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1. Introduction

A polyhedral 2-manifold is a 2-manifold that is the union of convex polygons,
called its facets, such that the intersection of any two facets is either empty, a
vertex of each facet, or an edge of each facet. Polyhedral 2-manifolds may be
viewed as generalizations of 3-dimensional convex polytopes. One property that
convex polytopes have is that each vertex is convex, that is, there is a plane that
intersects the set of facets that meet the vertex such that the intersection is the
boundary of &z convex polygon.

Any polyhedral 2-manifold of genus greatcr than or equal to 1 must have a
nonconvex vertex. This was first menticned in print by Altshuler [1]; however, it
probably has been known before because every such manifold must have a saddle
point, and a saddle point is nonconvex.

Tn her thesis, J. Simutis mentions the possibility that every toroidal poiyiope
(i.e., polyhedral 2-manifold of genus 1) has at least six nonconvex vertices 13]. 'n
this paper we construct a toroidal polytope with only five nonconvex vertices and
prove that every toroidal polytope has at least four nonconvex vertices.

It might seem that the number of nonconvex vertices that a polyhedral
2-manifold must have increases with the genus; however, we show that this is not
so. We construct polyhedral 2-manifolds of every positive genus that have at most
seven nonconvex vertices.

2. Definitions

A 2-cell complex C is a collection of convex k-dimensional polytopes —1< k=
2, called the faces of C, such that

(i) the intersection of any two faces of C is a face of both faces,

(ii) any face of a face of C is a face of C.
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A polyhedral 2-manifold is therefore a 2-cell complex whcse union is a 2-
manifold. A 2-pseudomanifold is a simplicial 2-complex that is connected and has
the property that cvery edge belongs to exactly two 2-simplices. A polyhedral
2-pseudomanifold is a 2-cell complex whose union is homeomorphic to a 2-
pseudomanifold.

The star of a vertex of any of these types of manifolds is the union of the set of
faces meeting the vertex. The link of the vertex is the relative boundary of the
star. In a 2-manifold, the star of a vertex is always a cell and the link is always a
simple circuit.

Lemma 1. If the link of each vertex of a polyhedral 2-pseudomanifold is a simple
circuit, then it is a polyhedral 2-manifold.

Proof. We must show that every point has a neighborhood homeomorphic to a
cell. Clearly all points in a 2-pseudomanifold, except possibly the vertices, will
have such a neighborhood. Since the link of each vertex is a simpie circuit, the
star must be a closed cell; thus, the vertices also have the desired neighborhoods.

As stated above, a vertex is convex if there is a plane that intersects its star in
the boundary of a convex pelygon. The star of a vertex generates a cone with the
vertex as the vertex of the cone. The cone consists of the union of the rays frcm
the vertex through each of the points of its link. If the cones associated with two
different vertices are congruent, we shall say that the vertices are congruent.
Clearly, if one of two congruent vertices is convex, then so is the other.

For a given polyhedral 2-manifold, a general direction is one such that each
plane perpendicular to that direction contains at most one vertex. A general plane
:s one that is perpendicular to a general direction. For a given direction u, the
index of a vertex with respect to u as 1 minus one half the number of times that
the link of the vertex intersects the plane through the vertex perpendicular to w.
Thus, a relative maximum or minimum will have index 1. A vertex that is not a
maximum, a minimum or a saddle point will have index 0. A saddle point will
have negative index. A convex vertex will have index either O or 1. A theorem of
Banchoff [2] states that the sum of the indices of the vertices of a polyhedral
Z2-manifold (in which the facets are all triangles) is the Euler characteristic of the
manifold. If we have a polyhedral 2-manifold t}i:1t has facets that are not triangles,
we may add diagonals across facets to change the facets to triangles without
changing any of the indices; thus, Banchoff’s theorem applies to all polyhedral
2-manifolds.

We shall say that a vertex is a saddle point with respect to a plane if it is a saddle
point (i.e., of negative index) with respect 1o a direction perpendicular to that
plane.

One method of construction that we shall use is formation of convex hulls. The
convex hull of a ccllection of sets S, . .., S, will be denoted by con(S,. ..., S,). If
we have two faces F; and F, of a polyhedra!l 2-manifold that meet on an edge e,
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Fig. 1.

then by capping the edge that they meet on, we mean replacing F, and F, by
polygons formed in the following way. Take a point p very near the middle of e,
but not in the convex hull of the two facets. For each edge of F, or F,, other than
e, take the ccnvex hull of p with that edge. These are the polygons that we replace
F, and F, with (Fig. 1).

3. The main results

Theorem 1. For each i >0, there exists a polyhedral 2-manifold M;, of genus i,
with at most seven non-convex vertices.

