NONCONVEX VERTICES OF POLYHEDRAL 2-MANIFOLDS

David BARNETTE*
Department of Mathematics, University of California, Davis, CA 95616, USA

Received 6 May 1980
Revised 12 September 1980 and 24 September 1981

1. Introduction

A polyhedral 2-manifold is a 2-manifold that is the union of convex polygons, called its facets, such that the intersection of any two facets is either empty, a vertex of each facet, or an edge of each facet. Polyhedral 2-manifolds may be viewed as generalizations of 3-dimensional convex polytopes. One property that convex polytopes have is that each vertex is convex, that is, there is a plane that intersects the set of facets that meet the vertex such that the intersection is the boundary of a convex polygon.

Any polyhedral 2 -manifold of genus greatis than or equal to 1 must have a nonconvex vertex. This was first mentioned in print by Altshuler [1]; however, it probably has been known before because every such manifold must have a saddle point, and a saddle point is nonconvex.

In her thesis, J. Simutis mentions the possibility that every toroidal poiyiope (i.e., polyhedral 2 -manifold of genus 1) has at least six nonconvex vertices [3]. In this paper we construct a toroidal polytope with only five nonconvex vertices and prove that every toroidal polytope has at least four nonconvex vertices.

It might seem that the number of nonconvex vertices that a polyhedral 2-manifold must have increases with the genus; however, we show that this is not so. We construct polyhedral 2-manifolds of every positive genus that have at most seven nonconvex vertices.

2. Definitions

A 2-cell complex C is a collection of convex k-dimensional polytopes $-1 \leqslant k \leqslant$ 2 , called the faces of C, such that
(i) the intersection of any two faces of C is a face of both faces,
(ii) any face of a face of C is a face of C.

[^0]A polyhedral ?-manifold is therefore a 2 -cell complex whose union is a 2 manifold. A 2-pseudomanifold is a simplicial 2-complex that is connected and has the property that every edge belongs to exactly two 2 -simplices. A polyhedral 2-pseudomanifold is a 2 -cell complex whose union is homeomorphic to a 2 pseudomanifold.

The star of a vertex of any of these types of manifolds is the union of the set of faces meeting the vertex. The link of the vertex is the relative boundary of the star. In a 2-manifold, the star of a vertex is always a cell and the link is always a simple circuit.

Lemma 1. If the link of each vertex of a polyhedral 2-pseudomanifold is a simple circuit, then it is a polyhedral 2-manifold.

Proof. We must show that every point has a neighborhood homeomorphic to a cell. Clearly all points in a 2 pseudomanifold, except possibly the vertices, will have such a neighborhood. Since the link of each vertex is a simple circuit, the star must be a closed cell; thus, the vertices also have the desired neighborhoods.

As stated above, a vertex is, convex if there is a plane that intersects its star in the boundary of a convex pelygon. The star of a vertex generates a cone with the vertex as the vertex of the cone. The cone consists of the union of the rays from the vertex through each of the points of its link. If the cones associated with tivo different vertices are congruent, we shall say that the vertices are congruent. Clearly, if one of two congruent vertices is convex, then so is the other.

For a given polyhedral 2-manifold, a general direction is one such that each plane perpendicular to that direction contains at most one vertex. A general plane is one that is perpendicular to a general direction. For a given direction u, the index of a vertex with respect to u as 1 minus one half the number of times that the link of the vertex intersects the plane through the vertex perpendicular to u. Thus, a relative maximum or minimum will have index 1 . A vertex that is not a maximum, a minimum or a saddle point will have index 0 . A saddle point will have negative index. A convex vertex will have index either 0 or 1 . A theorem of Banchoff [2] states that the sum of the indices of the vertices of a polyhedral 2 -manifold (in which the facets are all triangles) is the Euler characteristic of the manifold. If we have a polyhedral 2 -manifold thit has facets that are not triangles, we may add diagonals across facets to chang the facets to triangles without changing any of the indices; thus, Banchoff's theorem applies to all polyhedral 2-manifolds.

We shall say that a vertex is a saddle point with respect to a plane if it is a saddle point (i.e., of negative index) with respect to a direction perpendicular to that planc.

