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Let X be a metric space and g a Borel probability measure on X. For ¢, t€ R and
E< X write

!

.77;’,' {E)=sup inl'% \;;1( Bix,, r,N¥(2r)" | (Bly,.r)), 18 a centered d-covering of £ ¢

& -0 i J

.95;{' (E)=1nf sup % E/l( Bl r ) (2r,) | {Bix,. r,}), 18 a centered o-packing of E}
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and put

#EY=sup A LUF) #PE) = inf
ok [

Y AUUE,).
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Then %7 and 2% " are Borcl measures ' is a multifractal generalization of
the centered Hausdorfl measure and 2% is a multifractal generalization of the
packing measure. The measures # %" and 27" define, for a fixed ¢, in the usual way
a generalized Hausdorfl' dimension dim(£) and a gencralized packing dimension
Dim/( £} of subsets E of X. We study the functions

b g — dimfi(supp p), B,: ¢ — Dim(supp )

and their relation to the so-called multifractal spectra functions of u:

log uBix, r . 1 Bix, r
flx)=dim ¢ x| lim loguBix. 1) = 2», F(x)=Dim { x| lim fog Bl 1) =a .
;0 logr ) oo logr )

We prove, among other things, that f,(F,) is bounded from above by the Legendre
transtorm of 4, B,,) and that cquality holds for graph directed self-similar measures
and “cookie-cutter™ measures. Finally we discuss the connection with generalized
Rényi dimensions. 1995 Academic Press, Inc.
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1. INTRODUCTION

In recent papers theoretical physicists [ Bo, Col, Fr, Grl, Gr2, Ha, He,
Pa, Tel, Te2] and mathematicians [ Av, Bo, Ca, Col. Ed, Ki, Lol, Lo2,
Str, Ra] have studied the so-called multifractal theory. A number of claims
have been made on the basis of heuristics and physical intuition. The
purpose of this paper is to determine to what extent rigorous arguments
can be provided for this theory.

If X is a metric space then :2(X) denotes the set of Borel probability
measures on X. If xe X and r> 0 then B(x, r) will denote the closed ball
with center x and radius r>0. Now fix u e #(X). The upper resp. lower
local dimension of x at a point x € X is defined by

1 B(x, r
i‘u('\.) =lim sup w
r~0 logr

resp.

| B(x,r
2, (x)=lim inf—Og'u S ’).
P log r

If @,(x) and a,(x) agree we refer to the common value as the local dimen-
sion of g at x and denote it by «,(x). Upper and lower local dimensions
have been investigated by a large number of authors, cf. e.g. [Bil, Bi2,
Cul, Cu2, Fro, Haa, Yo].

For « =0 write

X ={xesuppu |, x) <
X, ={xesuppu|x<a,(x)}
X*={xesuppu |z, x)<a}
X, ={xesuppu |x<a,lx)}

Also write

where supp # denotes the topological support of i. One should think of the
family {X(a) | x>0} as a multifractal decomposition of the support of
si—i.e. we have decomposed the (perhaps fractal) set supp g into a family
{X(a) | x =0} of subfractals according to the measure x and indexed by
xeR, .
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Now, the main problem in multifractal theory is to estimate the size of
X(x). This 1s done by introducing the functions f,, and F, defined by

Sy =dim{xesupp p | o, () =af
= dim(X, N X*)
F,(2)=Dim{xesupp u | %,(x) =}

=Dim(X, N X*)

for « >0, and where dim and Dim denote the Hausdorff dimension and
packing dimension respectively. These and similar functions are generically

LIS

known as the “the multifractal spectrum of ;”, “the singularity spectrum
of 17, “the spectrum of scaling indices” or simply “the f{«)-spectrum”. The
function f(«x)=/,(«) was first explicitly defined by the physicists Halsey
et al. in 1986 in their seminal paper [ Ha].

There are (apart from trivial cases) so far only four types of measures u
for which the f, function has been rigorously determined, namely

(1) graph directed self-similar measures in R with totally discon-
nected support, cf. Cawley & Mauldin [Ca] and Edgar & Mauldin [Ed];

(2) self affine measures in R* whose support satisfies a certain dis-
jointness condition, cf. King [Ki];

{3) “Cookie-Cutters” (i.e. Gibbs states on 0-dimensional hyperbolic
attractors in R), ¢f. Bohr & Rand [Bo], Rand [Ra] and Collet et al.
[Col];

(4) invariant measures of maximal entropy for rational maps of the
complex plan, cf. Lopes [ Lol, Lo2].

In all four cases it turns out that there exist numbers ¢ <a such that
L) =0 for xe[0. «[\[g, @] and f, is concave and smooth on Ju. af.
The proofs in [Ca, Ed, Ki] are based on the ergodic theorem and some
combinatoric geometric arguments whereas the proofs in [ Bo, Ra, Col,
Lol, Lo2] are based on the thermodynamic formalism developed by
Bowen [ Bow] and Ruelle [ Ru]. (See also Note Added in Proof (1) at the
end of this paper.)

The concepts underlying the above mentioned multifractal decomposi-
tions go back to two early papers by Mandelbrot [ Mal, Ma2] from 1972
and 1974 respectively. Mandelbrot [ Mal, Ma2] suggests that the bulk of
intermittent dissipation of energy in a highly turbulent fluid flow occurs
over a set of fractal dimension. The ideas introduced in [Mal,
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Ma2] were taken up by Frisch and Parisi [ Fr] and Benzi et al. [ Ben] in
1985 and 1984 respectively. Frisch and Parisi [ Fr] replaced the very com-
plicated multifractal formalism introduced in [Ma2] with a simpler (and
hence also less general) formalism, whereas Benzi et al. extended this for-
malism to include dynamical systems (and not just intermittent dissipation
of energy in turbulent fluids). Finally, the major breakthrough from a
physically point of view occured in 1985 when Hasley et al. [Ha] intro-
duced the above mentioned f(a) function. A parallel (but otherwise inde-
pendent) set of ideas based on Rényi-entropies (introduced by Rényi [ Rel,
Re2, Re3] in 1960) were introduced by Hentschel & Procaccia [He],
Grassberger & Procaccia [ Grl] and Grassberger [ Gr2] during the period
1982-1984. In [He, Grl, Gr2] Hentschel et al, Grassberger et al. and
Grassberger defined a one-parameter family of numbers (D, ), .z known as
the generalized Rényi-dimension. A related one-parameter family of num-
bers was introduced by Badii and Politi [Ba] in 1985. However, it was
“proved” by Halsey et al. [ Ha] that the f(«) function and the generalized
Rényi-dimensions (D, ),.» can be derived from each other (ie. if f(a) is
known then it is possible to determine (D,),.r and vice versa), and the
two approaches are thus equivalent from a physical and heuristical point
of view (but, as we shall see later, not from a rigorous mathematically
point of view).

The popularity of multifractal theory and the f(a) function is basically
due to two facts: (1) the f(a) function is usually a smooth function of 2 and
(2) there seems to be a remarkable agreement between experimental obser-
vations in a large number of different physical systems and f(a) functions
computed by simple theoretical models.

Multifractal theory and diffusion-limited aggregation (DLA) have been
discussed by numerous authors. In DLA one first places a particle at the
origin as a “seed”. Then let another particle start from far away and diffuse
by a random walk process. The wandering particle sticks to the “seed”
when it reaches it. Repeat this process many times. This type of aggregation
process produces clusters which have a typically dendritical appearance.
Next define a probability measure P on the DLA structure in such a way
that P(v) is the probability that a wandering particle will reach v (ie. P is
the “harmonic measure” of the DLA structure). The f(«) function of P can
be computed numerically, cf. [ Meal, Mea2, Mea3] and Amitrano et al.
[Am]. Matsushita et al. [ Mats] have observed DLA like structures when
zine diffuses through an aqueous zinc sulfate and #-butul acetate electrolyte
and eventually deposites on an electrode. DLA like structures, known as
viscous fingers, are observed when a low viscosity fluid is injected into a
high viscosity fluid, cf. Meakin [ Mea2, Mea3] and Maley et al. [ Mal,
Mi2]. Define a probability distribution g on viscous finger such that u(v)
is the probability that the viscous finger will expand at v if more low

607/116/1-7
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viscous fluid is injected. The distribution g can be determined experimen-
tally and the f(«) function of x can then be computed numerically, cf.
[ Meal ]. It turns out that there is a remarkably good agreement between
the f{a) curve of # and P, cf. Amitrano et al. [ Am] and Nittmann et al.
[Ni].

The connection between Rayleigh-Bernard convection and multifractals
is studied in e.g. Jensen et al. [Je]. Jensen et al. [Je] compute the f(a)
function of the distribution of the time fluctuations of the temperature at
the bottom of a small cell of mercury exposed to a vertical temperature
gradient and an alternating horizontal magnetic field. Jensen et al. [Je]
show that the experimentally determined f(a) curve fits remarkably well to
the f(a) function corresponding to the invariant measure of the “circle
map’.

In Meneveau and Sreenivasan [ Men] it 1s shown that the observed
multifractal f(«) curve of the dissipation field of fully developed turbulence
is very well described by the f({a) curve of a certain self-similar measure.

The reader is referred to Feder [Fe] for a more thorough discussion
concerning the applications of multifractals to physics, chemistry,
meteorology and other natural sciences.

The purpose of this paper is to introduce and develop a mathematical
rigorous multifractal formalism based on a natural multifractal generaliza-
tion of the centered Hausdorff measure and of the packing measure. These
generahizations are motivated by the heuristics of Halsey et al. [Ha]. If x
is a (Borel) probability measure on R“ then Halsey et al. [Ha, formula
(2.8)] “prove”, in a very heuristical way, that for each ¢ € R there exists a
unique number 7{¢) such that

7 (oo f
lim y A= O T (L)

i~0% for t<t(q)

where (E;); is a partition of supp g with diam £, </, p,=u(E,) and /,=
diam E,. The main purpose of this paper is to formalize this notion in a
rigorous mathematical way and to ivestigate the relation between the
introduced “dimension” functions and the multifractal spectrum of yx. This
formalisation yields a very general multifractal formalism which we will
study.

We first recall the definition of the Hausdorfl measure, the centered
Hausdorff measure and the packing measure. Let X be a metric space,
Ec X and 6> 0. A countable family 44 = (B(x;, r;)), of closed balls in X 1s
called a centered d-covering of Eif E< ), B(x,, r;), x;e Eand 0 <r, <9 for
all /. The family 4 1s called a centered J-packing of £ if x,e E, 0 <r, <4
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and B(x,, r,)n B(x;,r;)= for all i#j. Let ES X, s20 and > 0. Now
put

AS(E) = inf {Z diam(E; )" ‘ Ec U E,, diam E,<o‘}4
i i=1
The s-dimensional Hausdorff measure #°(E) of E is defined by

HE)=sup #YE).

d=>0

The reader is referred to [Fal] for more information on .#”. Next we
define the centered Hausdorfl measure introduced by Raymond & Tricot in
[Ray]. Put

ENE)= inf{ Z 2r) { (B(x,,r;)); is a centered J-covering of E}.

i=1

The s-dimensional centered pre-Hausdorfl measure %*(E) of E is defined by

€ (E)=sup €4 E).

o>0

The set function %* is not necessarily monotone, and hence not necessarily
an outer measure, cf. [Ray, pp. 137-138]. But 4’ give rise to a Borel
measure, called the s-dimensional centered Hausdorff measure ¢*(E) of E,
as follows

€Y (E)=sup €°(F).

Fc E
It is easily seen {c.f. [ Ray, Lemma 3.3]) that
2 *A‘%‘,\' < ﬁ'.\‘ < (g\
We will now define the packing measure. Write
PE)=sup { Z (2r;)* | (B(x,, r;));1s a centered J-packing ofE}
Li=1
The s-dimensional prepacking measure #*(E) of E is defined by

PYE) = inf PYE).

5>0

The set function #* is not necessarily countably subadditive, and hence not
necessarily an outer measure, c.f. [Ta] or [Fa2]. But #* give rise to a
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Borel measure, namely the s-dimensional packing measure #*(E) of E, as
follows

|

PE)= inf Y PUE).

EcU  Eii=1

N

The packing measure was introduced by Taylor and Tricot in { Ta] using
centered d-packings of open balls, and by Raymond and Tricot in [ Ray]
using centered d-packings of closed balls.

Also recall that the Hausdorff dimension dim(£), the packing dimension
Dim(E) and the logarithmic index A(E) of E are defined by

dim(Ey=sup{s 20| #NE)= o}
Dim(E)=sup{s=0| #(E)=o}
AME)=sup{s=0| 2 (E)= o}

We refer the reader to [ Tr] and [ Ray] for more information on the cen-
tered Hausdorff measure, the packing measure and the packing dimension.

We will now define multifractal generalizations of the centered Hausdorff
measure and of the packing measure. For ¢ € R define ¢, [0, o[ - R, =
[0,00] by

o0 for x=0
@ LX) = {_\_q for for ¢ <0
plx)=1 for ¢=0
0 for x=0
X)= f
Pl x) {.\"’ for 0<x or 0<q

For ue 2(X), E€ X, q,teR and 0 >0 write

"%/Zi:s(E) = inf{z o (u(B(x,, ro2r) [ (Blx;, r),;

1s a centred J-covering of E} E#

AL B) =0

4 (Ey=sup £ (E)

- s
# s>0

HCUE)=sup # T'(F).

7
FcCk
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We also make the dual definitions
P4 E)=sup {Z @ B(x, rN2r) | (B(x, 1))

is a centered d-packing of E} E+

P2 =0
P (E) = inf P4(E)
4 5>0

"o

PUE)= inf Y P4(E,).

. Iz
EC Ui E

Below we prove that #¢' and #%' are measures on the family of Borel
subsets of X. The measure #'% ' is of course a multifractal generalisation of
the centered Hausdorff measure, whereas ¢ ' is a multifractal generalisa-
tion of the packing measure. In fact, it is easily seen that the following
holds for t =0,

i 0,1
€ ="

—1 a0 t o
2V IS AISH,
bt — 0
P'=2,
opt __ op0.t
P =2,

(1.2)

The next result shows that the measures %', 24" and the pre-measure

"o

2" in the usual way assign a dimension to each subset E of X.

ProPOSITION 1.1. (i) There exists a unique number Af(E)e [ —oc, o0 ]
such that

w  for t<ANE)
0 Jor ANE) <t

(i) There exists a unique number Dim/(E}e [ — o0, oc | such that

{oo for 1< Dim;’,(E)
0 for Dim{(E) <t

(i) There exists a unique number dim;{( EYe[ —oc, o0] such that

{o@ Sfor t<dimZ(E)
R for dim%(E)<t.
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Proof. Follows easily from the definitions. |

The results in Proposition 1.1 arc obvious mathematically rigorous
analogues of (1.1). The number dim;{(Ei 1S an obvious multifractal
analogue of the Hausdorfl dimension dim(E) of E whereas Dim/{ £) and

44(E) are obvious multifractal analogues of the packing dimension

Dim( £) and the logarithmic index A(E) of E respectively. In fact, it follows
immediately from (1.2) that

dim( E) = dim)( E)
Dim(E) = Dim,( E) (1.3)
ME)=ANE).
It is also readily seen that

0 <dimi(£) for ¢<1 and HE)Y>0

(1.4)
ANE) <0 for 1<gq

Since dim{ and Dim? are defined in terms of outer measures we conclude
that

(1) dim{, Dim/ are monotone, i.c.
dim;{(E)gdim/‘{(F) for ECSF
Dim;’,( E)y< Dim;’,( F) for EcF

(2) dim;{, Dim/‘f are g-stable, le.

dim ( U E,,> = sup dim#(E,)

ne 'y ne fhs

Dim¢ < U E,,> = sup Dim¥(E,,).

nekr ne M

These properties will be used tactically throughout the paper.
If X is a metric space, £< X and p € .2( X) then we define functions bﬂ. £
B, and 4, , by

w E
b, lq)=dim{(E), h(q)=b,(q) =dim!(supp u)
B, q)= Dim;{(E), Blg)=B,(q)= Dim;{(supp 1)
A, wlq) = AUE), A(q) = A,(q) = A%(supp u).
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Our main point is that the functions
b, qg— dim{(supp u)
B,: q — Dim{(supp )
are related to the multifractal spectrum of u, whereas the function
A, q— A}(supp p)

is related to the generalized Rényi dimensions of .
Equation (1.4) and Proposition 2.4 imply that

0<b(q)<B,lg)<A0q) for g<]
b{l)=B,(1)=4,(1)=0 (15)
b{g)<B,(q)<A4,(g)<0 for 1<gq

for ue Z(RY). Also (by (1.3))

b,(0) = dim(supp x)
B,(0) = Dim(supp u)
A,(0) = A(supp p).

S.J. Taylor [ Tayl, Tay2] defined a fractal to be any subset £ of a metric
space X which satisfies

dim E=Dim F.

Our multifractal formalism contains a natural extension of Taylor’s defini-
tion to the case of measures. A Borel probability measure pe #(X) on a
metric space X is called a Taylor multifractal measure if

b,=B,. (1.6)

We show (cf. Chapter 3, Example 4) that there exist measures u € #(RY)
such that b,(g)<B,(q) for all geR\{1} (of course we always have
b(1)=B,(1) by (1.5)).

We will now give a brief description of the organization of the paper. In
Section 2 we define the setting and formulate our main results. Section 3
contains some examples which illustrate the multifractal formalism
developed in this paper. Section 4 contains the proofs of the results stated
in Section 2. Section 5 gives a multifractal analysis of graph directed self-
similar measures in R“ using our setting. Section 6 gives a multifractal
analysis of “cookie-cutter” measures in R using our setting. Finally, Section
7 contains some further remarks and questions.
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Note. After this paper was competed we were informed that Pesin
[ Pel -Pe3] has considered a measure and dimension somewhat similar to
A ¢ and dim?. However, Pesin’s approach is dynamical whereas we have
adopted an almost entirely measure theoretic approach.

2. DEFINITIONS AND STATEMENT OF RESULTS

This section contains the basic definitions and states the main results.
The proofs will be given in Section 4.

If /- R— R is a real-valued function, let f*: R — [ — oo, o[ denote the
following Legendre transform of f,

SH)=inf (xy+ /() xeR.

Observe that /* is concave.

A widespread folklore theorem (among physicists) states that the func-
tion 7 introduced in (1.1) 1s decreasing, smooth and convex, and that the
multifractal spectrum f,, is equal to the Legendre transform t* of 7, cf. [ Ba,
Fa2, Fe, Grl, Gr2, Ha, He, Pa]. That is, we have the following two
(heuristic and partially incorrect) folklore theorems.

FOLKLORE THEOREM 1. Let 7 be the function in (L.1). Then the following
hold:
(1) T is decreasing, convex, and smooth.
() 1 has affine asymptotes as g — + oc.
(i) =0

(v} The line with slope | passing through the origin is a tungent to the
graph of t* (see Fig. 1)

FOLKLORE THEOREM 2. Let T be the function in (1.1). Then there exist
numbers 0 <a < a such that

{r*(a) aela, a]
0 agla al
{see Fig. 2).

Finally, a third folklore theorem (among physicists) states that ¢ can be
computed (numerically) by a certain box counting argument, cf. [ Ba, Fa2,
Fe, Grl, Gr2, Ha, He, Pal.
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T(.q)

FiG. 1. The typical shape of the function 7 in {1.1) according to Folklore Theorem 1.

f,(a)=T*(a)
A

> A

MMt -~ - — - -

n
|
[
|

a

Fig. 2. The typical shape of the muitifractal spectrum f,=t* according to Folklore
Theorem | and Folklore Theorem 2. However, we emphasize that the situation is not as
simple as indicated by this figure: especially, we note that the multifractal spectrum need not
be concave.
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FOLKLORE THEOREM 3. Let t be the function in (1.1). Then

n

() =1i’rlr1 “log 2

for e A(RY), where

Uk ki+1
7 - PR -
6,,—{"1 ECREY { ‘/\,EZ}, neN.

Since the functions b,,, B, and 4, are intended as rigorous mathematical
analogues of r, we must now prove that results similar to Folklore
Theorem 1, Folklore Theorem 2 and Folklore Theorem 3 actually hold for
b, B, and 4.

Section 2.4 contains our results concerning Folklore Theorem . These
results show that B, and 4, behave as stated in Folklore Theorem 1, with
the notable exception of smoothness. Several examples in Chapter 3 show
that the functions b,, B, and 4, need not be smooth. However, all the
functions b, B, and 4, are smooth (and coincide) in the case where y is
a graph directed self-similar measure in R with totally disconnected sup-
port or a “cookie-cutter” measure in R, cf. Chapter 5 and Chapter 6. Also,
the function 4, need not be convex.

Section 2.6 contains results related to Folklore Theorem 2. We state two
theorems which show that b,, B, and 4, (nearly) behave as stated in
Folklore Theorem 2. The functions h¥ and B are always upper bounds for
the multifractal spectra functions f, and F, respectively, i.e. there exist
numbers 0 < ¢ <« such that

/(o) = (< bXa) e Ja, al
-*“"‘{o x¢[a.a]

€ BXa) ae la. dl
Fia=1g % [a.d]

(cf. Theorem 2.17}, but these inequalities can be strict---this is basically due
to the fact that the multifractal spectrum f, is not necessarily concave,
and the situation is therefore not as simple as described by Folklore
Theorem 2 and indicated in figure 2.2 (cf the discussion in Section 2.6).
However, if i satisfies a certain Gibbs state condition then f,, = b} = B¥ (cf.
Theorem 2.18).

Finally, Sections 2.7 and 2.8 contain our results concerning Folklore
Theorem 3. These results show that 4,(q) can be obtained by a box count-
ing argument similar to that in Folklore Theorem 3, whereas this is not
necessarily the case for 4 ,(¢) and B, (q).
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2.1. Definition of %, and #,

We will frequently in the following have to impose some geometrical
constraints on g. The most important constraint will be defined below. For
neP(X), Ecsuppu and a>1 write

B(x,
T,(E)=1lim sup <sup M>
r~ 0 xekE ,UB(X, r)

We will write T,(x)=T,{x}) for xesupp u.
The next lemma shows that the precise value of the number « in T,

o E)
is unimportant.

LEMMA 2.1. Let ue A(X) and E<suppu. Then the following statements
are equivalent

(i T

a

(i) TAE)<ow  forall a>1.

(Ey<w for some a>1.

Proof. (11)=-(1). This is obvious.

