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SUMMARY

Intestinal Th17 cells are induced and accumulate in
response to colonization with a subgroup of intesti-
nal microbes such as segmented filamentous bac-
teria (SFB) and certain extracellular pathogens.
Here, we show that adhesion of microbes to intesti-
nal epithelial cells (ECs) is a critical cue for Th17 in-
duction. Upon monocolonization of germ-free mice
or rats with SFB indigenous to mice (M-SFB) or rats
(R-SFB), M-SFB and R-SFB showed host-specific
adhesion to small intestinal ECs, accompanied by
host-specific induction of Th17 cells. Citrobacter ro-
dentium and Escherichia coli O157 triggered similar
Th17 responses, whereas adhesion-defective mu-
tants of these microbes failed to do so. Moreover, a
mixture of 20 bacterial strains, which were selected
and isolated from fecal samples of a patient with
ulcerative colitis on the basis of their ability to cause
a robust induction of Th17 cells in the mouse colon,
also exhibited EC-adhesive characteristics.
INTRODUCTION

The gut microbiota contributes to the constitutive development

of Th17 cells in the intestinal lamina propria (LP) (Atarashi et al.,

2008; Ivanov et al., 2008). Among commensals, segmented
filamentous bacteria (SFB) are one of the most potent inducers

of Th17 cells, and monocolonization of mice with SFB causes

abundant accumulation of Th17 cells in the small intestinal (SI)

LP (Gaboriau-Routhiau et al., 2009; Ivanov et al., 2009).

Recent reports have shown that most of the intestinal Th17

cells induced by SFB have T cell receptors (TCRs) that specif-

ically recognize SFB antigens (Goto et al., 2014; Yang et al.,

2014). However, since the SFB antigens themselves do not

dictate Th17 differentiation (Yang et al., 2014), and micro-

biota-mediated Th17 cell development occurs independently

of major innate immune receptors (Atarashi et al., 2008;

Ivanov et al., 2009), SFB colonization must elicit unique

signaling pathways in the intestine to generate a Th17-condu-

cive environment.

SFB are spore-forming gram-positive bacteria with a

segmented and filamentous morphology, and tight adhesion to

SI epithelial cells (ECs) is a remarkable characteristic feature of

these bacteria (Davis and Savage, 1974). SFB are widely distrib-

uted in vertebrates (Klaasen et al., 1993). In spite of the morpho-

logical similarities of SFB isolated from various hosts, their 16S

rRNA gene sequences differ, and several reports suggest that

SFB have undergone host species-specific selection and adap-

tation (Chung et al., 2012). The complete genomic sequences

of SFB colonizing the mouse and rat intestines, referred to as

M-SFB and R-SFB, respectively, were determined. Although

the overall genomic organization of M-SFB and R-SFB are

similar, 5%–10% of the genes are specific to each strain,

and the amino acid sequence identity between orthologous

gene pairs is on average 80% (Prakash et al., 2011). Analysis
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of differences between M-SFB and R-SFB may be useful

to improve understanding of the effects of SFB on the immune

system.

In addition to SFB colonization, infections with several extra-

cellular pathogens such as Candida albicans and Citrobacter

rodentium are known to induce Th17 cells (Conti and Gaffen,

2010; Mangan et al., 2006). Th17 cells induce the recruitment

of neutrophils and activation of ECs, leading to enhanced clear-

ance of extracellular pathogens in concert with other immune

cells such as IgA-secreting plasma cells and group 3 innate

lymphoid cells (ILC3s). The induction of Th17 cells by those

pathogens has been postulated to bemediated by the local cyto-

kine milieu produced by intestinal ECs and specific subsets of

myeloid cells (Weaver et al., 2013). However, it remains unclear

which features of these particular microbes specifically elicit

Th17 versus other types of immune cell responses at intestinal

mucosal sites.

Because SFB and C. rodentium commonly adhere to ECs,

we hypothesized that adhesion-mediated activation of ECs

plays a pivotal role in the induction of Th17 cells. Accordingly,

we examined the ability of M-SFB, R-SFB, wild-type, andmutant

strains of C. rodentium and enterohemorrhagic Escherichia

coli (EHEC) O157:H7 to adhere to ECs and induce Th17 cells.

In addition, by combining gnotobiotic technique and anaerobic

culturing of members of the intestinal microbiota from a patient

with ulcerative colitis (UC), we isolated 20 strains based on their

ability to induce Th17 cells in mice and examined EC-adhesive

characteristics of these 20 Th17-inducing human strains. Our

findings indicate that adhesion to ECs is a common mechanism

used by intestinal microbes to activate host Th17 responses.

RESULTS

Host-Specific Adhesion to SI ECs and Th17 Induction
by SFB
C57BL/6 (B6) or IQI germ-free (GF) mice were orally inoculated

with R-SFB or M-SFB, and their intestinal colonization was

monitored by qPCR analysis. The concentration of fecal and SI

luminal R-SFB DNA quickly increased and reached a plateau

within 1 week; the kinetics and levels were comparable to those

of M-SFB (Figures 1A and S1A). Consistent with the qPCR re-

sults, Gram-stained smears of cecal luminal contents contained

equivalent numbers of R-SFB and M-SFB with indistinguishable

morphology (Figure S1B), indicating that R-SFB andM-SFB both

colonize and grow robustly within the mouse intestinal lumen. In

contrast, when SI mucosa-associated SFB DNA amounts were

examined, we detected much lower levels of R-SFB than of

M-SFB (Figure 1A). We also performed scanning electron micro-

scopy (SEM) of washed SI mucosa to visualize EC-adhering

SFB. Numerous M-SFB were observed adhering tightly to the
Figure 1. EC Adhesion and Th17 Induction by SFB in Mice and Rats

B6 or IQI mice (A–D) and F344 rats (E–H) were monocolonized with M-SFB or R-

(A and E) qPCR analysis for SFB DNA in feces, SI luminal contents, and mucosa

(B and F) SEM images of epithelial surfaces in the SI and colon.

