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So far, there have been no theories or observational data that deny the presence of interaction between
dark energy and dark matter. We extend naturally the holographic dark energy (HDE) model, proposed by
Granda and Oliveros, in which the dark energy density includes not only the square of the Hubble scale,
but also the time derivative of the Hubble scale to the case with interaction and the analytic forms for the
cosmic parameters are obtained under the specific boundary conditions. The various behaviors concerning
the cosmic expansion depend on the introduced numerical parameters which are also constrained. The
more general interacting model inherits the features of the previous ones of HDE, keeping the consistency
of the theory.
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1. Introduction

The observation of the type Ia Supernovae [1] has shown that
our universe is undergoing an era of accelerated expansion. Data
from other observations such as Cosmic Microwave Background
Radiation [2] and SDSS [3] also give support to the phenomenon.
These data reveal that the present universe is dominated by 70%
exotic component, dubbed dark energy, which has negative pres-
sure and is pushing the universe into accelerated expansion. There-
fore, in order to explain this bizarre phenomenon, various models
of dark energy have been put forward, ranging from the simplest
one – a cosmological constant – to the scalar field theories of dark
energy and modified gravity theories as well. The cosmological
constant corresponds to the vacuum energy with constant energy
and pressure, and an equation of state w = −1. However, it is con-
fronted with two fundamental problems: the fine-tuning problem
and the cosmic coincidence problem. To alleviate the drawbacks,
various scalar field theories of dark energy emerge continually [4].
On the other hand, the new geometric structures of space–time are
also taken to realize the accelerated expansion of the universe [5].

Recently, another model inspired by the holographic principle
has been put forward to explain the dark energy [6,7]. The holo-
graphic principle, enlightened by the quantum properties of black
holes, is one of the most important results in recent investigations
of quantum gravity [8,9]. It was first put forward by ’t Hooft in the
context of black hole physics [10] and later extended to string the-
ory by Susskind [11]. According to the holographic principle, the
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entropy of a system scales not with its volume, but with its surface
area [12,13]. Equally the degrees of freedom of a piece of spatial
region reside not in the bulk but only at the boundary of the re-
gion and the number of degrees of freedom per Planck area is not
greater than unity. From the work of Cohen and collaborators [14],
it is proposed that in quantum field theory a short distance cut-
off is related to a long distance cut-off in virtue of the limit set
by formation of a black hole. In other words, when ρde is taken
as the quantum zero-point energy density caused by a short dis-
tance cut-off, the total energy in the region of size L is not more
than the mass of a black hole of the same size, where the inequal-
ity L3ρde � LM2

p emerges. Saturating it is equivalent to taking the
largest L allowed, thus

ρde = 3c2M2
p L−2, (1)

where 3c2 is a numerical constant introduced for convenience and
M p is the reduced Planck mass, M2

p = (8πG)−1.
In the context of cosmology, the existence of an unknown vac-

uum energy is suggested and when L is taken as the size of
the current universe, for which the most common choice is the
Hubble scale i.e., L ∼ H−1, the vacuum energy density is propor-
tional to the square of the Hubble scale ρde ∝ H2, according to
the holographic principle [14,15]. (In this Letter we use terms like
the vacuum energy and dark energy interchangeably.) Through the
Friedmann equation

3M2
p H2 = ρde + ρm, (2)

it turns out that the dark matter density ρm has the same behavior
as ρde with the expression ρm = 3(1− c2)M2

p H2. That is to say, the
ense. 
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dark energy is also pressureless, namely, pde = wρde = 0, meaning
the equation of state parameter w = 0. Obviously the case vio-
lates the condition of the cosmic accelerated expansion w < −1/3,
although having solved the fine-tuning problem in principle [16].
A better choice for the infrared cut-off L is the particle horizon [9,
13], which is defined as Rph = a

∫ t
0

dt′
a = a

∫ a
0

da′
Ha′ 2 . But as is shown

in Li’s work [6], the equation of state of dark energy in this sit-
uation is larger than −1/3, out of the mechanism of cosmic ac-
celeration likewise. Furthermore, Li takes the future event horizon,
whose definition is Reh = a