(1)=(i1). Choose a> 1 such that T (E) < oo and let 5> 1. Pick ne N
with b < «”. Then clearly

B(x. a"
T,E)<T,(E)=lim sup <Sup M)
e E /lB(x, r)

r 0

n B X, TS |
=lim sup<sup I #BLv, ald” 1)) r)))

r~ 0 xekE;=1 ,UB(X, ai”]l’)
o uB(x, a(a"r))>
< lim sup ( sup ——————
il;[l s op <.\e€: uB(x,a' " 'r)
= TII(E)” < o0, l

For E < supp i put

KX Ey={ueAX)|Ja>1:VxeE: T (x)<w)}
AN, E)={ueP(X}|da>1: T(E)< o0,

and write Z( X, supp ) = #(X) and A ( X, supp u) = Z( X). It follows from
Lemma 2.1 that #( X, E) and A (X, E) are well defined (i.e. independent of
the number «>1 that appears in the definition). Some differentiation
results for measures yp satisfying Tg(x)<oo for xesuppu (and conse-
quently T, (x) < oc for all a> 1} appear in [ Fed, pp. 160-163] and [ Mat].
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2.2. The Multifractal Measures # %" and A% !

Observe that the pre-measure # 7' is countably subadditive (but not

necessarily monotone) and that the pre-packing measure :?I‘{" 1s monotone

(but not necessarily countable subadditive)---these facts will be used fre-
quently in the subsequent parts of the paper. However, #'¢ " and #% " are
measures on the Borel algebra.

ProrosiTiON 2.2, The set function # %" is a metric outer measure, and
thus a measure on the Borel algebra.,

PROPOSITION 2.3. The set function £ " is a metric outer measure, and
thus a measure on the Borel algebra.

As in the non multifractal case, the Hausdorfl dimension dim{ is
majorized by the packing dimension DimY.
PROPOSITION 2.4. Lot ye #(RY). Then the following hold for g, te R,
(i) 2L Pe!
(il) H* <P for ¢<0
(iii) If pe ARYY then AP for 0<q.
(iv)  There exists an integer Ce N such that A ' < A ‘
In particular
dim? < Dim}, < 47.

Examples in Chapter 3 show that the inequalities in Proposition 2.4 can
be strict.

2.3, Auxiliary Inequalities Involving #', 2!, A @' and P}

Below we collect the main technical lemmas in this section. Let X be a
metric space and g€ 2(X). Fix 120, ¢, te R and 6 >0 with

0<d<<ag+t.

Then the following inequalities hold.

PROPOSITION 2.5. (i) #*+ +o(X*)y 2%+ ".//';’,‘ (X7} for 0<q.
(i) AN )22 A X,) for ¢ <0
(i) I 0<ag+blgq) then
dim(X")<ag+blq) for 0<g
dim(X,)<aqg +blg) Jor ¢<0.
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(iv) If0<ag+ B(q) and X =R then

dim(X,)<ag+B(q) for ¢<0
dim(X*)<ag+B(q) for 0<gq

PROPOSITION 2.6. (i) 2" *o(X~) <2+ 224 !(X*) for 0<q.
(“) ytxq+l+(5(_Xa) < 21(/+¢5yjll, ’(Xa) fOV q < 0
(1) If 0<aqg+ B(q) then

Dim(X*)<ag+ Blg)  for 0<gq
Dim(X,) <aq + Blq) Jor ¢<0.

PROPOSITION 2.7. (i) If A< X* is Borel then # 4 "(A)<2'#1% '~ %(A)
Jor ¢ <0.

(i) If A< X, is Borel then #4/(A)<2' A+ ~%(4)  for 0<q.

ProposiTION 28. (i) If A<X* is Borel then 2%'(A)<
2—zq+o'y1q+r——<)'(A)f0r (]<0

(il If A< X, is Borel then 29 '(A4)<2 ™ *+°p* 19 4) for 0<q.
“" q

Observe that Propositions 2.5 through 2.8 yield the following well known
result.

CoOROLLARY 2.9. Let X be a metric space and j€ 2{X). Then the follow-
ing hold

(i) dim(X*) <a, DIm(X*) <a
(i) If A< X, and u{(A)>0 then a <dim A, a < Dim A.
Proof. (i) Follows immediately from Proposition 2.5 (iii) and Propo-
sition 2.6 (iii) by considering the case ¢ =1.

(ii) It is easily seen that u<#,° and Proposition 2.7 therefore
implies that 0</¢(A)<J("}"°(A)<JF“*"(A), ie. a—d<dim(A4) for all
0 > 0. Mutatis mutandis x < Dim(4). |

The results in Corollary 2.9 appear in [ Bil, Bi2, Cul, Cu2, Fro, Haa,
Yo]. Our results may thus be viewed as multifractal generalizations of
Billingsley’s Theorem [Bil, Bi2} and Frostman’s Lemma [ Fro].

24. The Multifractal Dimension Functions b,, B, and A,

The next propositions summarize most of the elementary properties of
b.g, B, pand 4, ..

e
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ProrosITION 2.10.  The following statements hold
(i) 2Lz 20" for g<p, P> =20 for s<1.
(ii) A, pis decreasing.

i)  The map (g, 1) — 29" is logarithmic convex, ie.
7 <

'?:p +01 ax)yqoar+ (1 IH(E) S(;"fl I(E))x ( ,?q,x(E))l -

P
Jor all e [0, 1],p,q.t,seR and ECS X,
(v} A, is convex.
(VY 2Lz P00 for q<p, P12 PL0 for 1<,
(vi) B, pis decreasing and convex.

(vit) AG AT for q<p, AT Z AN for 1<,
viil) b, . is decreasing.
K &

The map b, , need not be convex for y e #(X). Section 3 contains an
example (viz. Example 4) where we construct a measure p€.4(R) such
that

blg)=d(1 —q) A D(1 —gq),

for 0<d<D<1. However, the next proposition shows that if
peARSE), then b:=b, , satisfies a “weak”™ form for convexity: instead
of hlap+ (1 —a)q)<ab(p)+ (1 —a)blg} then the following inequality
holds H(ap +(1 —a) ¢} <aB(p)+ (1l —a) b(g); 1e. we have replaced the
smaller number #(p) with the (perhaps) somewhat larger number B(p):=
B, 1(p) (here p,geR and ae [0, 1]).

ProrosiTiON 2.11. Let pe2(RY), ESRY p,geR and x [0, 17.

(1) Ifap+(l—a)qg<O0 then
b, wlap+(1—a)g)<aB, (p)+(l—2)b, .(q)
(i) If 0<op+ (1 —a)q and in addition ue #(R", E) then
by wlap+(1—a)q)<aB, p(p)+(1—2)b, .(q)

PROPOSITION 2.12.  Let pe A(RY).

(1) bXa)<BXx) <« for all x=0.

(i) If xeR and u({xesupp u | a,(x)=a})>0 then

b, M) =BX(x)=a

"
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The next proposition investigates the behaviour of B,(q) when |q| is
large. We will in fact prove that B, has affine asymptotes as g — + oo.
Now write

b . b
gﬂ:g;:sup—(—q) ﬁ”=di= mf—(—q)
O0<gqg q 9<0 q
B _ _ . B
A[{:A::Sup—ﬂ AﬂZAIZ mf——(gl
0<gq q q<0 q
and observe that
A<a, a<A

Note that Example 4 in Section 3 shows that there exist measures u such
that a<a, A<a, and a< A.
Also write

B B

I+=I+(u)={—-(q—)‘0<q} and I_=I(u)={——(i)}q<0}.
q q

If 4 is a subset of a topological space X then A’ denotes the derived set.

ProrosiTiON 2.13. (i) If Ael, then the function q— B(q)+ Aq is
decreasing and

E:= lim (B(q)+4q)=0.

¢ x

(i) If A¢ T, then there exists qy€ R such that

Blqy=—4q  for g,<q
(iii) If AeTl_ then the function g — B(q)+ Aq is increasing and

E:= lim (B(q)+Agq)=0.

g— —oC

(iv) If A¢T_ then there exists q, € R such that
Blg)=—A4q  for g¢<q,.

2.5. Densities

It is well known that density theorems play a major role in geometric
measure theory. We will now prove some density theorems for the multi-
fractal Hausdorff measure #'¢ ‘ and the multifractal packing measure 27 .
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Let i, ve 2(RY). For xesupp u and ¢, € R we define the upper and lower
(g, t)-density of v at x w.r.t. u by

' (x, v) = lim sup —— D)
8 s o HOBLX P (2r)

and

di'(x,v) llfn\lg\lfu(B(x,r))"(?_r)”

respectively. Below, we state our main density theorems. We note that our
density theorems are inspired by the density theorems in [ Ray].
Let v, ue A(RY), E <supp i be a Borel subset of supp i and ¢. re R.

THrorReM 2.14. (i) If ue A(R E) and #"'(E)< 2 then

A LUE) inf d (v v) S V(E).
ve FE

() If H NE)< o then

WEYS A4 (E)supd?(x. v).

e K
THEOREM 2.15. If ;,%’/‘11~'(E)< oo then

PEUE) inf dT(x, v) <v(E) <27 (E) sup di (N, v).

Ne £ ve &
COROLLARY 2.16. If ue A(R E) and #%(E)y< o, then the following
statements are equivalent,
(i) A 4HE)=2"E).

t

(i) de'x, AT Ey=1=d"(x, #'¢"| E) for #¢"-ae. xeE.

(i) drix 2 Ey=1=d} (x, 28" | E) for A} '-ae. xeE.

2.6. Upper und Lower Bounds for the Multifractal Spectrum

The next two results give upper and lower bounds for f, and F, in terms
of b, and B,.

We wll first introduce some notation. If £, g: R — R are real-valued func-
tions on R then we write

f d g:f 1] x L 0f +(f(0> v g(0))- 1:0} +g- IJ(), s [
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(Le. (/O g)(x) 1s equal to f(x) for x <0, to f(0) v g(0) for x=0 and to
glx) for 0 <x). Also, if /- R— R is a convex function then we will denote
the left and right derivative of /' by f'_ and f*, respectively.

Finally, put

dom B, := {geR | B,, is differentiable at ¢},

ran B, :={B,(¢) | ge dom B, }.

THEOREM 2.17 (Upper Bound Estimate). Let X be a metric space,
HeP(X) and a=0. Then the following assertions hold

(i) g<infa,(x) <supa,(x)< A4,

A<info,(x)<supa,(x)<a
(i)

" _
lim dim(,\_’a_am)?HE):{g(BDb) (@) aela A[

=0 xeR,\[a, 4]

e~ 0
(111}

lim dim(X, _,nX**%) =

e 0

{S(bDB)*(G) xe 4, a[
=0 xeR \[ 4, d]

(iv)

dim(X, n X*)

I

< b*(x) ae g, af
{0 reR \[a, a]

i, 7= {00 el
0 aeR_ \[ga a].

THEOREM 2.18 {Lower Bound Estimate). Les u e #(R?). For each ge R
let t,eR, r,, K,. K,€10, o[, v,eZ(supp u), and ¢,: R, — R be a func-
tion. For each geR let (r, ), be a sequence in ]0, 1[ satisfying r, , ~ 0,
logr, ,,i/logr, ,—» 1 and 3, r, <o for all £>0.

For each qe R consider the conditions

(1) Vxesuppu: Vre 10, r,[: K, < v (B(x, r)/(u(B(x, r)? (2r)re?'")
<K,

(2) @ry=o(logr)asr ~ 0.

607/116/1-8
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(3) ¢, ulp) =1/ ~logr, ) 108§ uup, (O B(x, 1, N dv (X)) is finite
Jor all ne N and q, peR.
(4) clp):=lim,c, (p)exists and is finite for all 4, peR.

Then the following hold

(1) Let qeR and assume that (1), (2), (3) and (&) are satisfied and
write ¢ =¢,. Then

For ¢g<0.b{—¢ (ON< - (Q)g+b(g)s—¢ (O)g +A,,(q)}
For 0<g. b — (0N~ (0)g+b,(¢q)< =" (0)g+ A, lq)

<dim(X v',(mﬁX/ < 1()))
where for a0,
X,={xesuppu|a<a,x)}, X*={xesupppu | %,(x)<al.

(1) Let g€ R and assume that (1), (2), (3) und (4) are satisfied and
write ¢ = c,. If ¢ is differentiable at 0, then

Ll —c'(0)) =bX(—'(0)) = BX(—¢'(0) = AX —'(0)),

Assume further that O <liminf, r, . \/r, , <limsup,r, . ,/r, <o Then
the following hold
(1) Assume (1), (2), (3) und (4} are satisfied for all ge R. Then
a, = —Blq) v ac Jor gqedom B,

—ran B, S o, (supp ).

(iv)  Assume (1), (2), (3) and (4) are satisfied for all e R. Then
b¥=f,=B} on —ran B,

The proof of Theorem 2.17 is based on some Vitali type arguments,
whereas the proof of Theorem 2.18 is inspired by some large deviations
theorems in [ Ell, EI2], in particular [ EI2, Theorem [1.6.1, Theorem [1.6.3
and Theorem 11.6.4]. We note that somewhat similar arguments have been
used previously by Collet et al. [Col ].

We note that condition (1) in Theorem 2.18 obviously is motivated by
the theory of Gibbs states (cf. [ Bow, Ru]) and is satisfied in the case of
graph directed self-similar measures with totally disconnected support
(Lemma 5.4 and Lemma 5.5) and “cookie-cutter” measures (Lemma 6.7).
Theorem 2.18 shows that », and B, contain more information than £,
provided that the conditions in Theorem 2.18 are satisfied. The functions b,
and B, contain according to Theorem 2.18.iv the same information as f,.
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whereas Theorem 2.18.iii shows that B, in addition contains information
about the size of «, (supp u).

We would like to emphasize that the upper bounds obtained in Theorem
2.17 are in general not exact values. This is basically due to the fact that
the multifractal spectrum f, is not necessarily convex.

EXaMPLE. Let p,=p,=14. Put r,=p}| and r,=p3; and define maps
Sio 2 [0,1]—-[0,17 by fi{x)=r,x and fo(x)=r,x+ (1 —r,). For neN
and iy, ..., i,e{l,2} write

Ki]---i,, =S ‘f.‘,,([ov 1])
and define a probability measure v on [0, 1] by the requirement
WK,,...)=p:. P,
for all neN and /,, .., i,e{1,2}.
Next, put s, =p7 and s,=p, and define maps g,,g>: [2.3]—[2,3] by

gix)=s5,x+2(1 —s;) and g,(x)=s,x+3(1 —5,). ForneNand i,, ..., i, €
{1,2} write

Lil--»i,,:gll“ “g,-n([z, 3])

and define a probability measure 4 on [2, 3] by the requirement

A(Ll,...,-,,)zp.-lv--Pi,,

forall neN and iy, .., i,e{l, 2}. The measures v and 4 are, in fact, graph
directed self-similar measures. The multifractal structure of graph directed
self-similar measures will be treated in detail in Chapter 5 using our for-
malism.

It follows immediately from [Ca, pp. 202-206] (or Theorem 5.1 in
Section 5) that the following hold

(1) suppf,=[3.3]. suppf,=[3.1].

(2) f, is strictly concave on [1,1] and f; are strictly concave on

[3 11
(3) SU3)=0=13). [:(3)=0=/(1).
Now put pu=3(v+i)e#(R). Since dist(suppv,suppi)=1>0, «,=
%, Liupp + %3 1y 2o Whence
f(@) = dim{x €upp e | %120 1(X) =1}

=dim({xesuppv|ax)=a} U{xesupp i | a,(x)=a})

=Ja) v fila).
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Properties (1) through (3) therefore imply that f, is non-concave and

consequently (since f, <h}¥ on supp u by Theorem 2.17)
Jlo) <b¥(a)

for « belonging to a non-degenerate interval.

ExampLE. Let ae ]—1,0[ and define f,:R—-R by f,(x)=x* for
xe]0, 1 and f(x)}=0 otherwise. Then p:=(a+1)f,dxe2(R) and
supppu=[0, 1]. It follows from Example 2 in Section 3 that

blg)=B,(q)=—(a+1)g v (1—q)

Hence

] 1
—~—:x+<1+—> x€[a. d)
b;{"(a) = B;T(a) = d “

— G xeR N\[a a],
where ¢ =« + | and ¢ =1. Moreover, it 1s easily seen that
alx)=1 for xe]0,1[, a(0)y=a+1, {2.1)
whence

. F | a=1

Jdo) =F () = {0 xeR {1}
Hence in this example we clearly have f (a)<bX¥(a) for ae[a, af.
However, we believe that the functions b, and B, contain more informa-
tion about the measure g than the spectra functions f, and F,: b, shows
that there exist points x e supp u such that uB(x, r) ~r**' for r =0 (viz.
x =0) and that there exist points x € supp ¢ such that gB(x, r) ~r for r =0
(viz. xe ]0, 1]), whereas f, and F, do not contain this information.

Another reason for preferring b, and B, rather than f, and F, is that two
measures may have different multifractal structure but still possessing the
same spectra functions, whereas different multifractal structure often is dis-
played in b, and B,. Let x be as above and let i denote the restriction of
the Lebesque measure to [0, 1]. Then clearly

Ju=ti=F,=F;.

eventhough g and A have different multifractal structure: g has points with
different local dimension (cf. (2.1}), whereas a,(x)=1 for all xe [0, 1]. The
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difference in the multifractal structure between g and 4 is on the other hand
apparent in b, and b, since (cf. Section 3, Ex. 1)

b‘u(q): _(a+1)qv (1_‘1),
and
blg)=1—q.

Hence we believe that the functions b, and B,, in some cases, are more
fundamental in multifractal analysis than the spectra functions £, and F,,
cf. the discussion after Theorem 2.18.

However, we do prove that the functions b and B} are the exact values
of £, and F, in the following cases (and not _|USt upper bounds as asserted

by Theorem 217y

Case 1. For graph directed measures in R? with totally disconnected
support. Let G=(V, E, (r.),, (T.}., (p.).) be a strongly connected MW-
graph with probablhtles and let (K,),., and (u,), . be the self-similar
invariant sets and measures associated with G respectively (details will be
given in Section 5). Let § be the auxiliary function that appears in [Ca,
Ed] and «= —f'. Put K,((a)—{reK | o, (x)=a} for a=0. We then
prove the following theorem in Section 5. Let A be the separation constant
defined in equation (5.1) in Section 5.

THEOREM 5.1.  Assume 4> 0. Then
(1)  For each g€ R,
0 < AH LMK (2(g) S PEFVK (2(q) < PLAK,) < 0.
(il) For each ge R there exists a number ¢, € 10, o[ such that

g, g i)
%‘/[1“/ & I Suppﬂ”—( f‘l fta | Suppluu'

Hu
(i) . x)=alg) for AL |suppp,-aa.x,

x(xy=alg)  for 2P| supppu,-aa.x.
(wv) If q,peR and alq) #a(p) then

(J(‘Z;B(q) | supp ) L (A#7PP supp i, )

Hu
q /)’(r[i | Supp i, ) L (2 Bpy | supp /l.,)-

e

(v) Foreach geR
b, {9 =B, (q)=4] (K,)=C! (K,)=(1—~q) D} =plg).

(vi) a, =4, =inf g 2,(x):=a4a, = =SUp, ., &, (X) =4

Y = Lu

(vii) dim K, () =Dim K () = b} (a) = B} (a) = f*(«) for a & Ju, a[.
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Here (7 (K,) denotes the multifractal ¢-box dimension of K, w.r.t. g,
(cf. Section 2.7), and D¢ denotes the generalized Rényi dimension of z,, (cf.
Section 2.8). We note that the result in (ii) was first proved by Spear [Sp],
in a slightly more general setting, for the case ¢ =0. We also note that the
results in (v) and (vii} are minor extensions of the results in [Ca, Ed]. In
[Ca] and [ Ed] it was proved that f, =F, (in a slightly more general set-
ting), whereas we also prove that f, =F, = (C;{“( KN*=01l—-¢q) D;{")*.

Finally we note that a result very similar to the equation fi(¢g)=
i (K,)=(1—¢) D} has been proved in a recent paper by Strichartz [Str,

Theorem 3.2] for the case | <¢ < o,
It is an open problem whether the equations

Ly

Lo =P F.,=8*

hold in the case where the support of z, is not necessarily totally dis-
connected, cf. [Ca, p. 215] and [ Ed, Section 5.3, Question (d}]. Cf. also
Section 7.8 in Chapter 7 and Note Added in Proof (2) at the end of this

paper.

Cuase 2. For “cookie-cutter” measures in R. Let g be a “cookie-cutter”
map in R with invariant set A(g)=A. Let ¢: 4 >R be a Holder con-
tinuous function and let v be the “cookie-cutter” measure associated with
¢ (details will be given in Chapter 6). Let t be the auxiliary function that
appears in [Ra} and a= —1'. Put Ala)={xed|a(x)=a} fora=0 We
then prove the following theorem in Section 6.

THEOREM 6.1.  The following assertions hold

(1) 0< A"V (Malg))) <247 (Aladg)))

LPCUA) < o,
(it)  For cach qe R there exists a number ¢, e 10, oc[ such that
AP | supp v < 2D [ supp v < e H D | supp v
(i) afx)=olg)  for A" | supp v-aa. x,
a(x)=alg)  for 24" |suppy-aa. .
(iv) If q.peR and alq)#alp) then

(}/ 4‘]'~/5!t/) I Supp ",) 1 (:}/‘{"‘/‘”7) ] supp \'),
(’%(‘,.‘/fu,) | supp v) 1 (“y{.’./ﬁ‘ﬁ) | supp v).
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(v) For each qeR,
b(q)=B,(q)=A4UA(g))=CUA(g))=(1l—q) DI=1(q).

(vi) a,=4 )
(vil) dim A(a)=Dim A(x) =b¥(a)=1*(x) for a€ ]a, a.

Here C¥A(g)) denotes the multifractal ¢-box dimension of A(g) w.rt. v
(c.f. Section 2.7), and D? denotes the generalized Rényi dimension of v. We
note that the result in (vii) is a slight extension of the result in [ Ra]. Rand
[Ra] proves that dim A(x)=1*(a), whereas we in addition show that
dim A(a) = Dim A(a), ie. A(a) is a fractal in the sense of Taylor [Tayl,
Tay2].

Note that Theorem 5.1 and Theorem 6.1 show that graph directed self-
similar measures in R“ with totally disconnected support and “cookie-
cutter” measures on R are Taylor multifractal measures (c.f. (1.6)).