(C, D, G, and H) Th17 cell frequencies in SI and colon LP. Representative dot plo

T cells (D and H) are shown.

Error bars represent SD. See also Figure S1.
mouse SI epithelium. In contrast, we did not detect any R-SFB

adhering to SI ECs (Figures 1B and S1C). R-SFB also failed to

adhere to SI ECs in monocolonized Rag1�/� mice or IL-

2Rg�/�Rag2�/� mice (Figures S1D and S1E), making it unlikely

that the impaired adhesion of R-SFB to mouse SI ECs was due

to a R-SFB-specific reaction by the mouse immune system.

Although we detected some EC-adhering M-SFB and R-SFB

in the mouse colon, these were less frequent than in the SI

(Figure 1B).

We then investigated the effects of monocolonization of mice

with M-SFB or R-SFB on the induction of Th17 cells. In agree-

ment with previous reports (Gaboriau-Routhiau et al., 2009;

Ivanov et al., 2009), a robust accumulation of Th17 cells was

observed in the SI LP of B6 or IQI mice monocolonized with

M-SFB. In contrast, R-SFB colonization had no significant effect

on the number of Th17 cells (Figures 1C and 1D). Notably, both

M-SFB and R-SFB induced the accumulation of Th17 cells in

the colonic LP, although less efficiently than that in the SI LP

following M-SFB colonization (Figure 1D), correlating with the

EC adhesion efficacy of the SFB.

We next performed the reciprocal experiment by monocolo-

nizing GF F344 rats with R-SFB or M-SFB. After oral inoculation

of GF rats with R-SFB, high levels of R-SFB DNA were detected

in feces and SI mucosal tissues by qPCR (Figure 1E). Examina-

tion of the rat SI mucosal surface by SEM revealed the frequent

presence of R-SFB adhering tightly to the follicular-associated

epithelium (FAE) and villous ECs (Figure 1F). In contrast, far fewer

M-SFB associated with the rat SI ECs, although the amount of

M-SFB and R-SFB DNA in the feces was comparable (Figures

1E and 1F). We then investigated the effects of R-SFB and

M-SFB monocolonization on Th17 cells in rats. The frequency

of Th17 cells in the SI LP was markedly increased after monoco-

lonization of GF rats with R-SFB, whereas M-SFB-monocoloni-

zation induced only a slight increase in the frequency of these

cells (Figures 1G and 1H). Taken together, adhesion of SFB to

intestinal ECs is a host-specific event and strongly correlates

with Th17 cell induction.

Induction of Antigen-Specific Th17 Cells by
EC-Adhesive SFB
To examine whether EC adhesion is required for priming SFB

antigen-specific Th17 cell differentiation, we generated mice

co-colonized with M-SFB and R-SFB and assessed the antigen

specificity of the SI LP Th17 cells. In the feces of co-colonized

mice, similar amounts of M-SFB and R-SFB DNA were detected

(Figure S2A). SI LP cells, which include T cells and antigen-pre-

senting cells (APCs), were isolated from the co-colonized mice,

and stimulated ex vivo either with PMA and ionomycin (P/I) or

with autoclaved cecal content from GF, M-SFB-, or R-SFB-

monocolonized mice. Cytokine expression was analyzed as a
SFB for 3 weeks.

l tissue specimens.

ts gated on total lymphocytes (C and G) and summarized data gated on CD4+
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Figure 2. Effects of SFB Adhesion on Anti-

gen-Specific Th17 Cells, IgA+ Cells, and

ILC3s

(A and B) Cytokine responses of SI LP CD4+ T cells

from M-SFB and R-SFB co-colonized B6 mice to

the indicated ex vivo stimulation. A/C, autoclaved

cecal contents; P/I, PMA/ionomycin.

(C) Fecal IgA levels of indicated monocolonized B6

mice and F344 rats (n = 5).

(D) The frequencies of ILC3s among CD90+ cells

(left dot plots) and IL22+ cells among ILC3s (right

histograms and bar graphs) in SI LP cells of the

indicated mice.

Error bars represent SD. See also Figure S2.
readout for TCR activation. Although less efficient than P/I, the

M-SFB antigens evoked IL-17 expression in a significant number

of cells (Figures 2A and 2B). In contrast, the R-SFB antigens eli-

cited no response. Therefore, a substantial fraction of Th17 cells

that accumulated in the SI LP of co-colonized mice had TCRs

specific to the EC-adhering M-SFB, but not to the non-adhering

R-SFB. These results suggest that antigens from EC-adhering

SFB are taken up and presented by APCs much more efficiently

than those of non-adhering SFB.

