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Introduction

A partition of a set in which each block size is divisible by some fixed
positive integer d shall be called a d-divisible partition. For n a multiple
of d, let 6d

n be the lattice of d-divisible partitions of the set [1, 2, ..., n]
ordered by refinement, with a bottom element 0� adjoined when d>1.
Clearly 6d

n is a join sublattice of 6n=61
n , the lattice of partitions of

[1, 2, ..., n].
It is well-known that 6n is a geometric lattice. Bjo� rner [Bj1] showed

that geometric lattices are shellable, and hence their order complexes have
the homotopy type of a wedge of spheres. It had been proved earlier by
Folkman [F] that the order complex of a geometric lattice has vanishing
simplicial homology in all dimensions except the top dimension. In the top
dimension, the homology group is free of rank |+(L)| where + denotes the
Mo� bius function. Bjo� rner [Bj2, Bj3] developed a general theory for con-
structing a basis for the top homology group of a geometric lattice in terms
of its NBC bases. This theory yields a natural explicit basis for the top
homology group of 6n , which was used by Barcelo [Ba] to study the
action of the symmetric group Sn on the top homology group.

For d>1, 6d
n is not a geometric lattice. Hence, one cannot use the

machinery of geometric lattice theory as developed in [Bj1], [Bj2] and
[Bj3] to study the structure of 2(6d

n), the order complex of 6d
n . In 1983,

in response to a question posed by Hanlon, the author showed that 6d
n is

shellable for all d>1 (cf. [Sa]). Stanley [St1] had previously shown that
|+(6d

n)|=ad
n , where ad

n denotes the number of permutations in Sn&1 with
descent set [d, 2d, ..., n&d]. Hence all homology groups of 2(6d

n) vanish
except the top homology group H(6d

n) which is free of rank ad
n . This result

was needed by Calderbank, Hanlon, and Robinson [CHR] in their study
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of the action of the symmetric group on H(6d
n). One of the results appear-

ing in [CHR] is a proof of a conjecture of Stanley, relating the character
of Sn acting on H(6d

n) to a certain skew character.
In this paper, we construct an explicit natural basis for H(6d

n). For d>1,
each basis element turns out to be the fundamental cycle of the barycentric
subdivision of the boundary of an (n�d&1)-dimensional cube. Moreover,
these cycles correspond in a natural way to permutations in Sn&1 with
descent set [d, 2d, ..., n&d]. The basis constructed here yields a direct
combinatorial derivation of the above mentioned result of Stanley,
Calderbank, Hanlon, and Robinson. It also enables us to give a purely
combinatorial construction of the matrices representing the action of Sn on
H(6d

n).
For d=1, we have a new basis for the partition lattice, one that is dif-

ferent from the Bjo� rner basis. Just as for the Bjo� rner basis, each basis
element is the fundamental cycle of the barycentric subdivision of the
boundary of an (n&2)-simplex. Moreover, our basis elements are directly
indexed by permutations in Sn&1. The new basis turns out to be the
natural basis for combinatorially explaining a result of Stanley [St2] which
states that the restriction of the action of Sn on H(6n) to Sn&1 is the
regular representation.

In Section 1, we review some standard notation and terminology.
Sections 2 through 5 deal with the d>1 case. In Section 2, we construct the
basis. The action of Sn&1 on H(6d

n) is studied in Section 3. Representation
matrices for the action of Sn are constructed in Section 4. In Section 5, we
use the theory of lexicographical shellability to give a bijective proof of the
fact that |+(6d

n)|=ad
n . More precisely, we construct an EL-labeling of 6d

n ,
identify its decreasing chains and show that these chains correspond in a
natural way with permutations in Sn&1 with descent set [d, 2d, ..., n&d].
These decreasing chains provide a natural explicit basis for the top portion
of the Stanley-Reisner ring, or equivalently the top cohomology module, of
6d

n . In Section 6, the d=1 case is discussed.

1. Preliminaries

We begin by reviewing some standard poset and simplicial complex
terminology. Let P be a graded poset of rank r with top element 1� and
bottom element 0� . For x�y in P, the interval [z # P | x�z�y] is denoted
by [x, y]. We shall use the symbol � to denote the covering relation in
P. That is, x � y means that y covers x in P. We shall also let M(P) denote
the set of all maximal chains of P.

The order complex of P, denoted by 2(P), is defined to be the simplicial
complex whose vertices are the elements of P&[0� , 1� ] and whose faces are
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the chains of P&[0� , 1� ]. Since P is graded, 2(P) is a pure (r&2)-dimen-
sional complex.

Let k be a field or the ring of integers Z. Let Ci (P) denote the i th chain
group of 2(P), that is Ci (P) is the free k-module on the basis of i-chains
x0<x1< } } } <xi of P&[0� , 1� ]. Let H(P) denote the top reduced simplicial
homology module H� r&2(2(P), k).

We shall view a permutation _ in the symmetric group Sn as a word
_(1) _(2) } } } _(n). The identity permutation 123 } } } n will be denoted by =.
Our convention in multiplying permutations is right to left composition.
That is, for _, { # Sn , and i=1, 2, ..., n, _{(i)=_({(i)). We denote an
adjacent transposition (i, i+1) in Sn by si .

A descent of a permutation _ is a position i such that 1�i�n&1 and
_(i)>_(i+1). We denote the set of descents of _ by des(_). For example,
des(324615)=[1, 4].

If d divides n then we define a d-segment of _ # Sn to be a subword of
the form _(id+1)_(id+2) } } } _(id+d ), where 0�i�n�d&1.

2. The d>1 Case

To split a permutation _ # Sn at position j, means to divide _ into two
subwords _(1) _(2) } } } _( j) and _( j+1) _( j+2) } } } _(n). To switch and split
at position j, means to split the word _sj at position j, i.e. to divide _ into
the subwords _(1) _(2) } } } _( j&1) _( j+1) and _( j) _( j+2) } } } _(n). More
generally, applying a sequence of split operations and switch and split
operations results in a collection of complementary subwords of _. If we
view these subwords as subsets then we obtain a partition of [1, 2, ..., n].
For example, if

_=12345678

and we split at position 2 and switch and split at position 6 then we obtain
the partition

?=12 | 3457 | 68.

If

_=35271864

and we split at position 2 and switch and split at position 4 and 6, then we
obtain the partition

?=35 | 21 | 76 | 84.
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We shall say that a partition ? # 6d
n is d-compatible with a permutation

_ # Sn if ? is obtained from _ by applying split operations and switch and
split operations only at d-divisible positions. In the examples given in the
previous paragraph, ? is 2-compatible with _. For _ # Sn , let 6_ denote the
subposet of 6d

n consisting of 0� and all partitions that are d-compatible with
_. For d=2 and _=123456, 6_ is given in Fig. 2.1. It is not difficult to see
that 6_ is a familiar lattice.