One method of construction that we shall use is formation of convex hulls. The convex hull of a collection of sets S_{1}, \ldots, S_{n} will be denoted by $\operatorname{con}\left(S_{1}, \ldots, S_{n}\right)$. If we have two faces F_{1} and F_{2} of a polyhedral 2-manifold that meet on an edge e,

Fig. 1
then by capping the edge that they meet on, we mean replacing F_{1} and F_{2} by polygons formed in the following way. Take a point p very near the middle of e, but not in the convex hull of the two facets. For each edge of F_{1} or F_{2}, other than e, take the convex hull of p with that edge. These are the polygons that we replace F_{1} and F_{2} with (Fig. 1).

3. The main results

Theorem 1. For each $i>0$, there exists a polyhedral 2-manifold M_{i}, of genus i, with at most seven non-convex vertices.

Proof. We begin by describing the intersections, A_{i}, B_{i} and C_{i} of M_{i} with the planes $z=0, z=1$, and $z=-1$, respectively. The set A_{i} consists of $2 i+1$ triangles with a common vertex V as shown in Fig. 2. We label the innermost triangle T_{1}, the next innermost T_{2}, etc. The righthand edge of T_{i} will be called a_{i}. The upper and left edges of T_{i} will be called b_{j} and c_{j}, respectively. The set A_{i} is situated in the $x y$-plane in E^{3} such that the origin is inside T_{1} and the triangles are symmetric about the x axis. The vertex belonging to c_{j} and b_{j} will be denoted r_{i}.

Fig. 2.
Now we will perform certain modifications on A_{i} to produce the set B_{i}. We translate each of the triangles $T_{1}, \ldots, T_{2 i-1}$ such that the bottom vertex of each T_{j} is in the relative interior of a_{j+1}, for $1 \leqslant j \leqslant 2 i-1$, as in Fig. 3.

Fig. 3.

These translations can be made in such a way that the origin is inside the translate of T_{1}.

We now extend the top edge of the translate of T_{1} a small distance to the right, and we add a segment from this new endpoint parallel to a_{1}, as shown in Fig. 4.

Fig. 4.
We extend each of the translates of the edges $c_{j}, 1 \leqslant j \leqslant 2 i-1$, until they meet the translates of $a_{i+2}(\sec$ Fig. 5).

Fig. 5.
From this configuration we can extract a closed polygonal curve K_{i} as shown in Fig. 6.

We multiply the set K_{i} by a constant α to be determined later, and translate the resulting set one unit upward. This is the set B_{i}. On the curve K_{i} each edge corresponds to a parallel edge in A_{i}. If x is an edge in A_{i} then we denote the corresponding edge in B_{i} by x^{\prime}.

The set C_{i} is the reflection of B_{i} through the origin. Because of the symmetry of the triangles in A_{i}, each edge of C_{i} is parallel t) a unique edge of A_{i}. If x is an edge of A_{i}, we denote the corresponding parallel edge in C_{i} by $x^{\prime \prime}$.

The manifold M_{i} contains as faces, all polygons of the form $\operatorname{con}\left(x, x^{\prime}\right)$ and $\operatorname{con}\left(x, x^{\prime \prime}\right)$, for all edges x of A_{i}. It also contains all polygons of the form $\operatorname{con}(p, e)$ and $\operatorname{con}(q, g)$ where $p=(0,0,1+\varepsilon), q=(0,0,-1,-\varepsilon), e$ is an edge of B_{i} and g is an edge of C_{i} (ε is a constant to be determined later).

Fig. 6.

We will now examine the convexity of the vertices and we shall see how to choose the constants α and ε so that there are at most seven nonconvex vertices. It is important 'o observe here that $\operatorname{con}\left(T_{j}, b_{i}^{\prime}, c_{i}^{\prime}\right)$ and $\operatorname{con}\left(T_{i}, a_{i}^{\prime \prime}, b_{j}^{\prime \prime}\right)$ are convex polytopes and that their union is a convex polytope P_{i} provided α is small enough. The vertex r_{i} is congruent to a vertex of P_{i} and is therefore convex. By symmetry, the vertices lying in both a_{j} and \dot{b}_{j} are also convex.

