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A polyhedrcxl 2-muGfold is a 2-manifold th At is the union of convex polygons, 
called its facets, such that the intersection of any two facets is either empty, a 
vertex of each facet, or an edge of each facet. Polyhedral 2-manifolds may be 
viewed as generalizations of 3-dimensional convex polytopes. One property that 
convex polytopes have is that each vertex is convex, that is, there is a plane that 
intersects the set of facets that meet the vertex such that the intersection is the 
boundary of a convex polygon. 

Any polyhedral 2-manifold of genus greater than or equal to 1 must have ,a 
nonconvex vertex. This was first mentioned in print by Altshuler [l]; however, it 
probably has been known before because every such manifold must have a saddle 
point, and a saddle point is nonconvex. 

In her thesis, J. Simutis mentions the possibility that every toroidal polytopte 
(i.e., polyhedral 2-manifold of genus 1) has at least six nonconvex vertices [3]. In 
this paper we construct a toroidal polytope with only five nonconvex vertices and 
prove that every toroidal polytope has at least four nonconvex vertices. 

It might seem that the number of nonconvex vertices that a polyhedral 
2-manifold must have increases with the genus; however, we show that this is not 
so. We construct polyhedral 2-manifolds of every positive genus that have at most 
seven nonconvex vertices. 

A 2-cell complex C is a collection of convex k-dimenr ional polytopes - 1s k s 
the faces of C, s 

(i) the intersection of any two faces of C is a face of both faces, 
(ii) any face of a face of C is a face of C’. 
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A polyhedral :?- manifold is therefore a 2-cell complex wh< SC union is a 2- 

manifold. .A Zl?seudomanifold is a simplicial 2-complex that is connected iand has 

the property that every edge belongs to exactl!d two 2-sim?lices. A podyhedral 
2-pseudomanifold is a 2-cell complex whose union is hoaneomorphic to a 2- 

pseudomanifold. 
The star of a. vertex of any of these types of manifolds is the union of the set of 

faces meeting the vertex. The Iink of the vertex is the relative boundary of the 
star. In a L-ma.nifold, the star of a vertex is always a cell and the link is always a 

Gmple circuit. 

. ff the lirlk of each 
circuit, then it is a polyhedral 

vertex of a polyhedral 2- pseudomanifold is a simple 
Smanifold. 

. WC must show that every point has a neighborhood homeomorphic to a 
41. Clearly all points in a 2qseudomanifold. except possibly the vertices, will 
have such a neighborhood. Since the link of each vertex is a simple circuit, the 
star must be a closed cell; thus, the vertices also have the desired neighborhoods. 

As stated above, a vertex is coIvIz)ex if there is a plane that intersects its star m 
the boundary of a convex polygon. The star of a vertex generates a cone with the 
vertex as the vertex of the cone. The cone consists of the union of the rays frcm 
the vertex through each of the points of its link. if the cones associated with two 
different vertices are congruent, we shall say that the vertices are congruelzt. 
Clearly, if one of two congruent vertices is convex, then so is the other. 

For a given polyhiedral “L-manifold, a general direction is one such that each 
plane perpendicular to that direction contains at most one vertex. A general plane 
Is one that is perpendicular to a general direction. For a given direction u, the 
irtdex of a vertex with respect to u as 1 minus one half the number of times that 
the link of the vertex intersects the plane through the vertex perpendicular to u. 
Thus, a relative maximum or minimturn will hdve index 1. A vertex that is not a 
maximum, a minimum or a saddle point will have index 0. A saddle point will 
h,ave negative index. A convex vertex will have index either 0 or I. A theorem of 
Banchoff [2] states that the sum of the indices of the vertices of a polyhedral 
2-manifold (in which the facets are all triangles)) is the Euler characteristic of the 
manifold. If we have a polyhedral 2-manifold 911, tt has facets that are not triangles, 
we may add diagonals across facets to change_ the facets to triangles without 
changing any of the indices; thus, Banchoff’s Fheorem applies to all polyhedral 
Z-manifolds. 

We shall say that a vertex is a saddle point w~‘.#z respect to a plane if it is a saddle 
point (i.e., of negative index) with respect to a direction perpendicular to that 
plane. 

One od of construction that we shall use is formation of conve:; hulls. 7 I: 
convex f a collection of sets S,, . . denoted by con{&., . . . , S,). 

anifold that meet on an edge e, 
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then by capping the edge that they meet on, we mean replacing F1 and 1;‘2 by 

polygons formed in the following way. Take a point p very near the micldle of’ e, 

but not in the convex hull of the two facets. For each edge of F, or F2, other than 
e, take the convex hull of p with that edge. These are the polygons that we repLice 
F, and F2 with (Fig. 1). 

Fig. 1. 

3. 

