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Mouse Suppressor of fused is a negative regulator of Sonic
hedgehog signaling and alters the subcellular distribution of Gli1
Q. Ding*†¶, S-i. Fukami‡¶, X. Meng*, Y. Nishizaki§, X. Zhang*, H. Sasaki§,
A. Dlugosz†, M. Nakafuku‡ and C-c. Hui*

The Hedgehog (Hh) signaling pathway has critical
functions during embryogenesis of both invertebrate and
vertebrate species [1]; defects in this pathway in humans
can cause developmental disorders as well as neoplasia
[2]. Although the Gli1, Gli2, and Gli3 zinc finger proteins
are known to be effectors of Hh signaling in vertebrates,
the mechanisms regulating activity of these transcription
factors remain poorly understood [3,4]. In Drosophila,
activity of the Gli homolog Cubitus interruptus (Ci) is
likely to be modulated by its interaction with a
cytoplasmic complex containing several other proteins
[5,6], including Costal2, Fused (Fu), and Suppressor of
fused (Su(fu)), the last of which has been shown to
interact directly with Ci [7]. We have cloned mouse
Suppressor of fused (mSu(fu)) and detected its 4.5 kb
transcript throughout embryogenesis and in several
adult tissues. In cultured cells, mSu(fu) overexpression
inhibited transcriptional activation mediated by Sonic
hedgehog (Shh), Gli1 and Gli2. Co-immunoprecipitation
of epitope-tagged proteins indicated that mSu(fu)
interacts with Gli1, Gli2, and Gli3, and that the inhibitory
effects of mSu(fu) on Gli1’s transcriptional activity were
mediated through interactions with both amino- and
carboxy-terminal regions of Gli1. Gli1 was localized
primarily to the nucleus of both HeLa cells and the
Shh-responsive cell line MNS-70; co-expression with
mSu(fu) resulted in a striking increase in cytoplasmic
Gli1 immunostaining. Our findings indicate that mSu(fu)
can function as a negative regulator of Shh signaling and
suggest that this effect is mediated by interaction with
Gli transcription factors.
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Results and discussion
Expressed sequence tag (EST) clone number 513730,
identified by searching a database for sequences homolo-
gous to Drosophila Su(fu), was used to identify a mouse
homolog of Su(fu), termed mSu(fu), from an embryonic day
16.5 (E16.5) cDNA library. The open reading frame of
mSu(fu) is predicted to encode a protein with 485 amino
acid residues and a calculated molecular weight of 54 kDa.
The Drosophila and mouse proteins are 39% identical
overall, and both contain a PEST sequence, although at

Figure 1

Sequence and expression of mSu(fu). (a) Amino acid sequence
alignment of Drosophila Su(fu) (dSu(fu)) and mSu(fu). Identical and
conserved residues are indicated by vertical lines and asterisks,
respectively. Shaded boxes represent potential PEST sequences.
A mouse E16.5 embryonic cDNA library was screened with an EST
clone homologous to dSu(fu). The positive mouse clone was
sequenced on both strands. (b) Northern-blot analysis of RNA from
mouse embryos and various adult tissues revealed a 4.5 kb mSu(fu)
transcript, detected using a 5′ EcoRI fragment of the mSu(fu) cDNA
labeled with [32P]ATP by random priming. Total RNA was isolated from
mouse embryos ranging between E8.5 and E18.5 following extraction
in guanidine-isothiocyanate-based buffer. Samples of total RNA (40 µg
each) were separated by electrophoresis and transferred to a nylon
membrane. The adult mouse multi-tissue RNA blot (containing 2 µg
poly-A+ RNA per lane) was purchased from Clontech. Filters were
probed for actin as a control for loading (lower panel).
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different sites within the molecule (Figure 1a). A 4.5 kb
mSu(fu) transcript was detected by northern-blot analysis
of RNA isolated from E8.5–E18.5 mouse embryos and
several adult tissues, with particularly high levels detected
in kidney and testis (Figure 1b).

Monnier et al. [7] have recently shown that Drosophila
Su(fu) interacts directly with Ci and Fu and is likely to be
part of a large cytoplasmic protein complex that is tethered
to microtubules by Costal2 (Cos2) [5,6]. To determine
whether mSu(fu) can interact with mammalian Gli proteins,
plasmids encoding epitope-tagged proteins were trans-
fected into COS cells either alone or in various combina-
tions. When Myc-tagged mSu(fu) (Myc–mSu(fu)) was
expressed with either FLAG-tagged mouse Gli1
(FLAG–mGli1), FLAG-tagged mouse Gli2 (FLAG–mGli2)
or His-tagged human Gli3 (His–hGli3), each of the three
Gli proteins co-immunoprecipitated with mSu(fu)
(Figure 2a). To examine the functional relevance of
mSu(fu)–Gli protein interactions, Shh signaling activity was
assayed in a Shh-responsive cell type cotransfected with a

luciferase Gli reporter construct [8]. Gli reporter activity
was stimulated in MNS-70 cells cotransfected with plas-
mids expressing mGli1, mGli2 or the active amino-terminal
fragment of Shh (Shh-N); in all cases, cotransfection of
mSu(fu) greatly inhibited this stimulation (Figure 2b)
These results suggest that mSu(fu) negatively regulates
Shh signaling by inhibiting the function of Gli1 and Gli2.
Note that hGli3 did not activate the Gli–luciferase reporter
used in these studies, consistent with earlier findings [8]. 