∫ ∞
t

dt′
a = a

∫ ∞
a

da′
Ha′ 2 , as the infrared cut-

off instead, for the sake of ameliorating the holographic model.
The aspect of amelioration is the satisfaction of acceleration and
that c = 1 makes the universe evolve into the de Sitter space–time
while c < 1 the phantom region [17]. The concomitant defect is
encounter of the causality problem pointed out by Cai [18]. It is
argued that according to the definition of the future event horizon,
the history of dark energy depends on the future evolution of the
scale factor a(t), as violates causality. Moreover, for a spatially flat
Friedmann–Robertson–Walker universe, only the cosmic expansion
is accelerating can the future event horizon exist. So it is contrived
that in order to interpret the cosmic accelerated expansion, the
holographic dark energy model based on the future event horizon
has presumed the acceleration. To avoid these problems originated
by the introduced future event horizon, Cai also proposed a dark
energy model, dubbed “agegraphic dark energy”, characterized by
the age of the universe, which was chosen as the length measure
instead of the horizon distance of the universe. Correlative studies
of agegraphic dark energy can be perused in [19,20] and references
therein. We give no unnecessary details here.

Recently, inspired by the holographic dark energy model, Gao
et al. [21] put forward the so-called Ricci dark energy (RDE) model.
The idea is taking the average radius of Ricci scalar curvature
|R|−1/2 as the infrared cut-off. So from Eq. (1) the dark energy
density is proportional to the Ricci scalar curvature

ρde = 3αM2
p

(
Ḣ + 2H2) = −α

2
M2

p R, (3)

where α is a constant to be determined and a spatially flat uni-
verse is presumed. With some values of cosmological parameters
which are consistent with current observations [22,23], the equa-
tion of state of Ricci dark energy can evolve across the cosmolog-
ical constant boundary w = −1 [24]. It means this model, which
differs slightly for different values of cosmological parameters, can
be classified as a quintom one [25]. The Ricci dark energy model
set up without the future event horizon is naturally free of the
causality problem. In this case the dark energy is determined by
the local Ricci scalar curvature rather than the event horizon of
a global concept. Also, the fine-tuning problem is avoided because
the dark energy is associated with the space–time scalar curvature,
but not with Planck or other high energy physical scales and the
coincidence problem is solved as well. In [26], Granda and Oliveros
extended the Ricci dark energy to a more general form in which
the energy density is

ρde = 3M2
p

(
αH2 + β Ḣ

)
, (4)

where α and β are constants to be determined. So it can be re-
alized that when α = 2β the model reduces to Ricci dark energy.
In the same way the model is phenomenologically viable, fitting
with the current observational data, as well the causality and co-
incidence problems are solved. Correlative works of this kind are
shown in [27] from various perspectives of scalar field, spatial cur-
vature, braneworld cosmology, observational data and so forth.

On the other hand, in the forementioned models, dark energy
and dark matter evolve separately, keeping to different conserva-
tion equations of energy, with the standard evolution of dark mat-
ter ρm ∝ a−3. But so far, neither theories nor observational data
have denied the interaction between them. For the sake of gener-
ality, the interaction term is naturally considered. In the context
of dark energy, the interaction has been introduced to study some
issues, e.g., raising accelerated expansion in an interacting dark en-
ergy model in which the Hubble scale is treated as the infrared
cut-off [28], avoiding the big rip singularity [29] and so forth [30].

Benefiting from investigations done already, we extend natu-
rally the more general holographic Ricci dark energy model shown
in [26] to the form with interaction between the two major cosmic
components, expecting to enrich the theoretical studies of series of
holographic dark energy models. In the next section we expatiate
upon the interacting model and obtain analytic expressions for the
cosmic evolution. With the help of Suwa’s constraints on the in-
teracting Ricci dark energy (IRDE) model [31], we also constrain
parameters in our model by analogism. The last section is for dis-
cussion.

2. The interacting holographic dark energy model

In the spatially homogeneous and isotropic universe the conti-
nuity equations of energy densities are given by

ρ̇de + 3H(1 + w)ρde = −Q , (5)

ρ̇m + 3Hρm = Q , (6)

where w is the equation of state of dark energy, i.e., pde = wρde .
We take the interaction term of the form Q = Γ ρde , where Γ =
3b2(1 + r)H with the coupling constant b2 and an introduced pa-
rameter r = ρm/ρde as the ratio of two energy densities [28]. Here
the interaction is regarded as a decay process with an arbitrary
decay rate Γ . Making use of the continuity equations we can get

