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Microstructure Analysis of 4-Step Three-Dimensional

Braided Composite
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Abstract: 　 The yarn architectur e of 3-D braided composites pr oducts by the four-step 1×1 braiding

technique has been studied by m eans of a contr ol volume met hod in conjunct ion w ith experimental in-

vestigation and a numer ical method, respectively . An ellipse assumption for the cross-section o f yarn

was proposed in this analysis method w ith consider ing the yarn size and yarn-packing facto r. Tw o

types of local unit cell structur es w er e identified for 4-step braided composites by consider ing the na-

tur e of the braiding pr ocesses and by obser ving the sample cr oss-sections. T he relationship betw een

the br aiding pr ocedure and the properties for 3-D braided struct ur al shapes was established. T his

method prov ides the basis for analyzing stiffness and str eng th o f 3-D braided composites.
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四步法三维编织复合材料细观结构分析. 郑锡涛, 叶天麒. 中国航空学报(英文版) . 2003, 16( 3) :

142- 150.

摘　要: 分别通过实验与控制体积方法系统地研究了采用四步法1×1方型编织工艺编织的预成形

件的纱线结构。提出了纱线椭圆形横截面假设, 考虑了编织纱线的细度和编织纱线填充因子的影

响。根据编织过程中携纱器的运动轨迹特点,将预成形件划分为内部、表面和棱角3个不同的区域,

分别定义了不同的控制体积单元,识别了预成形件的两种局部单胞模型,分析了预成形件的纱线

构造, 并导出了编织结构参数之间的关系。为编织复合材料的刚度、强度性能分析提供了充分的条

件。
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　　T he development of innovat ive f iber architec-

ture and text ile manufacturing technology has sig-

nificant ly expanded the potent ial of fiber -reinforced

composites. Text ile composites are being w idely

used in advanced st ructures in aviation, aerospace,

automobile and marine industries[ 1] . An emerg ing

area is text ile composites reinforced w ith three-di-

mensional ( 3-D ) preform. The integ rated f iber

netw ork prov ides st iffness and strength in the

thickness direct ion, thus reducing the potent ial of

interlaminated failure, w hich often occurs in con-

ventional laminated composites. Other dist inct

benefits of 3-D tex t ile composites include the po-

tent ial of automated processing f rom preform fabri-

cation to matrix infiltration, and their near-net-

shape forming capability, result ing in reduced ma-

chining, fastening, and scrap rate. In general, it

is feasible to design tex tile st ructural composites

w ith considerable flex ibility in performance based

upon a w ide variety of preform geometries.

Text ile composite technology by preforming is

an application of tex tile processes to produce st ruc-

tured fabrics, know n as preforms. The preform is

then impregnated w ith a selected matrix material

and consolidated into a permanent shape. Braiding

w ith continuous f ibers or y arns can place 3-D rein-

forcements in monocoque st ructural composites.

Since the braiding procedure dictates the yarn

st ructure in the preform and the yarn structure

dictates the propert ies of the composite, designing
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the braiding procedure to y ield the desired st ruc-

tural shape that is endow ed w ith the desired prop-

ert ies is an important element in tex tile composite

technology[ 2] .

The process-microstructure relationship of

3-D braided preforms was f irst studied by Li
[ 3]

et

al. , and geometric relat ionships for the preform

structure w ere established to predict the yarn ori-

entation angle, braid dimensions, and yarn volume

fract ion. Wang and Wang
[ 4]
proposed an approach

that at tempted to bridge the relat ionship betw een

the braiding procedure and the propert ies for 3-D

braided st ructural shapes. The w ork of Du
[ 5]
et al .

provided a detailed m icrost ructure analy sis of

2-step braided preforms, based upon a geometric

model consisting of several types of unit cells.

Byun and Chou
[ 6]
concluded that fiber architectures

of braided preforms significant ly inf luence the com-

posite mechanical propert ies. Wu
[ 7]

developed a

three-cells model. Chen
[ 8]

analy zed core/ sheath

structure of 4-step braided preforms.