As Gli1 gene expression is consistently upregulated in
cells in which the Shh pathway is active [9–11], additional
experiments focused on interaction of this molecule with
mSu(fu). A series of mutants was generated to broadly
define Gli1 domains capable of interacting with mSu(fu)
(Figure 3a). Expression of full-length Gli1 and each of
the four mutants was confirmed by western-blot analysis
(Figure 3b, left panel). The shortest mutant, containing
only the zinc-finger domain of Gli1 (Zn), failed to co-
immunoprecipitate when expressed with mSu(fu). In
contrast, two mutants lacking the carboxyl terminus
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The mSu(fu) protein interacts with vertebrate Gli proteins and inhibits
Shh signaling. (a) Co-immunoprecipitation of mSu(fu) and Gli proteins.
COS cells were transfected with Myc–mSu(fu) and FLAG–mGli1,
FLAG–mGli2 or His–hGli3, and harvested as previously described
[14], with minor modifications. Immunoprecipitations (lanes 1–8) were
carried out with rabbit anti-Myc antibody A14 (Santa Cruz) and
protein-G–Sepharose (Pharmacia). Proteins were eluted from beads,
separated by SDS–PAGE, and transferred onto nitrocellulose
membranes. Immunoblotting was performed using monoclonal anti-
FLAG (M2) antibodies (Sigma; lanes 1–6) or anti-His antibodies
(InVitrogen; lanes 7,8), with horseradish-peroxidase-conjugated
secondary antibodies (Jackson ImmunoResearch) visualized using
enhanced chemiluminescence (ECL) reagents (Pierce). The expression
level of epitope-tagged proteins was determined in cell lysates using
antibodies against Myc (lane 9), FLAG (lanes 10,11) and His epitopes
(lane 12). The ratio of protein used for IP and western lanes was
300:1. Expression constructs were generated as follows: the open
reading frame of mSu(fu) was cloned into Myc-pCMV5β (kindly
provided by J. Wrana); open reading frames of mouse Gli1 and Gli2

were cloned into pCMV/SV-FLAG1 (kindly provided by Y. Kamachi);
and the open reading frame of human GLI3 (kindly provided by
K. Kinzler and B. Vogelstein) was cloned into pcDNA-3.1-HIS
(InVitrogen). (b) Transcriptional activity of Shh-N, Gli1, and Gli2 is
inhibited by mSu(fu). MNS-70 cells were seeded at a density of
3 × 105 cells per well in six-well dishes. For transfection, each well
received 1 µg of the p8x3′Gli-BS-Luc reporter [8] in combination with
various amounts of cDNA expression plasmids, as indicated below.
The plasmid pEF-BOS-β-gal (2 µg) [15], which drives expression of
β-galactosidase, was also included to equalize the results for
transfection efficiency. Transfection and measurements of luciferase
and β-galactosidase activities were performed as described [16].
Standard deviations are indicated by the error bars. Plasmids and
amounts of DNA per well used for transfection were as follows:
pEF-BOS-Shh-N, encoding mouse Shh-N  (amino acids 1–198),
2.5 µg; pcDNA3-mGli1, encoding full-length mGli1, 0.75 µg;
pcDNA3-mGli2, encoding full-length mGli2, 0.75 µg; pcDSRα-hGli3,
encoding full-length hGli3, 0.75 µg; pCMV5β-Myc-mSu(fu), encoding
full-length mSu(fu) with an amino-terminal Myc-tag, 3.75 µg. 