Recently, two major protein antigens responsible for M-SFB-

mediated SI LP Th17 cell induction were identified (SFBNYU_

003340 and SFBNYU_004990) (Yang et al., 2014). We analyzed

the R-SFB genome and identified the gene encoding the orthol-

ogous protein corresponding to SFBNYU_003340, but could

not identify an SFBNYU_004990 ortholog. The minimal epitope

within M-SFB SFBNYU_003340 was mapped as QFSGAVPNK

(Yang et al., 2014), and the corresponding epitope region in

R-SFB was found to be QFNGQVPNN. The M-SFB epitope

peptide efficiently induced a Th17 response when added to the

ex vivo cultures of SI LP cells isolated from specific pathogen-

free (SPF) mice (Figure S2B). In contrast, the same SI LP cells

had no reactivity to the R-SFB peptide QFNGQVPNN. Therefore,

peptides serving as dominant antigens for SI LP Th17 cell induc-

tion in mice are specifically expressed by M-SFB.
370 Cell 163, 367–380, October 8, 2015 ª2015 Elsevier Inc.
Effects of EC-Adhering SFB on IgA+

and ILC3 Cells
SFB colonization has been shown to

enhance IgA production (Talham et al.,

1999; Umesaki et al., 1999). Consistent

with these reports, monocolonization of

B6 mice with M-SFB induced a signifi-

cant increase in the levels of fecal IgA

and frequencies of IgA+CD138+ plasma

cells in the SI LP (Figures 2C and S2C).

In contrast, R-SFB monocolonization in

mice resulted in a weak IgA response

(Figures 2C and S2C). We also examined

IgA production in SFB monocolonized

rats. Fecal IgA levels were substantially

increased after monocolonization of GF

rats with R-SFB, whereas M-SFB-mono-

colonization induced only a modest in-

crease (Figure 2C). These findings sug-
gest that luminal colonization is insufficient for the full induction

of IgA+ cells, but instead an interaction between SFB and ECs

is required, which is similar to Th17 cells.

Next, we examined the effects of SFB colonization on ILC3s,

which share many features with Th17 cells (Spits et al., 2013).

Thy1+CD3-RORgt+ cells corresponding to ILC3s were much

more abundant in the SI LP of SPF B6 mice than in the spleen

(Figure S2D), and �70% of these cells became positive for

IL-22 after ex vivo stimulation with IL-23 (Figure 2D). Although

the abundance of SI LP ILC3s in GF versus SPF mice did not

differ significantly, the frequency of IL-22-proficient (IL-22+)

cells among ILC3s was dramatically decreased in GF mice

(Figure 2D). Monocolonization of mice with M-SFB resulted in

a significant increase in the frequency of IL-22+ SI ILC3s,

although the level did not reach that observed in SPF mice (Fig-

ure 2D). The increase in IL-22+ cells upon monocolonization

with M-SFB was observed for both NKp46+ and NKp46�

ILC3 populations (Figure S2E). Interestingly, R-SFB induced a

significant increase in the frequency of IL-22+ cells with a

magnitude similar to that of M-SFB (Figure 2D). The induction

of IL-22+ ILC3s was also observed in mice inoculated with

feces from Jackson Laboratory (JAX) SPF mice, which are

known to be devoid of SFB (Ivanov et al., 2009) (Figure 2D),

indicating that IL-22+ ILC3s can be induced by non-adhering



SFB and even by non-SFB commensals, which is in contrast to

Th17 and IgA+ cells.

SI EC Activation by Adhering SFB
We next examined the influence of SFB adhesion on SI EC gene

expression profiles by RNA sequencing (RNA-seq). The expres-

sion of several genes was highly upregulated in SI ECs of

M-SFB-colonized mice compared to GF and R-SFB-colonized

mice (Figures 3A and S3A). The upregulated genes included

three isoforms of serum amyloid A (SAA), regenerating islet-

derived protein 3 b (Reg3b) and Reg3g and nitric oxide synthase

2 (Nos2). The expression differences of selected genes were

confirmed by qPCR analysis (Figures 3B and S3B). Elevated

levels of SAA1 protein in SI ECs of M-SFB-monocolonized

mice were clearly visualized by immunofluorescence micro-

scopy (Figure 3C). Recombinant SAA1 markedly enhanced

the in vitro differentiation of naive CD4+ T cells into Th17 cells

mediated by CD11c+ cells, IL-6, and transforming growth

factor b (TGF-b) (Figure 3D). This SAA1-mediated enhancement

was severely attenuated in the absence of CD11c+ cells or of IL-6

and TGF-b, or in the presence of an anti-IL-1 receptor 1 (IL-1R1)

blocking antibody (Figures 3D and 3E). In fact, SAA1 elevated the

expression level of IL-1b mRNA in splenic CD11c+ cells (Fig-

ure 3F). Therefore, the current data extend previous studies re-

porting that SAAs are induced in SI ECs by colonization with

SFB (Ivanov et al., 2009) and suggest that SAA induction requires

SFB adhesion to ECs. Furthermore, the SAAs produced by this

mechanism likely condition neighboring CD11c+ myeloid cells

to produce IL-1b and probably other factors that act with IL-6

and TGF-b to enhance Th17 cell differentiation.

In addition to the increase in SAAs,mRNA levels of the reactive

oxygen species (ROS)-generating enzyme dual oxidase 2

(Duox2) and of its maturation factor Duoxa2 were also highly up-

regulated in SI ECs in M-SFB-monocolonized mice (Figures 3A

and 3B). Treatment of M-SFB-monocolonized mice with a ROS

scavenger, N-acetyl-L-cysteine (NAC), in the drinking water

significantly limited Th17 cell induction (Figure 3G) without

affecting adhesion of M-SFB to SI ECs (Figure S3C). Therefore,

EC-adhering SFB affect Th17 cell accumulation via integration

of a number of different molecular mechanisms including pro-

duction of SAAs and ROS by ECs.