For each i P= 0, there exists a polyhedral 2-manifold Miy of genus i, 
with at most sewn non -comex vertices. 

roof. We begin by describing the intersections, Ai, B, and Ci of Mi with the 
planes z = 0, z = 1, and z = -1, respectively. The set Ai consists of 2i + 1 triangles 
with a common vertex V as shown in Fig. 2. We label the innermost triangle T,, 

the next innermc>st T2, etc. The righthand edge of Tj will be called aj. The upper 
and left edges oi Ti will be called bj and Cjq respectively. The set Ai is situated in 
the xy-plane in E” such that the origin is inside T, and the triangles are 

symmetric about the x axis. The vertex belongng to cj am bi will be denoted Yi* 

V 

Fig. 2. 

Now we will perform certain modifications on A, to produce thu set B,. We 
translate each of the triangles T,, . . . , 7& such that the bottom vertex of each q 

is in the relative interior of aj+ ,, for 1 ~j s 2r - 1, as in Fig. 3. 
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Thcsc translations can be made in such a way that the origin is inside the translate 

of T,. 
We now extend the top ed?c of the translate of T, a small distance to the right. 

and WC add a segment from this new endpoint parallel to u ,, as shown in Fig. 4. 

Fig. 4. 

We extend each of the tranr;lates of the edges !:,, 1 s j s 2i - 1, until they meet the 
translates of ~4,‘~ (set Fig. 5). 

Fig. 5. 

From this configuration we can extract a closed polygonal curve Ki as shown in 
Fig. 0. 

We multiply the set Ki by a constant (Y to be determined later, and translate the 
resulting set one unit upward. This is the set ISi. On the curve Ki each edge 
corresponds to a parallel edge in Ai. If x is an edge in Ai then we denote the 
corresponding edge in Bi by x’.. 

The set Cl is the reflection of B, through the origin. Because of the symmetry of 
the triangles in Ai, each edge of Ci is parallel to a unique edge of Ai. If x is am 
edge of Ai, we denote the corresponding parallel edge in Ci by x”. 

The manifold Ml contains as faces, all polygons of the form con(x, x’) and 
con(x, x”), for all edges x of Ai. It also contains all polygons of the form con(p, e) 
and con(q, g) where p = (0, 0, 1 + E), q = (O:, 0, -1, - E), e is an edge of Bj and g is 
an edge of C, (E is a constant to be determined later). 

Fig. 6. 
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We will now examine the convexity of the vertices and we shall see how to 
choose the constants CK and E so that there are at most. seven nonconvex vertices. 
It is important '0 observe here that con(Tj, bj, ci) anti con( Tj, a;, b’,l) are COI~VCX 

polytopes and that their union is a convex polytopc Pj provided 3 is small 
enough. The vertex rj is congruent to a vertex of Pi and is therefore c:)nvex. By 
symmetry, the vertices lying in both ai and bj are also convex. 

Let Pi be the polytope obtained by taking the convex hull of Pi and a point 
P = (0, 0, B + ) E w h ere E > 0 and is sufficiently small that the faces of Pi meeting P 

are just triangles, namely the convex hulls of P with edges of the top triangular 
face of Pi. The vertices in Bi that belong to both b; and ci are congr~~ent to 
vertices of Pj and are thus convex. A similar argument shows that the vertices 
belonging to both ai and bj are convex. By symmetry, the corresponding vertices 
in Ci are also convex. 

Let Qj = CWl(Ci, Ci, t.lj+z, a;_,, P). The vertices in Bi other than U, and u-, that 
are the intersections of ci and ai (see Fig. 6) are congruent to ~~rices of the 
corresponding Qi and are thus convex. The crrresponding vertices in Ci are 
therefore also convex. 

This leaves only seven vertices, p, 4, V, and two vertices each, in Bi and Ci, that 
have not been shown to be convex. Although it is not necessary for the proof of 
this theorem, it can be shown that they are indeed not convex. 

Our next task is to prove that Mi is a manifold. It is clearly a pseudomanifold 
and since each vertex except possibly V, has a neighborhood homeomorphic to a 
cell, we can show that Mi is a manifold by showing that the link of V is a simple 
circuit. 

This we prove by induction on i. The reader may check that for i = 1, the Imk is 
a simple circuit. We shall assume that the link is a circuit in Mi-1 and prove it for 
Mi. 

The cross section Bi is essentially what you get if you separate the two edges 
meeting ~2 in Bi_1 (see Fig. 6) and add the edges a&, a&+1, b$i, b$i+l, C& and 
Cii+r. Having observed this, let us see how we would modify the link of V in Ml+ 
to get the link in Mi. In Mi-1 the link uses the edges c&-r and C&-2* In Mi these 
two edges do not meet at a vertex. This sequence of two edges is replaced by the 
sequence C$i_r, a$i+l, an edge from Bi to Aiy an edge from Ai to Civ csi+l, c’;i, an 
edge from Ci to Ai, an edge from Ai bo El,, a!&, c;i_zs Thfi: net effect is that one 
simple path in the link has been replaced by another simple path. Similarly, two 
consecutive edges in Ci_1 will be replaced by a longer simple path. These changes 
do not change the fact that the link is a circuit. 