ṙ = 3Hr

(
w + 1 + r

r

Γ

3H

)
. (7)

Likewise by the Friedmann equation (2) the derivative of H with
respect to time is in the form

Ḣ = −3

2
H2

(
1 + w

1 + r

)
. (8)

After the fractional energy densities have been introduced

Ωm = ρm

3M2
p H2

, Ωde = ρde

3M2
p H2

, (9)

the Friedmann equation has another expression

Ωm + Ωde = 1. (10)

Then substituting Eqs. (4) and (8) into Eq. (2), we find the rela-
tionship between w and r,

w =
(

2α

3β
− 1

)
(1 + r) − 2

3β
. (11)

By the definition of r and the Friedmann equation, Ωde can be
expressed in terms of r as

Ωde = 1

1 + r
, (12)

and also the deceleration parameter

q = −1 − Ḣ
2

= 1 + 3w
. (13)
H 2 2(1 + r)
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From the above expressions, it is noted that the main param-
eters, which can describe the evolution of the universe, appear as
functions of the ratio r. So we turn to focus on the evolution of
parameter r and hope for some appropriate results. For a further
step, when w in Eq. (7) is replaced by the expression (11), it leads
to a differential equation of r with respect to x = ln a,

dr

f (r)
= dx, (14)

where

f (r) =
(

2α

β
− 3 + 3b2

)
r2

+
(

2α

β
− 3 − 2

β
+ 6b2

)
r + 3b2

= Cr2 + Br + A, (15)

and H = dx/dt is used in calculation. Integrate Eq. (14),∫
dr

f (r)
= x + D, (16)

where D is a constant of integration, which can be determined by
the boundary condition r0 = ρm0/ρde0 = Ωm0/Ωde0 and the sub-
script “0” denotes the current magnitude of the physical quantities.
In order to solve Eq. (16), we consider the discriminant of the
quadratic polynomial f (r), i.e., � = 4AC − B2. But in this model
there are three constants α, β and b2 to be determined. We em-
ploy the same boundary conditions as authors of [21,26] have
done. At this rate, the number of parameters undetermined re-
duces to two.

Substituting boundary conditions w0 = −1 and r0 = 0.27
0.73 , which

are consistent with current observations [22,23], into Eq. (11), we
obtain

α = 2 + 3βr0

2(1 + r0)
. (17)

By the way, especially from the 7-year WMAP observations [23],
the current data are consistent with a flat universe dominated by
a cosmological constant, even when w is dependent on time. Then
β and b2 remain free and will be fixed by the behavior of the
deceleration parameter. Combined with observations, the cases of
� � 0 are ruled out in the process of integration of Eq. (16). There-
fore, for � < 0 the evolution of the ratio of two energy densities
with respect to x is obtained as follows

r(x) =
√−� tanh[−

√−�
2 (x + D)] − B

2C
, (18)

where the integration constant D is

D = − 2√−�
tanh−1

[
2Cr0 + B√−�

]
. (19)

The evolutions of w , Ωde and q with respect to the redshift z
for variable β with the coupling constant b2 = 0.1 and for vari-
able b2 with β = 0.5 are shown in Figs. 1, 2 and 3, respectively.
Under the boundary conditions used here, we note that α is in-
dependent of b2 but only dependent of β , and increasing α for
increasing β . When there is no interaction, i.e., b2 = 0, the behav-
iors of the above parameters coincide with that in Ref. [26].

Most recently, Suwa and Nihei constrained the parameters in
the IRDE model for the spatially flat universe by using the latest
observational data from SNIa, combined with the CMB and BAO
observations and the best-fit values given therein were Ωde0 =
0.73 ± 0.03, α = 0.45 ± 0.03 and γ = 0.15 ± 0.03 [31]. The RDE is
Fig. 1. (Color online.) The evolution of the equation of state of dark energy w with
respect to the redshift z for variable β with the coupling constant b2 = 0.1 and for
variable b2 with β = 0.5. Herein w0 = −1, Ωm0 = 0.27 and Ωde0 = 0.73 have been
used.

a quite typical model with α = 2β in the more general one, there-
fore it is naturally interesting to take the IRDE model for a sample
to constrain parameters in the general model.