Toward an understanding of the molecular basis of adherent

SFB-mediated SAA induction, we explored the transcriptional

regulatory elements of the Saa1 gene locus. We identified two

DNase I hypersensitive sites downstream of the Saa1 gene,

which were uniquely active in the SI and distinguished by acety-

lated histone 3 lysine 27 (H3K27ac) active enhancer marks

(Shen et al., 2012) (Figure 3H). Investigation of publicly available

datasets of chromatin immunoprecipitation sequencing (ChIP-

seq) for transcription factor (TF) binding (Camp et al., 2014) sug-

gested interactions of CCAAT-enhancer-binding protein (C/EBP)

with both regulatory regions of Saa1 (Figure 3H). Our SI EC RNA-

seq data and qPCR analysis showed that C/EBPd was specif-

ically upregulated in SI ECs of M-SFB-monocolonized mice

(Figures 3I and S3B), suggesting that it may be a key TF regu-

lating SAA1 expression. In line with this finding, we observed

co-induction of SAA1 and C/EBPd expression in a mouse SI

EC line (aMos7) co-cultured with M-SFB in vitro (Figure 3J).
Induction of SAA1 and C/EBPd expression was observed only

when ECs were in direct contact with M-SFB (Figure 3J); under

these conditions M-SFB adhesion to the aMoS7 cells was

confirmed by fluorescence in situ hybridization (FISH) and SEM

(Figures S3D and S3E). The induction of SAA1 and C/EBPd

expression by M-SFB was further enhanced by the addition

of F-actin inhibitory drugs, latrunculin A, or swinholide A (Fig-

ure S3F). Therefore, actin reorganization in ECs induced by

SFB adhesion may lead to the elevation of C/EBPd expression,

which then contributes to SAA1 expression.

Influence of Mouse Genetic Background on
SFB-Mediated Th17 Cell Induction
All of the above experiments were performed using B6 or IQI

mice. We next examined the influence of mouse genetic back-

ground on intestinal Th17 cell induction. The frequency of Th17

cells in SPF C57BL/10 and B10.D2 mice was similar to that

in B6 and IQI (ICR) mice (Figure 4A). The only exception was

BALB/c mice, which had a much lower frequency of Th17

cells even under SPF conditions or after monocolonization with

M-SFB (Figures 4A, 4B, and S4A). It is noteworthy that BALB/c

mice had substantial numbers of RORgt+ single-positive cells

but had severe reduction of RORgt+IL-17+ double-positive cells

(Figure S4A). M-SFB, but not R-SFB, were found to adhere to SI

EC surfaces in BALB/c mice, similar to the results in B6 mice

(Figures 4C and S4B) and splenic naive CD4+ T cells from

BALB/c mice gave rise to a normal frequency of RORgt+IL-17+

cells when differentiated under Th17 conditions (Figure S4C),

suggesting that SFB adhesion to SI ECs occurs normally and

that CD4+ T cells do not have an intrinsic differentiation defect,

but instead that EC activation and/or subsequent LP cell

signaling required for RORgt+IL-17+ Th17 induction may be

defective in BALB/c mice.

Among Th17-conducting cytokines, microbiota-induced

constitutive and high-level expression of IL-1b was observed in

SI LP CD11c+ cells of B6 mice (Figure 4D), which is in line with

previous reports (Mortha et al., 2014; Shaw et al., 2012). IL-1b

expression was significantly reduced in M-SFB-monocolonized

and SPF BALB/c mice, compared with that of B6 mice (Fig-

ure 4E). Besides the reduced expression of IL-1b in CD11c+

cells, expression of SAA1/2 was significantly decreased in SI

ECs of BALB/c mice (Figures 4F and S4D). Injection of exoge-

nous IL-1b into SPF BALB/c mice elevated expression of SAAs

in SI ECs (Figure 4G) and this was accompanied by an increase

in SI LP RORgt+IL-17+ Th17 cells (Figures 4J and S4E), suggest-

ing that insufficient IL-1b production by LP CD11c+ cells is

responsible, at least in part, for the reduction in SAA expression

and Th17 cell accumulation in BALB/c mice. Consistent with this

interpretation, B6 Il1r1�/� mice phenocopied BALB/c mice, dis-

playing decreased expression of SAAs in SI ECs (Figure 4H) and

a significant reduction in the number of SI LP RORgt+IL-17+ Th17

cells (Figures 4K and S4F). It is noteworthy that IL-1b administra-

tion induced Th17 cell accumulation in M-SFB-colonized mice,

but not in R-SFB-colonized or GF BALB/c mice, revealing a

requirement for the presence of EC-adhering bacteria for the

IL-1b effect (Figures 4J and S4E).

BALB/c mice had reduced frequencies of IL-22+ cells

among ILC3s compared with B6 mice under both SPF and
Cell 163, 367–380, October 8, 2015 ª2015 Elsevier Inc. 371
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Figure 3. Adhesion-Mediated EC Activation

(A) Heatmap showing the relative abundance for gene transcripts upregulated in SI ECs of M-SFB-mono versus GF and R-SFB-mono IQI mice. Each column

represents a single mouse.

(B) qPCR for the selected genes relative to Gapdh in SI ECs from the indicated mice.

(legend continued on next page)
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Figure 4. Influences of Mouse Genetic

Background

(A and B) The percentages of Th17, IL-22+ ILC3,

and CD138+IgA+ cells in SI LP of the indicated

mice.

(C) SEM images of SI epithelial surface of the

indicated BALB/c mice.

(D and E) IL-1b protein production (D) and mRNA

expression (E) from SI LP CD11c+ and CD11c�

cells from the indicated mice.

(F–I) Saa1/2 mRNA expression in SI ECs from the

indicated mice.

(J and K) The percentage of RORgt+IL-17+ cells

among SI LP CD4+ T cells in IL-1b-injected BALB/c

mice (J) or Il1r1�/� B6 mice (K).