Theorem 2.1. For each _ # Sn , 6_ is isomorphic to the face lattice of an
(n�d&1)-cube.

Proof. Let Ln be the lattice of faces of the n-cube [(x1 ,
x2 , ..., xn) # Rn | 0�xi�1, i=1, 2, ..., n]. The k dimensional faces, k�0,
can be viewed as n-tuples over [0, 1, V] with k entries equal to V. We can
also encode partitions in 6_ as (n�d&1)-tuples over [0, 1, V]. Indeed, let
,: 6_ � Ln�d&1 be the map defined by letting ,(0� ) be the empty face and
,(?) be the (n�d&1)-tuple whose j th entry is 0, 1, or V, according to
whether ? is obtained from _ by performing a split, a switch and split,
or nothing at position jd. For example, if d=2, _=12345678 and
?=1234 | 57 | 68 then ,(?)=(V, 0, 1). It is easy to verify that , is a lattice
isomorphism.

A consequence of Theorem 2.1 is that the order complex 2(6_) is the
barycentric subdivision of the boundary of an (n�d&1)-cube. Hence it is a
triangulation of (n�d&2)-sphere. Let \_ be a fundamental cycle of the
spherical complex 2(6_). We now ask whether the collection of cycles

[\_ | _ # Sn]

spans H(6d
n). According to the following theorem, not only do these cycles

span the space, but the cycles indexed by the permutations enumerated by
ad

n form a basis.

Theorem 2.2. Let

Ad
n=[_ # Sn | _(n)=n, des(_)=[d, 2d, ..., n&d]].

Then

[\_ | _ # Ad
n]

is a basis for H(6d
n).

Proof. For each _ # Sn , let m_ be the maximal chain of 6_&[0� , 1� ],

?n�d (_) � ?n�d&1(_) � } } } � ?2(_), (2.1)
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Figure 2.1

where ?k(_) is the k-block partition obtained by splitting _ at
d, 2d, ..., (k&1) d. For example, if n=8, d=2 and _=12345678 then m_ is
the maximal chain

12 | 34 | 56 | 78 � 12 | 34 | 5678 � 12 | 345678.

Linear independence of [\_ | _ # Ad
n] is a consequence of Lemma 2.3

below. Indeed, let �_ # Adn c_\_=0, where c_ # k. Suppose, by way of con-
tradiction, that : is the lexicographically last element of Ad

n for which
c: {0. Then by Lemma 2.3,

0= :
_ # Ad

n

c_ \_ |m := :

_�:
_ # Ad

n

c_\_ |m:=c: \: |m:=\c: ,

since in a fundamental cycle of a spherical complex the coefficient of every
facet is \1.

Since, as was stated in the introduction, the rank of H(6d
n) is ad

n=|Ad
n |

(see also Corollary 5.3), we may conclude that [\_ | _ # Ad
n] is a basis,

when k is a field.
For k=Z, the linear independence of [\_ | _ # Ad

n] implies that
[\_ | _ # Ad

n] is linearly independent over the rationals Q which implies
that it spans H(6d

n) over Q. If \ # H(6d
n), then

\ # :
_ # Ad

n

c_\_ ,
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where c_ # Q. We shall show that c_ # Z for all _ # Ad
n . If : is the

lexicographically last element of Ad
n for which c: {0, then by Lemma 2.3

below,

\ |m:= :

_�:
_ # Ad

n

c_\_ |m :=c:\: |m:=\c: .

Since \ # H(6d
n), we have \| m: # Z. Hence c: # Z and \&c:\: # H(6d

n). We
can then apply the above argument to \&c: \: to obtain c; # Z and
\&c:\:&c;\; # H(6d

n), where ; is the next to the last element,
lexicographically, of Ad

n for which c; {0. Continuing this way allows us to
conclude that c_ # Z for all _ # Ad

n . Hence [\_ # _ # Ad
n] spans H(6d

n) over
Z and is therefore a basis for H(6d

n) over Z. K

Lemma 2.3. If :, ; # Ad
n and m: is a chain in 6; then :�; in lexico-

graphical order.

Lemma 2.3 is a consequence of two lemmas which are stated and proved
below. For _ # Sn , let 4_ denote the subposet of 6d

n consisting of partitions
obtained from _ by splitting the word _ only at positions divisible by d.
For example, if _=123456 and d=2 then 4_ is the poset,

123456

12 | 3456 1234 | 56

12 | 34 | 56.

Note that 4_ is an atomic interval of 6_ , i.e., an interval of the form
[a, 1� ], where a is an atom of 6_ .

For each _ # Sn , let Dd
n be the subgroup of Sn generated by the adjacent

transpositions sdi=(di, di+1), i=1, 2, ..., n�d&1. Clearly, the generators sdi

commute and each _ # Dd
n has a unique representation as

_=sdi 1
sdi2

} } } sdik , k�0, 1�i1<i2< } } } <ik�
n
d

&1.

For example, if d=3 and n=9 then

Dd
n=[=, s3 , s6 , s3 s6]

=[123456789, 124356789, 123457689, 124357689].
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Lemma 2.4. Let ; # Sn . Then [M(4#) | # # ;Dd
n] is a partition of

M(6;&[0� ]).

Proof. Each permutation # # ;Dd
n corresponds bijectively to an atom #�

of 6; , namely #� is the partition obtained by splitting # at all positions
divisible by d. Moreover 4# is the atomic interval [#� , 1� ] of 6; . Since every
maximal chain of 6;&[0� ] is a maximal chain of a unique atomic interval,
the result follows.

For _ # Sn , let _ A denote the permutation obtained from _ by sorting
each d-segment of _, _(dj+1), _(dj+2), ..., _(dj+d ), j=0, 1, 2, ...n�d&1 in
increasing order. For example, if n=9, d=3 and _=253941867 and
_ A =235149678.

Lemma 2.5. Let :, # # Sn be such that :(n)=#(n)=n. If m: is a chain of
4# then : A =# A .

Proof. We leave the straight forward proof to the reader. K

Proof of Lemma 2.3. By Lemma 2.4, m: _ [1� ] # M(4#) for some
# # ;Dd

n . It follows from Lemma 2.5 that : A =# A . Since : # Ad
n , :=: A .