2.7. Multifractal Box Dimensions

We begin by recalling the definition of the upper and lower box-dimen-
sion. Let E< R? and M4 E) denote the smallest number of sets of diameter
at most ¢ which can cover E. Then the lower and upper box-dimension of
E respectively are defined as

log M E
C(E)=lim inf—og—‘)(‘)
s~0 —logd

C(E)=Ilimsu —.
.)'\Op —IOgO

If C(E)= C(E) we refer to the common value as the box-dimension and
denote it by C(E). If N;(E) denotes the largest number of disjoint balls of
radius ¢ with centres in E then

C(E) =tim int 22 YHEL o) i sup 2B NoE)
a0 —10g5 ] —lOgb

by [Fa2, p. 41]. The reader is referred to [Fa2] for more information
about box-dimensions.

We will now define multifractal box-dimensions. Let ye #(R“) and
g€ R. For ES R and ¢ >0 write

S7 JE)=sup {Z,u(B(.\',.. oNY| (B(x;, ). 1s a centered packing of E}.
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The upper respectively lower multifractal g-box dimension C#(E) and
Q;{(E) of E {with respect to the measure z) is defined by

. . log S¢ (F
C(E)=lim sup M
! SN0 —logo

log SY (E
C9(E) = lim inf 28 2o E)

swo —logd

If @;{(E) = C/(E) we refer to the common value as the g-box dimension of
E (with respect to the measure u) and denote it by C:{(E). A somewhat
similar definition appears in [Fa2, p. 225] and [Str]. Also observe that

CUE)=C(E),  CUE)=C(E),

=gt

There is another equally natural way to define ¢-box dimensions. For ge R
and 0 >0 write

T (E)=inf Y ulB(x;,8))| (B(x;,d)), is a centered covering of E}

and set

— . log T? (E
LYE)=lim supM

g N0 —logo
. . | 79 (E
LI(E)=lm 1nfM'
! I N0 _]Og P

The next results summarize the most important inequalities between

Cv. Ce, LY, L? and 47

= S =

PROPOSITION 2.19.  Let e 2(RY) and E< RY. Then
(1) dim;{(E) SLIE)= CUEY for ¢<0.

&
(i) LUE)=CUE)=AUE) for q <0.

PrROPOSITION 2.20.  Let jie 2(RY) and E<RY. Then
() LUE)SCNE) for 0<q.
(i) LUE)<S CUE)SAYE) for 0<q.

PrOPOSITION 2.21. Let ESRY and pe #(RY E). Then

(i) dimYE)<LUE) for 0<gq.



A MULTIFRACTAL FORMALISM 109

PROPOSITION 2.22.. Let ESRY and e #(R, E). Then

(1) dim(E)<LiE)=CHE) for 0<gq.
(i) LYE)=CYE)=AYUE) for 0<q.

By combining Theorem 2.17, Proposition 2.19 and Proposition 2.22 we
get the following corollary.

COROLLARY 2.23. If e A(RY) then
Jdo) <inf (ag + Cé(supp u))  ae Ja, al
q

It 1s known that the inequality in the previous corollary can be replaced
by equality in certain cases, cf. [ Ra, Ca, Ed, Lol]. However, Corollary
2.23 shows that f,(a) always is majorized by inf (qx+ C¥(suppu)) for
e AR

2.8. Generalized Rényi Dimensions

In 1983 Hentschel & Procaccia [ He], Grassberger & Procaccia {Grl]
and Grassberger [ Gr2] proposed a multifractal formalism parallel to (but
independent of) the f(«) formalism introduced by Halsey et al. [Ha].
Hentschel & Procaccia [He] and Grassberger & Procaccia [ Grl] intro-
duced a one-parameter family of numbers (D,), .z based on some
generalized entropies due to Rényi [Rel, Re2]. Let u e 2(RY). For geR
and J > 0 write

(B(x;, 9));

1
hiu) = oy sup {log Y uB(x,, 9)"

is a centered packing of supp ,u}
1 v f
=qT1108(S;,.(s(SUPp/1)) or g#l,
and

hi(p)=1inf {Z u(E) log u(E,) | (E,), is countable Borel partition of

supp i, diam E; < 6}

The numbers A4 u) are intimately connected with generalized Rényi
entropies [ Rel, Re2]: Let p={(p,, ... p,) be a probability vector (ie. p,=>0
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and Y p,=1) and xe R\{ 1}, then the a Rényi entropy I,{p) of p is defined
by

Lip)=

1
l—alogz (;1’7)

The generalized entropies /, where introduced by A. Rényi [Rel] in 1960
in an attempt to characterize the class of mean value functions which
induce additive entropy functions. The reader is referred to [ Ac] for more
information about this question and Rényi entropies in general.

Following Hentschel & Procaccia [ He, formula (3.13)] we define the ¢
Rényi dimensions D¢ and D of u by

DY =lim inf J18ts)
5~ u —logd

hiu)
DY =lim sup ———
P Up —log o

(in [He] all hmits are assumed to exist and Hentschel et al. therefore only
consider D% =1lim,  ( h¥(z)/—logd). A parallel development of ¢ Rényi
dimensions using integrals was also suggested in [ He, formula (3.14)]. For
r>0and ¢geR\{0} write

l
,U ’ 10g ( i p(B{x, ry)? d;l(.\‘)> for g#0
supp p

1Y —‘n log 2 B{x. r)) du( x) for ¢g=0

"or
supp

and

14
q = lim sup —£-/—

7w 0 log r
o

I =lim inf —f~—
r~0 —logr

Observe that

=log lu(B(-. ),

;4;



A MULTIFRACTAL FORMALISM 111

where || ||, denotes the usual g-norm; such norms are usually only defined
for ¢>0 but we will also allow g<0. The numbers /% and [¢ have
been studied by Cutler [Cu3] who investigated the relation between /9
and joi,,(.\')d;z(x) {(and I and jof,,(.\')d,u(x)). Our main result states
that (¢—1) D¢ v(g—1) D% and (¢—1) 17" v (g—1)14"" are equal to
Af(supp u).

THEOREM 224. Let ue A(RY). Then the following holds

(i) A%suppu)=(g—1) D7 v (¢—1)De.
(i) Aisuppu)=(g—1 17" v (g—1)15"".

It follows from Theorem 2.24 that our multifractal formalism contains
the generalized Rényi dimensions D¢ and D¢, and /¢~ ' and I? ' in a very
natural way.

3. SoME EXAMPLES

Before we turn toward the proofs of the results stated in Section 2 we
consider four examples in order to illustrate the concepts that we have
introduced.

3.1.

ExaMmpLE |. Let F#X<R? be a bounded Borel set such that
1.(X)>0 (A, denotes the Lebesgue measure in RY). Let fe %(X) and
assume y:=inf f(x)>0 and I':=sup, f(x)<oo. Let 4,| X denote the
restriction of 2, to X and put g =({fdA,) " fd(4,] X). Then

dim(X)=Dim!(X) =4 X)=d —dq for 0<gq (3.1}
dim#(X)>d—dq for geR. {3.2)

If in addition

0 <liminf2e BN OX) el xex. (3.3)
r 0 A4(B(x,r))
then
dim(X)=Dim/(X)=d —dq for ¢<0. (3.4)

We will now prove (3.1), (3.2) and (3.4). Write 2=24,(8(0,1)) and
I= 5 fdi,.
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Claim 1. d—dg<dim(X) for geR. Proof of Claim 1: Put

3
Xm_{\eX‘2\—;%(—52))&<5f0r0<r<;1}. me N,

It follows from Lebesgues differentiation theorem that A
24(X) >0, and we may thus choose Ne N such that 4,(X,)>12,(X). Let
(B{x;,r:});cn be a centred 1/N-covering of X,. Then

i

Z/J 1/ (2’ )(I dy

____,2(1(1 —q)[«qZ<J

i Bixiriyn X

g
.fa%d) (rdy v
2 (29Q) =0 (y9 A T T "Z),[,(B(x AN X) A AB(x, r )

2(,()((%) %‘I)Z/I(I(B \l’r ))

i

ZC) Ad(U B(x,, "i)) Ze 2 X)) 20 %)~(/(X)
where

co=(29/)1 4 (pEATT 1 and ¢ =('0((‘3)" A (%)")
Hence

/{;I, o - z/t[( X) > ”Z o :Iq( XN ) > y?z o llq( XN)

>4 Z lxl‘wdq(XN) ZC %’1«/( X)>0

ie. d —dg <dim(X).

Claim 2. A"( ) <d—dqg for 0 <gq. Proof of Claim 2: Suppose ¢ =0,
o<1 and (B(x, r,)), is a centered d-packing of X. Then

1o

j"l d dy X) < ZII(B(X:W ri)‘)z/ (2)_’_)11 ey

q
—T““V”Z<$ fﬂQ(ﬂwv

<2M TN 3 (A (Blx, r)) ()

Bl riymn X

:‘22 JBlx ="2141<U B(xnr,)><('z)vd(3(X»1)),
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where  B(X, 1)={xeR’|dist(x, X)<1} and cz—(2"/Q e e,
Letting J ~ 0 now yields 247~ (X)<c,d (B(X, 1)) <oc, ie. AUX)<
d—dq.

Claim 3. If (3.3) is satisfied then Dimj(X) <d—dq for ¢ <0. Proof
of Claim 3: Let ¢ <0 and put

A (B(x, r)n X)

=< X X —_—
Xon {\ R P A B(x, 1)

1
f0r0<r<—}, meN.
m

Let meN, 0<d<1 and (B(x,, r;)); be a centered J-covering of X,,. By
calculuations similar to those in the proof of Claim 2, we obtain

gpd. d — d(/ q d —dg
'f,u.l)' m <Z/l i (2r )

HAB(x, r)n X))" A (B(x, 1))

ey ”WZ< 2B )

1\ 1
<C3 <E) ;)‘rI(B(xi’ ri))=('3 <n1> <U B(Yn l>

q
< ¢y <—> AJB(X, 1)),
m
where ¢;=(29/2)" ~4 (y/1)1.
Letting J ~ 0 now yields

1\
~_1> A”(/(B(Xal))w

94 1171111( Xm) g ]j/l {Iqu( Xn,) < ¢, (n

g

whence Dimf(X,,) <d—dg for all meN. It follows from (3.3) that
X=U),, X,, whence Dim{(X) =sup,, Dim#(X,,) <d—dq.

Formulas (3.1), (3.2) and (3.4) foliow immediately from claims [-3.
Observe that the proof of Claim 3 shows that if

o AdBlx, 1y X)
0<'\;2§(llfn\1;1f T B(x.1)) (3.5)
then
dim#(X) = Dim#(X) = 44(X) =d — dg. (3.6)

Our next example shows that if the hypothesis y >0 or I' < o0 is omitted
then the conclusions in (3.1) and (3.6) are false.
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32

ExampLi 2. Let ue ]—1. %[ and define f,: R—> R by /. (x)=x" for
xe ]0,1[ and f{x)=0 otherwise. Put u=(a+1)f, dve #(R). Clearly
supp(z)=[0,1]:=1 Then b(g)=B(¢)= —(a+ 1) g v (1 —¢).

Proof. We will only prove the statement for »(¢). The other statement
is verified in the same way. We claim that

dim({0})= —(a+1)q. (3.7)

Indeed, let ¢, 6 >0 and (B,= B(x,,r;));, be a centered d-covering of {O}
Then

S H(B)(2r) VY Tmag 12 W CY

i

2((’+1J2 (w+ 1)y J:()‘ e

Hence ¢ Ve “(f0}) 2 (a+ 112 “* 55 “ for all §>0, whence
A (10} ) = oo, and so dimd({0}) = —(a+ 1) g —¢ for all £>0,
Le.

dim;{({()}); —(a+1)q.

For all € 10, I[ and >0,

‘y(,{l[,.)‘ (u+ qu+q( {O} ) S,U( ] _/(5’ (5[ )q (2()) (a + liq+u:2 ta+ 1)(/+;/{)‘:]
whence 17;’; ter a0y <0 and  so A0y <0, e
dim?( {0)< —(a+ 1) g+ 2y for all #>0. This proves (3.7). It follows from
{3.7) and Example 1 that

“o . . 1
dim;{(l)zdimj’,<{0} v ];_1 1}>=dlm;{({0} vV dlmZ(‘;JD

n=1 n=1

=—(a+Dgv{l—q)

(since dimf( J1/n, 1])=1-¢ by Example 1). |

This example was investigated in Hasley et al. [Ha] in a very heuristic
way for ae ]—1,0[. The case a= —! has also been studied by Collet
[Co2].
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3.3.

ExampPLE 3. We will now study a discrete measure ¢ on R with support
equal to [0, 1]. Let r€ 10, i[ and define ux € #(R) by

1-2r
H=a Z Y F'Opan, A= &

n=1p=123 2" | r

The multifractal spectrum of this measure has been studied in a recent
paper by Aversa and Bandt [Av].
Define the map ¢: R— R by

log r log 2
l+¢q 8! for qs—og
log 2 log r
Plg) = log 2
0 for — <gq
log r
We will now prove that
b,=B,=¢. (3.8)

The proof of (3.8) will be divided into several lemmas. For ne N and ke
{0,1,..,2"— 1} write

k k+1
Eukz{?’ 24 :l

LeEMMA 3.1. Let ¢>0. Then

8

o 27— 1 Plgr+«
S(E):: Z Z N(Enk)q <2 2n+l> <

n=1 k=0

Proof. Fix ne N. Then clearly

— plg)+e 1_2,, q ’,n+l . o 1 Plg) + e
§ Eult < 2> =< r ) 2<1—2r+’> (7_)
gn—1 rn+l Y l wlg)+¢
”n n—j —
< > g <1_2r+r +r ) <2”> . (3.9)

IfO0<g<1 then

',n +1 q ru + 1 q
+ rn + rn —J S + rn + ’.z/m 7_1'). 310
(1 —2r > (1 —2r ) ( )
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If ¢ <0 or 1 <g¢ then Jensen’s inequality implies that

I"" + 1 \¢ | r.n +1 q ‘ N
. n noj < 24 - " gt =j1y 311
<l_2r+r +r > <<1_2r+r> +r > (3.11)
It follows from (3.9), (3.10) and (3.11) that
1 _ 2r o 1 @lg)+& r q
< - o e ny q—1
S,,\< . > <2H> {2(1_2 +1> (L v 297

q n o
< > ny Z 2!1 /+( qu l) Z 211 jrqtn,,j)il

Jj=1 j=1

plq) - 1_ 2 gyn | 1 2
]\ re log2
— . . f -
<2n> [¢)+cn] or ¢ logr
(3.12)

where ¢, ¢, >0 are suitable constants. If ¢ < —(log 2/log r) then

1 —(2ry"
1(— Sy S, (3.13)
where ¢, is a constant. If —(log 2/log r) <g¢ then

1 _ 2,([ n 1
...._I(JT)q_s(lab") R (3.14)

It follows from (3.12), (3.13) and (3.14) that

log 2
2 MO (28 + ¢ ] for ¢#— o8
log r
S‘Ilg l 2
0
2 ut(pt(/)+f;)[(,l +(,2”] for q: _ g
log r

where ¢5, ¢, >0 are suitable constants.
For ¢+ —(log 2/log r) this implies that

S(L) ZS”\(iz(zl Py 4:r‘/)n+(,bz (2 wlyg)- 11)n< o,

"



A MULTIFRACTAL FORMALISM 117
since 2! ¢ —ep1 2@ -¢e [ 1[. For g = —(log 2/log r) we have

S(8)=ZS”<C|227'1c+(‘22]127'18<m' I

n n n

Lemma 32. B, (q)<o(q) for ¢<0.

Proof. Let € ]0, I[ and (B(x,, r;)), be a centered J-packing of [0, 1].
For each i choose n,e N such that
1 r, 1

Zn,+1 <2 <F

and pick k,;€{0,..,2"—1} such that E,, <B(x,r;). Since u(E,;)>
rn,+l/(1_2’,)’

mitlNg /] \ el
Z‘ll(B(x’_’ r; )rl (2)‘ )V'iz]) <azl Z < r 2 > <2T> 4(/)1:1)
- r i

< ¢ Z (rquqzlqi)n,
i

<c Z (rllz *(/)l(/)) —logr,log?2
<c Z r;<c(l +20),

where ¢ =49(ra/l — 2r)?, whence
PEA0,1]) S PEPO[0, 1) <20, 1]) < e(1426) < o0
ie. B(q)<olq). 1

LemMA 33. B (q)<g¢(q) for 0<g<1.

Proof. Let ¢>0, 3e 10, 5[ and (B(x;, r;)), be a centered J-packing of
[0,1]. Put
In - {

Now fix neN and iel,. We may clearly choose j(i)e {0, ..,2"— 1} such
that

1 1
2”H<2r,\2} nelN.

B(xir))SE, jiy VE, i <1
whence (since (x+ p)?<x?+y? for 0<g<1 and x, y=0)

u(B(x;, r)) <ulE, v E, jn+ VP <sulE, ;) +/1(En,_/m+ 1

607/116/1-9
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However, each E, ; will intersect at most three balls B(x,, r;} with ie/,,

1.e.; for each ne N there are at most three integers 7,, /5, i; €/, such that
JUiy) =jliy) = jliz). Hence

) 1 Plg) +¢e
Z H(B(x;, r;‘))q(zri)wq)ﬂ‘g Z uE, /m) < >

n
iel, iely, 2
l elq) +¢&
g
+ 2, ME, jiri1) <2n>
iely

an- 1 elg)y+e
<3 Z ME,;) < ) ) (3.15)
Jj=1

It follows immediately from (3.15) and Lemma 3.1 that

Z/l X b, 11(2,- )(/)(1/)+¢: Z (Z ,ll 1](2’_ )‘/"(Il+1>

=1 iely

£ 2" 1 elg) +¢

n=1 j=1

whence

/(/ zp(q)+r [O 1] </q(p(q)+z([0 1] <}q @liq) w:([oq l])gS(L)<’)C

#. 3

ie. B{q)<olg)+eforall e>0. |

LemMa 34. B (¢q)=p(g) =0 for —{log2/logr)<g<1.

Proof. Lemma 3.3 shows that B, (¢)<®(q)=0 and Proposition 2.10
yields B (¢)=20=0(g). |

Lemma 35, B (q)<oplg) for 1 <gq.
Proof. Obvious since B, (q) <0=¢p(g) for 1 <q. |

LemMma 3.6. B, (0)=¢(0)=1.

I
Proof.  Obvious since B,(0)=Dim{([0.1])=Dim([0.1])=1. |}

By combining Lemma 3.2-Lemma 3.6 and recalling that B, is convex (cf.
Proposition 2.9) we get B, =¢
We will prove that b, =¢

Lemma 3.7, b, (g)=@(q) for 0 < g < —(log 2/log r).

Proof. We have b,(q)<B,q)=¢(g) and it is thus sufficient to
prove that b (g)=plg). Let 0<¢g< —(log2/logr), 06>0 and
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(B,=B(x,,r;)) be a centered d-covering of [0,1]. Put I,={i|1/2"*'<
2r; <1727} for neN. Now fix ie[,. Since 1/2"72<2r, we may choose
J()e {0, ..,2"*~ "} such that

E, 2 nEB:

le.

rn+3 q
ru(Bi)[>/‘(En+2_jm)l><l _2r> =cr',

where ¢ = (r*/1 —2r)? Hence (since 2 ~#@r¢=2"1)

1 @lq)
Y WBY (2r)" =Y T B (2r)0 > Y cardL) er (5 )

n iely,

=279 Y (2799@9)" card([,)

"

=¢27°9% 27" card(l,)

n

=27y ( Y 2ri> =2~ el

n iel,

and so

jfz W'“([O, 1])23?:1,.«)(:/)([0’ 1])2%_»:1. (’3(‘”([0, 1])2(.27wiq)>0’

W é

which implies that b,(q) > ¢(q). |

Lemma 3.8. b,(q)=oplq) for —(log2flogry<g<]l.
Proof. By equation (1.5), 0<b,(q)<B,(qg)=¢(q)=0. |

Lemma 39. b,(q) =(q) for ¢<O0.

Proof.  Assume that there exists ¢ <0 such that b,(q)# ¢(g). Then
b.(g)<elq) since b,<B,=¢. Put p=—(log2/logr), a=gq/(¢q—p)e
10, 1[ and observe that ap + (1 —a«) ¢ =0. Now B, (p) =b,(p) =0 and
blap+(1—u)gq) =b,0)=B,(0)=1, and Proposition 2.10 therefore

M

implies that

I=b ap+(1—a)g)<aB,(p)+(1—a)b,(q)=(1—2)b,(q)<(l —a)p(q)

(=253

which 1s a contradiction. |
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Lemma 3.10. b, (¢g)=olq) for 1 <gq.
Proof. The proof is similar to the proof of Lemma 3.9. |

34.

ExaMpLE 4. We will now construct a Borel probability measure
1€ ALR) such that:

(1) The measure x is not a Taylor multifractal measure (cf. (1.6)), in
fact

b, (q)+# B,(q) for geR\{1}.

(2) The function b, is not convex.

Let (a,), ., be a sequence in ]0, oc[ such that

ady = l- 2au+1 <an fOr ne N”’ d<D' (316)
where
, log 2 . log 2
d =lim inf 08 \ D :=lm sup 108 .
n — log a, n - lOg o,

For each ne N, we construct a family .4, = (I, . ... I, 1) of closed disjoint
intervals of [0, 1] such that diam(/,;,)=a, for i=1, .., 2" We will con-
struct .#, by induction on n.

The Case n=0. Put [,,=[0,1] and 4, = (1,,).

The Case ne N. Suppose we have constructed .4, =({,,, ... I, »»). Fix
ie{l,...2"}. Then [, is a closed subinterval of [0, 1] and diam /,,=a,. It
follows from (3.16) that we can choose two disjoint closed subintervals 1
and J of I, such that diam f =, ., =diam J and [ lies to the left of J. Now
put I, ., . ,=1and I, , . =J This completes the construction of .7, _ |.

Now, put
E=N\U /..

The set E is called a symmetrical perfect set, cf. [ Ka]. Symmetrical perfect
sets have been studied by e.g. Kahane & Salem [Ka] and Marion [ Mar].
Now define a Borel probability measure g on E such that

il y=2"" for all neN, i=1,.,2"
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It is clear that supp 4 = E. We will now prove that

b(q)<d(1—g) A D(1—q) (3.17)

Properties (1) and (2) follow immediately from (3.17) and (3.18) since
d<D and b,(1)=B,(1)=0. The proof of (3.17) and (3.18) is divided into
four lemmas.