Proof. We begin by describing the intersections, A;, B; and C; of M, with the
planes z =0, z =1, and z = —1, respectively. The set A; consists of 2i + 1 triangles
with a common vertex V as shown in Fig. 2. We label the innermost triangle T,
the next innermost T,, etc. The righthand edge of T; will be called g;. The upper
and left edges o T; will be called b; and ¢;, respectively. The set A, is situated in
the xy-plane in E* such that the origin is inside T; and the triangles are
symmetric about the x axis. The vertex belong:ng to ¢; anc b; will be denoted r,.

v

Fig. 2.

Now we will perform certain modifications on A; to produce the set B, We
translate each of the triangles T\, ..., T, _; such that the bottom veriex of each T,
is in the relative interior of a;,,, for 1<j<2i-1, as in Fig. 3.

< 7
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Fig. 3.
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These translations can be made in such a way that the origin is inside the translate
of T,.

We now extend the top edec of the translate of T, a small distance to the right,
and we add a segment from this new endpoint parallel to a,, as shown in Fig. 4.

T2

Fig. 4.

We extend each of the translates of the edges ¢, 1 <j=<2i— 1, until they meet the
translates of g;., (sec Fig. 5).
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Fig. 5.

From this configuration we can extract a closed polygonal curve K; as shown in
Fig. 6.

We multiply the set K; by a constant a to be determined later, and translate the
resulting set one unit upward. This is the set B. On the curve K; each edge
corresponds to a parallel edge in A,. If x is an edge in A, then we denote the
corresponding edge in B; by x'.

The set G ic the reflection of B, through the origin. Because of the symmetry of
the triangles in A;, each edge of C, is parallel tb a unique edge of A,. If x is an
edge of A;, we denote the corresponding parallel edge in C, by x".

The manifold M, contains as faces, all polygons of the form con(x, x') and
con(x, x"), for all edges x of A,. It also contains all polygons of the form con(p, e)
and con(q, g) where p=(0,0,1+¢), q=(0,0,-1,—¢), e is an edge of B; and g is
an edge of C, (¢ is a constant to be determined later).

/
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Fig. 6.
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We will now examine the convexity of the vertices and we shall see how to
choose the constants a and £ so that there are at most seven nonconvex vertices.
It is important to observe here that con(T}, bj, ¢;) and con(T}, aj, b’)) are convex
polytopes and that their union is a convex polytope P; provided « is small

)
enough. The vertex r; is congruent to a vertex of P; and is therefore convex. By
symmetry, the vertices lying in both a; and b; are also convex.

Let Pj be the polytope obtained by taking the convex hull of P, and a point
P=(0,0, 1+¢) where £ >0 and is sufficiently small that the faces of P, meeting P
are just triangles, namely the convex hulls of P with edges of the top triangular
face of Pj. The vertices in B; that belong to both b and c| are congruent to
vertices of P} and are thus convex. A similar argument shows that the vertices
belonging to both a; and b; are convex. By symmetry, the corresponding vertices
in C; are also convex.

Let Q; = conl(c;, ¢}, a;.2, aj_,, P). The vertices in B; other than v, and v- that
are the intersections of ¢} and a;j (see Fig. 6) ar¢ congruent to »ziuces of the
corresponding Q; and are thus convex. The corresponding vertices in C, are
therefore also convex.

This leaves only seven vertices, p, g, V, and two vertices each, in B; and C, that
have not been shown to be convex. Although it is not necessary for the proof of
this theorem, it can be shown that they are indeed not convex.

Our next task is to prove that M; is a manifold. Ii is clearly a pseudoniarifold
and since each vertex except possibly V, has a neighborhood homeomorphic to a
cell, we can show that M, is a manifold by showing that the link of V is a simple
circuit.

This we prove by induction on i. The reader may check that for i = 1, the iink is
a simple circuit. We shall assume that the link is a circuit in M,_; and prove it for
M, ‘

The cross section B; is essentially what you get if you separate the two edges
meeting v, in B;_; (see Fig. 6) and add the edges a};, a5, b5, b%.,, ¢5 and
¢5i+1- Having observed this, let us see how we would modify the link of V in M, _,
to get the link in M;. In M,_, the link uses the edges c5;,_; and c¢};_,. In M; these
two edges do not meet at a vertex. This sequence of two edges is replaced by the
sequence ¢5;_y, a5+, an edge from B; to A, an edge from A; to C, ¢5;.y, €5, an
edge from C; to 4, an edge from A; 0 B, a5, c5_,. The net effect is that one
simple path in the link has been replaced by another simple path. Similarly, two
consecutive edges in C;_; will be replaced by a longer simple path. These changes
do not change the fact that the link is a circuit.