Hence :=# A . Clearly # A �#. It is also easy to see that #�; since # # ;Dd
n

and ; has descents at all positions divisible by d. Putting this together we
have

:=# A �#�;. K

3. The Action of the Symmetric Group

A permutation _ # Sn acts on a partition in 6n by replacing each element
of each block by its image under _. Clearly _ acts as an automorphism on
the lattice 6d

n . This induces an action on H(6d
n) which turns H(6d

n) into
an Sn-module over k (from now on assume k is a field). Moreover, by
Theorem 2.2, H(6d

n) is a cyclic Sn-module generated by \= . Given \= , we
can choose an orientation for each \_ , _ # Sn , so that

\_=_\= .

Then for _, { # Sn , we have

_\{=\_{ .

In [CHR], Calderbank, Hanlon, and Robinson obtain results on the
character of Sn acting on H(6d

n). One result, in particular, is the following
theorem which was originally conjectured by Stanley.
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Theorem 3.1. For d>1, the restriction of the character of Sn acting on
H(6d

n) to Sn&1 is the skew character indexed by the skew hook shape * given
in Fig. 3.1.

The Calderbank, Hanlon, and Robinson proof involves symmetric
function theory and cycle index manipulations. Here, we give a direct
combinatorial proof by means of Specht modules (see [Ja] or [JK] for the
definitions, terminology, and basic results relating to Specht modules). The
Specht module indexed by * is an Sn&1-module and is denoted by S*. Its
character is the skew character indexed by *. Hence, Theorem 3.1 means
that H(6d

n) and S* are isomorphic Sn&1-modules. We shall give an explicit
isomorphism between these two modules.

We begin by reviewing the construction of the Specht module S *, where
* is the skew hook given in Figure 3.1. An equivalence relation is defined
on tableaux of shape * by t1tt2 if t2 can be obtained from t1 by permuting
the entries of each row of t1 . An equivalence class [t] is called a tabloid.
Let M* be the vector space over k whose basis elements are the *-tabloids.
Let _ # Sn&1 act on a *-tableau by replacing each entry by its image under
_ and let _ act an a *-tabloid [t] by _[t]=[_t]. This action of Sn&1 on
*-tabloids turns M* into an Sn&1 -module.

Let t be a tableau of shape *. The polytabloid et associated with t is
defined by

et= :
_ # Ct

sgn(_)[_t],

where Ct is the column stabilizer of t. The action of _ # Sn&1 on
polytabloids is given by _et=e_t . This turns the space spanned by

Figure 3.1
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polytabloids into a submodule of M* called the Specht module and denoted
by S*. The collection of standard polytabloids,

[et | t is a standard tableau of shape *],

forms a basis for S *.
Let t0 be the tableau of shape * obtained by filling in the cells from left

to right (and bottom to top) with entries 1, 2, ..., n&1 in the given order.
For example, when n=6 and d=2,

5

t0= 3 4

1 2

Clearly, each tableau t can be expressed as _t0 , where _ # Sn&1. Note that
t is a standard tableau of shape * if and only if t=_t0 , where _ # Ad

n . (We
are viewing the permutation _ # Sn&1 as a permutation in Sn with
_(n)=n.) It follows that the standard polytabloid basis for S* can be
expressed as

[e_t0
| _ # Ad

n].

This leads to an obvious bijection between the basis for S * and the basis
for H(6d

n), which extends by linearity to a vector space isomorphism
between the two spaces. The following theorem asserts that this vector
space isomorphism is in fact a module isomorphism.

Theorem 3.2. Let �: S * � H(6d
n) be the linear map defined on the basis

of standard polytabloids by

e_t0
[ \_ , _ # Ad

n .

Then � is an Sn&1 -module isomorphism.

This theorem is proved below by showing that � is the restriction of an
isomorphism between M* and a module which contains H(6d

n) as a sub-
module.

Recall the poset 4_ , defined in Section 2. It is not difficult to see that for
each _ # Sn , 4_ is isomorphic to the face lattice of an (n�d&2)-simplex.
Hence the order complex 2(4_) is the barycentric subdivision of the
boundary of the simplex. Let &_ be a fundamental cycle of the spherical
complex 2(4_). Given &= , an orientation for each &_ is determined by

&_=_&= .
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For each _ # Sn , let _� be the bottom element of 4_ , i.e., _� is the partition
obtained by splitting _ at all positions divisible by d. Let _� V 2(4_) be the
cone on 2(4_) with vertex _� . Note that _� V 2(4_) is simply the simplicial
complex of chains of 4_&[1� ]. Each element & of the chain group
Cn�d&3(2(4_)) corresponds bijectively to an element _� V & of the chain
group Cn�d&2(_� V 2(4_)). That is, _� V & is obtained from & by adjoining _�
to each chain involved in &. Let

+_=_� V &_ .

We clearly have +_=_+= . Hence the vector space Ld
n spanned by

[+_ | _ # Sn] is a cyclic Sn -module.

Lemma 3.3. Let

Bd
n=[_ # Sn | _(n)=n, des(_)�[d, 2d, ..., n&d]].

Then

[+_ | _ # Bd
n]

is a basis for Ld
n .

Proof. We need to recall the chain m_ defined by (2.1). If follows from
Lemma 2.5 that for all :, ; # Bd

n , if m: is a chain in 4; then :=;. The
independence of [+_ | _ # Bd

n] is a consequence of this.
To complete the proof, we compute the dimension of Ld

n . Let A be the
set of atoms of 6d

n . For each a # A, let L(a) be the linear span of

[+_ | _ # Sn , _� =a].

Clearly, we can decompose Ld
n into a direct sum

Ld
n= �

a # A

L(a). (3.1)

We assert that L(a) is isomorphic to a subspace of H([a, 1� ]). Indeed, each
element of L(a) is of the form a V & where & is a linear combination of &_

such that _� =a. Since &_ is a fundamental cycle of 2(4_), &_ is a cycle of
H([a, 1� ]). Therefore & is a cycle of H([a, 1� ]). It follows that the map
a V & [ & is an injective linear map from L(a) to H([a, 1� ]), which proves
the assertion.

Note that [a, 1� ] is isomorphic to the partition lattice 6n�d . Hence
H([a, 1� ]) is isomorphic to H(6n�d). We use the well-known fact that
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|+(6n)|=(n&1)!, to conclude that the dimension of H([a, 1� ]) is
(n�d&1)!. Since L(a) is isomorphic to a subspace of H([a, 1� ]), we have

dim(L(a))�\n
d

&1+ !.