Lemma 3.11. b {q)<d(1—gq) for g<1.
Proof. Let ¢>0 and F< E. Since

log 2 -
liminf =282 cg4y &
n —loga,, l—q

there exists a subsequence (7, ), of integers such that

1
7 log 2 <d+
~loga,, 1—g¢g
And so (since 0 <1 —gq)
2t gt m e ] for all k. (3.19)

Now fix ke N and let I(k)z{i|1,,k‘,r\F;é &}, For each ie I{k) choose
x;el, ;nF and observe that B(x,,a, ) can at most intersect 3 different
members of .7, , ie.

nis

L, .nESB(x;, a,)nES]

ng i i ng, i lUIIIk,iUIllL».i+1'

Hence

#(B(x;, a, N <(1 v 3 pld,, )T=(1v 34277, (3.20)

ny

It follows from (3.19) and (3.20) that

7. dil ‘ /(1 — 3
Aoal PTHE)S Y p(Blxg, a,))? (2, )" 0
iellk)
2%
N1 — : —ny Ul —g)+¢
<2(1 q)+L(l v 3(1) Z 2 nkqa:,k gl +e

i=1

=272 gl O L e < oo,
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where ¢ :=2%" 9771 v 39). Letting k — o0 now yields
At THE) < e

for all F< E. Hence
H LD E) L

ie. b, (q)=dimYE)<d(l—g)+c¢foralle>0.

Lemma 3120 b (g)<D(l —gq) for 1 <q.
Proof. Let ¢>0 and F< E. Since

nlog?2

£
D+ < him —_——
l—yg ,,SUP —loga,

there exists a subsequence (n,), of integers such that

3 log 2
Dyt M OBS
l—-q —loga,,
And so (since | — ¢ <0)
2l ‘“a,‘f[' e for all £

Now proceed as in the proof of Lemma 3.11. |

Lemma 313, B, (q) =2 D{1 —q) for g<1.
Proof. Let ¢>0 and E< |, E,. Since

& . nlog 2
<lim sup ———,
- (1 n - log ‘lH

D—
|

there exists a sequence (#, ), of integers such that

e <nklog2
1—¢ —logu

ne

And so (since 0 <1 —g¢)

Lgmt oyt @ for keN.

for keN.

(3.21)
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Now fix i, keN and let I(k,i)={j|1, ;N E;#J}. For each jel(k, i)

choose x;el, ,nE,; and observe that B(x;, a

different members of .#, , ie.

ng»

ng

L, ,nESB(x;,a,)nEc], ;, vl ;ul,

™ e TNESE
Hence

H(B(x;, a, )Y 2 (1 A3 L, )7 =(1 A 39277
and:

the family (B(x;, a,,,)),¢ rx. 1) can be divided into}

3 disjoint centered a,,,-packings of E; ’
Also

card I{(k, 1)
uE) <SIEIED)

It follows from (3.21) through (3.24) that

3PL0TOTUE) > Y, BN a

))(1(24 )D(]*tl)fu
H.odn, nk
& Jeltk i}

ny

>2D(lfqi\e(l /\3“) Z 2711‘-an(lfqifc

ng
jeltk i)

=ccard(I(k,i)) 2" " %qP' ¢
> cu(E,) 2m2 Mg 0 2 cu( E,),
where ¢ =22 "9 7¢(1 A 3%). Letting £ — oc now yields
9209 =E ) > qu(E,)/3.

Hence

} can intersect at most 3

{3.22)

(3.23)

(3.24)

PO HE) 2 (¢f3) L EN = (¢f3) 1 (U E) > (¢/3) wE) = ¢/3,

which implies that
y:}l D(1 — g} ;(E) 2 (/3 >0’

ie. B, (q)=Dim/(E) > D(l —q)—¢ for all e>0. |
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LemMa 3.14. B (q)=d(1 —q) for | <q.
Proof. Let ¢>0 and E< |, E,. Since

log 2 :
lim inf—- 282 o4 °

n —10g d

<d-— .
n I— q
there exists a sequence (1, ), of integers such that

log 2 :
M 0BL g for keN.

—loga,, (—lvq
And so (since | — ¢ <0)

211“1 r/la;:'(‘l ) 1:2 1.

Now proceed as in the proof of Lemma 3.13. }

We can in fact with some additional work prove that equality holds in
(3.17) and (3.18). We also note that the equalities in (3.17) and (3.18) for
qg=0, ie.

dim(E)=5,(0)=d, Dim(£)=B,(0)=D,
are well known, cf. e.g. [ Tr, pp. 66-67].

Finally we prove that g e A(R). Let xe E and 0 <r < . We claim that

uB(x, 2r)
<2 2
HBlx, r) l (3.25)

Pick ne N satisfying «, < 2r <«, , and choose an integer 7 such that ve
I, .. Since diam{/, _, y=«, | 22r

B(x,2nVnEcCt, ; vul, Ul 0. {3.26)
Also choose an integer j such that xe/,,, ; and observe that
L, 1 ;S Blx.r). (3.27)

Indeed, if yel,,,, then |x—y|<diam/,,, ;=a,,, <ia,<r. It follows
from (3.26) and (3.27) that

,UB(,\‘,2I')<£I(I,, 1, IUIn l,l+lU1u l.i—kl):3'2ﬂ(" H:lZ

uB{x.ry = wh, o) 2 b

which proves (3.25). Inequality (3.25) clearly implies that g € A(R).
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4. PROOFS

4.1. Technical Lemmas

We begin by stating two covering lemmas which we will apply later.

THEOREM 4.1. Let # be a family of closed balls contained in a bounded
subset of RY. Then there exists a countable or finite subfumily (B(x,.r;)); of
% such that

(1) (B(x;,r;)), is a pairwise disjoint family.
(1) (Ugpew B)\(Uf:) B(x;,r))) U2y o1 B(x;, 5r;) for all k.
Proof- Cf. [Fa, Lemma 1.9]. |}

We now state Besicovitch covering theorem

THEOREM 4.2 (Besicovitch Covering Theorem). Let deN. Then there
exists an integer { € N which satisfies the following: Let A = RY and for each
x €A fix a number v >0 such that sup ., r. < oc. Then there exist { coun-
table or finite subfamilies A, . ..., B. of {B(x,r,) | x€ A} such that

(1) A=UiUspcs B
(1) 4B, is a family of disjoint sets.

Proof. Cf [Gu, p.5) §

The next lemma investigates the scaling properties of #'% ' and 27"

LEmMA 4.3. Let yu,ve Z(RY) and T: RY— RY be a similarity map with
ratio r such that T(supp g) Ssupp v. For ge R write

T(B(x. p))\
JY (T)=liminf inf <LM>
' P >0 xesuppu lLLB(,\‘, p)
Iz : vI(B(x, p))\*
J¢ (T)=limsup sup <m> ]
p N0 xesupppu ﬂB(-\» /J)

If g, te R and E S supp u then
(1)
J4 ATV #T(E)S # ¢ (TEYJTY (T)r' s *'(E).

Ji,
(i1)

J9 (T r'Pe(E) < PEUTE)Y<J Y (T) r'o ().

Loy
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Proof. (i) Lete>0,0<d<¢and Fesupp u. Let (B(x;,r,)); be a cen-
tered J-covering of F. Observe that (B(Tx,, rr;)); is a centered ro-covering
of TF. Hence

‘{ '(TF) < Z v X, re ) (2rr)) Z v Y4 (2rr;)
WTB(x, p)))"
<sup  sup (M rf u(Blx;, ;) (2r,)7,
/7<H .\‘Esuppy llB('Y’ p) ;
whence
— ( TB(x,
H T (TF)<sup sup <M> ,/{Z SUF),
p <& NESUPP N ttlB(-Y~ P)

for all ¢ >0 and 0 <J <e. By first letting § \ 0 and then letting ¢ \ 0 this
inequality yields # ¢ (TF)<J¢ (T)r'# % '(F) for all F<suppu, which
clearly implies that

AHCUTEYTL(T) A 4 1(E),

Ly

for all E<supp g since T is one-to-one. Similarly we may prove that

(T r'# 4 (TEYS A7 (TE)

—/41

for E < supp u.
(i1} Similar to the proof of (i). 1

4.2. Proofs of the Results in Section 2.2

Proof of Proposition 22. It is obvious that #7' is monotone,

A" (ZF)=0and that # ¢ (ELF)=A" M(E)+ A % '(F) whenever the dis-
tance between E and F is positive. It is thus suﬂicnent to prove that # %'
is countably additive. Let (F,), be a sequence of subsets of X. Let d, ¢ >O
and choose a centered d-covering (B, = B{(x,;, ' )}icn of F, such that

& ) £
Z‘U ni ,”)’S ;Il :>(Fn)+2” ;II’(F71)+—27<”71’(F11)+§7

Since (B,,),.; is a centered d-covering of |, F,

:f,',(UF,,) T M8y (2 <5 A )

n i
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Letting 6 ~ 0 yields, since ¢ >0 was arbitrary,
"’(UF) Zf" (F,) forall F,, F,,..c X (4.1)

Let £\, E;,..< X, >0 and choose Fc |, E, such that #%({J, E,)—»
<A %'(F). Then (4.1) implies that

ri(UE)eriern=-sy (UEne)on

n

<Z,#"’FmE)+77<ZJ/"’ 21

forall #>0. |

Proof of Proposition 2.3. 1t follows immediately from [ Mu, Theorem
11.3] that J’"’ 1S an outer measure. It is obvious that P EuF)=
J’" ’(E)+J’" ’(F) whenever E, FS X and dist(E, F)>0. ThlS clearly
1mphes that 2% is additive on sets that are separated by a positive dis-
tance, and thus a metric outer measure. |

Proof of Proposition 2.4. (1) Obvious.
(iil) Let E<R. For me N write

uB(x, 5r)

E, ={xeFE
{\e uB(x, 1)

1
<m for0<r<—},
m

where we put ¢/0=1 for ¢ =0. Fix meN and let FSE,. We will now
prove that

A LF)<PL(F).

We may clearly assume that 2% (F) < cc. Let ¢ >0 and choose J, >0 such
that

S HCUF) for 0<4;.

I

HEHF) —

M

W ™

Next choose J, > 0 such that

Pe4(F) < P4 HF) + % for 8<d,.
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Let ¥ ' ={B(x,r)|xeF, r<d,/5A3d, l/m}. Then ¢ is a Vitali covering

of F and we may thus apply [ Fa, Lemma 1.9} to choose a countable (or
finite) subfamily (B(x,, x;) :=8,);= ¥ such that B,.n B,= ¢J for i # and

\‘ k Fd
U .S U B(x,.5r;) for all k.
= =k+1
Since x,e E,, and r; < 1/m,
Y p(B(x,, 5r 1) (10r,)' <57 (myud B(x;, k)Y (2r,)
<miS P (Fy<m?s! (?;’l "(F)+ %) < oo

We may thus choose Ke N such that

S w(Bix, Sr ) (10r,) < 5.

i=K+1 3

Hence

K ~
<ZMB,»)"(2:-,)’+ Z «(Bx, ))‘/(10;—,)'+%‘

i=1 =K+
<) B ) +7+§

28 -
<PEC(F) + ?g./’" (F)+e

.02

for all ¢ > 0. This yields
AE(F)SPL(F)  forall FSE,. (4.2)

Let E, = |, F,. Then (4.2) implies that

nr—

#“

HEUE,))=HT (U (F,nE, )><2 HEWF,NE,,)

<Y sup ALUF)KY sup AL(F)

i FeFinkbn i FSFnE,

SZ-?ZJ(F/),
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whence

H41(E,) < P4 (E,) forall meN,

HY
This completes the proof since E,, » E and 2% is regular.

(i) This follows by an argument similar to the proof of (iii).
However, since ¢ <0, u(B{(x, 5r))? <u(B(x, r))? for all x and we need not
assume that g e A(RY).

(iv) Let {eN be the integer that appears in Besicovitch covering
theorem. We first prove that

HTUF)<L{PL(F) (4.3)

for all FSRY Let >0 and write ¥ ={B(x,r)|xeF, 0<r<d}. It
follows from Besicovitch covering theorem that there exist { countable {(or
finite) subfamilies (B(x;, r;));, i=1,.., of ¥" such that (B(x;,r;)),,is a
centered d-covering of F and (B(x,,r;)); is a centered J-packing of F for
each i Hence

Letting 6 N\ 0 yields (4.3). Let Ec R and Ec |, E;. Then (4.3) implies
that

wgE1=ay (UEAE) ) <T 3 (EAE)

i

=Y sup ALUFYSLY, sup PLUF)

i FeEnE, i FSENE;

SCZ.?Z"(E,),

whence #4(E)<{285(E). B
4.3. Proofs of the Results in Section 2.3

Proof of Proposition 2.5. The statements are true for g=0 by (1.2) so
we may assume that g #0.

(1) For meN write

Tm = {X € A_/a 1‘*———————-—0g IUB(x, r)

0 |
<a+— for O<r<~}.
log r q m
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Let meN and 0 <y <1/m. Let (B,:=B(x,, r,)),.r be a centered y-cover-
ing of T,,. Then clearly

log p( B(x,, r;)) - +(_).
log r; = q

U

'U(B(’Yn r, ') 2 r’j.(+ (3/q)

{

‘l(B('Y” r:'))‘12r7q+(;

U

ﬂ(B('\',w r; ))rl (2,.[ )r > 21'.7(/+o‘ +1
Hence

_/{qa+t+z§(T

] ¥

”) < Z dldm B(,\‘,», r )z/at +1+S < 2 +1+8 Z ’,:u/+()‘ +1

i i

200N u(Blx, 1) (2r,),
whence

_ o 1
’”‘(]‘x+l+¢>(T’”)<2ql &vt)c%‘q.l(T ) fOF n<—.

K N m
! e m

Letting # ~ 0 now yields

HOTEAT, )KL NT,) <270 e (T,,)  for meN.

"

Clearly T,, » X* whence

ﬁqm+r+d(Y'x) =Sup »,{4/m+l+()'( 7* )<2111+¢)' Sup ” ;{ l( Tm) <2(/1+.5'% :[, I(Ak/;()~

”m
” "

(i1) For meN write

y log uB(x, r 1
Tm: {'\.E.Xm | a+f'§Mf0r0<r<—}.

q log r m
and proceed as in case (1).

(ii1)  Follows immediately from (i) and (ii).
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(iv) We first prove that dim(X*) < ag + B(g) for 0 <¢. It is sufficient
to prove that

dim(X*)<ag+1t+06

for 1> B(q) and 6> 0. Fix > B(q) and 4 >0. Since #7'(X*) =0 we may
choose a covering (E;),.n of X* such that Zi:"?;’;’(E,-)<l. Let I=
{ieN|X*nE;#J}. Since X*=J,;,(X*NnE,),

dim(X?) =sup dim(X*n E,),

iel
and it is thus sufficient to prove that
dm(X*NnE)<og+t+0
for each ie I. Now fix ;eI Then

lim 2% 1(E;)=2%"(E,) <],

)
n~0
and we may choose an integer Ne N such that

Pt (E)<l  for nxN. (4.4)

e, 1in

Let xe X* Then liminf, _ ;loguB(x, r)/logr<a<a+(Jd/q) and we can
thus choose a sequence (r,(x)),.n such that 0 <r,(x) <1/n and

7
< -.
log rll('\.) \1+q

Hence

UB(X, 1 (x)) =1, (x)
U

BOX, (X)) 2 (r (X)) =, (x)* (45)
U

L(B(x, r (X)) (20, (X)) 3 2F, ()™ 149,

Put ¥,={B(x,r(x)) | xeX*nE, kzn} for n=N. The family v, is
clearly a Vitali covering of X* n E,, and we can thus (cf. [ Fal, Theorem 1.10])
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choose a countable, disjoint subfamily (V,,:= B(x,.r,)),. < ¥, such
that either

" (diam V0= o

)

or

AP0 <(X“ N E,-)\‘\‘ U an> =0.
v
However, (4.4) and (4.5) imply that

4 3 o . 3 bl .
Z (dl'dm V"j ‘(/1+I+ )<2r11+ [ )Z,;/:+f+ 3 < 2:/1 + Z/‘( B(_\”j’ r”j”q (2',”1 )r
f / 7

7

g 21/1 +45;?:/,l (_X'x A E, ) < 2(/1 +45’?q, i (E,)

0 Lin . 1in

<2111+(5<,[" (46)

whence

A0 <(X('\E,—)\\\U V,,j>=0 for nx=N. (4.7)
i

Put V'=,.~ U, V,. Then (4.7) implies that .# ' (X" E;)\V) =0,
ie. dim((X*n EN\V)<ag +1+0. It follows from (4.6) that

'y/qo(—f» l+15( V) — Sup ” (]/?t”# l*(i( V) S Sup Z (dl'dm V“j)(/'x+ r+(5<211a+()"

nz=N nz=N j
whence dim V' < ag + 1+ J. Hence
dim(X*n E,) <max(dim((X*n E)\V), dim V) <qga+1+d
foriel
Mutatis mutandis dim(X,) <ag + B(g) for ¢<0. |

Proof of Proposition 2.6. The statements are true for ¢ =0 by (1.2) so
we may assume that ¢ #0.

(1) For meN write

log uB(x, 0 1
log uBx. r»l<a+7for0<r<*

T ={.\‘e)?’ }
log r q m

”
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Fix meN, EcT, and 0 <y <1/m. Let (B;,:=B{(x,,r;));.n be a centered
r-packing of E. Then clearly

log uB(x;, r;) <ot J
log r; =

4

uB(x,, r) =it

y

W B(x;, 1)) =29+

y

(2r) u(B(x;, r,))T =239+ +2,

Hence

Z (2’,‘_)1(1+t+(5<2aq+6 ZH(B')(] (2ri)1<21q+6ﬁZ:;(E)’

whence
TP t+0 xg+ 3 p4.
PATITAE)L 24T E)
Letting #» ~ 0 now yields
9"“’*’*‘5(E)<2“‘”‘5.@Z*’(E) for EcT,,. (4.8)

Now let 7,,= ), E;. Then (4.8) implies that

PHF I (T, Y= P+ 140 (U (T,,,nEi)><Z PHTAT, N E;)

1

<2@1q+1+¢5( T,,,f\E,-) <21q+é Z‘?Z l( TmmEi)
< 211/-4—(5 Z jz I(E’_ )’

whence

yuq+l+d( T

m

:? Sopq.
) <24y UT,,)
for all m. Since X*=1},, T,, this completes the proof.

607:116/1-10
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(i1) For meN write

o 1 B 1
+-< --Q&U—(\ ’)f r0<r<ﬁ},
q log » m

m

T —{.\‘EX,(

and proceed as before.
(ii1) Follows immediately from (i) and (ii). |

Proof of Proposition 2.7 The statements are true for ¢ =0 by (1.2), so
we may assume that ¢ #0.

(1) For meN write

log uB(x, r)

T,= {.\' €A
log r

0 1
<a—- for O<r<—}.
( m

Let meN, EcT,, and 0 <y <l1/m. Let (E,), . be a covering of E with
rpi=diam E,<n for all i. Put I={i| E,n E# &} and choose x,e E, E.
Then (B(x,, r;}); s a centered n-covering of E, with

loguBlx;.r)) 9
log ¥ g
Y
uB(x, r) =2 W
|
,ll( B(,\'i, r; ) )’/ < rit(/ S
{
H(B(x, k) (2r ) <29+t 5

Hence

}?""(E)éZ/I(B(,\',.)‘,))" 2"_ <2 Z g+t

RN
< 21 Z (dl'dm Ei)m/ +1 0"
i

whence

, I
HEUE)VS2 AT AE)  for p<—.
m

Letting # v 0 now yields

HENE) K2 AT AE)K2' AT AT,
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for all Ec T,,, whence

HENT,) <2 XT,)  for meN.

g

Since | J,, 7, = A4 this completes the proof.
(i1) For meN write

o 1 B x, 1
7, = {xeA [ a——swfor0<r<—},
q log r m
and proceed as in (i). |
Proof of Proposition 2.8. The statements are true for ¢ =0 by (1.2) so we
may assume that ¢ #0.

(1} For meN write

log uB(x, r) -

) 1
T,=<xeAd Sa——for 0<r<—7.
log r q m

Let meN, EcT,, and O<p<l/m. Let B(x, r,),.., be a centered
J-packing of E. Then

log uB(x;. r;

g'ng(r:*JSa

|

UB(x; ;) =m0

Y

U(B(x,, r))’< ,,:_zq—o‘

|

H(B(x,, r)) (2r,) < 2p2a+1-0,
whence

Z“(B('\-i- I‘,-))(I (2ri)l gzlzr?q+l 7(5:27-1114-4)' Z (Zri)mx/+r—:)'

< 2—a¢/+<)']:(/+1——15(E),

and so 2 (E) <2 *7°P%+ " 9(E). Letting n v 0 now yields

pon

}Z I(E) < 271(/+x5.?aq+t7¢)‘(E) (49)
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for all E<T,,. Let (E;), be a covering of T,,. Then we get by (4.9),

LT, <2y (U (T, NE, )> < Z LT, NE)

i

SZJ;’,'(T,,,NE,)<2 aq+()'zy‘xq+l~o'(TmmE‘_)

<27WI‘P’Z'J}M[*””J(E,'),
and so
pd- X -+ £ PG o
PUNT,) <2 XMl AT,

Since | J,, T, = 4 this completes the proof.

(1) For meN write

T :g 9 <log,uB(..\‘, r) 1 }

”r

xed|la—-< forO0<r<—
q log m

and proceed as in (1). |

Limma 4.4, If X is a metric space, e (X)) and o =0, then

(i) X*=O fora<d.
(1) X,= fora<a
(i) X,=¢ for A<a

)

(iv) X*= for a<a.

Proof. (1) Suppose x<A4 and xe X™ Since x<A4 there exist real
numbers ¢, ¢, >0 such that a+e< —(Blg,)/qy) 1.€. —gola+e)> Blg,).
Put t= —¢,(a+¢). Since xe X'*,

log 1 B(x. r
lim inf 08BN e
r 0 log r

We can thus choose a sequence (r,), such that r, ~ 0, 0<r, <1/n and

ICEIHB( N, r,)

log‘.T <a+t+e
! (4.10)
WB(x r)) =ittt
§

/l(B(.\'. ’.”))fln (2,,”)/ > 21’.:1,“(a+z:l Rl 2/
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here the last equality in (4.10) is due to the fact that g (a+¢&)+1=0.
Hence

P 2 u(Blx. )™ (2r,) 22 forall neN,
whence 27" ({x})=>2" This clearly implies that 24" '({x})>2’
whence —qo(a+e)=t<DimZ”({x})<B(q0) contradicting the fact that
—qola+€) > B(qy).

(i1) Suppose a<a and xeX,. Since a <« there exist real numbers
£>0, go<0 such that a—e> —(b(qgy)/q,), 1. —qlax—e)>blg,). Put
t= —qola—e). Since xe X,

log 1B(x.
2 — ¢ <a<lim inf 28HB D)
r 0 logr

We can thus choose r, >0 such that all 0 <r <r, satisfies

1 B(x,
< og uB(x, r)

*= log r

4

r* *>2zuB(x,r)

U (4.11)
rive =9 < u( B(x, r))? {because ¢, <0)

Y

202 = 2P0 (B, 1)) (2r).

