22

− 18e3 + 2e1e3 + 2e4 − e5 + ê6

In this case we assume the possible roots for m̂78 are named a, b, g, h, l,m. We have to consider the

subcases 6, 51,42, 411, 33, 321, 3111, 222, 2211, 21111, 111111, and, as always, discard the first and last

again. The statistics for these cases, using the pattern familiar from the case n = 7 reads as follows.

Note that most of the cases took less than 15 s to compute, only one took about 3 min.

Subcase 51: {a, a, a, a, a, b}. Time: 6s NpolysGb: 6. Lengths: {7, 3, 19, 26, 19, 7}.
Factorization: (−1 + a)6 max.coeff: 3942.

Subcase 42: {a, a, a, a, b, b}. Time: 7s. NpolysGb: 6. Lengths: {7, 3, 18, 24, 18, 7}.
Factorization (−1 + a)6 max.coeff: 1512.

Subcase 411: {a, a, a, a, b, g}. Time: 8s. NpolysGb: 8 Lengths: {10, 21, 20, 25, 4, 31, 24, 9}.
Factorization (−1 + a)9. max.coeff: 42452.

Subcase 33: {a, a, a, b, b, b}. Time: 6s. NpolysGb: 6 Lengths: {7, 3, 17, 24, 18, 7}.
Factorization (−1 + a)6 max.coeff: 253.

Subcase 321: {a, a, a, b, b, g}. Time: 10s. NpolysGb: 10.

Lengths: {11, 19, 24, 26, 25, 21, 4, 32, 25, 9}.
Factorization (−1 + a)10. max.coeff: 2897703183496025.

Subcase 3111: {a, a, a, b, g, h}. Time: 37s. NpolysGb: 14.

Lengths: {11, 34, 44, 42, 43, 42, 55, 63, 58, 46, 35, 5, 29, 12}.
Factorization (−1 + a)10. max.coeff: 126166071850.

Subcase 222: {a, a, b, b, g, g}. Time: 9s. NpolysGb: 8. Lengths: {10, 21, 19, 25, 4, 30, 23, 9}.
Factorization (−1 + a)9. max.coeff: 38120.

Subcase 2211: {a, a, b, b, g, h}. Time: 96s. NpolysGb: 16.

Lengths: {13, 23, 30, 37, 40, 44, 42, 36, 61, 64, 58, 46, 35, 5, 30, 12}.
Factorization (−1 + a)12. max.coeff: 97277860534112358885.

Subcase 21111: {a, a, b, g, h, l}. Time: 188s. NpolysGb: 20.

Lengths: {10, 39, 42, 43, 42, 70, 98, 63, 96, 92, 98, 107, 82, 73, 85, 103, 32, 64, 6, 16}.
Factorization (−1 + a)9. max.coeff: 1327205985.

One can finish each of these cases in a similar manner as in the case n = 7, showing this way that

a = b = g = h = l = m = 1 is always the only solution. This way one establishes R8C. �

7. Delimitations and other approaches tried

We report briefly on examples showing that certain reasonable generalizations of HPnC are false

and also on approaches that may in the hands of others lead to some success, although we could not

make them work.

Example 7.1. Two natural generalization of HPnC are false. Consider the symmetric matrix S(x) and

the Hankel matrix H(x) below

S(x) =

⎡
⎢⎢⎢⎢⎣

x c1 c2
x c1 c2 c3

x c1 c2 −1 4

c1 c2 −1 4 2

c2 c3 4 2 1

⎤
⎥⎥⎥⎥⎦ H(x) =

⎡
⎢⎢⎢⎢⎣

0 x −τ τ −1

x −τ τ −1 1

−τ τ −1 1 −1

τ −1 1 −1 1

−1 1 −1 1 1

⎤
⎥⎥⎥⎥⎦
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The system of equations that arises from requiring that the polynomial det S(x) ∈ C[x] be 0 is solvable

with c1 ≈ −0.004462260685143479, c2 ≈ −0.0873040997792691, c3 ≈ 0.831366078454159.With

the concrete values given here the coefficients of det S(x) are in modulus all less than 10−14, but the

last two columns evidently are not linearly dependent. This shows that the perhaps most natural

generalization of the Hankel pencil conjecture to symmetric matrices is false.

The matrix H(x) is an instance of another natural generalization of HPnC obtained by shifting

the x’s in the original matrices one entry to the left each. Of course this diminuishes the degree of the

determinant as apolynomial in x. So the coefficients of thedeterminant are subjected to less constraints

and one cannot hope for quite as much as in the original conjecture. But the natural relaxation to ask

only for linear dependence of the last three columns is also false. Defining τ = 0.4142135623730951,
matrix H(x) is singular for all practical effects but the determinant of the right upper 3 × 3 matrix is

0.3431457505076199, so the last three columns are not linearly dependent.

Remark 7.2. Several approaches come to mind if one works on HPnC.

a. The most natural tentative, is to try establishing HPnC by induction over n. We tried to do this

without success. Perhaps the fact that not even backward induction supposing HPnC and trying to

establish HP(n-1)C seems possible, is an indication that the inductive approach has in the original

setting little chance to lead to success.

b. Another approach the authors tried towards the endof theirwork beginswith a stronghypothesis

and then gradually weaken it.

Namely, one may try considering the non-Hankel-matrix

Hn(x1, . . . , xn−2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 c1 c2
x2 c1 c2 c3

...
...

xn−2 c1 . . . . . . cn−2 cn−1

c1 c2 . . . . . . cn−1 cn
c2 c3 . . . . . . cn cn+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and askwhether assuming det Hn(x1, . . . , xn−2) ≡ 0 implies that the last two columns are dependent.

This is actually easy; but the hypothesis is strong. One then could try adding gradually more andmore

equations of the form xi = xj , weakening thus the hypothesis, and see to which extent one still can

deduce the desired conclusion. This appears to be a promising approach but the authors perhaps not

sufficiently vigorous attempts have not been successful.

c. Finally, there is anapproach that dispenseswith considering thedeterminant altogether.What are

theconsequencesofassuming that thereexistsavector functionC � x �→ v(x)∈Sn−1 :={(z1, . . . , zn)T∈Cn : ∑n
i=1 |zi|2 = 1} such that Hn(x)v(x) ≡ 0∈Cn? Evidently this hypothesis is equivalent to

det Hn(x) ≡ 0. We originally thought to have a proof of HPnC based on this idea and theorems of

Iohvidov [6, Chapter 2], and Fiedler [4] concerning rank preserving extensions of Hankel matrices, but

later found an error.
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