It now follows from (3.1) that

dim(Ld
n)�|A| \n

d
&1+ !. (3.2)

For each atom a # A there are (n�d&1)!-permutations _ # Bd
n such that

_� =a. Indeed, _ can be obtained from a by writing the elements of each
block of a in increasing order and then arranging these n�d increasing
words so that the word containing n comes last. Clearly, there are
(n�d&1)! ways to do this. We thus have |A|(n�d&1)!=|Bd

n | and (3-2)
becomes dim(Ld

n)�|Bd
n |. K

We remark there that all that will be needed for the proof of Theorem
3.2 is the linear independence of [+_ | _ # Bd

n]. However for the sake of
completeness we showed that the set is actually a basis. Moreover, the
dimension argument given in the proof of Lemma 3.3 shows that Ld

n

decomposes into the direct sum �a # A a V H([a, 1� ]), which implies that Ld
n

is isomorphic to the direct sum of |A| copies of H(6n�d ).
The fact that H(6d

n) is an Sn -submodule of Ld
n is a consequence of the

following lemma.

Lemma 3.4. �: # Dd
n

sgn(:) +: is a fundamental cycle of 2(6=).
Consequently, we may orient \= so that

\== :
: # Dd

n

sgn(:) +: . (3.3)

Proof. By Lemma 2.4, every facet of 2(6=) has coefficient \1 in the
sum. Hence, to show that the sum is a fundamental cycle we need only
show that

� \ :
a # Dd

n

sgn(:) +:+=0. (3.4)

Since &: is a fundamental cycle, we have (cf. [M, Chapter 1.8])

�(+:)=&: .

304 MICHELLE L. WACHS



File: 607J 152812 . By:MC . Date:26:01:00 . Time:10:06 LOP8M. V8.0. Page 01:01
Codes: 2522 Signs: 1401 . Length: 45 pic 0 pts, 190 mm

Hence (3.4) reduces to

:
: # Dd

n

sgn(:) &:=0. (3.5)

Since &:=:&= , (3.5) is equivalent to the assertion that the group algebra
element

:
: # Dd

n

sgn(:) :

annihilates &= . To prove this, we claim that each facet f of 2(4=) is
stabilized by some adjacent transposition sjd=( jd, jd+1), where
1�j�n�d&1. Indeed, the minimum element ? of the chain f is the
partition obtained by splitting = at all positions divisible by d except for
one position jd. Thus jd and jd+1 are in the same block of ?. It follows
that jd and jd+1 are in the same block of each partition in f, which proves
our claim. Consequently, the group algebra element =&sjd annihilates f.
Since

:
: # Dd

n

sgn(:) := `
n�d&1

j=1

(=&sjd)

and the factors =&sjd commute, we have

\ :
: # Dd

n

sgn(:) :+ f=0

for all facets f of 2(4=). Since &= is a linear combination of facets in 2(4=),
we have proved that �: # Dd

n
sgn(:) : annihilates &= , thereby establishing

that �: # Dd
n
sgn(:) +: is a fundamental cycle of 2(6=). K

Lemma 3.5. Let 9: M* � Ld
n be the linear map defined on the basis of

tabloids by

[_t0] [ +_ , _ # Bd
n .

Then 9 is an Sn&1 -module isomorphism.

Proof. Each *-tabloid has a unique representation as [_t0], where
_ # Bd

n . It follows from this and Lemma 3.3, that the map 9 is a well-
defined vector space isomorphism. To verify that 9 respects the action of
Sn&1 , we note that 9([_t0])=+_ for all _ # Sn&1. This implies that

9(:[_t0])=9([:_t0])=+_:=:+_=:9([_t0]). K
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Proof of Theorem 3.2. We show that the restriction of the isomorphism
9 of Lemma 3.5 to S* is �. Since S* is a cyclic submodule of M* generated
by et0

and H(6d
n) is a cyclic submodule of Ld

n generated by \= , we need only
prove that 9(et0

)=\= . To this end, we have

9(et0
)=9 \ :

_ # C t 0

sgn(_)[_t0]+
= :

_ # C t 0

sgn(_) +_

=\= ,

by Lemma 3.4, since Ct0
=Dd

n . K

4. The Representation Matrices

In this section we give an explicit purely combinatorial construction of
the matrices representing the action of Sn on H(6d

n) in much the same way
as Garsia and Wachs [GW] did for the skew representations of Sn . In fact,
our matrices reduce to matrices of [GW] when the action is restricted
to Sn&1. This gives an alternative combinatorial proof of Theorems 3.1
and 3.2.

We begin by introducing some notation. For ; # Sn�d , let

;� =w;(1) V w;(2) V } } } V w;(n�d ) ,

where V denotes concatenation and wi is the word d(i&1)+1,
d(i&1)+2, ..., di. Let Rn be the set of permutations

[_ # Sn | \i=1, 2, ..., n, _(i) is either smaller or greater than

all the letters that follow it].

In other words Rn is the set of all permutations in Sn which avoid the
patterns 213 and 231. For example,

R3=[123, 132, 312, 321].

For _ # Sn , define sgn*(_) to be sgn(_(1) _(2) } } } _(n&1)). We will also
need to recall the operator A whose definition precedes Lemma 2.5.
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For _, { # Sn , define

c(_, {)={sgn(:) sgn*(;),
0,

if _ A =({:;� ) A for some : # Dd
n , ; # Rn�d

otherwise.

(4.1)

It is not difficult to see that : and ; are uniquely determined by _ and {.
Hence c(_, {) is well-defined.

Lemma 4.1 Let _, { # Sn and _(n)=n={(n). Then

c(_, {)={sgn(:),
0,

if _ A =({:) A for some : # Dd
n

otherwise.

Proof. Note that ;� of (4.1) permutes the d-segments of {:, i.e. the
segments of the form {:(di+1) {:(di+2) } } } {:(di+d ). Since the last letter
of both {: and _ is n, ;� fixes the last d-segment of {:. Hence ;(n�d )=n�d.
It follows from this and the fact that ; # Rn�d , that ; is the identity of Sn�d .
Hence ;� is the identity of Sn .

We now order the permutations in Ad
n lexicographically and let _i be the

ith permutation for i=1, 2, ..., ad
n . Then for any permutation _ # Sn , we let

C(_) denote the matrix whose i, j-entry is given by

Cij (_)=c(_i , __j).

Proposition 4.2. The matrix C(=) is upper triangular with diagonal
elements equal to 1.

Proof. It is obvious that the diagonal elements are equal to 1. To show
that C(=) is upper triangular, we need to show that if _, { # Ad

n and
c(_, {){0 then _�{ lexicographically. By Lemma 4.1, if c(_, {){0 then
_=({:) A for some : # Dd

n . Clearly ({:) A �{:. Also since { has descents at
all d-divisible positions and : # Dd

n , we have {:�{. Combining the
inequalities gives

_=({:) A �{:�{. K

Theorem 4.3. For i=1, 2, ..., ad
n , let \i denote the basis element \_i of

H(6d
n). Then for all _ # Sn ,

(_(\1), _(\2), ..., _(\ad
n
))=(\1 , \2 , ..., \ad

n
) C(=)&1 C(_).