(N and ∆C) and a mutant lacking the amino terminus (C)
co-immunoprecipitated with mSu(fu), as did full-length
Gli1 (Figure 3b). These data indicate that both amino-
and carboxy-terminal domains of Gli1 can interact with
mSu(fu). We next performed luciferase reporter assays to
examine the relationship between Gli1–mSu(fu) interac-
tion and transcriptional repression. Cotransfection of
mSu(fu) inhibited transactivation by full-length Gli1 and
the Gli1 deletion mutant lacking the amino terminus (C;
Figure 3c), indicating that mSu(fu) can mediate its
repression through interaction with the carboxy-terminal
region of Gli1. Reporter assays using the N, Zn, and ∆C
mutants revealed no transcriptional activity (Figure 3c),
consistent with the localization of a transactivation
domain to the distal carboxyl terminus of hGLI1 [12] and
mGli1 (our unpublished observations). To restore tran-
scriptional activity to carboxy-terminally deleted Gli1, a
VP16 activation domain was fused in-frame to the N
mutant of Gli1 to produce N+VP16. Transactivation by
N+VP16 was inhibited by mSu(fu), indicating that
mSu(fu) can mediate repression through the amino-termi-
nal region of Gli1 (Figure 3c). In contrast, mSu(fu) did

not inhibit transactivation by the VP16 fusion construct
designated Zn+VP16, which lacks both the amino- and
carboxy-terminal regions of Gli1 (Figure 3c). Taken
together, these results suggest that inhibition of Gli1
transcriptional activity by mSu(fu) requires interaction
with either the amino or carboxyl terminus of Gli1.

To further explore the effects of mSu(fu) on Gli1, we per-
formed immunolocalization studies using cells transfected
with mSu(fu) and mGli1, alone and in combination. We
detected mGli1 primarily in the nucleus of HeLa cells
(Figure 4), COS cells (data not shown), and MNS-70 cells
(see Supplementary material). These findings are in con-
trast to those described for certain other cell types, in
which Gli1 is clearly found outside the nucleus [13].
Prominent expression of mSu(fu) was detected through-
out the cytoplasm as well as in the nucleus (Figure 4 and
see Supplementary material). Interestingly, cotransfection
of mSu(fu) with Gli1 was associated with a striking alter-
ation of Gli1 staining — cytoplasmic staining became
clearly detectable (Figure 4). Similar results were obtained
in immunofluorescence experiments using COS cells
(data not shown) and MNS-70 cells (see Supplementary
material). In all cases, mSu(fu) and mGli1 colocalized, sug-
gesting that these two proteins interact in vivo as they do
in vitro. In an effort to quantify the subcellular distribution
of Gli1, western-blot analysis was performed following cell
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Interactions between Gli1 and mSu(fu) mediate inhibition of
transcription. (a) Schematic representation of mouse Gli1 deletion
mutants N, Zn, ∆C and C. For construction of N+VP16 and Zn+VP16
mutants, the cDNA fragment derived from the transactivation domain of
VP16 (78 residues) was joined in-frame to the carboxy-terminal ends of
the N and Zn mutants, respectively. Three tandem copies of the
influenza haemagglutinin (HA) tag were further attached in-frame to the
amino-terminal ends of the full-length and mutant fragments of mGli1.
All of the above constructs were cloned into the mammalian expression
vector pcDSRα [17]. (b) Expression of full-length Gli1 and mutants and
their interaction with mSu(fu). The HA-tagged full-length mGli1 and
various deletion mutants of mGli1 were expressed in COS cells, and
their physical interactions with FLAG–mSu(fu) were examined by co-
immunoprecipitation assay. COS cells were seeded at a density of
5 × 105 cells onto 60 mm dishes, and expression plasmids for tagged
proteins were cotransfected in various combinations by the
DEAE–dextran method. Minus and plus signs indicate transfection with
the control and corresponding expression plasmids, respectively. The
cells were harvested 48 h after transfection and lysed in a buffer
containing 50 mM Hepes–NaOH (pH 7.5), 100 mM NaCl, 0.5% (w/v)
Nonidet P-40, 2.5 mM EGTA, 2.5 mM EDTA, 10% (v/v) glycerol, 1 mM
dithiothreitol, 1 mM p-aminophenyl methanesulfonyl fluoride
hydrochloride, 10 µg/ml leupeptin and 10 µg/ml aprotinin to yield whole
cell lysates (WCL). Mouse Gli1 proteins detected in equal volumes of
WCL are shown in the left panel. Arrowheads indicate the expected
location of full-length Gli1 and mutants. FLAG-tagged mSu(fu) proteins
in WCL were recovered by immunoprecipitation with anti-FLAG M2
antibody (Kodak) coupled with protein-A–sepharose CL4B
(Pharmacia), and the resultant immune complexes subjected to PAGE
and western blot analysis with anti-HA 12CA5 antibody (Boehringer
Mannheim/Roche; right panel). (c) Effects of mSu(fu) on transcriptional
activity of mGli1 and its derivatives in MNS-70 cells. Transient
transfection and reporter assays were performed as described in
Figure 2. The plasmids and amounts of DNA per well used for
transfection were as follows: pCMV5β-Myc-mSu(fu), 4.25 µg;
pCDSRα-HA-mGli1, 0.25 µg; pCDSRα-HA-mGli1-N, pCDSRα-HA-
mGli1-N+VP16, pCDSRα-HA-mGli1-Zn, pCDSRα-HA-mGli1-
Zn+VP16, pCDSRα-HA-mGli1-C, pCDSRα-HA-mGli1-∆C, all 0.25 µg. 