To begin with, if we take α = 2β into Eq. (11) and use Ωde0 =
0.73, which is consistent with the boundary condition we use
above, and β = 0.45 ± 0.03 for the corresponding coefficient of Ḣ
in the definition of ρde , we will find that β = 0.46 leads to w0 ≈
−0.993 which is closest to −1 in the range for β = 0.45 ± 0.03.
This coincidence nicely supports the boundary condition w0 = −1
we use above. Therefore, β = 0.46+0.02

−0.04 are taken for the best-fit
values in the more general interacting holographic dark energy
(IHDE) model.

Thus, by Eq. (17) the best-fit values for α are α = 0.9163+0.0081
−0.0162.

However, it is worthwhile to declare that α is not necessarily
equal to 2β any longer here in our model. Further, in light of the
boundary conditions for the best-fit density ratio r derived from
literature [31], we can see about the coupling constant b2 and the
transition redshift zT . In the past for a 	 1, r ≈ 3.40. If so, tak-
ing β = 0.46+0.02

−0.04, we get b2 = 0.001+0.024
−0.054 and zT = 0.558+0.117

−0.170
as the best-fit values. For the case of a 
 1, namely in the fu-
ture, r ≈ 0.045, then b2 = 0.046−0.001

+0.001 and zT = 0.764+0.020
−0.046 are

obtained. Note that there are two abnormal situations appearing.
One is in the case of a 
 1, when β increases to 0.48, b2 decreases
by 0.001 on the contrary while β decreases to 0.42, b2 increases
by 0.001. It is opposite to the normal phenomenon, but we have
gotten no clues yet for this. The other is in the case of a 	 1,
b2 < 0 appears numerically, which indicates that energy transfers
from dark matter to dark energy in viewpoint of physics. Similar
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Fig. 2. (Color online.) The evolution of the fractional energy density of dark energy
Ωde with respect to the redshift z for variable β with the coupling constant b2 = 0.1
and for variable b2 with β = 0.5. Herein w0 = −1, Ωm0 = 0.27 and Ωde0 = 0.73
have been used.

results have ever been obtained in Refs. [32,33]. But the negative
coupling constant will lead to consequences out of physics, like
Ωde will grow beyond 1 in the far future. For this reason, we do
not argue about the case of b2 < 0, however, we favor the ratio-
nal saying of elegancy from [33] that “we let b be totally free and let
the observational data tell us the true story about the holographic dark
energy, no matter whether the ultimate fate of the universe is ridiculous
or not.” So, though abnormality, we still retain the negative val-
ues of b2 for a show. Also we have considered the non-interacting
case, i.e., b2 = 0, with zT = 0.554+0.021

−0.041 gained. It is noted that the
fitting values of b2 and zT are consistent with the current observa-
tional data [32–34]. Summarily, the best-fit values for parameters
are displayed in Table 1.

In our model, the boundary condition w0 = −1 is used, which
makes the universe seem to behave like quintom, equal to cross
the phantom dividing line, and to end with a big rip. But on the
other hand, we consider the effective equation of state (EEoS) of
dark energy to eliminate the unfavorable big rip singularity. Define
the EEoS of dark energy as follows

weff = w + Γ

3H
, (20)

then the continuity equation (5) can be rewritten as

ρ̇de + 3H
(
1 + weff)ρde = 0. (21)
Fig. 3. (Color online.) The evolution of the deceleration parameter q with respect to
the redshift z for variable β with the coupling constant b2 = 0.1 and for variable b2

with β = 0.5. Herein w0 = −1, Ωm0 = 0.27 and Ωde0 = 0.73 have been used.

Table 1
The best-fit parameters under different boundary conditions (BCs).

BCs r ≈ 3.40 for a 	 1 r ≈ 0.045 for a 
 1 b2 = 0

Ωde0 0.73 ± 0.03 0.73 ± 0.03 0.73 ± 0.03
α 0.9163+0.0081

−0.0162 0.9163+0.0081
−0.0162 0.9163+0.0081

−0.0162

β 0.46+0.02
−0.04 0.46+0.02

−0.04 0.46+0.02
−0.04

b2 0.001+0.024
−0.054 0.046−0.001

+0.001 0

zT 0.558+0.117
−0.170 0.764+0.020

−0.046 0.554+0.021
−0.041

The evolutions of weff with respect to the redshift z for vari-
able β with the coupling constant b2 = 0.1 and for variable b2

with β = 0.5 are shown in Fig. 4. The figures show clearly that for
some values of β and b2, weff will remain greater than −1, fea-
turing the quintessence-like behavior, which can avoid the future
big rip singularity. Therefore, the interacting model is more favor-
able than the non-interacting one, although the interaction, even
the evidence for it, between dark energy and dark matter is still
not strong.