Here the first equality in (4.11) is due to the fact that go(ax —¢&)+¢=0.
Hence

A XYy 2 T (X)) 2 T ({x)) 220 (4.12)

H.oro

It follows from (4.12) that
—gola—e)=1< dim,qlu( {’C} ) < b(go)

contradicting the fact that —gqy(x—¢) > b(qy)-

(ui-iv) The proofs of (iii) and (iv) are similar to those of (i) and

(i) 1



138 L. OLSEN

4.4. Proofs of Results in Section 2.4

Proof of Proposition 2.10. (1) Obvious since x — a¢* 1s decreasing for
O0<a<l

(i1) Follows immediately from (i).
(m) Let £6>0 and E< X For all centered {¢ A J)-packings
(Bi: B('\'I' gi))ie f Of E*

Z/l ) :(p+ 1“’(284)1““ x) ¥
i

—Z(mB )7 (26))7 (B, (2¢,)")

<(zum vu)(zﬂ )

SEPLUE) (PEUEN *

I8 ()
where we have used Holders inequality. Hence

L}’xp#ll 2) e, ol + (1 1"(E»< /:xp+ll x} g, 2t + (1 n(i.\'(E)
i

Mot~ D

S(:’%’ﬁ:f’.( NE(AIUEY = forall & 0>0,

it <

whence

'?ap + 0 o) g+ (1 M"(E) < (ﬁﬁ I(E))az (i:{l \(EHI -

H
(tv) Let ¢>0. Then (by (ii1))

prr+(l g adE) + (1 a».t,{lk‘»H(E)

S(_‘}pujﬁlﬁ)le;(E))u (’l,il/‘;ll‘f(l{)-# ar(E))l 1:0‘020.‘

47V UE) adT(E)+ (1 —2) AUE )+

H"

which proves the assertion since ¢ >0 was arbitrary.

(v) The proofs are similar to (i).

(vi) Write B=B, ;. It is obvious that B decreasing. We will now
prove that B is convex. Let p,¢e R, ae[0,1] and ¢>0. Write B(p)=
and B(g)=ys. Clearly

;wd- ,\-+1;(E) — 0 — //)/[17 I+ z;( E)

it
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We can thus choose coverings (H,),. and (K,),;_, of E such that
Z“?Z.’+E(Hr‘)<1~ ZJZ\JM(K‘)SI
For neN write E, =)} ,_, (H,n K}). Fix ne N. Then clearly (by (iit))

apap + (1 - o) g ot +(l—a)s+e
fl‘ (En)

n
_gpap+ Il —a) g, alt + )+ (] —als+ &)
— U (HnK)

Lj=1

n
gpap 4+ (1--a) g . ax(r+e)+ (1 —aks+ &)
< 3 e “OHNK)

ij=1

ap+{1--2)g 2t +e)+ {1 —xds+e)
Z j[) o, € ‘L(H,-f\Ki)

1/7]

< Y APD I H K (PLT(H,AK)) T (by (iv)

Lj=1

x n -
< Z /P e 0K1)> < Z fz‘*%H,ﬁK,))

iij=1 ij=1

{by Holder)

<(% % 2 )(}z S apk))

i=1 =1 =1i=1

| -
(’1 Z Jp t+L ; ) (71 Z j(/ \+L(K >

i=1 =1
<n*n' T *=n< o,
Hence Dim” "' "' Y(E,)<at+(l —a)s+¢ for all neN. Since E< |, E,

this implies that

B(ap + (1 —x) g) =Dim** ' = ¢ E) < Dim? ' ~*¢ <U E,,)

n

=sup Dim? " U UE ) <aB(p) +(1 —a) Blg) +¢

which proves convexity of B since ¢ >0 was arbitrary.
(vii)—(viii) Similar to (i) and (ii). [
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Proof of Proposition 2.11. (i1) Let t=B, ,(p) and s=b, p(q). We
must now prove that

dim;‘,’”“l VUEY<ar+ {1 —a)s+e¢

for all e>0. Fix ¢>0. For me N write

”

T :{,\'EE

B X
M<m for 0<r<i}
UB(x,r) m

and observe that 7, ~ E. It is thus sufficient to prove that

ap + ) ) oot + () - s+
A (T,,) < o0

forallmeN. Let meN and F= T,,. Let (F,) be a covering of Fand 6> 0.
Fix ie N and choose 0 <9, such that

1

j/). /~+C(F,«) g?}[l)f+f(1;) +§

0 i

Clearly dim(F,nF)<b, p{q)=s<s+e whence # ¢ "(F.nF)=0, ie.

H4GTHF,nFy=0 for all #>0, and we can thus choose a centered

(/5 A 1/m A d,)-covering (B(x,, r,));c, of F,~ F such that

o1
S HBLx, ) (2 T <5
J

We may now apply [Fal, Lemma 1.9] to choose a subset J, of I, such that

U B(x;.r,)e U Blxy, 5ry)

jel, jed;

Blxy ry)n Blxy, ry) = for j keJ, and j#k.

Since { B(x;;, 5r;)|j€J,} is a centered d-covering of F,n F and { B(x,, r;)|
JjeJ,} is a centered J,-packing of F, we get

o+l x)g a1 -x)y +2
‘/{/L()' (F)

" 1-- 1 s+¢
SZ Z ﬂ(B(xip 5,[]))1,; +1( 1)1/(2.5r[1)ou+( X} A&
i jeld;
<511+H 1),\+a;z Z ’nap+|1 374
i jeld;

X/t(B(.\‘,;,—, ri/))'xp+(l )i (zr”)arﬁ—{] B A
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=cy 2 (u(Blxy, r))” (2r) )% (u(Blxy, ry))? (2r,) F5)! ==
i jedi
I —a
el Y 2 mB(xy, )P (2ry) ’“> (Z Y. H(Blxy, r))? ( 2r.,)‘“>
i jeJ; i jeld;
a 1 1 —~a
p r+c _
SE\G T ) <Z 7)

N

N

C

(

(57

(o)

( oo F)+1>a

for 6 >0, where c=5%*+!! "0 s+eyp+ =204 ] etting 50 now yields
jz{h#ll1)q,otl+(1o()s+e(F)<C<Z’?7£.I+C(Fi)+1>1

for all coverings (F,); of F. Hence

A g (0= S Y (PO OT(F) 4 1)

I

forall Fc T

no

which in turn implies that

cap+ (1l —ax)q 2t +(1 —x)s+¢
f,u (Tm

): Sup ﬁzp+(lfa)q.1l+ll7a)s+c(E)

Ec Ty

< sup o PLITHE)+ 1)

Ec Ty

SAPL T, + 1) =c(0+ 1) =c<o0.

(i) The proof of (i) is similar to the proof of (ii). |

Proof of Proposition 2.12. (i) Since B,(1)=
a=a-14+B,(1)=B¥(a)=b¥(x) for «=0.
(i1) It is sufficient to prove that

x(l—q)—e<b,(q)
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for all £ >0 and ¢e R Now fix ¢>0 and ¢ R and choose #, 3y >0 such
that

(1+l¢g)n+y<e.

Write
T={xesupp o, (x)=a}
and

log uB(x, r)

1
T,,,:{xeT|ac—;;< <oc+;7for0<r<—}

log r m
for meN. Since 7,, /T and u(7T)>0 we may choose MeN such that
1T 1> 0. 1t follows immediately from Corollary 2.9 that dim( Ty )= a—y
whence

HP Ty = (4.13)
Observe that if ye T, and 0 <r < 1/M then

1 Bix,r
loguBlxr)
log r
and a small computation now yields
W B{x, ) = rpr (4.14)

Let 0<d <1/M and (B(x,,r;)); be a centered J-covering of T',. Then
(4.14) implies that

Z /l(B(,\',», ',i))q (Zrl_)all q4) & ZZ r;u/ + \1/!(2,.[)1(1 q) &
i i
:zatl (/i'a:z',r:+l/\q\ a;zall ql- L‘Z’.Cil 0wy
i i
=Y (2 1 Y=Y (diam B(x,. r)) "7
i i
ZeA S Ty,

where ¢ =2 ™ 777 Hence

Faml D ST )2 el (Tyy).

R TR
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Letting 6 N0 now yields
%'Z‘at 1 —q)*c( TM) > j':/l ol 7(]'76( TM) > cH 1—;17;1( TM) =
from which we infer that a(1 —¢) —e <dim4 (7, <b,(¢). 1
Proof of Proposition 2.13. (i) Let g < p. We must now prove that
B(p)+ A(p—q) < B(¢q) = Dim{(supp) u).
It 1s sufficient to prove that
yz B(p)+(4 7'1)1p7<[)7c(supp /l) > O

for all n,e>0. Fix #,¢6>0. Since Ae/'. there exists z>0 such that
A—n< —B(z)/z< 4. For meN write

B(z "
( )<10g HBx. 1) for 0<r<l}.
z log r m

T,,,={.\'€Xd

Clearly

I

y‘/' B”,)+(d,,,)(p,q)7g(supp ”) Byq. Bip)- (B(z)cHp—g)—c¢ (U Tm>
”

=Sup yq, Etp)A(B(:);’:)(pfqlfs(T )
nt

It is thus sufficient to prove that there exists an integer M € N such that

i BRI BEVE P ) (T ) >, (4.15)

ya

Observe that

Supp#:XAUUXdilm=—ij:U Tm*

n

since X*=(J for a< A by Lemma 4.4. Hence

o = #L P P (supp ) =sup X170 X(T,,),

3
m

and we may thus choose M e N satisfying
vi=PnEN AT ,) >0,

We claim that M satisfies (4.15).



144 L. OLSEN

First observe that if xe T, and 0 <r < 1/M then

z B(x, r
B )<log/4 (x, r)

- log r
Y
po B = uB(x,r)
U
(4.16)
r B9 = u(B(x, r))*
Y

,ll(B(.\', r) ): (Zr)Bl:H» (£/2)=/(p ¢ S 2[31:)+[{:;‘2N:3'{p 7"”"“'-"’2":"“"” gy

1 (£2)z/(p- q))
- 2Nzl p —
<2B(-)+m-)(~(1) o)) (M> =,

Let E€T,,, 0<d<1/Mand (B,=B(x,,r,)), be a centered J-packing of E.
Then

;ﬁ;ﬁ:g(/;) BEEr D EY S (BT (2r,) B0 B )
=Y (u(B)" (2r,) 50~ o2))

x (/l(Bi): (2}’,)8(:' +1;:;‘2)«:;1/7——:/)»)1(/ -pYz

> (-“/ Py Z !I(B")[J (2":’)6”" (e/2)

q —

by (4.16) since d

~p<0

Hence

apd. Bipy- (Biz)zip q) -« Ag - pYzopp. Bip) - (6/2)
'fy.:)' ! (E)Z( "%/4.6, (E)~

and letting J 0 yields

?r/, Bip) —(Blzy=up r—q)fe(E) 2 (,(q rp}s“:;}//:. B(p) (f:J‘.’.)(E) for EE T‘w. (417)

7
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Now, if T, = J; E; then (4.17) implies that

g = p)z — opp. B{p)— (&2} {q — pliz
0 <ve'd=PVs= pp B =Ty la—p

:C(r/"m/‘:y;‘). B(p)—(g/z) <U (Tar E,)>

i

g —p)iz opp. Blp)—(&/z) (g—pY= gpp. BLp)—(&/2)
Lty Zyg PIZEET  NE)< 7P Zf/’f P Ty N E)
i i
gpq. Blp) —(Blz)z)Np—q)—¢ P4 Blp) —(B(z)/=}p—q)—¢
QPR PO Ty E)S), P P4 (E),
i i

which shows that
0< vci(]*pl‘f‘: < 9P B(p)—(B(z)/z}p—q) *C( TM)-

By monotonicity E:=lim,_, , (B(q)+ Aq) exists. Also B(q)+ Aq is non-
negative for ¢ >0 by the definition of 4, whence E>0.

(11) Follows easily from the fact that B is decreasing.
(i) Let ¢ <p. We must now prove that

B(q)— A(p —q) < B(p) = Dim/(supp u).
It is thus sufficient to prove that
yp.B(q)~(f7+rz)lp7q)fc(supp‘u) >0
H

for all #,&>0. Since A€/’ there exists z<0 such that 4 < —B(z)/z <
A+15. For meN write

| B(x, B(:z 1
og HB(x r)<_ ( )for O<r<—}.

T, = {x e X4
log r z m

Now use the fact that suppu= X'oU,Xi,1m=X"=U, T, (since
X,= for A <o by Lemma 4.8) and proceed as in case 1.

(iv) Follows easily from the fact that B is decreasing. ||

Note that Proposition 2.13 does not hold if B,, 4, A I,, and I are
replaced by b=b,,4,a, J, :=={—b(g)/qlqg>0} and J _:={—b(q)/q]|q <0}

respectively. Indeed, let x4 be the measure from Example 4 in Section 3.
Then a=d and a=D. Also

(D—dyg+d g<]1

b/,(q)+gq={D l<g
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which is not decreasing and

Cd g<|

1 ) =
ulg)+ag —(D—d)g+ D 1<y¢g
which is not increasing.

4.5. Proofs of the Results in Section 2.5

Proof of Theorem 214, (1) Let a:=inf _, Jj’,' {x, v). The assertion is
obvious for ¢ =0 so we may assume that ¢ > 0. For me N write

E, = %.\‘GE

Now observe that E,, ~ E. It is thus sufficient to prove that

B X .
K ‘\’5')<m for 0<r<1}.
uB(x. r) n

HCNE Na—n) <v(E)+¢

for all meN and », ¢>0. Fix meN, ¢>0 and 0<py<a By inner
regularity it is sufficient to prove that

.//;’;’(F)(af;/) <UE)+¢
for all closed subsets Fof E,,. Let F be a closed subset of E,,. By definition
H @ (F)y=supycp A7 '(H) and it is thus sufficient to prove that

A
ACCH a—n) <WE) +¢
for H= F. Now fix HS F. For 0 > 0 write B(F, )= {xe R’ |dist(F, x) < J}.

Since F is closed, B(F,0)NF as 0N0, and we can therefore choose d,>0
such that

wmﬂdn<vuw+§ for o <dy.

Since # - "Hy< # - (H)< oo it 1s possible to choose d <9, satisfying

HCH )~

a

< HCHD. .
o S ) (4.18)

Put v ={B(x,r)|xeH, Sr<d. w(B(x,r))=(a—n) p(Blx,r)(2r)}. It
follows from [ Fa2, Lemma 1.9] that there exists a countable, disjoint sub-
family (B, = B(x,.r;)),< ¥ such that

-
H | B, | Bx,.5), (4.19)
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for all k e N. Observe that

Y u(Blx;, 5r )25, <5'm Y p(Blx,, r))4(2r)

<S'm(a—n) 'Y v(B(x;, 1)

<S'mla—n)~ <U B(x >
We may thus choose Ne N such that

S W(B(x, Sr))(2:5r) < (a—n)

i>N

It follows from (4.18) and (4.19) that

A H W a—n)<(a—n) H L H)+—

"

<la—n) (Z u(B)? (2r)" + Z pUB(x;, 5r))) (2 5’.‘)’) +3

i i>N

<UB >+23<v(B(F 0))+23—
SwF)+e<uE)+e
(i) Puta:=sup,..x d" (x, v). It 1s sufficient to prove that
v(E)<J(’I";’(E)(a+17)+e

for all & #>0. Fix ¢ #5>0 and write E,={xeE[v(B(x,r))<
(a+n) u(B(x,r)) (2r) for 0 <r<1/m}, meN, and observe that E,, ~E. It
is therefore sufficient to prove that

WE,)S A (ENatn)+e

for all meN. Let me N. Since J?"’ (E, )< H1'(E,)< o we may choose
a centered 1/m-covering (B(x;, ,)) of E,, such '[hdt

i
a+r7'

Y 1 BCx, r)) (2r) < A4, (E,) +
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Hence
\’( Em) < Z V(B(xﬂ ri)) < ((l + ’7) Z ﬂ(B(.\‘,-. ri))‘l (zri)l
SHATHE,Na+n)+e |
Proof of Theorem 2.15. Proof of 2% (E)inf, gd'(x,v)<V(E): Let
a:=inf, _pd%'(x,v). The assertion is obvious for ¢ =0 so we may assume
that ¢ > 0. It is sufficient to prove that
AL NEYa—n)<Vv(E)+e

for 5, £>0. Fix £¢>0 and 0 <y <a. By inner regularity it 1s sufficient to
prove that

2EUF ) a—n) <SUE)+e

“

for all closed subsets F of E. Let F be a closed subset of E. For ¢ > 0 write
B(F,0)={xeRY|dist(F, x)<d}. Since F is closed, B(F,d)\F for & \0,
and we can therefore choose J, > 0 such that

V(B(F,d))<v(F)+e for 0<d<d,.

For me N write

F= {"'€F| WB(x, 1)) = (a—n) u(B(x, r)?(2r) for 0 <r<;i~l}

Fix meN and 0<d < 1/m A ;. Let (B(x,, r;)); be a centered d-packing of
F,,. Then

(a—n) Y jBx, r)?(2r)' <Y WB(x,. r)) =V <U B(x,, r,»))
SWBF,0)<viF)+e<v(E)+e.
Hence
(a—n) PLUF,)<(a—n) PLUF,)<(a—n) PLU(F,) <SWE) +e

Clearly F,, 7 F, whence

(@a—nm) #L(F)<V(E) +e
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Proof of WE)< P (E)sup,.pdf'(x,v): Let a:=sup, . d?'(x,v) It is
sufficient to prove that

WF) < a?;’,' "(F) forall FcF. (4.20)

Indeed, assume that (4.20) is satisfied and let (E,), ., be a cover of E. Then
WE)=v (U (En E,-)> <Y WENE)<a) P4 (EnE)<a) PL'(E),
whence
WE)<aZ?i'(E).
Fix FS E. In order to prove (4.20) it is clearly enough to prove that
WFY<(a+n) JZ “F)+e

for all , £>0. Let , ¢ > 0. Choose J > 0 such that

PF)<PL(F)+

a+n
Put
¥ ={B(x.r)|xeF, r<d, v(B(x,r}) <(a+n) u(B(x, r))¥(2r)}.

It follows from Vitalis covering theorem (cf. [Gu]) that there exists a
d-packing (B(x,, r;)), S ¥ of F satisfying

v <F\“\\ J B(x,, r,-)) =0.

Hence
WF)=v <Fﬂ U B(x,, r,-)> SZ V(B(x;, r))
Sla+n) Y W B(x, r)) (2r) <(a+n) j:’[.:s(F)
<(a+n) 28 (Fy+e 1
COROLLARY 4.5. If ue #(RY, E) and #'"'(E) < oo then

C?Z”(.\', c}lelE'): 1 Afor ,ﬁ“[l ““aq. xekE.

p’

607:116/1-11
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Proof. “<” Put v=#4'|E, F={xeE|d%'(x,v)>1} and F,=
{xeEld%'(x,v)=1+ 1/m}. Then theorem 2.14(i) implies that

o m o

l
”(I.’(Fm) (1 +_> < V(F’”) =4 ’(Fm)*

whence #%(F,)=0. Since F=1|),, F,, this completes the proof.

“>” Put v=#7'|E, F={xeE|d'(x,v)<1} and F,=
{xeE|d'(x,v)<1—1/m}. Now apply Theorem 2.14(ii) and proceed as
in the previous part of the proof. |

CoroLLARY 4.6. If P (E)<oc then
(_1;{' "(x, f;{ 1EYy=1 Jor P '“au. xekE.
Proof. The proof is similar to the proof of the previous corollary. |}

Proof of Corollary 2.16. (i)= (i1). Clearly

H4F)=#""F) for FcE, (4.21)

" rg I

tindeed. if FSE then #*/(F)+ #*"(E\F)=#*(E)=27"(E)=

PEF)+ Ph ‘(E\F), and the inequality .# 1< 2% now yields (4.21)). By
Corollary 4.5 and (4.21),

di'(x, #4|Ey=1 for #%"aa xeE. (4.22)

m

Now putv=#"|E, F'= {xe E|c_/j’; “(x,v)<l}and F,={xe Eld'(x,v) <
1 — 1/m}. Then Theorem 2.15 and (4.22) imply that

PIF,)=H0F,)  (by(421)

H

1
:V(Frvy)g"y:I,J(an) (l _7>*

m
whence #%(F,)=0. Since F=},, F,, this shows that .#7'(F)=0, ie.

L<dt (x, A0 E) for #%’-aa xeFE (4.23)

d,
The statement in (1) now follows from (4.22) and (4.23).

(ii)=(i) Put F={xeE[d% (x,# "' |E}y=1} and v=s4'|E It
follows from Theorem 2.15 and (ii) that

pEUE)=25(F)  (by(ii)

T e

SYF)= A T(F)< H 4 E)<S2UE),
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(1) = (ili) The proof is very similar to the proof of (i) = (i1).
(iii) = (1) The proof is very similar to the proof of (ii) = (i). |
4.6. Proofs of the Results in Section 2.7

Proof of Propositions 2.19-2.22. The proofs of Proposition2.19
through Proposition 2.22 follows from the next eight claims which we will
prove below.

Claim 1. LYUE)<CUE), LIE)<CI(E) for ge R.

Claim Li(E) = CI(E), Z(E))C:{(E)forO<qand,ue.”/j([R",E).

Claim Li(EY2 CI(E), Li(E) = CYE) for ¢ <0.
a

Claim

Claim
Claim

Ci(E)> A%(E) for 0<q and ue A(R E).

2
3

Claim 4. C(E)<A"( ) for ge R.
5
6. Ci(E)= AE) for ¢<0.
7

dim{(E)<LI(E) for 0 <g and we PR E).
Claim 8. dim{(E)< L} (E) for ¢ <0.

=pu

Proof of Claim 1. Let { be the integer that appears in Besicovitch
covering theorem (lLe. Theorem22). Let >0 and put ¥ =
{B(x,d)|xeE}. It follows from Theorem 2.2 that there exists { coutable
(or finite) subfamilies (B(x U,O)) =1,..,{ of ¥  such that (B{x,,d)); is
a cover of E and (B(x;,d));1s a packmg of Efori=1, .., { Hence

i
Ty sl <ZZM Xy, 0))7 < Z Sh.AE) =05} 5(E).
i=1
Taking logarithms and letting ¢ N0 yields Claim 1.

