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a b s t r a c t

We present a setting in which the search for a proof of B or a refutation of B (i.e., a proof
of ¬B) can be carried out simultaneously: in contrast, the usual approach in automated
deduction views proving B or proving ¬B as two, possibly unrelated, activities. Our
approach to proof and refutation is described as a two-player game in which each player
follows the same rules. A winning strategy translates to a proof of the formula and a
counter-winning strategy translates to a refutation of the formula. The game is described
for multiplicative and additive linear logic (MALL). A game theoretic treatment of the
multiplicative connectives is intricate and our approach to it involves two important
ingredients. First, labeled graph structures are used to represent positions in a game
and, second, the game playing must deal with the failure of a given player and with an
appropriate resumption of play. This latter ingredient accounts for the fact that neither
player might win (that is, neither B nor ¬Bmight be provable).

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The connections between games and logic are numerous. For example, in the general area of the semantics of logic,
games have played a significant role: descriptive set theorists make use of Banach–Mazur (forcing) games to build infinite
structures with prescribed organization and model theorists use Ehrenfeucht-Fraïssé (back-and-forth) games to compare
infinite structures. In the area of proof theory, proofs are occasionally used as winning strategies in ‘‘dialog games’’: for
example, if one has a proof of a formula, one should be able to defend against an opponent who might be skeptical of the
truth of that formula.
Another possible connection between logic and games can be motivated by considering a common approach to proving

the completeness of first-order logic, following, say, Smullyan [32]. To prove completeness, one attempts to build a tableau
or sequent calculus proof of a given formula, say B, trying to complete an incomplete proof. Such an attempt grows the
incomplete derivation by adding inference rules at any unfinished leaf of the derivation. If one does so in a systematic
fashion, one either succeeds to prove all remaining incomplete leaves or one is leftwith a tree of inferenceswith a (possibility
infinite) branch that was never closed. In the first case, there is a proof of B and in the second case, the never-closed branch
provides a falsifying model of B. This process can be viewed as the interaction of two agents working on this derivation tree.
One agent attempts to finish the incomplete proof tree and the another agent attempts to find a path that is not completed.
Clearly, only one of these agents eventually succeeds at their task.
Consider now two aspects of this outline. First, this completeness result relates, of course, provability and truth: a

semantic notion of truth here seems forced since a set-theoretic model is a convincingmeans of structuring the information
in an infinite path. If we restrict ourselves to a decidable logic (such as a propositional logic), then such non-closed paths
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can be expected to be always finite. In that case, one might be able to convert an open path into a proof of ¬B (that is, a
refutation of B) instead of a counter-model. In that case, both agents are attempting to construct proofs. Notice also that if
we can view both agents as attempting to build proofs (one for B and the other for¬B), the steps taken by these two agents
appear to be rather different and there is no obvious reason to expect the kinds of proofs to be built by these two agents to
be of the same style. One proof would be based on a tree and the other on a path.
In this paper, we describe a two-player game in which both players play by exactly the same rules. If a player has a

winning strategy, that player is able to construct a proof: for one of the players, this would be a proof of B, while dually
for the other player, this would be a proof of¬B. Furthermore, the resulting proofs for both players are described using the
same, simple sequent calculus proof system.
An interesting, degenerate version of such a game can be seen in the behavior of an idealized Prolog interpreter given

a noetherian logic program ∆ and query G. Here, the interpreter loads the program ∆ and then becomes the first and only
player to actually make moves: that is, the rules of the game will allow the interpreter to move repeatedly. The restriction
that ∆ is a Horn clause program means that there is no need to switch players (equivalent to switching phases in a later
proof system) and the restriction that∆ is noetherian means that the interpreter will either end in a finite success or a finite
failure: recall that a Prolog-like interpreter will explore all of the finitely many, finitely long, branches required to build a
possible proof of G by repeatedly backtracking. In the first case, there is a proof of G from∆ and in the second case, there is a
proof of¬G from (the if-and-only-if completion of)∆ [17,12]. In either case, the first step is all that needs to be considered
in order to determine the winner of the game.
In this paper, we present a two-person game in which one player is attempting to prove and the other is attempting to