Le: P_{i}^{\prime} be the polytope obtained by taking the convex hull of P_{i} and a point $P=(0,0,1+\varepsilon)$ where $\varepsilon>0$ and is sufficiently small that the faces of P_{j}^{\prime} meeting P are just triangles, namely the convex hulls of P with edges of the top triangular face of P_{j}^{\prime}. The vertices in B_{i} that belong to both b_{j}^{\prime} and c_{j}^{\prime} are congruent to vertices of P_{j}^{\prime} and are thus convex. A similar argument shows that the vertices belonging to both a_{i}^{\prime} and b_{i}^{\prime} are convex. By symmetry, the corresponding vertices in C_{i} are also convex.

Let $Q_{i}=\operatorname{con}\left(c_{i}, c_{i}^{\prime}, a_{i+2}, a_{i-2}^{\prime}, P\right)$. The vertices in B_{i} other than v_{1} and $v_{\text {t }}$ that are the intersections of c_{j}^{\prime} and a_{j}^{\prime} (see Fig. 6) are congruent to vosuces of the corresponding Q_{i} and are thus convex. The corresponding vertices in C_{i} are therefore also convex.

This leaves only seven vertices, p, q, V, and two vertices each, in B_{i} and C_{i}, that have not been shown to be convex. Although it is not necessary for the proof of this theorem, it can be shown that they are indeed not convex.

Our next task is to prove that M_{i} is a manifold. It is clearly a pseudnrianifold and since each vertex except possibly V, has a neighborhood homeomorphic to a cell, we can show that M_{i} is a manifold by showing that the link of V is a simple circuit.

This we prove by induction on i. The reader may check that for $i=1$, the innk is a simple circuit. We shall assume that the link is a circuit in M_{i-1} and prove it for M_{i}.

The cross section B_{i} is essentially what you get if you separate the two edges meeting v_{2} in B_{i-1} (see Fig. 6) and add the edges $a_{2 i}^{\prime}, a_{2 i+1}^{\prime}, b_{2 i}^{\prime}, b_{2 i+1}^{\prime}, c_{2 i}^{\prime}$ and $c_{2 i+1}^{\prime}$. Having observed this, let us see how we would modify the link of V in M_{i-1} to get the link in $\boldsymbol{M}_{\mathbf{i}}$. In $\boldsymbol{M}_{\boldsymbol{i}-1}$ the link uses the edges $\boldsymbol{c}_{2 i-1}^{\prime}$ and $\boldsymbol{c}_{2 i-2}^{\prime}$. In $\boldsymbol{M}_{\boldsymbol{i}}$ these two edges do not meet at a vertex. This sequence of two edges is replaced by the sequence $c_{2 i-1}^{\prime}, a_{2 i+1}^{\prime}$, an edge from B_{i} to A_{i}, an edge from A_{i} to $C_{i}, c_{2 i+1}^{\prime \prime}, c_{2 i}^{\prime \prime}$, an edge from C_{i} to A_{i}, an edge from A_{i} to $E_{i}, a_{2 i}^{\prime}, c_{2 i-2}^{\prime}$. The net effect is that one simple path in the link has been replaced by another simple path. Similarly, two consecutive edges in C_{i-1} will be replaced by a longer simple path. These changes do not change the fact that the link is a circuit.

We can determine the genus of M_{i} by examining the index of the saddle point V. If we take a plane very close to the $x y$-plane, then with respect to this general direction there is only one saddle point, V. There is one maximum (using the upward direction as positive) and one minimum. The index of V is $1-\frac{1}{2}(4 i+2)=$ $-2 i$. By Banchoff's Theorem we conclude that the Euler characteristic of M_{i} is $2-2 i$. the genus is therefore i.

Fig. 7.
For manifolds of genus 1 , we can do a little better. We will construct a torus with only five nonconvex vertices. The author conjectures that for the torus, this is the best possible.

Theorem 2. There exists a toroidal polytope T with only five nonconvex vertices.

Proof. Let a, b, c, d, and e be the vertices of a triangular bipyramid \boldsymbol{P} as shown in Fig. 7. Let f be a point not in P but very close to the centroid of the face aed. Let X be the set consisting of the triangles $e b f, b f c, f c d, c d e$, and $d e b$.

To the set X we add the tetrahedra abef, acbf, and $a c d f$. Next we cap the edges $b e, c d$, and $d e$ (in that order) calling the three new vertices g, h, and i, respectively. The torus T is the boundary of this solid in E^{3} (see Fig. 8).

Fig. 8.