Proof of Claim 2. Since u e # (R E), we may choose 4 € ]0, o[ and
ro >0 such that

uB(x, 3r)

sup——< 4 for O<r<r,.
xet£ UB(x,r)

Fix 0 <d <r,. Let (B(x;,d)),; be a centered packing of E and (B(y;, §/2))
a centered covering of E For each ie N choose an integer k(i) such thdt
x;€ B(y.;), 0/2) and observe that

i#j= k(i) #k(j)



152 L. OLSEN

Hence

. WBlx,;, d) )" < < (5>>"
2 - fl:§ I aind bt ARG .z
- /l(B(.\,,o)) </IB(}';<<,).(5,/2) :u B .}/\’“"2

i

,lB(yM,,,3o‘/2)>v < ( o‘> y
<Yy (B Tk 202 Bl vy, .=
2(;;3( Ve 0/2) ) FAT (TR g

/ o‘ 74
<AqZ<B<yk(,,,§>>

o
SA"Z;1<B<}'/.E>> (by (2.4))
J
whence S, (E)<A'TY ,,(E) for 0<d<r, Taking logarithms and
letting 0 ~ 0 yields the desired results.

Proof of Claim 3. Similar to the proof of Claim 2.

Proof of Claim 4. Put 1 :=A{(E). Let ¢>0. We may choose 0 <4, < |
such that

‘i([‘ l»+::(E) <1 for 0<d< 0‘,:.

7R

Fix 0 <d <4, and let (B(x,, d)), be a centered packing of E. Then
Y p(B(x;.0))4=(20) "V w(B(x;.0))7(25) "

<(25) (/+1:qu.l_+z;(E)<(25) (r+:;)‘

o

whence S¥ (E)<(20) " Taking logarithms then yields

log S (E)<(t+£)log2

H. O

—logd — logd

+(t+¢)

for 0 <d < d,. Letting o N0 now yields f;’,(E) < t+ ¢ which completes the
proof since ¢ > 0 was arbitrary.

Proof of Claim 5. Put t:=4%(E). Since € A(R, E), we may choose
A€ 10, o[ and 1> r,>0 such that

uB(x, 2r)

su < A4 for O0<r<vr,.
XEE )UB(X'r) 0
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Now fix £>0 and write a:=log(A(1 —2 %)~ 12/~ (] v (L) 2
2'7#). In order to prove Claim 5 it is sufficient to prove that

a <logS”(,( )'

Vo 0 :30€]0,04[: 1t —e—
0€ 10, rg[ €] ol :1—¢ 10g5 “log o

Let doe 10, 1[. Since o0 =2%""“PUE) P4 (E) there exists a
centered J, -packing (B;= B(x;, r;)); of E such that

5 WB F)) (21 1

For ne N write

. 00 60
1,,:{1 Wgr,<i}

Aun = Z ,U(B(x,—, ri))q-

iel,

Clearly

1<Zﬂ N (2r,)

l 1 —{&/2) 1 —1{&/2)
el el
o‘ t—e¢ 50 £/2
< —_—
(l Zﬂn <2n> <2n>
50 1—¢ 50 &2
<c =
(wne(32) )2 (30

< o‘o L —&
L, sup iy, | = ,
2SUp 4 L

nt

where ¢, =2"""2(1 v (3 7“1 —-27%?)"', and we may thus choose

N e N such that
0‘0 1—¢
l<copun <F> .

Now put §:=0,/2¥*". Then d€ 10, d,[ and (B(x;,J)),.,, is a centered
packing of E {because J :=4,/2" "' <r, for iel,), whence
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S¢ AE)2 Yy, u(B(x,, )
iely

q
Bix;,r.))
uB(x;. 85/2%) > #Blx;, 7))

iely
=>4 'Y Bxr)i=A4 luy
iely
a‘ (r—e)
>A I(,2 1 <:2__‘%> =4 l(,2 12 (I—f&)b‘l ¢

Taking logarithms now yields

q 2
logSM,(F)>_ a e

—logd = logd

Proof of Claim 6. Similar to the proof of Claim 5.
Proof of Cluim 7. For me N write

HUB(x, 3r)

T, = %x ek
‘ uB(x,r)

1
<mfor0<m<~—;.
m

Since J,, T, = E. dim?(E)=sup,, dim#(7,,) and it 1s thus sufficient to
prove that

dim{(T,) < LI(E)
for all meN. Now fix me N. We must now prove that

dim!(T,) <1

m

for all LY(E) <t Let LI(E) <t We must now prove that # 4 '(T,,) <= ie.

sup A LU(T)< o,

ret,

Fix T€T,,. Since 1> L% (E)=liminf, ,log T ,(£)/—logd there exists

< O

a sequence (4,,), such that 4,,X0, 8, 0, I[ and

. On

log TY . (E)

t> for neN.

—log 4,

Hence: For ne N then there exists a centered covering (B(x,;. d,)) of E
satisfying

()‘n ! > Z ,U( B('\‘nii (511))'
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Let neN and put I={i|B(x,,d3,)nT#I}. For iel choose ye
Bix,;,0,)nT. Then (B(y,, 26,});.,1s a centered 2d,-covering of 7, whence

Z ’7(5,,(T < Z H B(‘l’25n)) (46),

iel

B() 26 9

( Xpis 36/1)
#B('\m‘* 671)

<412<

iel

q
> #(B(xni’ 6n))(15r’1
<4'm? Y pu(B(x,;, 6,))70,<4'me
iel

Letting n — oo gives J# % /(T) <4'm? for T=T,,, whence #%(T,,) <4'm*
and the proof is complete.

Proof of Claim 8. Similar to the proof of Claim 7. |
4.7. Proofs of the Results in Section 2.8
We begin by proving two small lemmas.
Lemmas 4.7. Let ue #(R?). Then
(1)
qlfngl?<Li*'(supp )  for q<0
qli v qli<Li*'(suppp)  for g<0
(i1)
Ci*'(supp p) < qli ngli  for 0<gq
Corsupp u)<qlfv glt  for 0<gq
(111)
Cit'(supppu)=qli n gl for geR and pe#(RY)
Cet'suppu)=ql? v qlt  for qeR and peA(RY).

Proof. The proof follows from Proposition 2.19 and Proposition 2.20
and the next four claims which we will prove below.

Claim 1. C4*'(supp ) <ql% A qI%, C4*'(supp u)<ql?v ql4 for
¢ <0 and pe Z(RY.

Claim 2. Co*'(supp p) <ql? A ql?,  Co*'(supp u)<qlf v gl for
0<g.
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Claim 3. ql¢ A gl <L '(supp p), ¢l v ql < L$(supp p) for 0<gq
and e A(RY).

Claim 4. gl A gl <L '(supp u), ql? v ql < LI (supp p) for ¢ <0.

B

Proof of Claim 1. Since ueA(R“) we may choose A€ ]0, [ and
ro > 0 such that

B., .
w3

u
N e supp g ,UB(.\', r)

for O<r<r,.
Let 0 <d <r, and (B(x,, J)), be a centered packing of supp . Then clearly

Z,U(B b)"“—ZMB N p(Blx,, 3))

~-Z,U(B Lo ' du(z)

Bixi.d)

- uB(x;, 0\ .
< B(z, 20 )Y o
<;JBM,,.H<#B( 20)) Hs V()

BN e
g;"”tn,:ﬂ(/lB(,\‘h36)) L4 B(z,20)) du(z)

<4 1y i 1 B(2,20)) dulz)

i VBIxi &)

=4 J 1 B(2,20)) du(z)

Ui Blx;, o)

<A [ p(Blz,20) dulz).

Ysupp p

whence log(S%' (supp ) < —qlog(A4)+ql? 5. Letting N0 yields
Claim 1.

Proof of Claim 2. Similar to Claim 1.

Proof of Claim 3. Since pe#A(RY) we may choose A€ 10, «[ and
ro > 0 such that

H1B(x, 3r)

—— < A for 0<r<vr,.
N E supp u ﬂB('\’ I')
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Let 0 <d <ry and (B(x,,9)), be a centered covering of supp . Then

[ B 200 duy)

supp ¢

<y H(B(x, 26 ))* du(x)

i VB(x;i 3)

pBL, 26N
<) fm\,’_m <m) w(B(x;, 0 )¢ du(x)

uB(x;, 30 )\* - _
<Z{1f8u—,.m <m> U(B(x;, 0)) did x)

A7) L( H(B(x;, 0))" du(x)

i X;,0)

=AY p(B(x;, 0))"",

whence gl¢ ,; < qlog(A4)+log(T %' (supp u)). Letting 6 \ 0 yields Claim 3.

I

Proof of Claim 4. Similar to Claim 3. |

LeMMA 4.8. Let ue #(RY). Then the following hold
(i) (¢—1)Dgv(qg—1)Di=Cg(supp u)

(i) (¢—1)Dj A (g—1) Dj=Ci(supp u).

Proof. The proof follows immediately from the definitions. §

Proof of Theorem 2.24. Follows immediately from Proposition 2.19,
Lemma 4.7 and Lemma 4.8. |

4.8. Proofs of the Results in Section 2.6
We will first prove Theorem 2.17.

Proof of Theorem 2.17. Theorem 2.17 follows immediately from
Proposition 2.5 through 2.8 and Lemma 4.4. |

We will now prove Theorem 2.18. The proof is based on Lemma 4.9 and
Theorem 4.10. Lemma 4.9 is a small lemma concerning Legendre trans-
forms. The lemma is believed to be known. However, we have not been
able to find any references, so we include the proof for sake of complete-
ness. Theorem 4.10 is a large deviation result inspired by some theorem in
[Ell, EI2].
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LEMMA 4.9. Let f2 R— R be decreasing and convex, te R and ¢ > 0.
(1) If f'_ () <o then there exists 6 >0 such that
e+ ¥ —ay+a(t+d)—f(t+0)>0.
(1) If o< f' (1) then there exists 6 >0 such that
e+ f*(—a)+alt—9)—flt—0)>0.
Proof. (1) We divide the proof into two cases.

Case 1: e+ f*(—a)+at> f(1). Since f is convex and therefore con-
tinuous there exists d > 0 such that

e+ fH—a)+ar>—ad+ f(t+9).

Cuase 2. fityze+ f*( —a)+oar. We have ¢ + f*( —o) > inf ( —xot + f{x))
and we can therefore choose xeR such that £+/ —a) > —xo+ f(x).
Now put é =x —t. Then clearly

e+ —a)+at> —xa+ f(x)+at=—ad+ f(1 + ).

Also 0 > 0. Otherwise 0 =9 =x— 1, 1e. t = x whence ot — x) = " t—v)z
Siy—f(x) and so e+ f*—o)+at>(—av+ f(x)) +au—a(r~\)+/ (x)
> f(¢) which 1s a contradiction.

(i1} The proof is similar to the proof of case (1). |

THeoREM 4.10. Let (2, F, P} be a probability space, (W), a sequence
of negative random variables d(ffmed on Q and (a,), a sequence of positive
real numbers such that a,, — o as n— oc. Define ¢, R— R by

1
¢,(1)=—log E(exp(tW,)),
n
where E denotes expectation wrt. P. Assume

(

1) Each function ¢t} is finite for all teR.
(2) () :=lim, ¢, (t) exists and is finite for all te R.
Then the following hold

(1) The function ¢ is decreasing and convex.
(11} IfteRand ¢ (1)<, (1) <a then

1
lim sup —log(e  “““"Eexp(tW,) 1, a5 1) <0.

n— s n



(1il)

(iv)

Proof.
(1)
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If Y, e <o for all € >0 then

. W,
lim sup <L (0) P-a.s.
a

n n

IfteR and a<c'_ (1)<, (1) then

. 1 _
lim sup — log(e " ““"E(exp(tW,)) 1} 1, jur) <)) <O

n— ”

If S, e <o for all >0 then

: . Wn
¢ (0) < lim inf P-a.s.
n a,

(i) Obvious.
We claim that

gi=c(t)—(c*(—a)+at)>0.

Otherwise c(t) <c*(—a)+at <(c(t) —at)+at =¢(1), ie. ¥ —a)=c(t)—at
whence aede(t)=[c"_{1), ', (1)] (cf. e.g. [EI2, Theorem VI.5.37]; here ¢
denotes the subdifferential of ¢), contradicting the fact that a>c’ (¢). It
follows from Lemma 4.9 that there exists ¢ > 0 such that

Hence

e+c*(—a)ta(t+d)—c(t+5)>0. (4.24)

1 .
—log (e ““E(exp(t W,) 1w, um5a1))

a

n

1 .
=—log <e T ett) f oM dP>
a {U Wy fan) 2 a}

n

:l log <e—u,,(l:-+-1‘( So) Fal) — Wy d J er”',,+u,,a¢5 dP>
{ (W an) 2 af

an

si ]Og (e»- aple+ e —a)+all +0)) f e'”"nﬁ'fs”’n dP>
a, U Wyian) =)
1 e 5
S_(;_log(e—u,.u+(*( 71}+flll+0)l[E(exp((f+§) W")))
n
=~1—10g(€7”"“+(-‘( a}+m(r+:5i)+u,,r,,1l+x5))

n

= —(e+cH—a)+a(t+J)—c, (t+)) (4.25)
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The desired result follow from (4.24) and (4.25) since ¢, (t+d)— c(t+3)
as n— oo,

(ii1) For n, meN write

a

(W 1
Tnm = —= Z r+ (O) }
" m
Now fix n1e N. It follows from (ii) that there exists a number ¢ >0 and an
integer N e N such that

l
— log(¢ ““'“E(exp(OW,) 1,

da,

) S — 8

for n=N. Hence (since «(0)=0) PT,,)="FEexpOW )1, )<
ety ant = o i for = N, le.

pr(ge

¢

0) +— > Z P nm
Z P mn)+ Z P nm

N=n

Z P mn)+ Z ¢ e < L.

n< N

Borel-Cantelli’s lemma therefore implies that

w, 1
P< >(+10)—+——HIO> 0 for all meN,
u,

whence

P(llmsupﬂi<¢ (0)> (Q U{——>(+(O)+~I~HIO}>=1.
Y m

n an "

(iv and v) The proofs of (iv) and (v) are similar to the proofs of (ii)
and (ii). f
If xesupp u and (r,), is a sequence in ]0, I[ such that r,— 0 then we
write
. . .1 B '.’ "
g}l('\“ r”) — llm lni _%_'u(\hr).’
n ]Og r,
log 1 B(x, r,,)

& (x,r,)=lU0msu
" n p lOgI”

n
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If «,(x,r,) and «,x,r,) coincide we denote the common value by
,(x,r,). We are now ready to prove Theorem 2.18.

Proof of Theorem 2.18. (1) Write r, :=r,
K:=K,, K=K, and

Dy

w L=, @ i=0,, vi=v,

M:={xesupp u| ¢, (0)<a,(x,r,) <& (xr,)< —c_(0)}.
First, observe that

t=b,qg)=B,q)=41,9). (4.26)

Indeed let > 0. Now choose 0 <4, <(r, A 1) such that |@(r)/logr| <e/2
for0<r<d,. If0<d<d, and (B(x,, r;)), 1s a centered J-packing of supp u
then

L (B(x,, 1)) (2r) < (27K sup (rie™ ") Y v(B(x,, 1)

i
<(2°K) o7
(since rie ?  pieleP BNl — pi2 < 557) whence 2% L*e(supp p) <

(28/K) 052 for 0 <8 <4,. Letting 6 v0 now yields #4 " *“(supp u) =0, ie.
I

A,(q) <t +e¢ for ¢>0. Mutatis mutandis 1< b,(q).

Next observe that
a(x)=a,(x,r,),  a(x)=d,(xr,) (4.27)
for xesupp v. Indeed if neN and r, , <r<r, then

logr, loguB(x,r,) < log uB(x, r) < logr,, ,loguB(x,r,, )
logr,,, logr, —  logr = logr, logr,,,

(4.28)

Equation (4.27) follows from (4.28) since logr, ,,/logr,— 1 as n— oo by
assumption. In a similar way we obtain

&, (x)=a,(x,1,), &, (x)=&,(x,7r,)
for x e supp u, whence
M=X,(.,+(0)0X’*"?‘°' (4.29)

Consider the probability space (Q, %, P)=(supp yu, #(supp ), v).
Define random variables W, on 2 by W, (x)=loguB(x,r,) and put
a,= —logr,. It follows immediately from Theorem 4.10 that —¢' (0)<
a,(x,r,) <&, (x,r,)< —c_(0) for v almost all x, ie.

WM)=1 (4.30)
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Also, if xesupp u and 0 <r<(r, A 1) then

log vB(x.r) _log K loguB(x.r)  log(2r) o(r)

logr ~ logr ! log r logr logr’

whence
g(—¢ (0 +1¢ for ¢<0

Qt.,(-\')=91v(~\‘,r,,)Z{q(ﬂ.,+(O))+f AEFORCETY

for xe M. Now the result follows from (4.26), (4.29), (4.30), (4.31) and
Corollary 2.9.

(11) Follows immediately from (i).
(ii1)  We will first prove that

B (p+q)—B,lq)=c/p) (4.32)

for p,geR. It follows from (4.26) that 1, =b,(q)= B, (q)=A,(q) for all
ge R, ie.
b,=B,=41,. (4.33)

It also follows by arguments very similar to the proof of Lemma 4.7 that

log (J

Arguments similar to the proof of (4.27) yield

¢ (p)=1lim- u(Bx,r, )" ! d;t(.\‘)) -1, (434)

n  — log r,,' n supp

lim ; ]Og <J ,ll( B(.\'. rt/. n) )p+1] ! d/l(—\‘)>
q.n

a —logr supp 4

=lim log <J~ (B, P LAR] 1 d/t(,\‘))
ra0 —log ¥ supp u
=(p+q-—1I7+e " (4.35)

It follows from (4.33)-(4.35), Lemmad4.7 and Proposition 2.22, that
BAp+q)= A, (p+q)=Chrsuppu) = (p+q—- 11777 "=cp)+1,
which proves equation (4.32).

We will now prove (1ii). Fix gedom B),. Define random variables
W, ,:suppu— R for neN by W_ (x)=log{B(x,r,,)) and put ¢, ,=
—logr, ,. It follows from (4.32) that ¢, is differentiable at 0 with
c,{0)= 8B} (¢) and [ El2, Theorem I1.4.3] therefore implies that

CX
220 ¢ (0) Wrt v, as n— %0
a(/.n
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(where =5 denotes exponential convergence, cf. [ El2, p.48]), and so by
[ EI2, Theorem 11.4.4] (since Y, exp{ —a, ,&) < oo for all £¢>0)

q.n

afx)=a,(x.r,,)  (by (427))

*igq.n

W X
=limL’(\2= —c(0)= —B,(q) for v -aa. x

n —aq. n
(iv) Let gedom B,,. It follows from (4.32) that c, is differentiable at
0 with ¢,(0) = B}, (q), and (i) therefore implies that

S (=B (q)=b:(—B,(q)=B:(—B,(q))

which proves (iv). |

5. MULTIFRACTAL ANALYSIS OF GRAPH DIRECTED SELF-SIMILAR MEARURES

In this section we prove that the upper bounds in Theorem 2.17 are the
exact values of f, (x) =dim(X, n X*) and F,(x) =Dim(X, n X*) (and not
just upper bounds) if u is a graph directed self-similar measure in R¢ with
totally disconnected support. Self-similar sets and measures were first intro-
duced by Moran [Mo] in 1946 and later by Hutchinson [Hu] in 1981.
Self-similar sets and measures were subsequently generalized to graph
directed self-similar sets and measures by Bandt [Ban], Barnsely et al.
[Bar], Mauldin & Williams [Mau] and others. Recently a textbook
[Edg] by C. Edgar on graph directed self-similar sets and measures has
appeared. A rigorous analysis of the multifractal decomposition of graph
directed measures in R with totally disconnected supports has appeared in
two recent papers by Cawley & Mauldin [Ca] and Edgar & Mauldin
[Ed}.

5.1. Mauldin—-Williams Graphs

Let (V, E) be a finite directed multigraph. The set V is the set of vertices
and E is the set of edges. For u, ve V let E, denote the set of edges from
# to v and write £,=J,., E,.. A path in the graph is a finite string
e e,---e, of edges such that the terminal vertex of the edge ¢, is the initial
vertex of the next edge e, , and an infinite path in the graph is an infinite
string e, e,--- of edges such that e, ---¢, is a path for all neN. For ee E
let i(¢) and #(e) denote the initial and terminal vertex of e respectively. For
u,ve Vand ne N write
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E™'={e, --¢,is a path such that i(e,) =u and t(¢,) =1}

ur

() (n})
Euv - U Euz'
ner
(a) __ (#) {%k) __ (%)
Eu - U Em‘ * Eu - U Eur
re b reV

En — U E E'*) = U E'i*b

u
we V' ue b

E¥=1{¢ e, - is an infinite path such that i(e,)=u}

“

EW = U EN

e

fo=o,---a, f=8,---B,€E* are paths and the terminal vertex #(a,)
of a is equal to the initial vertex i(f,) of f then we write
aff=o-a,ffy B, foa=oa o, E" and ke {l....n} then we write
a|k=o,---a,. Similarly, ifa=a, - 2, e E*'is a path, =0, w,--- € E™
is an infinite path with f(a,)=iw,) and meN is an integer then write
A=, - 0,0, 05 and o|m=w, --w,,. For a=a,  --a,€E£" put
| =n If a=o,- -0, eE™, =4, -p,eE" with |a|<|B] and
x, =B, ...%,=f, then we write a < . Similarly, if a=o,---a, e E'* is a
path and o =w,w,--- € EM is an infinite path with &, =, ..., x, =, we
write a <. Finally, if ae E" and we E™ then we will always write
a=o,---a,0or x=a(l)---a(n)and w=w,w,--- or w=w(l)w(2) .
Alist (V. E (r)eeg. (T.),cp) where

(1) (V. E)is a finite directed multigraph.
{2) r.€]0,1] for all ec E.
(3) T.:RY— R“is a similarity map with similarity ratio r,
is called a Mauldin—-Williams graph (MW graph), cf. [Mau] and [ Edg].
Ifa=o,- -a,eE* then write T,=7, - T, and ry=r, - r,.
Let G=(V, E(r),,(T,),) be a MW graph. It follows from [ Mau] (cf.

also [ Edg]) that there exists a unique list (K}, ., of non-empty compact
sets such that

K,=J | TJUK,) for all wueV,

rel ce Ey

in fact

Ku: ﬂ U Kaw

i
nENaelz‘")
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where we have written K, =T, K, for x e E\!. The sets K, ue V, are called
the invariant self-similar sets associated w1th G. Put
A :=min{dist(T(K,), T(K ) |u,v,weV,
eeE,  cckE, ceE,  e#e}. (5.1)

It 1s well known that K, is totally disconnected for all ue V if and only if
A4>0.