Error bars represent SD. See also Figure S4.
M-SFB-monocolonized conditions, whereas the frequency of

IgA+ cells was normal (Figures 4B and S4G). An EC-specific

deficiency of the IL-22 receptor a1 gene (Vil-Cre crossed with

Il22ra1f/f) on an SPF B6 background resulted in reduced expres-
(C) Immunostaining of SIs from the corresponding mice for SAA1 (red) and DAPI (blue). Scale bar, 100 mm.

(D and E) The percentage of RORgt+IL-17+ cells after culture of splenic naive CD4 T cells in the presence of

TGF-b, SAA1, and/or anti-IL-1R1 antibody.

(F) Il1b expression in splenic CD11c+ cells from B6 SPF mice stimulated with recombinant SAA1.

(G) SI LP Th17 cell frequencies of IQI M-SFB-mono mice either untreated (�) or treated with NAC.

(H) RNA-seq and DNase-seq data from SI ECs of GF and conventional (CV) mice at the region surrounding

various other tissues obtained from (Shen et al., 2012). ChIP-seq datasets for TFs assayed in various cell and t

in gray.

(I) The relative abundance for TF genes that are >2-fold different between M-SFB-mono mice versus GF or

(J) SAA1 and C/EBPd genes expression in aMoS7 cells cultured with cecal content from GF mice or a Per

separated by a Transwell membrane (TW).

Error bars represent SD. See also Figure S3.

Cell 163, 367–38
sion of SAAs by SI ECs (Figure 4I), sug-

gesting that IL-22 from ILC3s, together

with IL-1b from CD11c+ cells, act on SI

ECs to potentiate their expression of

SAA. Vil-Cre crossed with Il22ra1f/f mice

showed a tendency toward reduction of

RORgt+IL-17+ Th17 cells in the SI LP (Fig-

ure S4H). Therefore, adhesive SFB may

create a complex circuitry of interactions

between ECs, DCs and ILC3s mediated

by SAA, IL-1b, IL-22, ROS, and probably

other factors, to amplify and maintain

signaling for constitutive accumulation of

Th17 cells (Figure S4I).

Extracellular Pathogens Induce
Identical Th17 Responses through
EC Adhesion
To further test the link between bacterial

EC adhesion and Th17 induction, we

examined Citrobacter rodentium, an at-

taching/effacing enteropathogen known

to induce Th17 cells in mice (Mangan

et al., 2006). B6 GF mice were mono-

colonized with wild-type or a mutant
C. rodentium strain lacking the eae gene, which encodes Intimin,

a protein essential for EC adhesion (Kamada et al., 2012). The

Deae and wild-type C. rodentium expanded equivalently in

the intestinal lumen, as demonstrated by recovery of similar
various combinations of splenic CD11c+ cells, IL-6,

the Saa1 locus. H3K27ac ChIP-seq data for SI and

issue types. SI EC regulatory regions are highlighted

R-SFB-mono mice.

coll-enriched M-SFB or R-SFB either in contact or

0, October 8, 2015 ª2015 Elsevier Inc. 373
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Figure 5. EC Adhesion-Mediated Th17 Induction by C. rodentium

IQI mice were monocolonized with wild-type (WT) or Deae mutant of C. rodentium for 5 days.

(A) DNA of C. rodentium in colonic luminal contents and mucosal tissues.

(B) SEM images of colonic villi of the indicated mice.

(C) C. rodentium localization visualized by O antigen antisera (green) and DAPI (blue) staining. Scale bar, 100 mm.

(D) The percentage of RORgt+IL-17+ colonic CD4+ T cells.

(E) Fecal IgA levels of the indicated mice (n = 4).

(F) The relative abundance of gene transcripts that were commonly upregulated in M-SFB-mono mice versus R-SFB-mono mice and WT C. rodentium-mono

mice versus Deae C. rodentium-mono mice.

(G) Duox2 and Duoxa2 mRNA expression in colonic ECs of the indicated mice.

(H) Th17 cell frequencies of WT C. rodentium-mono IQI mice either untreated (�) or treated with NAC.

Error bars represent SD. See also Figure S5.
amounts of bacterial DNA from the colon luminal contents of

both groups ofmice after 5 days ofmonocolonization (Figure 5A).

SEM and immunofluorescence microscopy revealed that the
374 Cell 163, 367–380, October 8, 2015 ª2015 Elsevier Inc.
wild-type strain had a strong tendency to adhere to colonic

ECs, whereas the Deae strain did not adhere to ECs and the

inner mucus layer of the colon remained intact (Figures 5B and



5C). These results were further confirmed by qPCR quantifica-

tion of mucosa-associated C. rodentium (Figure 5A). Coloniza-

tion with wild-type C. rodentium resulted in potent induction of

Th17 cells in the colon, whereas Deae C. rodentium elicited a

far weaker Th17 response (Figure 5D). Colonization with wild-

type C. rodentium induced a greater increase in fecal IgA

levels than the mutant strain (Figure 5E). Therefore, similarly to

commensal SFB, pathogenic C. rodentium induces Th17 and

IgA responses, most likely through adhesion to ECs. Of note,

during the early phase (5 days after infection), when the epithelial

layer was relatively intact, infection with wild-type C. rodentium

caused a more conspicuous increase in Th17 cells than IFN-

g-producing Th1 cells. However, in the late phase (14 days after

infection), when the epithelial layer was severely disrupted and

bacterial invasion had occurred, there was a massive increase

in Th1 cells rather than Th17 cells (Figures S5A and S5B), sup-

porting the requirement of intact ECs for Th17 induction in

response to C. rodentium, without which the same microbe

would elicit a different type of immune response. We also exam-

ined IL-22+ ILC3 induction by C. rodentium colonization. The

Deae strain induced a robust increase in the frequency of colonic

IL-22+ ILC3 cells comparable to the response observed in mice

colonized with the wild-type strain (Figure S5C), indicating that

immune stimulatory activity is not completely abrogated in the

Deae strain, and the induction of IL-22+ ILC3 cells occurs inde-

pendently of bacterial EC-adhesion.