refute a formula frommultiplicative and additive linear logic (MALL). The logic MALL is decidable (in fact, PSPACE-complete
[21,23]) and not complete in the sense that there are formulas B such that neither B nor ¬B are provable (consider, for
example, the pair of de Morgan dual formulas ⊥ ⊗ ⊥ and 1 O 1). This incompleteness makes games in this setting
non-determinate (neither player might win) and, as a result, games in this setting need to be able to continue play after
one player has failed. Positions in a game are graphs involving ‘‘neutral expressions’’: the graph structure accounts for the
multiplicative aspects of MALL while the neutral expressions are mapped into MALL formulas using either a positive or
negative translation. Winning strategies yield proofs: depending on which player has a winning strategy, either the positive
or the negative translation of the graph into logical formulas and sequents has a proof.
Games have been successfully used to study programming languages. In particular, in functional programming games

allowed to solve long-standing problems such as the full-abstraction problem for PCF [2,20]. This approach also provides
models for logics capturing the dynamics of cut-elimination [1,3].
Game-theoretical studies of logic programming are less common. Interestingly, those works can also be classified

into two groups: (i) games modeling Prolog engines and (ii) games used to model the proof-theoretical foundations of
logic programming, namely proof-search. In the first line of research, van Emden [34] provided the first game-theoretic
interpretation of logic programming, connecting Prolog computations and two-person games using theαβ-algorithm. Loddo
et al. [7,24] developed this approach and considered constraint logic programming [25]. Recently, Galanaki et al. [11]
generalized van Emden’s games for logic programs with (well-founded) negation. In the second direction, Pym and
Ritter [29] proposed games for uniform proofs and backtracking by relating intuitionistic and classical provability. Our
present work can also be connected to recent research by the third author [30,31] onmodeling of proof-search in Ludics [13]
as a process of interacting with tests. Compared to these works, the present paper and our previous works [28,9] are guided
by the so called ‘‘neutral approach’’. In particular, while [31] deliberately chooses one player to be opposed to tests, we
develop a framework in which both players have the same status, both attempting to prove a formula and to refute its
negation. However, both approaches are inspired by the monistic program introduced in [14].
The title of the present paper is inspired by Lakatos’s Proofs and Refutations [22] because the neutral approach to

logic described here is possibly related to Lakatos’s conviction that the history (and logic) of mathematical discovery is
structured by a complex interaction of phases of proving and of refuting, both propelling the search formathematical truths.
Here we illustrate how proofs and refutations can be developed together and how their interaction can result in a better
understanding of the structure of proofs, at least for MALL.
The contributions of this paper are the following.
(1) We present the neutral approach to proof and refutation and use it to describe a new game that can be seen as an

attempt to simultaneously prove and refute a MALL formula.
(2) In order to deal with the fact that there are formulas B such that neither B nor¬B are provable, the game we describe

resumes play after one player loses so that one can determine whether or not the game is a win for the other player or a loss
for both.
(3) This neutral setting provides an answer to why it is that invertibility/non-invertibility (asynchrony/synchrony) are de

Morgan duals of each other: these two qualities are two sides of the same process. In our game, both players follow identical
rules of play. Invertibility (asynchrony) occurs when a player needs to consider all possible moves of the opponent: one is
forced to consider all moves and no choices are considered. Non-invertibility (synchrony) occurs when the opponent picks
her responding move: here, genuine information is injected into the game and this is expressed in proofs as a path though
non-invertible inference rules in a proof.
(4) It is a common observation within the proof theory of sequent calculus that one can explain variations of logics

by varying the structural rules. A similar observation is true for focusing proof systems [4]. Across a range of focusing proof
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` ∆

` ∆,⊥

` ∆, F ,G
` ∆, F O G ` ∆,>

` ∆, F ` ∆,G
` ∆, F N G

` 1
` ∆1, F ` ∆2,G
` ∆1,∆2, F ⊗ G

` ∆, F1
` ∆, F1 ⊕ F2

` ∆, F2
` ∆, F1 ⊕ F2 ` F⊥, F

Fig. 1. A proof system for MALL. The last rule is called the initial rule and can be restricted so that F is atomic.