In other words the matrix representing the action of _ # Sn on H(6d
n) is given

by C(=)&1 C(_).
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Proof. Let L([m_ | _ # Sn]) be the submodule of the chain group
Cn�d&2(2(6d

n)) spanned by the chains m_ defined in (2.1). Define

#: Cn�d&2(2(6d
n)) � L([m_ | _ # Sn]),

to be the linear map which is the identity on chains in [m_ | _ # Sn] and
0 on all other facets of 2(6d

n). Note that # is an Sn-module homo-
morphism.

Consider the restriction of # to the submodule H(6d
n), that is,

#: H(6d
n) � L([m_ | _ # Sn]).

Our goal is to compute #(\_), for all _ # Sn . We have

#(\_)=_#(\=)

=_# \ :
: # Dd

n

sgn(:) +:+ (by(3.3))

=_# \ :
: # Dd

n

sgn(:) :+=+
=_ :

: # Dd
n

sgn(:) :#(+=). (4.2)

We now assert that

#(+=)= :

;(n�d&1)<;(n�d)
; # Rn�d

sgn*(;) m;� . (4.3)

To prove this assertion we use the fact that 4= is isomorphic to the lattice
of subsets of the set [1, 2, ..., n�d&1], which we denote by B(n�d&1).
Indeed, if S�[1, 2, ..., n�d&1], then a partition ?(S) in 4= can be obtained
by splitting = at all positions di where i # S. Clearly, S [ ?(S) defines an
isomorphism from B(n�d&1) to the dual of 4= .

Next we use the well-known, easily verified fact that �_ # Sm sgn(_) c_ , is
a fundamental cycle of the spherical complex 2(B(m)), where c_ is the
maximal chain of B(m)&[0� , 1� ] given by

[_(1)] � [_(1), _(2)] � [_(1), _(2), _(3)] � } } } � [_(1), _(2), ..., _(m&1)].

308 MICHELLE L. WACHS



File: 607J 152816 . By:MC . Date:26:01:00 . Time:10:06 LOP8M. V8.0. Page 01:01
Codes: 2335 Signs: 970 . Length: 45 pic 0 pts, 190 mm

Since &= is a fundamental cycle of 2(4=), we can set &==
�_ # Sn�d&1

sgn(_) ?(c_). It follows that

+== :
_ # Sn�d&1

sgn(_)(=� V ?(c_)). (4.4)

Note that =� V ?(c_) is the chain in 4= given by

?n�d&1 � ?n�d&2 � } } } � ?1 ,

where ?i is obtained by splitting = at positions _(1) d, _(2)d, ..., _(i) d. It
follows that =� V ?(c_)=m: for some : # Sn if and only if _ # Rn�d&1. Indeed,
_ # Rn�d&1 if and only if =� V ?(c_) is the chain obtained by successively
``slicing'' off blocks of size d from the initial block [1, 2, ..., n]. In this case,

:=;� or : =
t

;sn�d&1 , where for each i=1, 2, ..., n�d&2,

;(i )={_(i),
_(i)+1,

if _(i)<_( j) for all j>i,
if _(i)>_( j) for all j>i,

and

; \n
d

&1+=_ \n
d

&1+
; \n

d+=_ \n
d

&1++1.

Note that ; # Rn�d , ;(n�d&1)<;(n�d ), sgn*(;)=sgn(_) and m;� =
mt;sn�d&1

.
Hence, after applying # to (4.4) we obtain (4.3) as asserted.
Substituting (4.3) into (4.2) yields

#(\_)=_ :
: # Dd

n

sgn(:) : :

;(n�d&1)<;(n�d )
; # Rn�d

sgn*(;) m;�

= :

; # R n�d

: # Dd
n

sgn(:) sgn*(;) m_:;� . (4.5)

We now define

�: L([m_ | _ # Sn]) � L([m_ | _ # Ad
n])
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to be the linear map which is the identity on chains in [m_ | _ # Ad
n] and

0 on all other chains in [m_ | _ # Sn]. The composition

# b �: H(6d
n) � L([m_ | _ # Ad

n])

is a vector space isomorphism since the dimensions of both spaces are
equal and by Lemma 2.3 the composition is injective. Let mi denote the
chain m_i , i=1, 2, ..., ad

n . To compute the coefficient of mi in # b �(\_), first

observe that mi=m_:;� if and only if _i=(_:;� ) A or (_:
t

;sn�d&1 ) A . Hence,
the coefficient of mi in (4.5) is sgn(:) sgn*(;), where : # Dd

n , ; # Rn�d ,

;(n�d&1)<;(n�d ) are determined by _i=(_:;� ) A or (_:
t

;sn�d&1) A . Since
sgn*(;)=sgn*(;sn�d&1), the coefficient of mi in (4.5) is sgn(:) sgn*(;)=
c(_i , _). Therefore, for any _ # Sn ,

# b �(\_)= :
ad

n

i=1

c(_i , _) mi .

It follows that

# b �(_(\1), _(\2), ..., _(\ad
n
))=(m1 , m2 , ..., mad

n
) C(_). (4.6)

Let B(_) be the matrix representing the action of _ # Sn on H(6d
n). Then

_(\1 , \2 , ..., \ad
n
)=(\1 , \2 , ..., \ad

n
) B(_).

Substituting this into (4.6) yields

(m1 , m2 , ..., mad
n
) C(_)=# b �(_(\1 , \2 , ..., \ad

n
))

=# b �((\1 , \2 , ..., \ad
n
) B(_))

=(m1 , m2 , ..., mad
n
) C(=) B(_).

Consequently, B(_)=C(=)&1C(_). K

5. Lexicographical Shellability

We assume a knowledge of the definitions and terminology related to the
notion of lexicographical shellability (see [BW1] or [BGS]). The lattice
6n was one of the first known examples of a lexicographically shellable
poset (cf. [Bj1]). An explicit EL-labeling of the edges of the Hasse diagram
of 6n was first constructed by Gessel. The decreasing chains of this labeling
are readily seen to be enumerated by (n&1)!. A well-known consequence
of this is that the order complex 2(6n) is homotopy equivalent to a wedge
of (n&1)! (n&3)-spheres.
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For d>1, it is known that 6d
n admits a CL-labeling (cf. [Sa]). This was

originally proved using the technique of recursive atom ordering, without
actually constructing an explicit labeling. In this section, we construct an
explicit EL-labeling of 6d

n for the purpose of identifying the decreasing
maximal chains and thereby recovering the result of Stanley that +(6d

n)=
(&1)n�d ad

n . The decreasing maximal chains are naturally indexed by
permutations in Ad

n and have a nice combinatorial description. Stanley
originally computed the Mo� bius function by means of generating functions
[St1]. In addition to obtaining the Mo� bius function, the EL-labeling
allows us to conclude that the order complex 2(6d

n) is homotopy
equivalent to a wedge of ad

n (n�d&2)-spheres. The decreasing chains also
provide a basis for the top dimensional cohomology H*(6d

n).
Given any permutation _ # Sd

n , let 1�t1 , t2 , ..., tn�d&1�n�d&1 be such
that

_(dt1)>_(dt2)> } } } >_(dtn�d&1). (5.1)

Set r_ equal to the maximal chain of 6d
n whose k-block partition is

obtained by splitting _ at dt1 , dt2 , ..., dtk&1. For example, if _=23175648
and d=2, then r_ is the chain

0� � 23 | 17 | 56 | 48 � 2317 | 56 | 48 � 2317 | 5648 � 23175648.