In this invest ig at ion, an analy sis method is

presented to at tempt to bridge the relat ionships be-

tw een the braiding procedure and the propert ies for

3-D braided st ructural shapes. T he developed

method contains tw o major steps. T he first step is

to establish the general topology of the yarn st ruc-

ture based on the braiding procedure alone, the

general topology being described in terms of some

characterizing parameters. T he second step is to

relate the characterizing parameters to the f inal di-

mensions of the preform af ter consolidat ion. T his

then provides a full description of the yarn st ruc-

ture in the f inal shape.

The popular four-step 1×1 braiding proce-

dure is used to demonstrate the successive develop-

ments. All of basic assumpt ions are proposed in

Sect ion 2. Determinat ion of y arn structures in pre-

forming states is contained in Section 3. An illus-

trative property modeling approach is described,

w here the yarn geometric relationship in the basic

unit cells is derived. All results are expressed in

explicit terms of the braiding parameters to demon-

strate the direct link between the braiding parame-

ters and the f inal shape properties in Section 4. In

Sect ions 5 and 6, the yarn-packing factor and the

fiber v olume fract ion in the composites are dis-

cussed, respectively. A set of summarizing re-

marks is contained in Section 7.

1　The Four-Step 1×1 Braiding Procedure

Several braiding methods are used to fabricate

preforms. These are of ten classified by the kind of

fabric they produce: 2-D or 3-D. The former is

suitable for plate or thin-w alled shape, w hile the

lat ter is suitable for solid or thick-w alled shapes.

Many differing procedures ex ist for 3-D braiding,

such as the tw o-step, four-step, the interlock pro-

cess, etc
[ 4]
. T he four -step 1×1 method w ill be

adopted in this paper for the purpose of illust ration

only. Preforms of rectangular cross-sect ion are an-

alyzed to describe their y arn st ructure. U nit-cell-

like substructures are ident if ied in the interior,

surfaces, and corners; and the total preform is

represented by a st ructural composition of the unit

cells.

A schemat ic set-up for the four-step 1× 1

braiding procedure is shown in Fig . 1. T he preform

being braided is hung above the machine bed, on

w hich yarn carriers are arranged in a prescribed

Fig . 1　Schematic of a 3-D braiding set-up

pattern. Braiding is realized through the move-

ments of y arn carriers on the machine bed. Fig. 2

illust rates the carrier pat tern and movements steps

in one braiding cycle.

There are four carrier movement steps in one

braiding cycle; in each carrier movement step, the
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carriers only move one posit ion along either the col-

umn or the row directions
[ 2] . Specif ically , step-1

involv es carrier mot ions in alternate rows and

step-2 involves carrier mot ions in alternate

columns; step-3 involves row motions that reverse

those in step-1 and step-4 involves column motions

Fig. 2　4-step process

that rev erse those in step-2. Note that the yarn

carrier pattern after step-4 returns to the initial

pattern, thus complet ing a cycle. After each cycle

of braiding , the yarns are generally subjected to

jamming act ion so the yarns are closely packed;

and a finite length of the preform is realized,

know n as a pitch. Uniform jamming af ter each

braiding cycle will result in a constant pitch along

the length of the preform .

Clearly, the exact yarn carrier pattern dictates

the cross-sect ional shape of the preform . A rectan-

gular pattern is commonly denoted by [m×n] , m

being the number of row s and n the number of

columns of the yarn carriers on the machine bed.

The set-up show n in Fig . 2 w ould furnish a [ 6×6]

square cross-sect ion. The actual size of the pre-

form cross-sect ion ( also the pitch) depends on the

yarn used and the condit ion of yarn jamm ing. It

should also be noted that both the size and the

shape of the preform may be changed during the

matrix consolidat ion process.

The total y arns number N in the preform is

N = mn + m + n ( 1)

2　Basic Assumptions

Most of the previous studies on analy tic char-

acterization of 3-D text ile composites have been

limited to the preforms, and the proposed unit cells

do not represent the entire structure in the case of

4-step braided composites. The cross-section of

yarn round assumption is not suitable to the actual

yarn in preform . In order to analyze actually the

microstructure of 4-step braids, the follow ing basic

assumpt ions are proposed in this invest ig at ion:

( 1 ) The cross-sect ion perpendicular to the

yarn length can be assumed as elliptical, and its

major and minor axes lengths are respectively 2a

and 2b.