` ∆ ⇑ Γ

` ∆ ⇑ ⊥,Γ
[⊥]

` ∆ ⇑ F ,G,Γ
` ∆ ⇑ F O G,Γ

[O]
` ∆ ⇑ >,Γ

[>]
` ∆ ⇑ F ,Γ ` ∆ ⇑ G,Γ
` ∆ ⇑ F N G,Γ

[N]

` · ⇓ 1
[1]
` ∆1 ⇓ F ` ∆2 ⇓ G
` ∆1,∆2 ⇓ F ⊗ G

[⊗]
` ∆ ⇓ F1
` ∆ ⇓ F1 ⊕ F2

[⊕l]
` ∆ ⇓ F2
` ∆ ⇓ F1 ⊕ F2

[⊕r ]

` A⊥ ⇓ A
[I]

` ∆ ⇓ P
` ∆, P ⇑ ·

[D]
` ∆, Pa ⇑ L
` ∆ ⇑ Pa, L

[R ⇑]
` ∆ ⇑ N
` ∆ ⇓ N

[R ⇓]

Fig. 2. A focused proof system for MALL. Here, A is an atomic formula, P is positive, Pa is positive or a negative atom, and N is negative.

systems for, say,MALL, the introduction rules remain the samewhile the structural rules can vary. For example, one can have
systems that focus on a unique formula or on multiple formulas [6]. One can insist that an asynchronous phase terminates
when all asynchronous formulas are removed but one can also allow for the phase to end before they are all removed.
We have found that our use of games implies a particular set of choices that are natural and different from those in, say,
Andreoli’s original set of rules [4].
This paper is the result of merging and extending two previous conference papers by the authors [9,28].

2. Logical preliminaries

The formulas of MALL are built from literals (i.e., atoms or negated atoms), the binary connectives⊗,⊕, O, N, and their
respective units 1, 0, ⊥, >. Fig. 1 contains the rules for (cut-free) proofs in MALL. The connectives and units⊗, O, 1, ⊥ are
multiplicative, while⊕,N, 0,> are additive. The exponentials ! and ? of linear logic and the quantifiers ∀ and ∃ of first-order
or second-order logics are not considered in this paper.
The additive fragment of MALL is composed of those formulas that do not contain multiplicative connectives. Notice that

if an additive formula has a proofΞ using the proof rules in Fig. 1 then all sequents inΞ contain exactly one formula. Thus,
Ξ does not contain any instances of the initial rule and, as a result, no role is played by atomic formulas in such formulas.
Thus, we shall identify the purely additive fragment of linear logic as those formulas containing the additive connectives only
(with no occurrences of atomic formulas).
Based on the invertibility of introduction rules in Fig. 1, we introduce a second classification of the logical connectives.

An introduction rule is invertible when its conclusion is provable if and only if its premises are. The connectives O, N,⊥,>
are called asynchronous: these are the connectives for which the corresponding introduction rules in Fig. 1 are invertible.
The connectives⊗,⊕, 1, 0 are called synchronous: these are the connectives for which the corresponding introduction rules
in Fig. 1 are not necessarily invertible.
The proof system in Fig. 2 is a restriction of the focusing proof systemof Andreoli [4] toMALL. This focusing proof system is

organized around groupings of introduction rules for asynchronous and for synchronous connectives. A stronger grouping
is possible if we also classify literals as belonging to either the ‘‘asynchronous phase’’ or the ‘‘synchronous phase’’. Since
literals do not have introduction rules it seems better to introduce yet another dichotomy of logical formulas. A formula is
positive if it is either synchronous or an atom and is negative if it is either asynchronous or the negation of an atom. The
sequents used in Fig. 2 are of two kinds. The asynchronous sequent∆ ⇑ Γ contains two multiset contexts∆ and Γ , where
∆ contains only positive formulas or negated atoms. The synchronous sequent ∆ ⇓ F contains one multiset context ∆
containing only positive formulas or negated atoms. In this sequent, the formula F is called the focus of the sequent: this
proof system provides a positive sequent with a unique focus. Later it will be natural to consider a generalization to this
focusing proof systems that allows formultiple foci (see Fig. 5). Notice that all the introduction rules from Fig. 1 now have all
their premises and conclusions labeled eitherwith⇑ orwith⇓. The initial rule is classified as part of the positive phase since
it is annotatedwith a⇓. To describe the remaining three ‘‘structural’’ rules, we read them bottom-up. For example, the [R ⇑]
rule moves a positive formula or a negated atom out of the right context since they are not addressed in the asynchronous
phase. The [R ⇓] stops the focusing (synchronous) phase when the focused formula becomes negative. Finally, the decide
rule [D] picks a positive formula on which to focus once the right context is empty (that is, all asynchronous connectives
have been decomposed).
It is worth noting that if we limit ourselves to the purely additive fragment of MALL, then any cut-free MALL proof of it is

already focused. To show this, simply annotate the unique formula in all sequents of aMALL proof as follows: if the top-level
connective is> orN then use the arrow⇑ and if the top-level connective is⊕ then use the⇓. Extra inference rules must be
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[00]+ = 0 [00]− = >
[E + F ]+ = [E]+ ⊕ [F ]+ [E + F ]− = [E]− N [F ]−