Table 1

Fdges		Faces			Vertex v	link of v
$a b b c$	ce dh	$a b c$	aeg	cde	a	$h c, c h, h d, d f, f e, e g, g h$
$b d$ bd	cf di	abg	$b c f$	cdf	b	cf, fe, ei, id, dg, ga, ac
ad be	ch ef	ach	$b d g$	cei	c	de, ei, ih, ha, ab, bf, fd
ae bf	ci eg	adf	$b d i$	chi	d	$e g, g b, b i, i h, h a, a f, f c, c e$
$a f \quad b g$	de ei	adh	bef	deg	e	$f a, a g, \mathrm{gd}, \mathrm{dc}, \mathrm{ci}, \mathrm{ib}, \mathrm{bf}$
$a g \quad b i$	$d f \quad h i$	aef	bei	$d h i$	f	$a d, d c, c b, b e, e a$
$a h$ co						

The vertex a is congruent to a vertex of P and is thus convex. Each of the vertices g, h, and i was added to the set when an edge belonging to two triangular faces was capped; thus, they are also convex. This leaves at most five vertices that can be nonconvex.

In Table 1 we list the edges and faces of T, and also the links of the vertices b, c, d, e, and f. The links of the other vertices are clearly simple circuits. Since T is a pseudomanifold (which can be checked from the table) in which all links are simple circuits, T is a manifold. It is a torus beca ase its Euler characteristic is 0 .

We now establish a lower bound on the minimum number of nonconvex vertices. In her thesis [3], J. Simutis showed that from a toroidal polytope with n nonconvex vertices, one can construct a simplicial (i.e., one with triangular faces) toroidal polytope with n nonconvex vertices. We remark here that her proof is independent of the genus of the manifold; thus we have

Lemma 2. If there exists a polyhedral manifold of genus g, witi exactly n nonconvex vertices, then there a simplicial polyhedral manifold of genus g with exactly n nonconvex vertices.

Theorem 3. Every polyhedral manifold of genus greater than or equal to i has at least four nonconvex vertices.

Proof. We shall assume that the manifold is simplicial. Since it is simplitial we may move the vertices small distances without changing the convexity or ponconvexity of the vertices, thus we may also assume that the vertices are in general position.

We use another theorem of Simutis [3], that in a toroidal polytope (and by the same proof, in any polyhedral manifold) a sadele point must have a nonconvex vertex above and below it. If our manifold has at least two saddle points in some general direction, then there is a nonconvex vertex above the uppermost saddle point and a nonconves: vertex below the lowernost. Since saddle points are also nonconvex, we have at least four.

Suppose that in some general direction u there is only one saddle point, p. Since the vertices are in general position, for directions sufficiently close to u the
index of p in that direction differs from the index in the direction u by at most 1 . If p is the only saddle point in the direction μ then by Banchoff's Theorem it has index at least -2 , thus in directions sufficiently close to u, p will still be a saddle point.

Using a saddle point and two nonconvex vertices, one above and one below it, we have three nonconvex vertices, a, b, and c. Let S be a plane through a, b, and c, and let S^{\prime} be a general plane near S, such that a is on S^{\prime}, and b and c are below it. If none of a, b or c is a saddle point with respect to S^{\prime}, then any saddle point in the manifold gives us a fourth nonconvex vertex. If one of the three vertices is the saddle point with respect to S^{\prime}, we choose a general plane $S^{\prime \prime}$ close to S^{\prime}, such that the saddle point with respect to S^{\prime} is on $S^{\prime \prime}$ and the other two vertices are below it. Since the saddle point with respect to S^{\prime} is still a saddle point with respect to $S^{\prime \prime}$, there is a noncon:cx vertex above it. This gives our fourth nonconvex vertex.

References

[1] A. Altshuler, Polyhedral realizations in R^{3} of iringulations of the torus and 2-manifolds in cyclic 4-polytopes, Discrete Maih. 1 (1971) 211-238.
[2] T. Banchoff, Critical points and cuivature for embedded polyhedral surfaces, Amer. Math. Monthly 77 (1970) 475-485.
[3] J. Simutis, Geometric realizitions of toroidal maps, Ph.D. Thesis, 1977, University of California, Davis.

[^0]: * Research supported by NSF Grant MCS76. 07466.