( 2) Suppose the braiding procedure keeps rel-

at ively steady, at least in a specified length of

braiding, to ensure consistent and uniform fabric

st ructure.

( 3) All yarns used in braiding the preform are

the same f ibers and have the same size and f lexibil-

ity.

( 4) All y arns used in braiding the preform

have the same yarn-packing factor.

3　A Cont rol-Volume Method for

Yarn Topology

There have been studies devoted to describing
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the yarn netw ork in 3-D braids. The general ap-

proach is to follow the braiding procedure and i-

dent ify the yarn netw ork in space. For the pre-

form interior, a single repetitive unit cell is usually

identified w hich is considered to represent the basic

character of the preform yarn structure. On the

boundary of the preform , unique yarn structures

ex ist ; this then necessitates separate yarn repre-

sentation on the preform boundary .

Most of the studies, how ever, w ere aimed

primarily at describing the yarn structures; the

topological nature of yarn structures and the associ-

ated characteristics were not emphasized
[ 6] .

In this Sect ion, a control volume method is

out lined to describe the general topolog y in pre-

forms braided by the four-step 1×1 procedure.

The purpose is to demonstrate the association be-

tw een the braiding procedure and the result ing

yarn topology.

Follow the yarn carrier movements show n in

Fig. 2 for one braiding cycle and trace the yarn

paths in space. Instead of follow ing all the carri-

ers, a set of representative carriers w ill be selected.

Fig. 2( a) shows the selected carriers ( numbered

42-44, 52-54 and 62-64 at step-0) ; the subse-

quent movements of these carriers form a control

space, or a control v olume ( CV ) . Thus, during

the first tw o steps, carriers ( 42, 53) and ( 54,

63 ) exchange their respective posit ion inside the

CV; at the same time, carriers ( 43, 44, 52, 62,

64) move to position outside the CV. This forms

four crisscrossing yarns inside the upper half of the

CV. Similarly, during the nex t tw o steps, four

crisscrossing yarns are formed in the low er half of

the CV.

Essentially , the yarn trace in the CV dis-

cussed above characterizes the general topological

character of the yarn st ructure in the preform inte-

rior. Specif ic characterization of the yarn topology

w ill be explained in more detail below .

3. 1　Basic unit cells of the interior

Assume that a uniform yarn jamming is ap-

plied af ter the braiding steps; the action w ill then

straighten and reposition the yarns in the CV, as

show n in Fig . 3. Specif ically , the yarns in the

front half of the CV form a sub-unit cell, denoted

as sub-cell-A, and the yarns in the back half of the

CV form a sub-unit cell, denoted as sub-cell-B.

Yarn lines in sub-cell-A and sub-cell-B are shown

F ig . 3　I nt er ior unit cell struct ur e in preform

in Fig. 3( b) and ( c) . Note that the jamming ac-

tion def ines yarn inclinat ion angle �in the unit cells
and the pitch of the braid for one cycle, denoted by

h.

The preform interior may be treated as a com-

posit ion of the basic cells. It can be readily seen

that the yarns in the interior unit cells form tw o

families of flat plates w hich span the ent ire preform

interior, as show n in Fig. 3( a) . T hese plates in-

tersect each other at right angles, and are orientat-

ed ± 45°w ith respect to the preform surfaces.

Each of the f lat plates is formed by tw o g roups of

crisscrossing yarns. These are, of course, the
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same crisscrossing yarns found in the unit cells.

For an interior unit cell, as show n in Fig . 3

( a) , the width (W i) and thickness ( T i) of the in-

terior unit cell can be calculated from the assump-

tion and geometric relat ionship of y arns

W i = T i = 4 2 b ( 2)

The braiding ang le � is

tan�= 8b
h

( 3)

　　T he individual unit cells and the general topol-

ogy of the interior as a w hile are now fully charac-

terized by two free parameters; the braiding angle

� and the braiding pitch h. These two parameters

remain free unt il the preform is consolidated into

it s f inal shape.