fractionation of HeLa cells transfected with single or mul-
tiple expression vectors. Although mSu(fu) reduced the
transcriptional activity of Gli1, overexpression of mSu(fu)
did not appreciably reduce nuclear Gli1 levels (see Sup-
plementary material). Moreover, although immunofluores-
cence experiments clearly indicated an increase in
cytoplasmic Gli1 staining upon overexpression of mSu(fu),
Gli1 could not be detected by western blotting in any of
the cytoplasmic fractions (see Supplementary material).
This discrepancy is probably due to a higher sensitivity of
the immunostaining in situ of a relatively small population
of doubly transfected cells.

In summary, we have cloned a cDNA encoding mSu(fu)
and demonstrated that this protein can function as a nega-
tive regulator of the Shh signaling pathway, based on its
ability to suppress Gli reporter activity. Taken together,
our data suggest that mSu(fu) inhibits Shh signaling by
interacting with and modulating Gli protein function.
Additional loss-of-function studies will be required to
ascertain the biological relevance of our findings. 

Supplementary material
Supplementary material including immunostaining showing the
distribution of Gli1 in MNS-70 cells and immunoblots showing the distri-
bution of Gli1 with or without mSu(fu) in HeLa cells is available at
http://current-biology.com/supmat/supmatin.htm.
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Figure 4

The subcellular distribution of Gli1 in HeLa cells is altered by
mSu(fu). Cells were transfected with (a,b) FLAG–mGli1 alone,
(c,d) Myc–mSu(fu) alone or (e–h) both. Cells were fixed 42 h after
transfection in 4% paraformaldehyde for 10 min and permeabilized in
methanol for 2 min. (b,f) A monoclonal M2 anti-FLAG antibody
followed by Texas-Red-conjugated donkey anti-mouse IgG (Jackson
ImmunoResearch) was used to detect mGli1. (d,g) A rabbit anti-Myc
antibody A14 and FITC-conjugated donkey anti-rabbit IgG (Jackson
ImmunoResearch) was used to detect mSu(fu). (a,c,e) Arrowheads
indicate nuclei of transfected cells stained with 4′,6-diamidino-2-
phenylindole (DAPI). (h) The images seen in (f,g), merged. Transfection
of mGli1 alone shows localization to nuclei in over 90% of Gli1-
positive cells. Cotransfection with mSu(fu) resulted in cytoplasmic Gli1
localization in 86% of double-labeled cells. 
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Supplementary material

Figure S1

The subcellular distribution of Gli1 in MNS-70
cells is altered by mSu(fu). Plasmids
expressing (a,b) Gli1, (c,d) mSu(fu) or
(e–g) both were transfected as follows.
Plasmid DNAs (0.5 µg each of pCMV-FLAG-
mGli1 and pCMV5b-HA-Su(fu) or the
corresponding empty vectors) were
transfected using Fugene 6 (Boehringer
Mannheim/Roche) following the
manufacturer’s protocol. Cells were fixed
using 4% paraformaldehyde 2 days after
addition of DNA. (b,f) The FLAG–mGli1 and
(d,g) the HA–mSu(fu) proteins were detected
by anti-FLAG monoclonal Ab M5 (Kodak) and
anti-HA polyclonal antibody Y11 (Santa Cruz),
in combination with rhodamine-conjugated
anti-mouse IgG (TAGO) and FITC-conjugated
anti-rabbit IgG (Cappel), respectively.
(a,c,e) Nuclei were stained with DAPI.
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Figure S2

Subcellular distribution of Gli1 in the presence and absence of mSu(fu)
shown by immunoblot analysis. HeLa cells were transfected with
control, Myc–mSu(fu), FLAG–mGli1, or Myc–mSu(fu) + FLAG–mGli1
expression vectors as indicated. Cells were harvested 45 h after
transfection and cytoplasmic (lanes 5–8) and nuclear (lanes 1–4)
proteins were extracted according to a previously described protocol
[S1]. Protein extract (55 µg) from each fraction was denatured,
separated on an SDS–PAGE gel, and transferred onto a nitrocellulose
membrane. The mGli1 (band indicated by arrowhead) was detected
with anti-FLAG (M2) antibodies (Sigma) and the mSu(fu) (band
indicated by arrow) was detected with anti-Myc (A14) antibodies
(Santa Cruz). Anti-lamin A [S2] and anti-tubulin (Sigma) antibodies
were used to detect nuclear and cytoplasmic markers, respectively.
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