Lemma 5.1. If _, { are distinct permutations in Ad
n then r_ and r{ are

distinct maximal chains.

Proof. We leave the straight forward verification to the reader. K

Theorem 5.2. There is an EL-labeling of 6d
n whose set of decreasing

maximal chains is [r_ | _ # Ad
n].

Proof. The usual definition of EL-shellability requires that each interval
has a unique weakly increasing maximal chain. Here, we use a modified
formulation in which ``weakly increasing'' is replaced by ``strictly increasing''.
It is not difficult to see that the two formulations are equivalent. Indeed,
just replace each label *(x, y) in the ``strict'' version by the label (*(x, y),
&r(x)), where r(x) denotes the rank of x, and order the collection of pairs
lexicographically. Then strict ascents remain strict ascents and weak descents
become strict descents. In the ``strict'' formulation of EL-shellability, the
Mo� bius function is computed by counting weakly decreasing chains rather
than strictly decreasing chains.

Recall that for _ # Sn , _� is the atom of 6d
n obtained by splitting _ at all

positions divisible by d. For any atom a of 6d
n , let a~ be the permutation

that is lexicographically first among all permutations in [_ # Sn | _� =a].
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Clearly, a~ is obtained by writing each block of a in increasing order and
then arranging the blocks so that the minimum elements of the blocks
are increasing. Order the atoms of 6d

n , a1 , a2 , ..., am , so that a~ 1<
a~ 2< } } } <a~ m , lexicographically.

We shall label the covering relations of 6d
n with labels in the totally

ordered set

[&n<&(n&1)< } } } <&1<01<02< } } } <0m<1<2< } } } <n].

First we set

*(0� , ai)=0i ,

for each i=1, 2, ..., m. If y covers x in 6d
n&[0� ], then y is obtained by

merging two blocks B1 and B2 of x. Let max(B1)<max(B2). Now set

*(x, y)={&max(B1)
max(B2)

if max(B1)>min(B2),
if max(B1)<min(B2).

We claim that * is an EL-labeling of 6d
n . Let x<y in 6d

n . We need to
show that the lexicographically first maximal chain of [x, y] is the only
strictly increasing maximal chain of [x, y]. We prove this assertion for
y=1� and leave it to the reader to modify our argument for general y.

Case 1. Let x=0� . Note that the lexicographically first maximal chain
of [0� , 1� ] is the chain whose k-block partition is obtained by splitting the
permutation = at n&d, n&2d, ..., n&(k&1) d. The label sequence of this
chain is 01 , 2d, ..., n. We leave the easy verification that this chain is the
only strictly increasing maximal chain of [0� , 1� ] to the reader.

Case 2. Let x{0� . Let B1 , B2 , ..., Bk be the blocks of x, where max(Bi)<
max(Bi+1) for all i=1, 2, ..., k&1.

Suppose that max(Bi)<min(Bi+1) for all i=1, 2, ..., k&1. The
lexicographically first maximal chain from x to 1� is obtained by fist
merging B1 and B2 and then successively merging in B3 , B4 , ..., Bk . This
chain has increasing label sequence, max(B2), max(B3), ..., max(Bk). It is
clearly the only strictly increasing maximal chain from x to 1� .

Now suppose that max(Bi)>min(Bi+1) for some i. Let j be the largest
such i. We set x1 equal to the partition covering x, obtained by merging Bj

with Bj+1. We then have *(x, x1)=&max(Bj). It is easy to see that the
lexicographically first maximal chain c from x to 1� must contain x1 . Let c
be

x � x1 � x2 � } } } � 1� .

312 MICHELLE L. WACHS



File: 607J 152820 . By:MC . Date:26:01:00 . Time:10:06 LOP8M. V8.0. Page 01:01
Codes: 2600 Signs: 1630 . Length: 45 pic 0 pts, 190 mm

Clearly the lexicographically first maximal chain in [x1 , 1� ] is then

x1 � x2 � } } } � 1� .

By induction, it is also the only strictly increasing maximal chain of
[x1 , 1� ].

We claim that c is the only strictly increasing maximal chain of [x, 1� ].
Indeed, it is not difficult to see that a strictly increasing maximal chain
must contain x1 . Hence, if c is strictly increasing, then it is the only strictly
increasing maximal chain of [x, 1� ]. Therefore, to verify the claim we need
only show that

*(x, x1)<*(x1 , x2). (5.2)

If *(x1 , x2)>0 then clearly (5.2) holds since *(x, x1)<0. Suppose then that
*(x1 , x2)<0. Let B and B$ be the blocks of x1 that are merged to obtain
x2 , where max(B)<max(B$). Note that max(B)=max(Bi) for some i<j.
We therefore have

*(x1 , x2)=&max(B)=&max(Bi)>&max(Bj)=*(x, x1).

We may now conclude that * is an EL-labeling of 6d
n , as asserted.

One can readily check that for any _ # Ad
n , r_ is a decreasing maximal

chain of 6d
n under the labeling *. Indeed, the label sequence is 0k ,

&_(dtn�d&1), &_(dtn�d&2), ..., &_(dt1), where t1 , t2 , ..., tn�d&1 is given by
(5.1) and k is such that _� =ak .

Conversely, let

0� � x1 � x2 � } } } � xn�d=1� ,

be a decreasing maximal chain. Let B1 , B2 , ..., Bn�d be the blocks of x1 ,
where max(Bi)<max(Bi+1) for all i=1, 2, ..., n�d&1. Since every chain
starts with 0k for some k, the remaining labels on a decreasing chain must
be negative. Consequently, the label sequence is

0k , &max(B1), &max(B2), ..., &max(Bn�d&1).