[l E]+ = [E]− [l E]− = [E]+

Fig. 3. Translations of additive neutral expressions into formulas.

added to switch between these two arrows: use either [R ⇓] to switch from a synchronous conclusion to an asynchronous
premise or [R ⇑] and [D] to switch from an asynchronous conclusion to a synchronous premise. In Section 3, we shall
consider ‘‘additive games’’ that are based on purely additive formulas: in that discussion, there is little need to mention
focusing since the focused and unfocused proofs systems are isomorphic. In Section 4, we consider ‘‘simple games’’: these
games correspond the situation where the sequents in the decide rule [D] have a unique formula (that is, ∆ is empty). In
such situations, the decide rule is forced in its selection of what formula to consider next. In Section 5, we finally deal with
full MALL logic (including atomic formulas).

3. Additive games

Hintikka (see, for example, [19]) defined a simple game to determine the truth of a formula as follows (the game can also
work for quantificational formulas). Two players, A and E, play with a single formula. The player A tries to falsify the formula
while E tries to validate the formula. If the formula is a conjunction (N), Amust move by choosing one of the conjuncts: in
particular, if the formula is the empty conjunction (>), then A can pick nothing and she loses. If the formula is a disjunction
(⊕), E must move by choosing one of the disjuncts: in particular, if the formula is the empty disjunction (0), then E can pick
nothing and she loses. This game is determinate in the sense that one player always has awinning strategy. If A has awinning
strategy starting with φ then φ is false; conversely if E has a winning strategy starting with φ then φ is true.
This same game can be used to provide a neutral approach to proof and refutation for the additive fragment of linear

logic based on just 0,⊕,>,N. We describe this game in some detail here as an introduction to the neutral approach.

3.1. Neutral expressions

In the game presented above, each logical connective is assigned to a player who decomposes it, and themain connective
of a formula determineswhose turn it is. The game is symmetric in the sense that A treats a conjunction in the sameway that
E treats a disjunction. In our neutral approach, we make this observation clearer by introducing neutral expressions: these
expressions represents a pair of dual formulas. In particular, the syntax of neutral expressions contains a single constructor
for each pair of dual connectives and units. Since two dual connectives may appear in a single formula, we need a way to
switch to the other translation when translating a neutral expression. We use the special unary operator l to this end.

Definition 3.1. The (additive) neutral expressions E and guarded neutral expressions G are defined as follows:

G ::= 00 | E + E E ::= G | lG

A guarded neutral expression is therefore a neutral expression which does not begin with l. Notice that l(l E) is not a
subexpression of a neutral expression.
We define two translations (functions) that map a neutral expression into the dual formulas it represents.

Definition 3.2. The positive and negative translations of neutral expressions into formulas of the additive fragment of linear
logic are defined in Fig. 3. Notice that if E is a neutral expression, then [E]+ and [E]− are de Morgan duals of each other. If E
is guarded, then [E]+ is synchronous and [E]− is asynchronous.

3.2. A game based on neutral expressions

For determinate games, a simple notion of game and arena is appropriate. For this section, we take an arena to be a
directed graph (P , ρ), where P is a set of positions and ρ ⊆ P × P is the move relation. A final position is a sink, i.e., a
position with no ρ-successor. A play from a position P is a (finite or infinite) sequence of ρ-related positions starting in P ,
that is, a sequence (P = P0, P1, . . .) such that for every i ≥ 0, Pi ρ Pi+1. We will suppose that ρ is noetherian, i.e., that there
are no infinite plays. The length of a play (P0, . . . , Pn) is n.
A winning strategy S from a position P is a set of plays from P with the following properties:

• (P) ∈ S;
• S is prefix closed: that is, for every π ∈ S and every prefix π ′ of π , π ′ ∈ S;
• for every play (P0, . . . , Pn) ∈ S such that n is even, there exists Pn+1 ∈ P such that Pn ρ Pn+1 and (P0, . . . , Pn+1) ∈ S;
• for every play (P0, . . . , Pn) ∈ S such that n is odd, for every Pn+1 ∈ P such that Pn ρ Pn+1, we have (P0, . . . , Pn+1) ∈ S.
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The definition of a winning counter-strategy S from a position P is obtained by swapping the words ‘‘even’’ and ‘‘odd’’ in
the two last properties.
In order to define the arena of the particular game we present here, we first introduce a rewriting relation on neutral

expressions:

E1 + E2 → E1 E1 + E2 → E2

Expressions of the form 00 and l E do not rewrite. The reflective and transitive closure of→ is written as→∗.
In our game the positions are the guarded neutral expressions and amove from E to F takes place exactlywhen E →∗ l F .

To establish a correspondence between winning strategies and proofs, we first need the following lemma.

Lemma 3.3. Let E be a neutral expression. Let S = {l F : E →∗ l F}.

• For every F ∈ S, the sequent ` [E]+ derives from ` [F ]+.
• The sequent ` [E]− derives from the sequents {` [F ]− : F ∈ S}.

Proof. Let us show these properties by induction on E.
If E = 00, then S is empty and the first property is true. The second property expresses that ` [E]− (i.e., ` >) is provable,

which immediately follows from the introduction rule for>.
If E is of the form l F , then S = {E} and the two properties are trivial.
Suppose now that E is of the form E1 + E2. Then S = S1 ∪ S2, where Si = {l F : Ei →∗ l F} for every i ∈ {1, 2}. By

induction hypothesis, the properties hold for Ei with respect to Si, for every i ∈ {1, 2}. Let us prove the first property. Let
F ∈ S. There is some i ∈ {1, 2} such that F ∈ Si and, hence, ` [Ei]+ derives from ` [F ]+. All we have to do is show that
` [E]+ (i.e., ` [E1]+ ⊕ [E2]+) derives from ` [Ei]+, which is easily seen by applying the introduction rule for ⊕. Let us
now prove the second property. The sequents ` [E1]− and ` [E2]− derive from {` [F ]− : F ∈ S1} and {` [F ]− : F ∈ S2},
respectively, therefore both derive from {` [F ]− : F ∈ S}. All we need to do is show that ` [E]− (i.e., ` [E1]− N [E2]−)
derives from ` [E1]− and ` [E2]−, which follows by applying the introduction rule for N. �

There is a converse to this lemma. Namely, every cut-free proof of ` [E]+ derives its conclusion from ` [F ]+, for some
F ∈ S; and every cut-free proof of ` [E]− derives its conclusion from the sequents in {` [F ]− : F ∈ S}. We do not give the
proof here for the sake of brevity, but it is easily obtained by reversing the above arguments.
We can now prove the following theorem, which establishes the correspondence betweenwinning strategies and proofs

in this purely additive setting.

Theorem 3.4. Let E be a guarded neutral expression. There exists a winning strategy from E iff ` [E]+ is provable. There exists a
winning counter-strategy from E iff ` [E]− is provable. In either case, the winning strategy or counter-winning strategy provides
the corresponding proof.

Proof. We know that ` [E]+ and ` [E]− cannot be both provable and that there cannot exist both a winning strategy and
a winning counter-strategy from E. It is therefore enough to show that either ` [E]+ is provable and there exists a winning
strategy from E, or that ` [E]− is provable and there exists a winning counter-strategy from E.
The length of a play from E is bounded by the maximal number of nested l in E. Let us prove our claim by induction

on the maximal length of a play n(E). If n(E) = 0, then E is a final position and there is a winning counter-strategy. In the
above lemma S is empty and there is a proof of ` [E]−. Suppose now that n(E) > 0. In the above lemma S is not empty.
We consider two cases. First case: there exists a ρ-successor F of E such that there is a winning counter-strategy from F .
Then there is a winning strategy from E (just prepend E to all plays). We have E →∗ l F and n(F) < n(E). By the induction
hypothesis, ` [F ]− is provable. By the previous lemma ` [E]+ derives from ` [l F ]+, which is ` [F ]−. Therefore ` [E]+ is
provable. Second case: there is a winning strategy from every ρ-successor F of E. Then there is a winning counter-strategy
from E (just take the union of those strategies and prepend E to all plays). Define S as in the above lemma. For every l F ∈ S,
n(F) < n(E); therefore, by induction hypothesis, ` [F ]+ (i.e., ` [l F ]−) is provable. By the previous lemma ` [E]− derives
from those sequents, hence it is provable. �

In Hintikka’s game, the same player might move several times in a row, as long as the principal connective of the formula
remains the same. In our game thesemoves correspond to individual rewrite steps and amove is amaximal sequence of such
steps, which ensures a strict alternation of players. From the point of view of the proof objects, a rewrite step (a.k.a. amicro-
move) corresponds to the introduction of an individual connective or unit, while a move (a.k.a. amacro-move) corresponds
to a full phase. The games considered in the next sections are more complex but their moves still have those two levels.
Another important remark is that this game may be seen as a process accounting for the simultaneous development of

two dual derivations: starting from a neutral expression E, the player who begins sees the game as an attempt to derive
`⇓ [E]+, while her opponent sees it as an attempt to derive `⇑ [E]−. With this in mind, each player develops what she
sees as synchronous phases during her turn and leaves it to her opponent to decompose asynchronous phases.
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[00]+ = 0 [00]− = >
[1]
+
= 1 [1]

−
= ⊥

[E + F ]+ = [E]+ ⊕ [F ]+ [E + F ]− = [E]− N [F ]−

[E × F ]+ = [E]+ ⊗ [F ]+ [E × F ]− = [E]− O [F ]−

[l E]+ = [E]− [l E]− = [E]+

Fig. 4. Translations of neutral expressions into MALL.

4. Simple games

In this section we present an extension of the additive games that incorporates some multiplicative behavior. This first
extension yields the so-called simple games: aswe shall see, these games are too ‘‘simple’’ to properly handle the full range of
multiplicative connectives. As a result, the simple games help to illustrate the need for themore sophisticated neutral graph
structures presented in Section 5.3. There are, however, a number of examples of games that are ‘‘simple-like’’: see [28]
for examples of simple games related to computing on finite sets and with determining bisimulation in labeled transition
systems. We do not present those examples here since they involve adding operators for quantification and fixed points to
neutral expressions and these extensions are a significant departure from MALL.
Definition 4.1 (Neutral Expressions). We extend the language of neutral expressions by introducing a multiplicative
connective and its unit.

G ::= 00 | 1 | E + E | E × E E ::= G | lG

Micro-dynamics of neutral expressions. Multisets of neutral expressions can be rewritten non-deterministically as follows:
Definition 4.2 (Rewriting for Neutral Expressions). The binary relation 7→ between finite multisets of neutral expressions is
given as follows:

1,Γ 7→ Γ E × F ,Γ 7→ E, F ,Γ
E + F ,Γ 7→ E,Γ E + F ,Γ 7→ F ,Γ

Let 7→∗ be the reflective and transitive closure of 7→.
If we consider the size of a multiset of neutral expressions to be the total number of occurrences of constructors in

expressions in that multiset, then the size of multisets decreases as they are rewritten. As a result, rewriting always
terminates. Notice that an expression of the form l E is not rewritten: it represents a formula that is left by one player
for the other player.
We shall be interested in whether or not an expression E (considered as a singleton multiset) rewrites (via 7→∗) to

{l E1, . . . ,l En} (n ≥ 0). This last type of multiset will be written lΓ if Γ is the multiset {E1, . . . , En} Notice that if 00 ∈ Γ ,
then Γ cannot reduce to lΓ ′.
In Fig. 4, the updated positive and negative translations of neutral expressions into MALL are provided. As before, layers

of neutral connectives between l translate to phases.
A useful measure of a neutral expression is the maximum number of expressions beginning with l that it can yield on

some non-deterministic rewriting.
Definition 4.3 (\(E)). \(·) is defined to assign a natural number to a neutral expression in the following way:

• \(00) = \(1) = 0;
• \(l E) = 1;
• \(E1 + E2) = max(\(E1), \(E2)) and
• \(E1 × E2) = \(E1)+ \(E2).