5.2. The Code Space

Let G=(V,E (r.).,(T,),) be a MW graph. We will use the “code space”
E" in our investigations of self-similar sets and measures. Let ue V and
we EY. Since (T, (Kyo)))a is @ decreasing sequence of non-empty com-
pact sets such that diam(7T,, (K, N~0, N, T, .(K,.,,) 1s a singleton. Now
define “the code map”

n, EMN—RY

by

T, (U) ﬂ T(Jln T(ceay)

It 1s readily seen that

nll(EN) :Kll

H
and

U m T()\M(KH(J,,i m U T’JL(KIUL,,))'

mel' n n 1€F(")
Finally, if xe E{" write [a]={we EY|w|n=0a}.

5.3. Self Similar Measures
A MW graph with probabilities is a list G=(V, E, (r))ece (T)oecps
(p.).) where
(1y (V.E. (r.)..T,).) isa MW graph
(2) p.e]0,1[ for e E and

> > p.=1  forallu
vel cekEy
For a=a,---a, € E' write p,=p, ---p, . Then clearly p, =%, .z p..
for all oceE,f,*’ Therefore, for each ue V, there exists a unique Borel

probability measure s, on E! (equipped with product topology) such
that

Afla])=p, for aeE*. (5.2)

607:116:4-12
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Let
/lu:,ﬁn ' 1' ‘53)

"

It follows from [ Hu] that supp u, = K,,. The measures , are called the
graph directed self-similar measure associated with G.

5.4 Statement of Main Result

Fix a MW graph with probabilittes G=(E, V, (r.)..{T.)..(p.).) Let
(K,), be the invariant self-similar sets associated with G, and let
f, =M, m, ' be the graph directed self-similar measures associated with G
(cf. (5.2) and (5.3)). Assume that (E, V') is strongly connected, (ie.
E!¥’ # @ for u,ve V), and that card E, =2 for all u, ve V with E, # .

For each ¢, 1€ R we define a square matrix A(g, 1) indexed by V such
that the entry A4,.{q, ¢) in the uth row and the vth column is

Amv(qu): Z l):l’r(/'.

cek,

Let @(q, t) denote the spectral radius of A{q, ). It follows from [ Ed] that
for cach ¢ € R there exists a unique fi{¢) such that

@y, flg))=1.
It is proved in [ Ed] that f 1s a real analytic map. Put x = — f’ and write
Ka)={xeK,|x,(x)=u]

for a2 0. We now state our main result concerning the multifractality of
graph directed self-similar measures.

THEOREM 5.1.  Assume A>0. Then
(1)  For cach ge R,
0<A K (2(g) ALK (0(q))) < 24K, < o,
(i1)  For each qe R there exists a number ¢, € 10, o[ such that
AP supp = ¢, A8 | supp gy,
(ii1) w ) =alg)  for A# P\ supp p,-aa. X,

a(X)=alg)  for 24| suppu,aa. x.
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(iv) Ifq, peR and a(q)#a(p) then
(A LD | supp ) L (A 227 | supp p,,),

Hu Hu

l([mﬂ((” | supp luu) 1 (}[1 Bp ‘ supp [l").

Hu

(v} Foreach qgeR
b.(q)=B,(q)=4%(K,)=C}(K,)=(1—q) D} =plq).

Hu

(vi) a,=A4, =inf, g a, (x):=a, dﬂ“—A,,"—-sup\eKqu/,"(,\'):=c7.

ye K, Sy

(vii) dim K,(a) = Dim K, (a) = b}, (x) = BY,(x) = f*(a) for a € Ja. al.

We note that the result in (ii) was first proved by Spear [Sp], in a
slightly more general setting, for the case ¢=0. We also note that the
results in (v) and (vii) are minor extensions of the results in [Ca, Ed]. In
[Ca] and [Ed] it is proved that f, = ,, (in d slightly more general set-
ting, whereas we also prove that f, =F, =(C! (K)*=((1—¢q) D} )*

Finally we note that a result very similar to the equation
Blg)=C}(K,)=(1—q)Di has been proved in a recent paper by
Strichartz [Str, Theorem 3.2] for the case 1 < ¢ < 0.

It is an open problem whether the equations

Ju=B%  F,=p*

hold in the case where the support of u, is not necessarily totally dis-
connected, cf. [Ca, p.215] and [ Ed, Section 5.3, Question (d)]. Cf. also
Section 7.8 and Note Added in Proof (2) at the end of this paper.

5.5. Proof of Main Result

We begin by defining some auxiliary measures and proving some
technical lemmas.

The matrix A(q, f(¢)) 1s irreducible (because (V, E) is strongly con-
nected) and has spectral radius 1. It therefore follows from Perron-
Frobenius theorem (cf. e.g. [ Se]) that there exist unique positive right and
left eigenvectors p=(p,), cy» A=(2,). 1 such that

Alg. B@)p=p ie 3, ¥ pirlp.=p, for ueV

v ceEy

Alq, Blg)) =2 ie. Y Y Apirfo=], for veV

u ek

I=ipll=Y p. p.>0 for veV

1 =il = Zl A,>0 for veV.
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Write p =min,, p,, p =max, p,. Put

P.=p, ' 'pir"p, for c€ekE,

and write

P, =P, .- P for a=o, - -a,eE".

x| Xk

Now observe that

Z Z Pe=1

rel’ ce by

Y P.=P, for xeE!".

ce k,
This implies that there exists a unique Borel probability measure ¢ on E
such that

aulad)=P.=p, 'pirip. (54)

for xe EL¥. Put u?= g% n, "' The auxiliary measures u¢ were also intro-
duced by Edgar & Mauldin [Ed] in their multifractal analysis of graph
directed self-similar measures.

The proof of Theorem 5.1 is based on the following five lemmas which
we will prove below.

LemMMA 52, Assume that A>0 and let 0 <r<A4 and a=1. Let weE )}
and choose k,1e N such that

mflx(diam K,.);'(,)|A<r<mg1x(diam K)row (5.5)
Ar<ar<Ar, . . (5.6)
Then
0<k—I<pla)
where

_log(4/max (diam K,)) + log(!)
- —log(max, r,)

p(t): +1 for =1

LEmMMA 53, If A>0 then u, e A(K,).
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LEMMA 5.4. If A>0 then there exists Ke 10, oc[ such that

(i) 25MK,) < Kuj(K,).
(i) 2270 < Kul.

LemMma 55 If A>0 then there exists Ke )0, o[  such  that
Ky < (A 31" | supp ).

LEMMA 5.6. If A>0 then

LT =pi=J7 (T
foruveVand ecE,,.

We will now show that Theorem 5.1 follows from Lemma 5.2 through
Lemma 5.5

Proof of Theorem 5.1. It follows from [ Ed, Lemma 4.1] that
pUK (2(g)))=1 for ueV and q¢eR (5.7)

for 4>0 (the proof of (5.7) is just a straightforward application of
Birkhofs ergodic theorem).
(1,1, iv) Follow from (5.7), Lemma 5.4 and Lemma 5.5.

(i1) We divide the proof into three steps.
Step 1. There exists ¢, € ]0, oo[ such that

HEPDK)=c, P2 PNK,)  for ueV.

Hu oy

Proof of Step 1. We have by Lemma 4.3 and Lemma 5.6,

ZA.,. q. Plgn A LK) =) Y plrd A K

r eceky

_Z Z ]/Z,/M) T K)

v oceky

—agre (U U Tk,)

v ee Fy

=9 /f(qi(K )

Flu

ie. (7 MK,)), is an eigenvector of A(q, f(q)) with eigenvalue 1. In a

similar way we may prove that (./;’"’”‘”(K,,)),, 1s an eigenvector of
Alq, B(q)) with eigenvalue 1. Now, since A(q, f(q)) 1s irreducible and has
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spectral radius 1, Perron-Frobenius theorem [ Se] implies that there exists
¢,€ 10, o[ such that (# ¢ "9(K,)),=c(#4"7(K,)),. This proves Step I.

q
Step 2. lfueV and ae E}*’ then

H o /J’(:/)(K ) q /f(([l(K

Hu /‘u

Proof of Step 2. By Lemma 4.3, Lemma 5.6 and Step I,

”‘q,[ﬂ(/)(K ):j(l/,lfu/i(T e T K,(ah;)

Hu x Hu x| A

By
pa x "’/A,(,,“(Krww)

_ . g LBy,
_({[[)1’1 ‘%)/uml“(K”‘XhH)

= P '”(K,(),

77
which proves Step 2.

Step 3. A &0 = P | supp ) for ue V.

4

Proof of Step 3. By outer regularity, it suffices to prove that

HLIGY =, PIG)
for all subsets G of supp u which are open relative to supp ¢ Now let
Gesuppu be a subset which is open relative to supppu. Let
A={aeE*'K,=G}. Since G is open, G =1/, ( K,. Now, we need only
cover G once: if a4, fe 4 and [a] N[ ] # & then one of them is contained
in the other, so we may discard the smaller one. So there is a set 4, 4
such that

G= ) K.

xe Ay

and [a]n[B)=@ for a, fe A, ie. (K )., 18 a disjoint family. Hence
(by Step 2)

5ig) _ Bq) 4. i
HEING = 70 (U K)= T ALK

ae Ay

:(,q Z /:/lu/ﬂt/l(K ¢ P /f(qh( U K )

2 € Ay x € Ay

ae Ay

= ¢, PLID(G),

q Hu
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(v) It follows from Lemma 5.4 and Lemma 5.5 that

0 < Kud(K,(a(g)) < A & VK, (a(g) < AL (K,)

Hu Hu

< W;’,‘“ﬂ“”( K,)< 4?7:’,'"/“")(1(,,) < oo,
whence

Blg)=5,(q)=B, (q)= 4] (supp u)

(because supp u,=K,). Finally Lemma 5.3 and Proposition 2.22 imply
that 47 (supp )= C? (supp ,,).

Huy

(vi) It follows from (iv) that ¢, = 4, and a, = 4, . and it is proved

= Hu

in [Ed, the proof of Proposition3.3] that inf «, (x)=4g and

xe Ky Ly
a=sup, .4, (x)for 4>0. It also follows from [ Ed, Proposition 3.3] that

e= lim (f(q) +aq), e= lim (f(q)+aq)

q— x q— —ox

exist and ¢, ée [0, oc[. This clearly implies that ¢, =¢ and a4, =a.

= I
(vii) “<” It follows immediately from (iv), (v), (vi) and
Theorem 2.17 that

dim K, («) < Dim K, () < B* () = b* ().

#u o
“=" It follows from Proposition 2.7 (with 4 =K (a(g))) that
0 <2~ M0 PO(K (a(g)) < A0 4 MO =K (x(q)))
for all ge R and ¢ > 0. Hence
B*(a(q)) <x(q) g+ Blg) <dim(K, (a(g))) < Dim(K,(a(g)))

for all ¢ € R. This completes the proof since «(R)= Jg, d[ by [ Ed, Proposi-
tion 3.3]. ]

We will now prove Lemma 5.2-Lemma 5.5. Put D := max{diam K).

Proof of Lemma5.2. Since A <max (diam K,) and «>=1, k=1 Since
k =1 the right hand side of inequality (5.5) can be rewritten as

r<Dr,,r Y §

(I wp- 1"



172 L. OLSEN

This inequality together with the lefthand side of inequality (5.6) implies
that

Dr..,---r
i o / .
a ' (D) max )t
ar,,, ¢

which yields the desired result by taking logarithms. ||

Proof of Lemma 53. Fix a> 1. Let x=r,(®). we E' and r>0. Now,
choose integers &, /e N such that

Dr . <r<Dr,;

w|

Ar,,, <ar< A4r. s

and observe that K,n B(x,ary=K,,, and K, = B{x.r). Hence (by
Lemma 5.2)

1y, B('Y* (ll') < :uu(l(mll) _ ])m\l - 1 < : 1 z /< (mm ’,v) plar)
/lu B"\-* r) tull(Kmll\‘) /7m\k /7m,‘ g '[)1'4 (mlnu p(') ¢
whence

Blar .
<Sup M><(m]n p") m(u)< o l

lim su
p ve Ay #Hy, B‘ A f')

o)

Proof of Lemma 54. We divide the proof into two steps.
Step 1. There exists Ke 10, »[ such that
PEPVK) S P MK) < Kul(K,)  for ae E*

Proof of Step 1. Let ueV, ae EI*' and ¢>0. The measure g¢ is finite
and thus outer regular. We can therefore choose an open and bounded set
G, such that K, = G, and u?{(G\K,) <& Clearly J, :=dist(K,. R‘/\G,) > 0.
Let 0<d<dadiamK, A d, and (B(x,.¢;)); be a centered J-packing
of K,. For cach i choose g,e[«] such that = (o;)=x;. Now, choose
integers A, /,# N such that

Dr, <& < Dr, i

Ar, <& d4r, . .
Observe that o, e [«] implies that | <k,. Also

K,nBlx,e)skK,,,
K, S Blx;, &)
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Since ¢ < Dr, ., <(D/min,r,) Faiii, 0< fBlg) implies that (2¢,)™9'<
(2D/min, r )" rf“‘f’ Since Dr,, <e;, f(q)<0 implies that (2¢,)""'<
(2D)9 19 In all cases

(2e,)M) <1?0,.(/1’:“21) for all i, (5.8)

where K, € ]0, o[ is a suitable constant.
If ¢ <O then

,U“(B(x,-. ci)){l gﬂu(Kﬂ,M ) - pn,|A,
If 0 < g then (by Lemma 5.2)

/‘u( B('\‘i‘ L‘i))q S/‘u( Kﬂ,|l,)q = p:lr,|l,

¢ q
(PN e (LN
ok =\ ailk,

Pk Poji+1y " Pojky

1 1
S q
(min, p?)~ 2T (min, p )wl)pm\k,
In all cases
WA B(x;, e V<K, p? " for all i, (5.9)

where K, € ]0, oc[ is a suitable constant.
It follows from (5.8) and (5.9) that

X Bl e) (2 9 < Ky K, L Pawrafl
<(p/p) KoK, an,mpzmkl i, P

=Ky ai[o; |k, D<KY ni(K, 1)

<KY pi(B(x;, ¢,))=Ku! <U Bix;, ¢ )>
<Kui(G,) < K(ui(K,) +e¢),
where K=(p/p) K, K,. Hence

PEIOK,) < KUK, +e)



174 L. OLSEN

for e>0 and 0 <4 < 4 A diam K, A J,. This implies that

P4 IOK ) < Kud(K,),

7 Hu
which completes the proof of Step 1.
Step 2. There exists Ke 0, oo[ such that

(5 | supp p,) < Ku.

Proof of Step 2. Let GZ K, be an open subset of K, and put
A={aeE/*'|K,=G}. Since G is open G={J,. 4 K,. Now we need only
cover G once: if x, € 4 and {a] N[ #] # &. then one of them is contained
in the other, so we may discard the smaller one. So there is a set 4,5 4
such that

G=J K,.

x € Ag

and [a]n[B] = for a, fe 4,. Hence (by Step 1)

T Ha

’y;/l,“/f(q)(G):"y)q‘/f(q)( U Ka>< Z ly;/l;'/ﬂr[)(Ka)

2 € Ay 2 e Ay

<K Y puk,)=Y aulal)

ae Ay ae Ay

:12/;;{< U [a])sl?ﬁ;{(n,, NG))=Kuy(G)  (5.10)
x e Ay

for all open subsets G < K,,. Since 2% " and u are finite Borel measures
and thus outer regular, inequality (5.10) yields the desired results. ||

Proof of Lemma 55. Let ES K, and 0 < 4. Let (B, = Blx,, ¢;))
centered J-covering of E.

For each i choose o,e E' such that x,=n,{0,;). Next, choose integers
k.l e N satisfying

be a

iefy

Dy, <&, <Drg

Ar gy <e;<dr,
and observe that

Ku m B(-Yi' l’.i) = Krf,l/‘
K, .S B(x, &)
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Since r,, , <4 'e;, 0< B(q) implies that

PO < (24) 1D (26)P9,

Since r, |, = (min,r,)r,,,_, =(min, r.) 4" '¢,, f(g) <0 implies that

r/}(r[i < ((2A)7l min r(’)/f(q} (28i)/}'(1’.
e

7l

We have in all cases
”5‘(‘([/: < L{O(zg'_)/"‘”'

where K, >0 is a suitable constant.
If ¢ <0 then

PZ,|1, = /lu(Kn,H,)q < ﬂu(B(xi» si))q'

If 0 <g then (by Lemma 5.2)

K q
:uu( '7:|l')))> I[H(B(Xiv'gi))q

=K ) = ————
pﬂ:”l 'll"( m“‘) (/‘ll( B('\‘i’ 8,-

K g r?
<<”—“*("—""))'u,,(3(mw= (o) B

iuu(KU,lk,) pa,!kl

1 ¢
Ny

Poti+ 1y Poyiiy

|

1
<-——~—T,—;—l,tuu(8(xi’ si))l (min(, p;{)(/)(l}

= (min, p?)

A

We have in all cases
PZ,|/,<K“U"(B(XI-, 8,‘))q fOl‘ all i,

where K, € ]0, oo[ is a suitable constant.
It follows from (5.11) and (5.12) that

HIE) < Z uHB(x;, €)) < Z 1K) =Z P(;,(ll )pgllllrg,(fll,)pa,(/.)

<(P/p) KoK\ ) p(B(x, e} (26,)M7,

H(B(x;, €))%

175

(5.11)

(5.12)
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whence
Kil(EV< a8 BE) < A8 OE) < o 0 MI(E,
where K= (p/p)K,K)) ' |

Proof of Lemma 5.6. Let 0<r<A4/(2max,.r,) and xe K,. We claim
that

i, T AU, 1))
= p, 5.13
w0, U, r) P ( ’

where U{x,r) denotes the open ball with center x and radius r. Let
A=txe EI*¥'|K, 2 U(x, r)}. Since U(x, r)isopen, Ux, r)n K. ={,., K,.
Now, we need only cover Ulx, r)once: ifa, fed and [a] [ ] # . then
one of them is contained in the other, so we may discard the smaller one.
So there is a set 4,< A such that

Ux.rnK. =] K. {5.14)

xe Ay

and [x]n[f]= for a, fe A, Le. (K, ), e is a disjoint family. Next
observe that

T(Ux, r)nK, =T (Ux,r)nK,). (5.15)

Indeed. it is clear that T(U(x, r))n K, 2T (Ux, r)nK,). Now let
ve T, (Ulx,r))n K,. We must now prove that ye T K,. Clearly

A
yeT (Ux, M =UT. x,r.NSBTK, rr.)=B <Tl, K,. ;), (5.16)

where B(T. K, 42)=1-eR/|dist{T.K,,z)<4/2}. Also yeK,=U.,.
U.cr., T.K,. and we can thus choose we V and ¢€ E,,, such that

veT,K,. (5.17)
However, since B(T K., 42)nT K = for (e, v)# (e w) (5.16) and

(5.17) show that ¢=¢ and w=r, whence ye T, K, =T,K,.. By (5.14) and
(5.15),
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HATLU, ) p TAU 1)K, (TAUN r) 0 K))
wAUx ) p U nK)  p U r)nK,)

_ luu( TL( Uae Ao KO)) _ .Uu(UaLEAn T(' Koz)
/lr(UrxeAU Kfl) lur(UJ(EAQ Ki)

_/uu( UxEAU Km:) _ ZzeAn pm _216.40 pl'pl_
,uv(U:xeAq Ka) ngr‘“ [7‘1 Zaefm pu

which proves (5.13). The desired result follows immediately from (5.13). |

Pes

6. MULTIFRACTAL ANALYSIS OF ‘“COOKIE-CUTTER” MEASURES

In this section we prove that the upper bounds in Theorem 2.17 are the
exact values of f (a) =dim(X, n X*) and F,(x) =Dim(X, N X*) {(and not
just upper bounds) if g is a “cookie-cutter” measure in R. A rigorous
analysis of the multifractal decomposition of “cookie-cutter” measures can
also be found in a recent paper by Rand [Ra], {(cf. also Bohr & Rand
[Bo]).

6.1. “Cookie-Cutter” Sets
Let /=[0,1] and O<x,<x,<1. Put [;=[0,x,] and I, =[x, 1]
A “cookie-cutter” map is a map
g lyol,»1
such that

(1) gllp)=1=gll,).

(2) gisa C'** map for some a>0 (ie. g is a C' map and g’ is
x-Holder continuous).

(3) |g(x)>1forall xel,wl,.

The “cookie-cutter” set A = A(g) associated with g is
A=A(g)={xel,ul,|VneN,: g(x)el, LI, }.

Write 2% = {0, 1}, Z% = U7, £ and £ = {0. 1} " If xe 2 we
will write |x|=n. Also, if xeX™ and weZXZ™ we will always write
x={oty, ..., ,)=((1), .., (n)) and @=(w,,w®,,..)=(w(l), ©(2),..)
Finally, if weY"™ and neN then we put w|n=(w,,..®,). For
a={ag, ..., x, )e> " set

IL={xelyul|g(x)el, fori=0,.,n—1},
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and observe that /, is a closed interval and

Ag)= ﬂ ( U 1>

n=0 \xel'!¥
Write y=inf,_,, _, 1g(x)| and I'=sup, ;. g (x)]. It is easily seen that
(r " 'diam(l,,,,) <diam(/,,,,) <(y ")* 'diam(/,, ) (6.1)

for e XZ™ and k, le N, with k=1
The intersection (), 1,,, is clearly a singleton for each weX™ Now
define n: X™ — I by

{r()} =) Lo

It is readily seen that n(Z™) = A(g) and that n is a homeomorphism.

6.2.  “Cookie-Cutter” Measures

Let g: I,ul, = I be a “cookie-cutter” map. If 1: /— R is a real valued
map then write S, k(x)=>"_)h(g'(x)) for xel,ul,. If p:I>R is a
Holder continuous function then we will denote the pressure of ¢ by P(¢),
the reader is referred to [ Wa, Chapter 9] for a discussion of the pressure.
Let ¢:/— R be a Holder continuous function. The Gibbs state g, of ¢ is
the unique g-invariant Borel probability measure on A{g) which statisfies
the following:

there exist numbers ¢, ¢, € 10, ={ such that
H(L)
(SIS L nPCo) Syl T €2

forall neN, xae X" and xel,.

The measure ¢, is also called a “cookie-cutter” measure. Existence and
uniqueness of Gibbs states are proved in Bowen [ Bow] and Ruelle [ Ru].