For an [m×n] braid preform , there are ( n-

1) / 2 interior unit cells along the w idth direction of

the preform and ( m- 1) / 2 interior unit cells along

the thickness direct ion.

3. 2　Yarn topology on surf ace and the surface

cel l

To trace the yarns on the surface, it is conve-

nient to select a 'cont rol surface' . Referring to

Fig. 2 at step-0 the vert ical plane containing carri-

ers ( 62-64) w ill be selected. Follow the carrier 62

for example; it exits the control surface from the

interior at step-2 and re-enters at step-4. Upon

yarn jamming , the yarns will be st raightened

( w ith a slight bend which is omitted here) and re-

posit ion themselves on the surface.

Fig . 4　Sur face unit cell str ucture in pr eform

In actuality, yarns on the surface form a finite

thickness lay er, depending on the size of the yarn

used. A basic cell on the surface may be def ined,

as show n in Fig. 4. The yarn topolog y in the cell is

characterized by the angle � and the pitch h. The

yarns ly ing in the surface incline with the braiding

axis at the angle  .
Similarly, for a surface unit cell ( see Fig. 4) ,

the w idth (W s) of the surface unit cell can be cal-

culated f rom the assumpt ion and geometric rela-

tionship of yarns

W s = 4 2 b ( 4)

The thickness ( T s) of the surface unit cell is

T s = 2b ( 5)

　　In theory, yarns in the surface unit cell should

be space curves. In order to simplify the model,

st raight lines w ere used to replace the curve yarns.

The surface-braiding angle � is defined as the angle
betw een yarn and braiding axis ( see Fig . 4 ) .

Thus

tan�= 2 3 b
h

( 6)

　　The surface yarn inclination angle  is defined
as the angle betw een yarn project ion on the surface

and braiding axis direct ion.

tan = 2 2 b
h

( 7)

　　From the geometry show n in Fig. 4, the sur-

face yarn inclination angle  is readily related to the
braiding angle � of the interior. Thus,

tan = W s

2h
= 2

4
tan� ( 8)

　　The surface look is relevant for the fact that

only the surface yarn inclinat ion ang le  and the

braiding pitch h can be readily measured w ith pre-

cision. Since it is generally diff icult to measure the

interior braiding angle �, Eq. ( 8) can be used to

calculate �by know ing  .
For an [ m×n] yarn arrangement , there are

( n- 1) / 2 surface unit cells along the w idth direc-

tion of the preform and ( m- 1) / 2 surface unit

cells along the thickness direct ion. It can also be

show n that in preforms of a rectangular cross-sec-

tion, the same surface cell is found on surfaces of

opposing sides; the mirror image of that surface

cell is found on surfaces of the other pair of oppos-

ing sides.

3. 3　Cell composition of pref orm

At this point , the topology of the ent ire pre-
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form has been established, along w ith the various

unit cells ident ified; all are expressed in terms of

the free parameters, the braiding angle � and the
pitch length h. The values of the lat ter can be

measured, given the final dimensions of the pre-

form; so the yarn structure in the preform is fully

described. Furthermore, the ent ire preform is a

structural composition of the interior cells ( A and

B) , surface cells, and corner cells. The exact cell

composition is easily determined by the carrier ar-

rangement on the machine bed. In the case of a

rectangular solid cross-sect ion, for instance, the

integer values in [m×n] determine the exact cell

composition.

In a micro-st ructural analysis, a 3-D braided

preform exhibit ing a core/ sheath st ructure can be

divided into three regions, i. e. the interior, sur-

face, and corner, each of w hich has unique yarn

architecture, as shown in Fig. 5.

Fig. 5　Core/ sheath structur e o f pr efo rm

For an [m×n] braid, the volume proport ion

of each region to the ent ire st ructure is deduced as

follow s

V i =

(m - 1) ( n - 1)

mn + ( 2 - 1)m + ( 2 - 1) n - 2 2 + 3

V s =

2 (m + n - 2)

mn + ( 2 - 1)m + ( 2 - 1) n - 2 2 + 3

V c =

2

mn + ( 2 - 1)m + ( 2 - 1) n - 2 2 + 3

( 9)

where V i, V s, V c are, respect ively , the volume

proport ion of interior, surface, corner reg ions to

the w hole structure in the preform .