Clearly, for any neutral expression E, \(E) = 0 if and only if E does not contain a l.
Proposition 4.4. Let E be a neutral expression containing no l. If E 7→∗ {} then `⇓ [E]+. If E cannot be rewritten to {} then
`⇑ [E]−.
Proof. Let k ≥ 0 and define 7→k to be the k-fold join of 7→ (in particular, 7→0 is multiset equality). We prove by induction
on k that if n ≥ 0 and {E1, . . . , En} 7→k

{} then for all j ∈ {1, . . . , n}, `⇓ [Ej]+. If k = 0 then n = 0 then the conclusion is
immediate. Assume that k > 0 and that {E1, . . . , En} 7→k

{}. Consider the cases for the first step of this rewriting. The result
follows easily by noticing that the rewriting rules for neutral expressions correspond to introduction rules for their positive
translations.
Next we show that by induction on the size of multisets of neutral expressions (where one counts the number of

occurrences of constructors of such expressions as their size) that if {E1, . . . , En} is a multiset of neutral expressions which
does not rewrite to {} then the sequent `⇑ [E1]−, . . . , [En]− is provable. It is clearly the case if n = 0. If n > 0, then it can
be easily seen by examining the cases for En that `⇑ [E1]−, . . . , [En]− is either immediately provable (case En = 00) or that
rewriting the multiset by decomposing En corresponds exactly to introducing the principal connective of [En]−. �
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A class of neutral expressions that will be of particular interest in the rest of this section is the class of simple expressions:

Definition 4.5 (Simple Expression). An expression E is simple if \(E) ≤ 1 and for every subexpression l E ′ of E, E ′ is simple.
A multiset {E1, . . . , Ek} (where k ≥ 0) of expressions is simple if E1 × · · · × Ek is simple.

Simple expressions can alternatively be defined by the following grammar:

Z ::= 00 | 1 | Z + Z | Z × Z
S ::= Z | S + S | Z × S | S × Z | l S,

where S and Z are syntactic variables ranging over simple expressions and expressions without occurrences of l,
respectively.
We now describe the arena of games involving simple expressions. Let the set of positions be the set of neutral

expressions. The move relation, ρ, is defined as the smallest relation such that E ρ 00 if E 7→∗ {} and E ρ F if E 7→∗ {l F}.
The fact that there are only these two cases possible is the key feature of simple games: that is, if we restrict E to be a simple
expression, then it is not possible for E 7→∗ {l F1, . . . ,l Fn} and for n > 1. That is, while multiplicative expressions can
be treated internally to one player, the multiset of expressions must degenerate to leave at most a single expression: thus,
when the players switch, the game must appear to be, essentially, additive.
We now consider the nature of winning strategies and winning counter-strategies based on this move relation.
If E does not contain l then there is either no move from E or the only move possible is to 00. In the first case, there exists

a winning counter-strategy for E. In the second case, there is a winning strategy for E (since the second player can make no
move from 00).
Since all plays are finite and all final positions for a game are classified as a win for one player or the other, games for

simple expressions are determinate: that is, given a simple expression E, there is either a winning strategy or a winning
counter-strategy for E.

Proposition 4.6. Let E be a simple expression. There is a winning strategy for E iff `⇓ [E]+. There is a winning counter-strategy
for E iff `⇑ [E]−.

Proof. Given a winning (counter-)strategy we build by induction a proof for either `⇓ [E]+ or `⇑ [E]− depending on the
sort of strategy we have. Notice that in winning strategies all the branches have the same parity. We thus reason on the
length of the largest branch in the strategy, which we refer to as the size of the strategy.
Base case: strategy σ has size 0.We are trying to build a proof for`⇑ [E]− given that σ is a winning counter-strategy. Thus

E is such that E 67→∗ l F nor E 67→∗ {}, that is any maximal internal derivation from E ends up with a multiset of expressions
that contains some expressions not beginning with l and which cannot be rewritten (by maximality). These multisets are
made of possibly one expression beginning with l (but not more because E is simple) and of at least one 00: they are the
only kind of multiset that cannot be rewritten and that are not legal positions: {(l F), 00, . . . , 00}.
Since `⇑ [E]− is a negative sequent, it is possible to generate part of a proof tree by applying negative logical rules in

any order up to a point where no negative rule can be applied (with the additional constraint that the> rule is applied only
when all the negative formulas have been decomposed). Such a tree is actually a proof. Indeed if any branch of the tree leads
to a non justified sequent, that means that either a sequent made of exactly one positive formula or an empty sequent is
reached. In any other situation, the branch would be extendable. These two situations contradict the fact that no internal
derivation from E can lead to a legal position: it is straightforward to see that any branch of the proof tree from `⇑ [E]− to
one of the two kinds of sequents just mentioned can be transformed into an internal derivation from E to a legal position.
Thus the negative tree is a proof.
Base case: strategy σ has size 1.We are now building a proof for `⇓ [E]+ given that σ is a winning strategy. Thus σ starts