We can determine the genus of M, by examining the index of the saddle point
V. If we take a plane very close to the xy-plane, then with respect to this general
direction therc is only one saddle point, V. There is one maximum (using the
upward direction as positive) and one minimuin. The index of V is 1 —3(4i +2)=
—2i. By Banchoff’s Theorem we conclude that the Euler characteristic of M, is
2—2i. the genus is therefore i.
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Fig. 7.

For manifolds of genus 1, we can Jdo a little better. We will construct a torus
with only five nonconvex vertices. The author conjectures that for the torus, this is
the best possible.

Theorem 2. There exists a toroidal polytope T with only five nonconvex vertices.

Proof. Let a, b, ¢, d, and e be the vertices of a triangular bipyramid P as shown in
Fig. 7. Let f be a point not in P but very close to the centroid of the face aed. Let
X be the set consisting of the triangles ebf, bfc, fcd, cde, and deb.

To the set X we add the tetrahedra abef, acbf, and acdf. Next we cap the edges
be, cd, and de (in that order) calling the three new vertices g, h, and i,
respectively. The torus T is the boundary of this solid in E* (see Fig. 8).

a
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Table |

Fdges Faces Vertex v link of v

ab bc ce dh abc  aeg cde a he, ch, hd, df, fe, eg, gb
bd bd cf di ahg  bef cdf b cf, fe, ei. id, dg, ga, ac

ad be ch ef ach bdg cei ¢ de, ei, ih, ha, ab, bf, {d
ae bf ci eg adf bdi  chi d eg, gb, bi, ih, ha, af, fc, ce
af bg de ei adh bef deg e fa. ag, gd. dc, ci, ib, bf
ag bi df hi aef bei dhi f ad, dc, ch, be, ea

ah cd dg

The vertex a is congruent to a vertex of P and is thus convex. Each of the
vertices g, h, and i was added to the set when an edge belonging to two triangular
faces was capped; thus, they are also convex. This leaves at most five vertices that
can be nonconvex.

In Table 1 we list the edges and faces of T, and also the links of ihe vertices b,
¢, d, e, and f. The links of the other vertices are clearly simpie circuits. Since T is a
pseudomanifold (which can be checked from -he table) in which all links are
simple circuits, T is a manifold. It is a torus beca ise its Euler characteristic is 0.

We now e¢stablish a lower bound on the minimum number of nonconvex
vertices. In her thesis [3], J. Simutis showed that from a toroidal polytope with n
nonconvex vertices, one can construct a simplicial (i.e., one with triangular faces)
toroidal polytope with a nonconvex vertices. We remark here that her proof is
independent of the genus of the manifold: thus we have

Lemma 2. If there exists a polvhedral manifold of genus g, witih exactly n
nonconvex vertices, then there a simplicial polyhedral manifold of genus g with
exactly n nonconvex vertices.

Theorem 3. Every polyhedral manifold of genus greater than or equal to 1 has at
least four nonconvex vertices.

Proof. We shall assume that the manifold is simplicial. Since it is simplicial we
may move the vertices small distances without changing the convexity or roncon-
vexity of the vertices, thus we may also assume that the vertices are in general
position.

We use another theorem of Simutis [3], that in a toroidal polytope (and by the
same proof, in any polyhedral manifold) a sadcle point must have a nonconvex
vertex above and below it. If our manifold has at least two saddle points in some
general direction, then there is a nonconvex vertex above the uppermost saddle
point and a nonconvey vertex below the lowerniost. Since saddle points are also
nonconvex, we have at least four.

Suppose that in some general direction u there is only one saddle point, p.
Since the vertices are in general position, for directions sufficiently close to u the
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index of p in that direction differs from the index in the direction u by at most 1.
If p is the only saddle point in the direction y then by Banchoff’s Theorem it has
index at least -2, thus in directions sufficiently close to u, p will still be a saddle
point.

Using a saddle point and two nonconvex vertices, one above and one below it,
we have three nonconvex vertices, a, b, and c¢. Let S be a plane through a, b, and
¢, and let S’ be a general plane near S, such that a is on S, and b and ¢ are below
it. If none of a, b or ¢ is a saddle point with respect to S’, then any saddle point in
the manifold gives us a fourth nonconvex vertex. If one of the three vertices is the
saddle point with respect to S, we choose a general plane S” close to S, such that
the saddle point with respect to S’ is on S” and the other two vertices are below it.
Since the saddle point with respect to S’ is still a saddle point with respect to S”,
there is a noncon~cx vertex above it. This gives our fourth nonconvex vertex.
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