3. Discussion

Hereinafter, we review the consistency of formulae of the holo-
graphic dark energy density in various models. First of all, from
the definition (9) the dark energy density can be expressed gener-
ally ρde = 3M2

pΩde H2. As is seen, if Ωde is a constant, the energy
density will correspond to the holographic model with the Hub-
ble scale as the infrared cut-off, namely, ρde ∝ H2. It is understood
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Fig. 4. (Color online.) The evolution of the effective equation of state of dark energy
weff with respect to the redshift z for variable β with the coupling constant b2 =
0.1 and for variable b2 with β = 0.5. Herein w0 = −1, Ωm0 = 0.27 and Ωde0 = 0.73
have been used.

easily. For ρde = 3c2M2
p H2,

r ≡ ρm

ρde
= 1 − c2

c2
= const., (22)

which makes Ωde = 1
1+r = c2, so Ωde must be a constant in this

situation. Whereas, a variable Ωde , which is time dependent, will
lead to other holographic dark energy models ever put forth. Con-
cretely speaking, for the models with the particle horizon and the
future event horizon, L = Rh is presumed, where Rh represents Rph
or Reh ,

Ωde(t) = ρde

3M2
p H2

= 3c2M2
p R−2

h

3M2
p H2

= c2

H2 R2
h

, (23)

so Ωde is time dependent. Also in the general model (4), into
which Eq. (8) is substituted for Ḣ , the dark energy density reads

ρde = 3M2
p

[
α − 3β

2

(
1 + w

1 + r

)]
H2, (24)

where r is in a state of dependence on time, and so is w . It means
that terms in the square bracket of Eq. (24) is a function of time,
representing Ωde(t).

Furthermore, we could see it from a different point of view.
In [28], it is interestingly argued that for the Hubble scale case
with interaction considered, if c2 is time dependent, i.e., c2 = c2(t),
the equation of state of dark energy will be
w = −
(

1 + 1

r

)[
Γ

3H
+ (c2)·

3Hc2

]
. (25)

Thus both a varying c2, which leads to a varying r, further a vary-
ing Ωde , and interaction can make w more negative up to the
cosmic accelerated expansion. In other words, the infrared cut-
off may well remain L = H−1, not necessarily changed. And the
variation of c2(t) in ρde = 3c2(t)M2

p H2 denotes the change of the

degree of saturation of the holographic bound ρde � M2
p L−2. It is

equivalent to the above case ρde = 3M2
pΩde(t)H2.

So far as it goes, these holographic dark energy models seem
harmonious. However, as a matter of fact, although the infrared
cut-off L has been changed continually to solve problems such as
fine-tuning, cosmic coincidence, accelerated expansion and causal-
ity step by step, the underlying physical mechanism of HDE re-
mains vague yet. Therefore, we can but say that the series of HDE
models are provided with consistency in sense of formalism and
the internal relationship among them is claimed.

On the other hand, from analysis of curves above compared
with that in [35], note that the increasing b2 leads the range of w
and Ωde to narrow down by reason of decay of the dark energy
into dark matter, we have introduced up front. Also the larger b2

is, the lower w becomes in the early universe of high redshift,
which means the behavior of dark energy is more different from
that of dark matter, and the earlier the cosmic accelerated expan-
sion occurs. But for smaller b2, the cosmic expansion will gain
larger acceleration in the far future. The conclusion here is coin-
cident with that from Wang et al. [35].

In essence the dark energy problem should be an issue of quan-
tum gravity, nevertheless there is no mature theory of quantum
gravity with so many things unknown and uncertain at present. As
regards the reason why the holographic dark energy density form
containing a term Ḣ is motivated, Gao et al. bring forth their view-
point from two perspectives of construction of a K -essence scalar
field model and quantum fluctuation [21]. Although the more gen-
eral interacting holographic dark energy model acts phenomeno-
logically viable, we sometimes avoid arguing round and round the
subject phenomenologically and look forward to more penetrating
insight into the holographic theory of dark energy.

Acknowledgements

This work is supported by the National Natural Science Foun-
dation of China under Grant Nos. 10705041, 10975032 and
10947174.