We can determine the genus of .Mi by examining the index of the saddle point 
V. If we take a plane very close to the xy -plane, then with respect to this general 

direction there- is only one saddle point, m-e is one maximum (using tht: 

upward direction as positive) and one minimum. The index of V is l-$(4 
-2i. By Banchoff’s Theorem we conclude that the Euler characteristic of 

2 - 2i. the genus is t 
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Fig. 7. 

For manifolds of genus 1, we can do a little better We will construct a torus 
with only five nonconvex vertices. The author conjectures that for the torus, this is 
the best possible. 

There exists a 

. Let a, b, c, d, and e 
Fig. 7. Let f be a point not 
X be the set consisting of 

To the set X we add the 
be, cd, and de (in that 

toroidal polytope T with only fiue noncomex uerrices. 

be the vertices of a triangular bipyramid P as &own in 
in P but very close to the centroid of the face aed. Let 
the triangles ebf, bfc, fed, cde, and deb. 
tetrah-edra abef, acbf, and acdf. Next we cap the edges 
order) calling the three new vertices g, h, and i, 

respectively. The torus T is the boundary of this solid in E” (see Fig. 8). 

a 

h 
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Table I 

Edges Faces Vertex 0 link of u 

nb hc ce dh 

bd hd cf di 

ad be ch ef 

ae bf ci eg 

af bg de ei 

ag hi df hi 

ah cd dg 

abt cteg cde a bc, ch, hd, df, fe. eg, gh 

aSg bcf cdf b cf. fe, ei, id. dg, ga, ac 

uch bdg cei C de, vi, ih, ha, ab, bf, fd 

adf bdi chi d eg, gb, hi, ih, ha, af, fc, ce 

adh bef del: e fa, ag, gd, dc, ci, ib, bf 

aef bei dhi f ad, dc, cb, be, ea 

The vertex u is congruent to a vertex of P and is thus convex. Each of the 
vertices g, h, and i was a ded to the set when an edge belonging to two triangular 
faces was capped; thus, they are also convex. This leaves at most five vertices that 
can be nonconvex. 

In Table 1 WC list the edges and faces of 7’, and also the links of ,he vertices 6, 
c, d, e, and f. The links of the other vertices are clearly simple circuits. Since T is a 
pseudomanifold (which can be checked from ‘he table) in which all links are 
simple circuits, T is a manifold. It is a torus beta lse its Euler chnracteristic is 0. 

We now establish a lower bound on the minimum number of nonconvex 
vertices. In her thesis [3], J. Simutis showed that from a toroidal polytope with n 
nonconvex vertices, onz can construct a simplicial (i.e., one with triangular faces) 
toroidal polytope with n nonconvex vertices. We remark here that Glcr proof is 
independent of the genus of the manifokl; thus we have 

lf there exists a pol#edral manifold of 
nonconvex, vertices, then there a simplicial polyhedral 
exact1 y n nonconvex vertices. 

genus g, wit/l exactly n 
manifold of genus g wtth 

Every polyhedral manifold of genus greater than or equal to i has at 

least four nonconvex vertices. 

. We shall assume that the manifold is simplicial. Since it is simpli4 wc 
may move the vertices small distances without s’langing the convexity or ~‘:oncon- 
vexity of the vertices, thus we m;ly also assume that the vertices arc in gcncral 
position. 

We use another theorem of Simutis [3], that it1 a toroidal polytope (and by the 
same proof, in any poly 
vertex above and below f our manifold has at least two sad 

rection, then there i 

onconvex, we have at least four. 

ections sufficiently close to u the 
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index of p in that direction di.ffcrs from tht: index in the direction u by at most 1. 
Hf p is ttrc only saddle point in the direction v then by Banchoff’s Theorem it has 

index at least - 2, thus in directions sufhckntly close to u, p will still be a saddle 

point. 
Using a saddle point and two nonconvex vertices, one above and one below it, 

we have three nonconvex vertices, a, b, and c. Let S be a plane t rough c&, b, and 

c, and let S’ be a general plane near S, such that Q is on S’, and b and c are below 
it. If none of a, b or c is a saddle point with rcspe:ct to S’, then any saddle point in 
the manifold gives us a fourth nonconvex vertex. If one of the three vertices is the 
saddle point with respect to S’, we choose a general plane S” close to S”, such that 
the saddle point with respect to S’ is on S” and the other two vertices arc below it. 
Since the saddle point with respect to S’ is still a saddle point with respect to S”, 
thcrc is a noncon. ix vertex above it. This f-;ives our fourth nonconvex vertex. 
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