If follows that

*(xi , xi+1)= &max(Bi),

for all i=1, 2, ..., n�d&1.
We prove the following assertion:

Assertion. Given any i=1, 2, ..., n�d, xi consists of blocks C1 ,
C2 , ..., Cn�d&i+1 , satisfying

313d-DIVISIBLE PARTITION LATTICE



File: 607J 152821 . By:MC . Date:26:01:00 . Time:10:06 LOP8M. V8.0. Page 01:01
Codes: 2780 Signs: 1700 . Length: 45 pic 0 pts, 190 mm

(1) [max(Cj) | j=1, 2, ..., n�d&i+1]=[max(Bj) | j=i, i+1, ..., n�d],

(2) max(Cj)>min(Cj+1) for all j=1, 2, ..., n�d&i,
(3) n # Cn�d&i+1.

We use induction on i, starting with i=n�d, to prove the assertion. For
i=n�d, the assertion is trivial. Let i<n�d. Assume, by induction, that xi+1

consists of blocks C1 , C2 , ..., Cn�d&i which satisfy the conditions given by
the assertion. Since xi+1 covers xi , one of the blocks of xi+1 , say Ck , is the
union of two blocks of xi , C$k and C"k . Let max(C$k)<max(C"k). Then
max(Ck)=max(C"k). Consequently,

max(C"k)>min(Ck+1) if k<n�d&i,

and n # C"k if k=n�d&i. Since *(xi , xi+1)<0, we also have

max(C$k)>min(C"k)

and

max(C$k)=&*(xi , xi+1)=max(Bi).

By (1) of the induction hypothesis,

max(Ck&1)=max(Bj)

for some j�i+1. Therefore

max(Ck&1)>max(Bi)=max(C$k)>min(C$k).

Hence the sequence of blocks C1 , C2 , Ck&1, C$k , C"k , Ck+1, ..., Cn�d&i

satisfies the conditions given in the assertion for i. By induction, the
assertion is valid.

Now let C1 , C2 , ..., Cn�d be the blocks of x1 given by the assertion. Let
_ equal the concatenation of the words w(C1), w(C2), ..., w(Cn�d) where
w(Ci) is the word obtained by writing the elements of Ci in increasing
order. By (2) and (3) of the assertion, _ # Ad

n . It is not difficult to see that
the decreasing chain 0� � x1 � } } } � xn�d is precisely r_ . We may therefore
conclude that the set of decreasing chains is [r_ | _ # Ad

n]. K

Corollary 5.3. The Mo� bius function of the lattice 6d
n is given by

+(6d
n)=(&1)n�d ad

n . Moreover, 6d
n has the homotopy type of a wedge of

ad
n (n�d&2)-spheres. Consequently, the rank of H(6d

n) is ad
n .

Proof. The first statement is an application of Stanley's well-known
technique for computing the Mo� bius function by counting chains according
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to descent set (see [BGS, Theorem 2.2] or [Bj1, Theorem 2.7]). The
second statement is a direct application of Theorem 1.3 of [Bj4]. K

Corollary 5.4. Removal of the facets r_&[0� , 1� ], _ # Ad
n from 2(6d

n)
results in an acyclic simplicial complex.

Proof. This is an application of Lemma 7.7.1 of [Bj3]. K

Corollary 5.5. The set [r_ | _ # Ad
n] forms a basis for the top graded

portion of the Stanley�Reisner ring of 6d
n .

Proof. This is an application of a result of Garsia [G, Theorem 4.2]. K

Corollary 5.6. The set [r_&[0� , 1� ] | _ # Ad
n] forms a basis for the top

dimensional cohomology H*(6d
n).

Proof. This follows form the preceding corollary and the fact that the
top graded portion of a certain quotient of the Stanley�Reisner ring of a
ranked poset is isomorphic to the top dimensional cohomology module of
the poset (see [BG, Theorem 5.1]). It also follows more directly from [Bj3,
Theorem 7.7.2]. K

Remark. In [Bj3, Section 7.7], a general method for constructing a
basis for the top homology of a shellable poset is given. A basis obtained
by this method is said to be induced by the shelling. It is not difficult to
determine that the basis [\_ | _ # Ad

n] is not induced by the EL-shelling
given in the proof of Theorem 5.2.

6. The d=1 Case

When d=1, 4_ , defined in Section 2, becomes the sublattice of 6n

consisting of all partitions obtained by splitting _ at any of its n&1
positions. In this case, 4_ is isomorphic to the face lattice of an (n&2)-
simplex. Just as in Section 3, let &_ be a fundamental cycle of the spherical
complex 2(4_).

Theorem 6.1. The set [&_ | _ # Sn , _(n)=n] forms a basis for H(6n).

Proof. Since the rank of H(6n) is (n&1)!, we need only prove the
independence of [&_ | _ # Sn , _(n)=n]. Recall the maximum chains m_

defined in (2.1). For d=1, Lemma 2.5 asserts that if :, # # Sn are such that
:(n)=n=#(n) and m: is a chain of 4# , then :=#. The independence of
[&_ | _ # Sn , _(n)=n] follows from this. K
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Just as in the d>1 case, H(6n) is a cyclic Sn-module generated by &= .
For _, { # Sn , we have

_&{=&_{ .

If _(n)=n and {(n)=n then _ sends the basis element &{ to the basis
element &_{ . It is immediate from this that the restriction of the action of
Sn on H(6n) to Sn&1 is the regular representation. This result was
originally proved by Stanley [S2] by considering the character of the
representation.

Theorem 5.2 and its corollaries have d=1 versions. For _ # Sn where
_(n)=n, let r_ be the maximal chain of 6n whose k-block partition is
obtained by splitting _ at _&1(n&1), _&1(n&2), ..., _&1(n&k+1). For
example, if _=34125 then r_ is the maximal chain

3 | 4 | 1 | 2 | 5 � 3 | 4 | 12 | 5 � 3 | 4 | 125 � 34 | 125 � 34125.

Theorem 6.2. The sets [r_ | _ # Sn , _(n)=n] and [m_ _ [1� ] | _ # Sn ,
_(n)=n] are the sets of decreasing maximal chains for EL-labelings of 6n .

Proof. We use the modified version of EL-shellability discussed in the
proof of Theorem 5.2. Let y cover x in 6n . Then y is obtained from x by
merging two blocks B1 , B2 , where max(B1)<max(B2). Set

*1(x, y)=&max(B1)

*2(x, y)=max(B2).

We leave it to the reader to confirm that *1 and *2 are EL-labelings of 6n

and that the respective sets of decreasing maximal chains are [r_ | _ #
Sn , _(n)=n] and [m_ _ [1� ] | _ # Sn , _(n)=n]. The EL-labeling *1 is
essentially the Gessel labeling that appears in [Bj1]. K

There is a remarkable connection between the representations of Sn on
H(6n) and on the free Lie algebra (cf. [S2], [K], [Jo]). Barcelo [Ba]
combinatorially explains this connection by uncovering a fundamental rela-
tionship between the Bjo� rner basis for H(6n) and the Lyndon basis for the
free Lie algebra. In [W1] an analogous relationship between the new basis
for H(6n) and the ``right comb'' basis for the free Lie algebra is established.