References

[1] A.G. Riess, et al., Astron. J. 116 (1998) 1009, astro-ph/9805201;
A.G. Riess, et al., Astron. J. 117 (1999) 707;
S. Perlmutter, et al., Astrophys. J. 517 (1999) 565, astro-ph/9812133.

[2] D.N. Spergel, et al., Astrophys. J. Suppl. 148 (2003) 175, astro-ph/0302209;
D.N. Spergel, et al., astro-ph/0603449.

[3] M. Tegmark, et al., Phys. Rev. D 69 (2004) 103501, astro-ph/0310723;
M. Tegmark, et al., Astrophys. J. 606 (2004) 702, astro-ph/0310725.

[4] P.J.E. Peebles, B. Ratra, Rev. Modern Phys. 75 (2003) 559;
E.J. Copeland, M. Sami, S. Tsujikawa, Internat. J. Modern Phys. D 15 (2006)
1753.

[5] T.P. Sotiriou, V. Faraoni, arXiv:0805.1726 [gr-qc].
[6] M. Li, Phys. Lett. B 603 (2004) 1.
[7] Q.G. Huang, M. Li, J. Cosmol. Astropart. Phys. 08 (2004) 013;

X. Zhang, Internat. J. Modern Phys. D 14 (2005) 1597, astro-ph/0504586;
X. Zhang, Phys. Lett. B 683 (2010) 81.

[8] J.D. Bekenstein, Phys. Rev. D 7 (1973) 2333.
[9] R. Bousso, JHEP 9907 (1999) 004.

[10] G. ’t Hooft, gr-qc/9310026.
[11] L. Susskind, J. Math. Phys. (N.Y.) 36 (1994) 6377.
[12] J.M. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231.
[13] W. Fischler, L. Susskind, hep-th/9806039.



268 F. Yu et al. / Physics Letters B 688 (2010) 263–268
[14] A. Cohen, D. Kaplan, A. Nelson, Phys. Rev. Lett. 82 (1999) 4971.
[15] P. Horava, D. Minic, Phys. Rev. Lett. 85 (2000) 1610;

S. Thomas, Phys. Rev. Lett. 89 (2002) 081301.
[16] S.D.H. Hsu, Phys. Lett. B 594 (2004) 13.
[17] R.R. Caldwell, Phys. Lett. B 545 (2002) 23.
[18] R.G. Cai, Phys. Lett. B 657 (2007) 228.
[19] F. Károlyházy, Nuovo Cimento A 42 (1966) 390;

F. Károlyházy, A. Frenkel, B. Lukács, in: A. Simony, H. Feschbach (Eds.), Physics
as Natural Philosophy, MIT Press, Cambridge, MA, 1982;
F. Károlyházy, A. Frenkel, B. Lukács, in: R. Penrose, C.J. Isham (Eds.), Quantum
Concepts in Space and Time, Clarendon Press, Oxford, 1986;
M. Maziashvili, Internat. J. Modern Phys. D 16 (2007) 1531, gr-qc/0612110;
M. Maziashvili, Phys. Lett. B 652 (2007) 165, arXiv:0705.0924 [gr-qc].

[20] H. Wei, R.G. Cai, Phys. Lett. B 660 (2008) 113;
H. Wei, R.G. Cai, Eur. Phys. J. C 59 (2009) 99;
J. Zhang, X. Zhang, H. Liu, Eur. Phys. J. C 54 (2008) 303;
J. Cui, L. Zhang, J. Zhang, X. Zhang, Chin. Phys. B 19 (2010) 019802;
L. Zhang, J. Cui, J. Zhang, X. Zhang, Internat. J. Modern Phys. D 19 (2010) 21,
arXiv:0911.2838 [astro-ph.CO].

[21] C. Gao, F.Q. Wu, X. Chen, Y.G. Shen, Phys. Rev. D 79 (2009) 043511.
[22] D.N. Spergel, et al., Astrophys. J. Suppl. 170 (2007) 377;

Morad Amarzguioui, O. Elgaroy, David F. Mota, T. Multamaki, Astron. Astro-
phys. 454 (2006) 707;
X. Zhang, Phys. Rev. D 79 (2009) 103509.