6.3. Statement of Main Result

Fix a “cookie-cutter” map g: [, u I, - I and a Holder continuous func-
tion ¢:/— R and let v=y, be the Gibbs state of ¢. Let J, denote the
Jacobian derivative of g” w.rt. v, i.e.

(2" Blx.
J i) =lim " & 2

fi “ad, X .
r0 V(BX, 1)) or v-aa xedlg)
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The reader is referred to [ Par, Chapter 10] for more information about
Jacobian derivatives. Put

@4 = —tlog(|g'l) —qlog(J,)

for ¢, 7eR. Then ¢, , is a Holder continuous function on A(g)=A4 (cf.
[Ra]). Let P(q,7)= P(g, .) denote the pressure of ¢ .. It follows from
[Ra, p. 534] that for each g R there exists a unique 7{q) € R such that

P(q, t(q)) =0,
in fact, ¢ — 7(qg) is real analytic. Write a = — 7’ and
Alay={xe A(g)|a(x)=a}.

We are now ready to state our main result on “cookie-cutters”.

THEOREM 6.1.  The following assertions hold
(1) 0 <A (A(x(q))) <L (A(x(q)))
<P 4) < 0.
(i1} For each g€ R there exists a number c,€ 10, oc[ such that
H D | supp v < LT | supp v< e, # ¢ | supp v
(iii) afx)=alq)  for A" |suppv-aa.x,

afx)=alg)  for PP |suppv-aa. x.
(ivy If q, peR and a(q) #a(p) then

(A 4P | supp v) L (A 77 | supp v),
(249 | supp v) L (27#7"| supp v).

(v} for each geR,

b.(q)=B,(q)=A4UA)=Ci(A)=(1 —q) D!=1(q).

(vi) a,=4,:=a,d4,=4,:=a
(vil) dim A{a)=Dim A{a) =b¥a)=BXa)=1*(a) for x€ Ja, af.

We note that the result in (vii) is a minor extension of the results in
[Ra]. Rand [Ra] proves that dim A(a) =1*(«), whereas we in addition
show that dim A(x) = Dim A(x), i.e. A(x) is a fractal in the sense of Taylor
[ Tayl, Tay2].
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6.4. Proof of Main Result

We begin by defining some auxiliary measures. For g€ R let g, denote
the Gibbs state of ¢, ,,. The proof of Theorem 6.1 is based on the follow-
ing nine lemmas which we will prove below.

Limma 6.2 (The Principle of Bounded Variation). Let 1,01, - R
he a Holder continuous function of order a. Then there exists a number
Ce 10, [ such that

IS, ¥{x) =S, )| <C
JorallneN, ae X" und x, yel,.
LemMMma 6.3, There exist manbers ¢, ¢€ 00, o[ such that
c<diam(/L) |(g") ()| <¢

Jor all ne Ny, oY " and xel,.

For ne N, and e3> " let J, denote the “hole” in I, ie.
I.=1,uJ, 0l
Loyl Y=

LemMma 6.4, There exists a number ¢,€ 10, o« such that
diam(J,) = ¢, diam(/,)

for ne Ny, and xe 2",
LEMMA 6.5. ve . A(A(g)).

LEMMA 6.6.  There exist numbers k. k€ 10, oo such that

k<v(l,) Jalx)<k

L4
Jorafl neN, e 2" and xel,.
LEMMA 6.7.  There exist numbers K, Ke 10, «o[ such that
Kv(1,)* diam(1,)"" < (1) < Kv(1,)? diam(/,)™"

Jor all ne N, and xe X',
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LeMMA 6.8. There exists a number Ce 10, ool such that
Cug < (A7 | supp v).

LemMA 6.9. There exists a number Ce 0, o[ such that
(i) PE79(A(g)) < Cu, (A(g)).
(ii) (29| suppv) < Cu,.

Lemma 6.10. p (A(a(g)))=1.

Proof of Theorem 6.1. The proof follows from Lemma 6.2 through
Lemma 6.10 and the arguments are similar to those in the proof of
Theorem 5.1. ||

Proof of Lemma 6.2. By uniform continuity, y:=inf, ., [g'(x)] > 1.
It is easily seen by induction that

diam(Z1,) <y ™"
for all me N, and a e ™. Now let ne N, a € 2" and x, yel,. For each
ief{0,.,n—1}, {gix), g'(y)} =1, ., , whence
g (x) =gl <y~
Hence

n—1 n—1

1S, () =S, ¥ < Y, W) —y(gONI< Y clgtxy =gl
i=0

i=0
n—1 o
<c Z y—(nﬁl)ugc Z }’7“":=C<OC
i=0 i=0

for some ce 10, o[. |

Proof of Lemma 63. Let neN,, aeY " and xel,. Choose x,Xel,
such that

inf [(g") (¥ =1(g") (¥ and sup [(g"Y ()| =1(g") (¥)].

yvely yely
Since g” maps I, homeomorphically onto [, the mean value theorem yields

(") (¥)] diam(Z,) = inf 1(¢")" ()] diam(/,) < diam([)

<sup [(g7) ()| diam(/,) = [(g")" (X)] diam([,).

ryely

607/116:1-13
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Define h: 1,01, =R by A(x)=log|g'(x)| and observe that h is Holder
continuous (because ¢’ 1s Holder continuous by assumption). It follows
from the previous lemma that there exists a number A4 > 0 such that

IS, h(y) =S, h(z)| < 4 (6.2)

for all meN,, fe> " and y, zel,. Since

unl

=0

o |
S, h(yy=Y logig'(g'(x))| =log

i=0

g'(g' y))x =log |(g") ().

equation (6.2) implies that

Pl

S (x|

¢

)

-

whence
diam(7,) [(g") (x}] <diam(],) [(g")" {(xX)]
<etdiam(Z,) [(g") (x)] <e” diam([) = e
Similarly diam(/,) [(g") (x)|=e * |

Proof of Lenuima 6.4. It follows by an argument similar to the one given
in Lemma 6.3 that there exist k, k € ]0, o[ such that

k<diam(J,) |[(g") (x)] <k
forall ne N, xe X" and xeJ, . Let neN,, ae X" and xeJ, cI,. Then

l(g") ()] 'k

dlam(./i)>diam”1) 3 L
l(g") (x) ¢

diam(/, )y~

= (k/e) diam(7,). I

diam(J,) = diam(/,)

Proof of Lemuma 6.5. Let ¢ > | and ¢, be the constant that appears in
Lemma 6.4. Let x=n(w)eA(g), we ™ and r>0. Choose /, ke N, such
that

diam([,,, ) <r<diam(/,, ;) (6.3)
codiam(/,,,,, ) <ar <c,diam(/,,)) (6.4)
and observe that
I,k 1€ Bx.r)

AMgynBlx,ar)=1,,, .
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(Indeed, it is obvious that /,,,,<S B(x,r). Now let y=n(c)e A(g)n
B(x,ar) and assume y¢/,,. . Then there exists j</+1 such that
ol|j=o|jand @,,,#a;,,, whence

|y —x| = diam(J,,,) = ¢, diam(],,, ) = ¢, diam(],,) > ar,
which is a contradiction since y € B(x, ar).)
Since a>1 and ¢, <1, k=1 Equations (6.1), (6.3) and (6.4) therefore
imply that

l r < diam(l(u|k) <(}'7l)kilil

a “"\('o diam(/,, ;) h Co |
whence
1 o
k—1<l+M:=c(a).
log y

Now the Gibbs state property implies that

" . N —(I+ 1) Plp)+ S @ix)
\'B(,\,a1)<\'(1(,,,,+,) N4 PrEDE P

- = = — 1k + 1) Plo) + S (x)
vB(x, F) v,k 01) Cr€ PIH ke

_ ok =11 PLo)y S el gten

€

¢
g_zelﬂqnl(h/)(,(k 1ol
c

C5
<—:£’( llg: + 1Pl clad :=k(a),

[
whence
. vB(x, ar))
lim su sup ——— | <k(a) < oc.
™0 P <,\‘E,1ng VB(,\', r) I

Proof of Lemima 6.6. It follows from the Gibbs state property that
there exist numbers 0 < ¢, < ¢, < oo such that

v(1,)

(.l ~ efnP((/))+ Sppixy = C2

(6.5)
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for all neN, aeX" and xel,. Fix neN, acX" xel nA(g) and
0 <r<e,diam(/,), where ¢, is the constant that appears in Lemma 6.4.
Write x =7z() for some we[«] and choose integers &, /e N such that
diam(/,, , . ) <r<diam(/,, ;)
codiam(/,,, ) <r<codiam{/,,))),
and observe that /> n and

I,k S Blx, 1), A(gyn Blx,rys1,,, (6.6)

(cf. the proof of Lemma 6.5). It also follows from the proof of Lemma 6.5
that

O0<k—I<ce< o,

where ¢=c(1):=1—(log(c,)/log y). Since xel, ., and g'(x)el, .
(6.5) and (6.6) imply that

WB(x. ) T i) v )

(I n+ 1) Pl + 81 pyi0i FUrlen))

L e
= ¢ e A+ 1) Pl + Sty ) ptmtan))
S‘_g(,u\» DP@ k11 ol 1 ,
¢ ¢ aPip)+ S, e
5
¢ | PCp)y + i) !
<2, — (6.7)
) /)

In a similar way we prove that

"'(g”B('\-’r))Z_C_.lze cPlp)+ i) 1 . (68)
WB(x,r)) o, w(1,)
It follows immediately from (6.7) and (6.8) that
ﬁe P+ ol L g‘/g’"('\.)gﬁ(,uu'twwumu !
¢ v(l,) ‘ ¢y v(l,)

forall neN, xe X" and xel,. |
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Proof of Lemma 6.7. Since 0= P(q, 1(q))=P(¢, .,). the Gibbs state
property shows that there are constants C,, C, € ]0, oo[ such that

llq(lmzx) < C')

<
Cl = SSn Pq. g

forall neN,, e X" and xel,. Fix neNg, ae X" and xe/,. Then

/t‘](ll) < C2 (’S"‘/’q. g X)

=, ITi0 loglg g3l — xlq) ¥ log(Jg g

=, 90 le" (V)] — ) log (IT/Zy Je(g'(x))

n--1 —tlq)
=Cz|(g")’(-r)|“"<ﬂ Jg(g"(-r))) .
i=0

It follows from [Par, Lemma10.1] that []’Z, J (g(x)) = J gl x).
Lemma 6.3 and 6.6 therefore imply that

#(L) < Co 18" (O] (Jplx)) !
< K diam(1,)"% v(1,)?,

where Ke ]0, oo[ is a suitable constant. In a similar way we may prove
that

K diam(L)™" v(1,)? < p (1)

for some Ke 0, oc[. |

Proof of Lemma 6.8. Let ES A(g)and 0 >0. Let (B,=B(x,,r,));. be
a centered J-covering of E. For each i choose w,e Y™ such that x,=n(w,).
For each ie N choose k;, /;e N, such that

diam(/,, ;. . ) <r,<diam(/,, ;)
codiam(l,, , . ,) <r,<cqdiam(/,, ,)
(where ¢, is the number that appears in Lemma 6.4) and observe that
L1 S Blxy,ry), AN B(x;, r) S0

«

Now clearly (by Lemma 6.7)
:uq(E) < Z /uq(B(-\‘ia ri)) < z .uq(lw,l/,+ l)

<K Y vl ;) diam(Z,, ;)" (6.9)
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If 7(¢)=0 then diam(/, ., )" <{(2¢y) “2r)""; if

T(q) <0

then (6.1) implies that diam(1,, . ,,) =T 'diam(/,,,) whence 2r, <
2¢oMdiam(f,, |, ), ie diam({,, , )" <(2¢o ) "7 (2r)"?. In all cases

diam(1,, ;)" <k (2r)",

where &, is a suitable constant.
If g <0 then A(g)n B(x,,r)=1,,, ., implies that

\'( 11/),]/,+ 1 )(I S V( B('\'iﬂ r,_))‘l.
If =0 then 7, ,,,, < Blx,, r;/c,) implies that

vB(x,, ri/co)\?!
\'( 1“'1”1* |){I< < ”’>

"B( X ri) ‘,B( tio ! )‘I < M{IV( B(-\.is r ))‘la

[ i i
where

-1

vB(x, ¢ 'r)

M:= sup ———
xNedlg), r>0 VB(,\‘ r)

(cf. Lemma 6.5). It follows from (6.10)-(6.12) that

UAEY <k, Y v(B(x, r)) (2r)""

for a suitable constant k,. Hence
UNAE) Sk, AECTNEYSAHTNE) <k, A0V OE). ]

Proof of Lemma 69. We divide the proof into two steps.

Step 1. There exists Ce 0, o[ such that

ALY K PEOU)< Cu ) for ae X'

{6.10)

(6.11)

(6.12)

Proof of Step 1. Let ae ¥ '*’ and ¢ > 0. Since y, is finite and therefore
outer regular we may choose an open bounded set G, such that 7/, =G,
and u,(G\I,)<e Clearly 6, :=dist(/,, R\G,)>0. Let 0<d<d, and
{B(x,,r;)); be a centered J-packing of 7. For each ie N choose w;e[a]

such that n(w;} = x, and integers k,, /,€ N such that

diam(/,, ., ) <r;<diam({,, ;)

codiam(/,, |, , ) <r, <cgdiam({, ;)
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where ¢, is the constant that appears in Lemma 6.4 and observe that
Loiniv1 S B(xir), AgynBlx;,ry<d, ;..
If 7(¢) <0 then
(2r )" <27 diam(7,,, z, 4 1),
and if 0 < 7(¢) then (6.1) implies that
r;<diam(/,, ) < I'diam({,, 4, , 1)
whence
2r)" < (20" diam(/,, 4, )"
We have in all cases
(2r)"? <k, diam(1,,, 5, )", (6.13)

where k, is a suitable constant.
If ¢ <0 then

(B, r)V v, 10,4 1)7
If 0 < ¢ then the proof of Lemma 6.5 implies that

vid, 1)

v B x,-,ri))"<<
L V(Im,|k,+1)

g
) v(Iw‘lk,-i- I)q

CH

2 Ploh el

< e(HfﬂH+ (@) ¢ 'V(I
(&

)‘I
wilki+ 17 -

In all cases
WB(x, r)Y <k v, 5 01)% (6.14)

where k, is a suitable constant.
It follows from (6.13), (6.14) and Lemma 6.7 that

Z V(B(x;, 1)) (2r)" <k k, Z V(L k1) diam(/,, .+ e

<k kK'Y pgU k1)

<k kK'Y p(B(x,, 1))
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=k k, K 'u, <U B(x,, r,-)>
Sl\lk‘_’L< lﬂq(Gc)
<k koK 'I(/lf,(lm) +é&).

Hence

P Clpdl) +e)

for ¢>0 and 0 <d <J,, which clearly implies that ¢ "(1,) < Cu,(

Step 2. There exists Ce ]0, oc[ such that

Jpy. T 2
2L Ly,

Proof of Step 2.
in Lemma 54. |

Proof of Lemma 6.10. For each xe A(g) let w(x)=
7 is a homeomorphism, in particular bijective). Since s,
g-invariant measure, Birkhoff’s ergodic theorem implies
Jolx)=TTI_y J,(g(x)) for xe A(g) by [Par, Lemma 10.1]) that

~10g<nJ > Z]logJ

=0 l(]

—»J‘ log(J,) du,, for p,-aa x as n— o
It follows from Lemma 6.6 that

lOgI\——IOgJ"(\) 710gl( ()l\)\ll)

< ! log k ! log J (x)

n n ‘
for all ne N and x e A(g). By combining (6.15) and (6.16) we get
M,-Aa. X as

1 I
;log V(L) —J log(J,) du, for

It follows in the same way from Lemma 6.3 that

-logdiam(/ ) — —J~ log|g'|du, for p,-aa x as n— 0.

n— o,

I,).

The proof of step 2 is identical to the proof of Step 2

7 !(x) (recall that
is an ergodic
(because

(6.15)

(6.16)

(6.17)

(6.18)
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Recall that P(q, t)=P(e, )=P(—r1log|g'| —glog(J,)). It follows from
[Ru] that P is real-analytic and

3, Plq, 1) = —flog(Jq) du,, . 0:P(qT)= _flog \&'| du,
(where 8, denotes partial differentiation w.r.t. the ith varnable.) Also, since
P(q, 1(q))=0,

0, P(q, 7(q)) + 0, P(q, 1(¢)) 7'(¢) =0
and so

_ a1 P(q’ T(Q)) — j log(']g) dﬂq
2,P(q,1(q)) (loglg'|du,

By putting (6.17), (6.18) and (6.19) together we get

alg)=—1'(q) (6.19)

log v(Zua) __ flog(J) diy _
lOg diam(l(u(.\')ln) f ]Og |g’| d.uq

for u,aa. x as n—oc. (620)

a(q)

It is readily seen that

togvlunim) L, as g w
log diam( I, .\-)In)
ﬂ (6.21)
logvBlx.r) as 0
log r |

The desired conclusion now follows from (6.20) and (6.21). |

7. REMARKS AND QUESTIONS

Let X be a metric space and pe 2(X).

7.1. Mutual Singularity of the Multifractal Hausdorff Measures
Let ¢, pe R and assume that b:=b, is differentiable at ¢ and p with
b'(q) #b'(p). It is then true that
(A @29 | supp p) L (A7 | supp u)?

This satisfied for graph directed self-similar measures in R“ with totally
disconnected support (cf. Theorem 5.1) and “cookie-cutter” measures {cf.
Theorem 6.1).
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7.2. Mutual Singularity of the Multifractal Packing Measures
Let ¢, pe R and assume that B:= B, is differentiable at ¢ and p with
B'(q)+# B'(p). It is then true that
(L2 | supp ) L (2L %7 | supp p)?

This is satisfied for graph directed self-similar measures in RY with totally
disconnected support (c¢f. Theorem 5.1) and “cookie-cutter” measures (cf.
Theorem 6.1).

7.3. Strict Monotonicity of b (B,)
Is b,(B,) strictly decreasing for non-atomic z?

7.4. Fixed Points for b, and B,

Is the converse of Proposition 2.12 true, ie. if xe [0, o[ and

b¥la) =« or B o) =«

1s it then true that
‘U( : XE Supp lu | aﬂ(-\‘) = a} ) > O')

7.5. The Relation between f, and b, (B,)

Does there exist a measure u € .#(X) such that the support of f, contains
a non-degenerate interval, g is dimensional exact (1.e. there exists a number
a such that «, =a g-ae.) and f,(x) <b}(x) (or f,(x) < BX(x)) for all x in
a non-degenerate interval contained in the support of f,?
7.6. Multimeasures in the Sense of Kahane

Kahane [Kah, p.316] defines a multimeasure as follows. A multi-
measure associated with a Borel probability measure 4 on a metric space
X is a family (g,), 5 in 2(X) satsfying the following three conditions:

(1) Normalization: there exist ¢, ¢€ ]0, oo[ such that
S UKy

Remark.  The normalization condition above is less restrictive than the
normalization condition in [ Kah] which requires that u, = u.

(2) Size of support:

supp i, = supp i forall geR
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(3) The multifractal dimension exactness condition: There exists a
family (), .5 of positive numbers such that

®(x)=a, for p,-aa. x,

Ima, ={a,|gcR}.
Find conditions such that (% "?) _. (or 22 %49") ) is a multimeasure
associated with g It follows from Theorem 5.1 and Theorem 6.1 that
(A @0D), q and (28 59) o are multimeasures for 4 in the case where

u is a graph directed self-similar measure in R¢ with totally disconnected
support or a “cookie-cutter” measure on R.

7.7. Lower Bound for the Multifractal Spectrum
Write B:=B, and leta, (¢) := —B' (g)and « _(q):=—B"_(g)forgeR.
Are the following inequalities satisfied
gx_(q)+ B(q) <Dim(X,, ,, nX*'")  for g<0_
g, (¢) + B(g) <DIm(X, ., " X*‘7) for 0<q

Theorem 2.18 gives a partial answer to this question.

7.8. Arbitrary Graph Directed Self-Similar Measures

Let G=(E, V,(r.},.(T,).,(p.).) be a MW graph with probabilities, cf.
Section 5. Let (K,), ., be the invariant self-similar sets associated with G,
and let (u,),., be the graph directed self-similar measures associated
with G. Finally, let # and « be the auxiliary functions introduced in Sec-
tion 5.

If the support of 4, is totally disconnected for all v then Theorem 5.1
shows that

S = B* (7.1)
F, =p* (7.2)
0 < A LIVK (q)) < PLIVK,(2(g)) S PLANK,) < o0 (73)

It is an open problem whether equations (7.1) and (7.2) hold in the case
where the support of u, is not totally disconnected, cf. [Ca, p.215] and
[ Ed, Section 5.3, Question (d)].

Are equations (7.1) through (7.3) satified in the case where the open set
condition holds, ie. if there exists a family of open, non-empty and
bounded subsets (U/,), ., of RY such that

(1) T(U)<cU,forall u,veV and ecE,,.

(2) TUINT(U,)= for all u,v,weV with v#w and e E,,
ce E,,.. (See Note Added in Proof (2) at the end of this paper.)
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7.9. Concave Hulls of Multifractal Spectra

If /*R—> R is real valued function then f: R— [ —o0, cc[ denotes the
concave hull of £ Is it true that

Pk AN T X
.f/l‘by‘ F}I_B/l )

The examples in Section 3 seem to indicate that this is the case.

NOTES ADDED IN PROOF

(1) A substantial number of new results have been obtained since this paper was written
(August 1992). Olsen [Oll] has performed a multifractal analysis of random graph directed
self-similar measures, and Arbeiter and Patzschke [AP] and Falconer [ Fa3] have performed
a multifractal analysis of random self-similar measures. Lau and Ngai [ LN] have studied the
multifractal structure of self-similar measures satisfying a very weak separation condition.
Riedi [Ri], Olsen [OI2, O13], and Schmeling and Siegmund-Schultze [SS] have studied
various multifractal spectra of general self-affine measures. Finally we note that Riedi and
Mandelbrot [ RM] have studied the Hausdorff spectrum of self-similar measures generated by
a countable number of similarities.

(2) It has recently been proven by Arbeiter and Patzschke [ AP] that f, = F, = f* for ran-
dom self-similar measures u satisfying the open set condition.

(3) After this paper was accepted for publication, the author was informed by Professor
S. J. Taylor and Professor J. Peyriére that the latter in [ Pey] considered constructions related
to {but less general than) the dimension functions 4,, and that he in [ BMP], in collaboration
with G. Brown and G. Michon, has obtained results somewhat similar to parts of
Theorem 2.18.
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