Next, we performed gene expression analysis by RNA-seq of

colon ECs from mice monocolonized with the Deae or wild-type

C. rodentium strain. In comparison to the Deae strain, the wild-

type strain specifically induced the expression of genes, such

as Duox2, Duoxa2, RegIIIb, RegIIIg, and Nos2, which overlap

with genes induced in SI ECs by colonization with EC-adherent

SFB (Figures 5F, 5G, S5D, and S5E), although the expression

of SAAs in the colon was not significantly enhanced by

C. rodentium monocolonization (Figure S5D). Treatment of

wild-type C. rodentium-monocolonized mice with NAC in the

drinking water significantly limited Th17 cell induction (Fig-

ure 5H), without affecting adhesion of C. rodentium to ECs

(Figure S5F). Therefore, EC adhesion and subsequent ROS

production is a potential mechanism underlying C. rodentium-

mediated Th17 cell induction.

We next examined EHEC O157:H7, another EC-adherent

bacterium that can cause hemolytic uremic syndrome in humans

and is a global public health concern (Croxen and Finlay, 2010).

Because the wild-type O157 strain was lethal in GF mice shortly

after the monocolonization (data not shown), we used an O157

straindeficient in bothShiga toxin 1 and2genes (Dstx1Dstx2) (Yo-

koyama et al., 2001). This double mutant strain expanded in the

intestine upon monocolonization without killing the mice and

adhered tocolonicECsurfaces (Figures6Aand6B). Theadhesion

was accompanied by induction of colonic Th17 cells (Figure 6C).

We subsequently constructed a Dstx1Dstx2Deae triple mutant

strain, which expanded comparably to the Dstx1Dstx2 double

mutant strain in the intestinal lumen but did not adhere to colonic

ECs (Figures 6A and6B), and thiswasaccompaniedby lossof the

ability to induce Th17 cells (Figure 6C).

Candida albicans is also an EC-adhesive microbe (Figure S6)

and was found to increase the frequency of Th17 cells in the
colon LP of monocolonized mice (Figure 6D). In contrast,

monocolonization of mice with Listeria monocytogenes mainly

induced Th1 cells, rather than Th17 cells (Figure 6E). The mice

colonized with L. monocytogenes displayed disrupted structure

of colon epithelial surface, whereas adhering bacteria were

rarely observed (Figure 6F).

Th17-Inducing Human Microbiota
Finally, we attempted to identify members of the human gut mi-

crobiota that could exert immunological effects equivalent to

those of SFB. To this end, we collected human fecal samples

from patients with UC (UC4-2 and UC5-1) and healthy donors

(H11, H17, H23) and inoculated them into GF IQI mice. All groups

of mice exhibited a significant increase in Th17 cells in the

colon (Figure 7A). The Th17 cell induction by H23 microbiota

was suppressed by treatment with ampicillin (Amp) or other an-

tibiotics (Figure 7B). In contrast, the UC5-1 microbiota-mediated

Th17 cell induction was further enhanced when the mice were

given Amp in the drinking water, although reduced bymetronida-

zole (MNZ) or vancomycin (VCM) treatment (Figure 7B). There-

fore, different subsets of bacterial species were likely to be

responsible for the induction of Th17 cells in mice inoculated

with H23 versus UC5-1 samples. Cecal microbiota analysis by

16S rRNA gene sequencing revealed several operational taxo-

nomic units (OTUs) that were enriched in mice inoculated with

UC5-1 sample treated with Amp and correlated with the number

of colonic Th17 cells (Figure 7C, marked in red). To isolate Th17-

inducing bacterial species, we anaerobically cultured cecal con-

tents from Amp-treated UC5-1 mice using various culture media

and picked 192 colonies. BLAST searches of 16S rRNA gene

sequences revealed that the isolates contained 20 strains that

broadly covered the bacterial species colonizing Amp-treated

UC5-1 mice (Figure 7C, marked in green). Their genomes were

sequenced and a phylogenetic comparison was carried out

using 19 ribosomal protein genes predicted from the assembled

draft genome of each strain. This analysis revealed that the 20

strains included diverse species, such asClostridium,Bifidobac-

terium, Ruminococcus, and Bacteroides (Figures 7C and S7A;

Table S1).

To investigate whether the isolated 20 strains have the ability

to induce Th17 cells, we introduced a mixture of 20 strains into

GF IQI mice. In mice inoculated with the 20 strains, we observed

a robust accumulation of Th17 cells in the colon (Figures 7D and

7E). The 20-strain mix was also effective in Th17 induction in rats

(Figure 7F). Similarly to SFB, the 20 strains enhanced expression

of Nos2 and Duoxa2 in ECs and IgA and ILC3 responses (Fig-

ure 7G), whereas no significant effect was observed for Th1 cells

in the colon (Figures 7D and 7E). To examine whether these

20 Th17-inducing strains contained EC-adherent bacteria, we

performed SEM and FISH. As a control, we examined mice

colonized with 17 strains of human-derived Clostridia that

have the capacity to induce regulatory T cells (Tregs) (Atarashi

et al., 2013). The 17 Treg-inducing strains of Clostridia were

not adhering and disappeared after washing. In contrast, we

observed numerous bacteria adhering to the colonic ECs in

mice and rats colonized with the 20 Th17-inducing strains (Fig-

ures 7H and 7I), which is in line with our hypothesis that EC adhe-

sion is an important signal for Th17 cell induction.
Cell 163, 367–380, October 8, 2015 ª2015 Elsevier Inc. 375
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Figure 6. EC Adhesion-Mediated Th17

Induction by Extracellular Pathogens

(A) SEM images of colonic villi from IQI GF

mice monocolonized with Dstx1Dstx2 or

Dstx1Dstx2Deae EHEC O157:H7 for 3 weeks.