From Eq. ( 9) , the volume proport ion of sur-

face region to whole st ructure in the preform de-

pends upon the numbers of yarns, m and n. When

the numbers of yarns, m or n, tend to a minor

number, the volume proportion of the surface re-

gion is over 30% of the w hole st ructure in the pre-

form . So the effect of the surface region on the en-

tire structure cannot be neglected.

Table 1 show s the calculation obtained by Eq.

( 9) for the specimens used in this study. It is clear

that the volume proport ion of corner region to

w hole structure is smaller than 3% , so its influ-

ence on the w hole structure can be ignored and it is

replaced by the surface region in calculating.

Moreover, the volume proportion of surface region

to w hole structure changed to be

V s = 1 - V i ( 10)

　　The same simplif ied method to deal w ith the

boundary region of 3-D preforms has been used by

Chen
[ 8] .

Table 1　The volume proportion of each region to

whole structure in the preform

Specim ens

Number

Yarns

m×n

Volume proport ion of each region

Interior/ % Surface/ % Corner/ %

CT 2045 4×23 63. 86 34. 21 1. 94

CT 4045 3×22 54. 88 42. 50 2. 61

CT 2055 5×25 69. 77 28. 78 1. 45

CT 4055 4×23 63. 86 34. 21 1. 94

4　Composite Geometry

Once the dimensional parameters of yarns are

determined, the geometric characteristics of the

composite can be identified based upon the unit cell

approach. From Fig . 5, the w idth ( W ) and the

thickness ( T ) of composite can be expressed in

terms of the number of yarns and their sizes

W = 2× [ 2 ( n - 1) + 2] b ( 11)

T = 2× [ 2 (m - 1) + 2] b ( 12)

　　Put Eq. ( 3) into Eqs. ( 11) and ( 12) , the

pitch length h can be expressed as

h =
8b
tan�=

4W

[ 2 ( n - 1) + 2] tan�
( 13)

or h =
8b
tan�=

4T

[ 2 ( m - 1) + 2] tan�
( 14)

　　Eqs. ( 13) and ( 14) state clearly the pitch

leng th decreases w ith the braiding angle and num-

bers of yarns increasing as the dimension of the
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preform keeps constant .

Table 2 show s the measured and predicted ge-

ometric parameters of composite specimens. The

measurement data are gained from the average val-

ues of five specimens. The calculat ion was obtained

by Eqs. ( 12) and ( 13) . The comparison is quite

sat isfactory . Some discrepancies are found in the

thickness for the specimens w ith larg er braid an-

gles ( denoted by 40 in the specimens numbers) .

Tabl e 2　Predication and test resul ts for thickness

of preform and braiding pitch length

Specimens

number

T hickness (mm ) Pitch length ( mm)

Measured Predicted Measured Predicted

CT 2045 4. 99 4. 69 11. 73 11. 38

CT 4045 4. 97 4. 90 3. 69 3. 87

CT 2055 5. 16 5. 31 10. 87 10. 94

CT 4055 5. 46 4. 72 3. 80 3. 92

GT 2045 5. 01 4. 70 12. 89 13. 57

GT 4045 5. 38 4. 91 3. 20 3. 42

GT 2055 5. 31 5. 33 11. 62 11. 69

GT 4055 5. 51 4. 71 3. 38 3. 55

CB2045 5. 27 4. 69 9. 57 9. 13

CB4045 4. 88 4. 93 3. 40 3. 50

CB2055 5. 03 5. 29 11. 18 11. 70

CB4055 5. 47 4. 72 3. 68 3. 79

5　Fiber Packing Fraction

Fiber packing fraction k is the fiber volume

fract ion in a yarn. It is def ined as follow

k =
!D 2

y

4∀ =
D

2
y

4ab
( 15)

w here D y = 4#/ !∃ is the equivalent diameter

( mm) of the yarn; #and ∃are, respectively, the
linear density ( kg / m ) of yarns and fiber density

( kg/ m
3) .

For f iber yarns, the f iber packing f ract ion

changes complex ly during the braiding procedure.