[23] E. Komatsu, et al., arXiv:1001.4538 [astro-ph.CO].
[24] X. Zhang, F.-Q. Wu, Phys. Rev. D 72 (2005) 043524, astro-ph/0506310;

X. Zhang, F.-Q. Wu, Phys. Rev. D 76 (2007) 023502, astro-ph/0701405.
[25] B. Feng, X.L. Wang, X.M. Zhang, Phys. Lett. B 607 (2005) 35;

B. Feng, M. Li, Y.S. Piao, X.M. Zhang, Phys. Lett. B 634 (2006) 101;
X. Zhang, Commun. Theor. Phys. 44 (2005) 762.

[26] L.N. Granda, A. Oliveros, Phys. Lett. B 669 (2008) 275.
[27] L.N. Granda, A. Oliveros, Phys. Lett. B 671 (2009) 199;

K. Karami, J. Fehri, Phys. Lett. B 684 (2010) 61;
K. Karami, J. Fehri, arXiv:0911.4932 [gr-qc];
C.-J. Feng, X. Zhang, Phys. Lett. B 680 (2009) 399, arXiv:0904.0045 [gr-qc];
M. Li, X.D. Li, X. Zhang, arXiv:0912.3988 [astro-ph.CO];
X. Zhang, S. Chen, J. Jing, Phys. Lett. B 679 (2009) 144;
L. Xu, J. Lu, W. Li, Eur. Phys. J. C 64 (2009) 89, arXiv:0906.0210 [astro-ph.CO];
S. Nojiri, S.D. Odintsov, Gen. Relativ. Gravit. 38 (2006) 1285, hep-th/0506212.

[28] D. Pavón, W. Zimdahl, Phys. Lett. B 628 (2005) 206;
W. Zimdahl, D. Pavón, Classical Quantum Gravity 24 (2007) 5461;
L. Xu, J. Cosmol. Astropart. Phys. 09 (2009) 016, arXiv:0907.1709 [astro-ph.CO].

[29] B. Wang, C.-Y. Lin, E. Abdalla, Phys. Lett. B 637 (2006) 357;
M. Li, C. Lin, Y. Wang, J. Cosmol. Astropart. Phys. 05 (2008) 023.

[30] L. Amendola, Phys. Rev. D 62 (2000) 043511, astro-ph/9908023;
D. Comelli, M. Pietroni, A. Riotto, Phys. Lett. B 571 (2003) 115, hep-ph/
0302080;
X. Zhang, Modern Phys. Lett. A 20 (2005) 2575, astro-ph/0503072;
X. Zhang, Phys. Lett. B 611 (2005) 1, astro-ph/0503075;
H. Kim, H.W. Lee, Y.S. Myung, Phys. Lett. B 632 (2006) 605;
M.R. Setare, Phys. Lett. B 642 (2006) 1, hep-th/0609069;
M.R. Setare, Eur. Phys. J. C 50 (2007) 991, hep-th/0701085;
M.R. Setare, E.C. Vagenas, Int. J. Mod. Phys. D 18 (2009) 147, arXiv:0704.2070v2
[hep-th].

[31] M. Suwa, T. Nihei, Phys. Rev. D 81 (2010) 023519, arXiv:0911.4810 [astro-
ph.CO].

[32] C. Feng, B. Wang, Y. Gong, R.-K. Su, J. Cosmol. Astropart. Phys. 09 (2007) 005,
arXiv:0706.4033 [astro-ph];
Y.-Z. Ma, AIP Conf. Proc. 1166 (2009) 44, arXiv:1003.2415 [astro-ph.CO].

[33] M. Li, X.-D. Li, S. Wang, Y. Wang, X. Zhang, J. Cosmol. Astropart. Phys. 12 (2009)
014, arXiv:0910.3855 [astro-ph.CO].

[34] A. Shafieloo, Mon. Not. R. Astron. Soc. 380 (2007) 1573, astro-ph/0703034;
Q. Wu, Y. Gong, A. Wang, J.S. Alcaniz, Phys. Lett. B 659 (2008) 34, arXiv:
0705.1006 [astro-ph];
J. Lu, L. Xu, M. Liu, Y. Gui, Eur. Phys. J. C 58 (2008) 311.

[35] B. Wang, Y. Gong, E. Abdalla, Phys. Lett. B 624 (2005) 141.


	A more general interacting model of holographic dark energy
	Introduction
	The interacting holographic dark energy model
	Discussion
	Acknowledgements
	References