(B) O antigen antisera (green) and DAPI (blue)

staining for EHEC O157 visualization. Scale bar,

50 mm.

(C–E) Th17 and Th1 cell proportions in the

colonic LP CD4+ T cells from IQI mice inoculated

with EHEC O157:H7 (C), C. albicans (D), or

L. monocytogenes (E).

(F) SEM images of the colon of IQI GF mice and

mice infected orally with L. monocytogenes.

Error bars represent SD. See also Figure S6.
DISCUSSION

In the present study, we demonstrate that SFB, C. rodentium

and EHEC O157 promote the induction of intestinal Th17 cells

through adhesion to intestinal ECs. Moreover, we isolated 20

bacterial strains from human intestine that can induce Th17
376 Cell 163, 367–380, October 8, 2015 ª2015 Elsevier Inc.
cells in the mouse and rat intestine,

and these 20 strains displayed similar

EC adhesive characteristics. Therefore,

the intestinal immune system mounts

Th17 cell responses through recogni-

tion of a physical interaction with the

microbes, rather than by recognition

of released microbial components or

soluble metabolites. EC adhesion by

microbes was also associated with in-

creases in intestinal IgA+ cells. Consis-

tent with our observation, it has been

shown that potentially colitogenic bacte-

ria that can invade the inner mucus layer

and colonize near the epithelium induce

high-affinity IgA responses and become

highly coated with IgA (Palm et al.,

2014). In contrast to Th17 cells and

IgA+ cells, IL-22+ ILC3s can be gener-

ated by nonadhering commensals.

Therefore, Th17 and IgA+ cells control

EC-adhering microbes, whereas IL-22+

ILC3s may play a more general role in

regulation of gut microbiota. The vast

majority of gut microbiota are physically

separated by the mucus layer (Johans-

son et al., 2008; Vaishnava et al.,

2011), whereas microbes that cross the

mucus barrier and attach to the epithe-

lial lining are in many cases pathogenic

(SFB and the 20 human strains are

exceptional in that they can cross the

mucus layer and attach to ECs, but do

not penetrate the EC layer). Therefore,

it seems reasonable to propose that

the host immune system has evolved
to discriminate the biogeographical distributions of intestinal

microbes.

Several reports have demonstrated that adhering SFB induce

actin reorganization in SI ECs (Davis and Savage, 1974; Jepson

et al., 1993). In this context, morphologically similar cytoplasmic

alterations in intestinal ECs have been described in infections



with EHEC O157 and C. rodentium (Croxen and Finlay, 2010). It

is noteworthy that F-actin inhibition resulted in potentiated

C/EBPd and SAA1 expression in aMoS7 cells cocultured with

M-SFB (Figure S3F). It is interesting to note that SFB have puta-

tive ADP-ribosyl transferases that have sequence similarities to

the Clostridium perfringens iota toxin, which ribosylates G-actin

and thereby inhibits its polymerization (Pamp et al., 2012).

Furthermore, because ROS suppresses the activity of certain

Rho GTPase family members (Stanley et al., 2014), ROS pro-

duced by the Duox2/Duoxa2 system in ECs may, in addition or

instead, affect actin reorganization. In any case, there may be

a link between actin cytoskeletal modulation by adherent SFB

and subsequent gene induction in ECs, possibly throughmecha-

nosensing mechanisms (Dupont et al., 2011).

Since recombinant SAA1 activated CD11c+ cells to upregulate

IL-1b expression (Figure 3F), and recombinant IL-1b activated

ECs to potentiate expression of SAAs (Figure 4G), our results

suggest a model in which the initial increase in SAAs in SI ECs

caused by SFB adhesion is then augmented via an amplification

loop of SAA1 and IL-1b between SI ECs and CD11c+ myeloid

cells (Figure S4I). This amplification processes may be required

for the maintenance of high level expression of SAAs in SI ECs

and IL-1b in myeloid cells, which causes constitutive accumula-

tion of Th17 cells. In an accompanying article published in this

issue of Cell, Sano et al. (2015) show that SAAs can directly

act on RORgt+ T cells to induce IL-17 expression. Derebe et al.

(2014) showed that SAAs act as a transporter of retinol. There-

fore, SAAs may exert their effects through multiple mechanisms.

IL-22 derived from ILC3s also contributes to this loop via poten-

tiation of SAA expression by SI ECs. IL-22 alone cannot suffi-

ciently activate this amplification loop, as was shown that

IL-22+ ILC3s induced by luminal R-SFB cannot induce Th17 cells

(Figure 2D).