The f iber packing fract ion changes as redistribut ion

of bearing force among yarns. At this point , the

change of the f iber packing fraction will be ignored

during the braiding procedure and the f iber pack-

ing f raction w ill be only considered in the final pre-

form.

Based upon the assumptions, put Eqs. ( 13)

and ( 14) into Eq. ( 15) , and the fiber packing

fract ion can be expressed as follow s

k =
D

2
y [ 2 ( n - 1) + 2]

2

3 W
2
cos�

( 16)

or k =
D

2
y[ 2 (m - 1) + 2] 2

3 T 2cos�
( 17)

　　From these equat ions, it is clear that the f iber

packing factor increases with braided angle increas-

ing and decreases w ith dimension of preform in-

creasing w hen the number of braiding yarns [m×

n] keeps constant. During the braiding procedure,

the f iber-packing factor has two crit ical states: one

is the init ial state of yarn; the other is the crow ded

state w hen the f ibers in the yarn are arranged in

hexagon. At this t ime, the f iber-packing factor

reaches its maximum value, k = !/ ( 2 3 ) ≈

0. 9069 .

6　Fiber Volume Fraction

Since the yarn cross-sect ional area and orien-

tation angle have been obtained in Section 3, the

yarn volume in the preforms can be readily deter-

mined. Considering the actual length and cross-

section of a y arn, the f iber content in a unit cell

can be obtained by mult iplying yarn content by

fiber packing fract ion.

6. 1　Fiber volume fraction in interior and

boundary

The volume of an interior unit cell ( see Fig . 3

( a) ) is

U i = W iT ih =
h
3tan2�
2

( 18)

　　The total yarn volume in the interior unit cell

is

Y i =
4!abh
cos� ( 19)

　　The f iber volume fraction in the interior unit

cell can be obtained by multiplying yarn volume of

interior by f iber packing fraction and be expressed

as

V if =
Y i

U i
k =

! 3
8

k ( 20)

　　T he volume of a surface unit cell ( see Fig. 4)

is

U s = W sT sh =
2
8 h

3
tan

2� ( 21)

　　T he total yarn volume in the surface unit cell

is
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Y s = 4!ab h
2cos�

2!abh
cos� ( 22)

　　The f iber volume fract ion in the surface unit

cell can be obtained by mult iplying yarn volume by

fiber packing fraction and expressed as

V sf =
Y s

U s
k =

6 !cos�
8cos� ( 23)

6. 2　Total fiber volume fraction

The total f iber volume fract ion of the compos-

ite, V f , is the sum of mult iply ing the fiber volume

fract ion by volume proport ion in every region.

Thus

V f = V iV if + V sV sf ( 24)

w here V i, V s are, respect ively , the volume propor-

tion of interior, surface regions to ent ire structure

in the preform , obtained from Eqs. ( 9) and ( 10) .

V if, V sf are, respectively, the f iber volume fract ion

of interior, surface regions, obtained from Eqs.

( 20) and ( 23) .

The total f iber volume fraction in the preform

varies w ith the number of braiding yarns [m×n] ,

braiding angle and f iber packing fract ion. The

variation of y arn number [ m×n] results in chang-

ing the volume proportion of each reg ion to w hole

structure in the preform . With increasing the

number of m and n, the volume proportion of the

surface region will reduce; the total f iber volume

fract ion w ill also reduce and tend to the value of

fiber volume fract ion of interior . Otherw ise, the

total f iber volume fraction w ill increase w ith the

fiber packing f raction. When the number of m and

n keeps constant, the increasing of the braiding an-

gle results in increasing of the f iber packing frac-

tion and total f iber volume fraction.

Table 3 g ives the comparison of the measured

and predicted f iber volume fraction and the surface

yarn inclinat ion angle of composite specimens. The

measurement data are gained from the average val-

ues of five specimens. The calculat ion was obtained

by Eqs. ( 24) , ( 16) and ( 7) , respectively. The

measured and predicted data of the fiber volume

fract ion and the surface yarn inclinat ion angles are

in good agreement. At the same t ime, it is found

that the yarn-packing factor is bigger for the speci-

men w ith a larger braiding angle as the dif ferent

specimens have the same fiber volume fract ion.