Remark. This work was presented in 1991 at a workshop on
Combinatorics and Discrete Geometry at MSI at Cornell University.
For other work pertaining to the homology of partition posets with
restricted block size, done at about the same time or more recently, see,
e.g., [BL, BW2, BWe, HW, SW, Su1, Su2, SuW, SuWe, W2].

316 MICHELLE L. WACHS



File: 607J 152824 . By:MC . Date:26:01:00 . Time:10:06 LOP8M. V8.0. Page 01:01
Codes: 3838 Signs: 3019 . Length: 45 pic 0 pts, 190 mm

Acknowledgments

I express my thanks to Adriano Garsia, Helene Barcelo, and Sheila Sundaram for may
inspiring discussions and to Phil Hanlon for originating my interest in the d-divisible partition
lattice. I am also grateful to Anders Bjo� rner for pointing out an error in an earlier version of
this paper.

References

[BG] K. Baclawski and A. M. Garsia, Combinatorial decompositions of a class of
rings, Adv. in Math. 39 (1981), 155�184.

[Ba] H. Barcelo, On the action of the symmetric group on the free Lie algebra and the
partition lattice, J. Combin. Theory Ser. A 55 (1990), 93�129.

[Bj1] A. Bjo� rner, Shellable and Cohen�Macaulay partially ordered sets, Trans. Amer.
Math. Soc. 260 (1980), 159�183.

[Bj2] A. Bjo� rner, On the homology of geometric lattices, Algebra Universalis 14 (1982),
107�128.

[Bj3] A. Bjo� rner, Homology and shellability of geometric lattices, in ``Matroid
Applications'' (N. White, Ed.), pp. 226�283, Cambridge Univ. Press, Cambridge, 1992.

[Bj4] A. Bjo� rner, Some combinatorial and algebraic properties of Coxeter complexes and
Tits building, Adv. in Math. 52 (1984), 173�212.

[BGS] A. Bjo� rner, A. M. Garsia, and R. P. Stanley, An introduction to Cohen�
Macaulay partially ordered sets, in ``Ordered Sets'' (I. Rival, Ed.), pp. 583�615,
Reidel, Dordrecht, 1982.

[BL] A. Bjo� rner and L. Lova� sz, Linear decision trees, subspace arrangements and
Mo� bius functions, J. Amer. Math. Soc. 7 (1994), 677�706.

[BW1] A. Bjo� rner and M. L. Wachs, On lexicographically shellable posets, Trans. Amer.
Math. Soc. 277 (1983), 323�341.

[BW2] A. Bjo� rner and M. L. Wachs, Shellable nonpure complexes and posets, I, preprint,
1994; Trans. Amer. Math. Soc., to appear.

[BWe] A. Bjo� rner and V. Welker, The homology of ``k-equal'' manifolds and related
partition lattices, Adv. in Math. 110 (1995), 277�313.

[CHR] A. R. Calderbank, P. Hanlon, and R. W. Robinson, Partitions into even and odd
block size and some unusual characters of the symmetric groups, Proc. London
Math. Soc. (3) 53 (1986), 288�320.

[F] J. Folkman, The homology groups of a lattice, J. Math. Mech. 15 (1966), 631�636.
[G] A. M. Garsia, Combinatorial methods in the theory of Cohen�Macaulay rings, Adv.

in Math. 38 (1980), 229�266.
[GW] A. M. Garsia and M. L. Wachs, Combinatorial aspects of skew representations of

the symmetric group, J. Combin. Theory Ser. A 50 (1989), 47�81.
[HW] P. Hanlon and M. L. Wachs, On Lie k-algebras, Adv. in Math. 113 (1995),

206�236.
[Ja] G. D. James, ``The Representation Theory of the Symmetric Groups,'' Springer

Lecture Notes, Vol. 682, Springer-Verlag, Berlin�Heidelberg�New York, 1978.
[JK] G. D. James and A. Kerber, The representation theory of the symmetric group, in

``Encyclopedia of Math.,'' Vol. 16, Addison�Wesley, Reading, MA, 1981.
[Jo] A. Joyal, ``Foncteurs analytiques et espe� ces de structure,'' Springer Lecture Notes,

Vol. 1234, Springer-Verlag, Berlin�Heidelberg�New York, 1986.

317d-DIVISIBLE PARTITION LATTICE



File: 607J 152825 . By:MC . Date:26:01:00 . Time:10:07 LOP8M. V8.0. Page 01:01
Codes: 2192 Signs: 1662 . Length: 45 pic 0 pts, 190 mm

[K] A. A. Klyachco, Lie elements in the tensor algebra, Siberian Math. J. 15 (1974),
1296�1304.

[M] J. R. Munkres, ``Elements of Algebraic Topology,'' Benjamin�Cummings, Menlo
Park, CA, 1984.

[Sa] B. E. Sagan, Shellability of exponential structures, Order 3 (1986), 47�54.
[SW] A. Sanders and M. L. Wachs, The (co)homology of the lattice of partitions with

lower bounded block size, in preparation.
[St1] R. P. Stanley, Exponential structures, Studies Appl. Math. 59 (1978), 73�82.
[St2] R. P. Stanley, Some aspects of groups acting on finite posets, J. Combin. Theory

Ser. A 32 (1982), 132�161.
[Su1] S. Sundaram, The homology representations of the symmetric group on Cohen�

Macaulay subposets of the partition lattice, Adv. in Math. 104 (1994), 255�296.
[Su2] S. Sundaram, Applications of the Hopf trace formula to computing homology

representations, in ``Proceedings of Jerusalem Combinatorics Conference, 1993''
(H. Barcelo and G. Kalai, Eds.), Contemporary Math., Vol. 178, pp. 277�309, Amer.
Math. Soc., Providence, RI, 1994.

[SuW] S. Sundaram and M. L. Wachs, The homology representations of the k-equal
partition lattice, preprint, 1994; Trans. Amer. Math. Soc., to appear.

[SuWe] S. Sundaram and V. Welker, Group actions on arrangements of linear subspaces
and applications to configuration spaces, preprint, 1994; Trans. Amer. Math. Soc., to
appear.

[W1] M. L. Wachs, On the (co)homology of the partition lattice and the free Lie algebra,
preprint, 1994; Discrete Math., to appear.

[W2] M. L. Wachs, Whitney homology of semipure shellable posets, in preparation.

318 MICHELLE L. WACHS