A substantial fraction of Th17 cells specifically recognized EC-

adhesive M-SFB but not non-adhering R-SFB (Figures 2A

and 2B). The simplest explanation for this observation is that an-

tigens may be taken up by host cells only when SFB adhere to

ECs. This process likely involves bacterial sampling by dendritic

cells (DCs). In this context, recognition and phagocytosis of

C. rodentium-infected apoptotic ECs by LP DCs were shown

to preferentially trigger Th17 cell differentiation (Torchinsky

et al., 2009). SFB and other EC-adhesive microbes may be en-

gulfed by LP DCs together with their adhering apoptotic ECs,

processed and loaded onto MHC class II molecules. SFB are

innocuous members of the microbiota; however, SFB can be

pathogenic, depending on the host genotype. For example,

SFB have been implicated in T cell-mediated autoimmune dis-

eases such as arthritis (Wu et al., 2010). In this context, we

observed a striking genotype-specific difference upon monoco-

lonization with EC-adhesive SFB in the induction of Th17 cells,

with BALB/c mice having fewer Th17 cells in comparison to B6

and IQI mice. Our observation in BALB/c mice provides one

remarkable example showing that the combination of genetic

background and composition of the gut microbiota affects

T cell status. Genotype-specific differences in the differentiation

of T cells in response to a component of the gut microbiota

may explain the phenotypic variations in autoimmune disease

susceptibility.
Different from the host-specific Th17 induction by SFB, the 20

bacterial strains isolated from a human fecal sample were Th17-

inducing in at least two different mammalian hosts (mice and

rats, Figures 7E and 7F); therefore, they may function in humans

and may act as pathobionts, because they were derived from

UC patients. However, we did not observe any inflammatory

changes in the intestines of mice inoculated with the 20 strains

(data not shown). Furthermore, mining of publicly available

data from the MetaHIT project (Qin et al., 2010) revealed that

only three out of the 20 strains were significantly increased in

the microbiomes of UC and Crohn’s disease subjects (Fig-

ure S7B). Moreover, the 20 strains were not abundant in mice

inoculated with a fecal sample from subject UC4-2, in which

Th17 cells were induced similarly to UC5-1 microbiota-associ-

ated mice (Figure S7C). Therefore, the 20 strains may not be

essential components for Th17 induction nor contribute to the

pathogenesis of IBD in humans. Our study design has some lim-

itations in this context, including the limited number of subjects

tested and the fact that robust activity in mice may not be phys-

iologically relevant in humans and vice versa. Nevertheless, this

is a clear demonstration of Th17 cell induction by human-asso-

ciated bacterial species and therefore represents a significant

step forward in dissecting human intestinal microbiota biology.

The intestinal Th17 responses to commensal and pathogenic

bacteria with shared EC-adhering characteristics have obvious

clinical implications in the context of IBD, vaccine design, and

probiotics.

EXPERIMENTAL PROCEDURES

Materials and experimental procedures are detailed in the Supplemental

Experimental Procedures.

Animals and Microbes

GF mice and rats were purchased from CLEA and Sankyo Labo Service and

kept in the GF facility of Yakult Central Institute or RIKEN Yokohama Institute.

To generate SFB-monocolonized animals, cecal or fecal suspensions from

SFB-monocolonized animals were orally inoculated into GF animals. The

C. rodentium Deae and E. coli O157:H7 Dstx1Dstx2 mutant strains have

been described previously (Kamada et al., 2012; Nagano et al., 2003). To

generate the E. coli O157:H7 Dstx1Dstx2Deae mutant strain, the eae gene

was replaced with the tetracycline-resistance gene by homologous recombi-

nation. Approximately 1 3 108 colony-forming unit (CFU) of C. rodentium,

E. coli O157, or L. monocytogenes was orally administered into GF mice.

C. albicans (TUA6) was provided by Dr. Takashi Umeyama (National Institute

of Infectious Diseases, Japan) and orally administered (�1 3 106 CFU) into

GF mice.

qPCR and 16S rRNA Gene Pyrosequencing

To quantify bacterial load, bacterial DNA was isolated from intestinal contents

or mucosal tissues using a QIAamp Stool Mini Kit, and qPCR was carried out

using universal or bacterial strain-specific primers for 16S rRNA genes. For

16S rRNA gene pyrosequencing, cecal contents were incubated with lyso-

zyme and achromopeptidase. Sodium dodecyl sulfate and subsequently pro-

teinase K was added to the suspension and high-molecular-mass DNA was

purified by phenol/chloroform extraction. PCR was performed using primers

to the V1-V2 region of the 16S rRNA gene, and the amplified DNA was used

as template for 454 GS Junior sequencing.

Isolation of Human-Derived Th17-Inducing Bacterial Strains

Stool samples from patients with UC and from healthy donors were obtained

and inoculated into IQI GF mice. The cecal contents from Amp-treated UC5-1
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mice were cultured on Schaedler, BHI, GAM, CM0151, BL, or TS agar plates

under strictly anaerobic conditions. Individual colonies were picked and iden-

tified by sequencing of the 16S rRNA gene fragment.

Statistical Analysis

All statistical analyses were performed using Prism software with two-tailed

unpaired Student’s t test or one-way ANOVA followed by Tukey’s post hoc

test. p values < 0.05 were considered significant (*p < 0.05, **p < 0.01, and

***p < 0.001).
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Figure 7. Th17 Induction and EC Adhesion by 20 Bacterial Strains Der

(A) Th17 cell frequencies in IQI GF mice colonized with stool from patients with U

(B) Th17 cell frequencies in UC5-1 or H23-colonized IQI mice either untreated (c

(C) Cecal microbiota compositions of each mouse (n = 4 or 5 per group). OTUs po

negatively correlated marked in blue. OTUs corresponding to the isolated 20 str

(D–F) The percentage of Th17 and Th1 cells in the colonic LP of B6 mice (D and

(G) qPCR for Nos2 and Duoxa2 in colonic EC (upper panels) and FACS for LP IgA+

(H and I) SEM images and FISH staining with EUB338 of the proximal colon of m

inducing strains. Scale bar, 100 mm.

Error bars represent SD. See also Figure S7.
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