7　Conclusions

The results of this systemat ic analysis for es-

tablishing the process-microstructure relat ionship

of 4-step braided composites are summarized as fol-

low s.

( 1) An analysis method is presented w hich

describes the yarn st ructures in 3-D braided pre-

forms. By tracing the yarn lines in space during

the braiding cycle, the general topology of the yarn

st ructure can be analyt ically established, which de-

pends solely on the braiding method. From the

general topology , basic unit cells in the interior and

on the boundary are identified and the preform as a

w hole is treated as a st ructural composition of the

basic cells.

( 2) From the overall yarn st ructure in the

preform, tw o types of unit cell st ructures w ere

Table 3　Predication and test results for f iber volume fraction in the preforms

Specim ens
number

Fiber volume fract ion ( % )

Measured Predicted E rror ( % )

Fiber pack-

ing factor

S urface braid angle (°)

M easured Predicted Error ( % )
CT 2045 44. 23 47. 23 6. 79 0. 613 9. 94 10. 75 8. 18

CT 4045 43. 65 50. 65 16. 05 0. 696 29. 56 29. 90 1. 17

CT 2055 56. 76 54. 31 - 4. 30 0. 716 9. 82 10. 22 4. 10

CT 4055 48. 17 52. 80 9. 61 0. 724 27. 22 28. 66 5. 30

GT 2045 52. 84 48. 96 - 7. 34 0. 605 9. 28 9. 18 - 1. 12

GT 4045 48. 77 53. 41 9. 51 0. 708 31. 02 33. 21 7. 07

GT 2055 63. 44 55. 92 - 11. 85 0. 709 9. 26 9. 57 3. 31

GT 4055 60. 61 58. 27 - 3. 86 0. 786 31. 96 31. 19 - 2. 40

CB2045 42. 82 47. 58 11. 13 0. 617 12. 73 13. 11 2. 98

CB4045 45. 20 52. 13 15. 33 0. 726 32. 80 32. 57 - 0. 69

CB2055 56. 29 54. 69 - 2. 84 0. 721 10. 13 9. 50 - 6. 21

CB4055 48. 43 53. 33 10. 11 0. 735 28. 27 29. 43 4. 10
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identified for 4-step braided composites in the pre-

form interior and on its boundary. It should be

noted that substructuring of a 3-D preform in

terms of small unit cells is essential for property

characterizat ion. A treatment of this subject
[ 9]
has

been reported elsewhere.

( 3) The preform interior consists of tw o types

of sub-cells. On the boundary of the preform , the

same surface cell is found on surfaces of opposing

sides; the mirror image of that surface cell is found

on surfaces of the other pair of opposing sides.

( 4 ) The pitch length decreases w ith the

braiding angle and numbers of yarns increasing as

the dimension of the preform keeps constant .

( 5) T he fiber-packing factor increases w ith

the braided angle increasing and decreases w ith di-

mension of preform increasing when the number of

braiding yarns [m×n] keeps constant . During the

braiding procedure, the fiber-packing factor pre-

sents tw o crit ical states: one is the initial state of

yarn; the other is the crow ded state w hen the

fibers in the yarn are arranged in hexagon. At this

time, the f iber-packing factor reaches its max i-

mum value, k≈0. 9069.

( 6) T he total fiber v olume fract ion in preform

varies w ith the number of braiding yarns [m×n] ,

braiding angle and f iber packing fract ion. The

variation of y arn number [ m×n] results in chang-

ing the volume proportion of each reg ion to w hole

structure in the preform . With increasing the

number of m and n, the volume proportion of the

surface region will reduce; the total f iber volume

fract ion w ill also reduce and tend to the value of

fiber volume fract ion of interior . Otherw ise, the

total f iber volume fraction w ill increase w ith the

fiber packing f raction. When the number of m and

n keeps constant , the increasing of braiding angle

results in increasing of the fiber packing f ract ion

and total fiber volume fract ion.

Finally , it is mentioned that the method pre-

sented in this paper can be also applied to analyze

3-D five directions, six direct ions and seven direc-

tions braiding preforms.
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