with a move: E ρ F . There are two cases: either F is 00 and E 7→∗ {} or F is any expression and E 7→∗ l F : in this case, the
move is extended by a winning counter-strategy σ ′ of length 0 for F . In both cases we pick any internal derivation justifying
the move and use it to inductively build a proof for `⇓ [E]+. In the second case we will additionally refer to the base case
for size 0 in order to have a proof of `⇑ [F ]−.
We reason by induction on the length of the considered internal derivation maintaining the following invariant: if the

derivation starts with E1, . . . , Ek then the sequents `⇓ [E1]+, . . . ,`⇓ [Ek]+ are all provable. The invariant is true for
empty derivations: by hypothesis, we have either an empty multiset, and the assertion is trivial, or the multiset consists in
a singleton l F and the invariant requires `⇓ [l F ]+ to be provable and the base case for size 0 on σ ′ tells us that `⇑ [F ]−
is provable. If the induction hypothesis is true for a derivation of length n it is also true for a derivation of length n + 1.
Indeed let ρ be an internal derivation of length n+ 1 frommultiset E1, . . . , Ek that is ρ : E1, . . . , Ek 7→r E ′1, . . . , E

′

l 7→
∗ . . . .

Induction hypothesis for the derivation starting with E ′1, . . . , E
′

l ensures that `⇓ [E
′

1]
+, . . . ,`⇓ [E ′l ]

+ are all provable.
Finally, r corresponds to introducing the main connective of [Ei]+, where Ei is the neutral expression of the multiset being
decomposed by r .
Induction case. Two cases need to be considered: σ has even size n+ 1 (it is winning counter-strategy) or σ has odd size

n+ 1 (it is a winning strategy).



O. Delande et al. / Annals of Pure and Applied Logic 161 (2010) 654–672 661

1. σ is of odd size. This case is similar to the base case for strategies of size 1 when σ starts with a move E ρ F and yields σ ′
as a winning counter-strategy for F . Using the induction hypothesis on σ ′ we obtain a proof

Π
`⇑ [F ]−

and by picking some internal derivation ρ : E 7→∗ρ l F we build an open positive derivation rooted in `⇓ [E]
+:

`⇑ [F ]−

`⇓ [l F ]+

...

`⇓ [E]+

that we can close withΠ .
2. σ is of even size.Oncemore, the proof is close to the base case. Considering a negative tree built thanks to the same process
as the one described previously, the same three cases might occur: either the branch is closed, that is the corresponding
internal derivation does not lead to a legal position (ls appear in themultiset and on the proof-theoretical side a> rule is
used), or we get to a sequentmade of a positive formula A (there is amove E ρ F with [F ]+ = A, the induction hypothesis
allows us to proceed), or we get to an empty sequent (but this case is impossible for parity reasons on the length of the
strategy which is required to be winning).

We give only a sketch of the proof for the second part of the proposition which essentially relies on the completeness
of focused proofs [4]. We additionally require that the rule for> is used when no other rule can be applied. We use such a
proof to build a winning strategy. Each positive layer of the proof results in a first move of a winning strategy (the detail of
this positive part of the proof can be mapped to an internal derivation justifying the move). Each negative layer of the proof
results in a ∀-branching in the strategy. More precisely an additive slice of a negative layer results in a move of a counter-
strategy (or the absence of a move, see below). It is easy to check that all these moves are justified by internal derivations
and that the branching is complete. Concerning the parity condition, it is due to the fact that the proof can end with either
a 1 rule or a > rule. In the first case, the corresponding position in the game is an empty position ({} also denoted by 00)
immediately following a move by the player, that is a position from which no move is possible. In the second case the last
multiset of a maximal internal derivation corresponding to this branch of the proof contains a 00 so that it cannot justify a
move (it cannot be of the form lΓ ). �

Since all terminal positions for a game are classified as a win for one player or the other, games for simple expressions are
determinate: that is, given a simple expression E, there is either a winning strategy or a winning counter-strategy for E.
Thus, the excluded middle ` [E]− ⊕ [E]+ is provable for all E. The next corollary actually follows immediately from the
preceding proposition:

Corollary 4.7. Let E be a simple expression. Either ` [E]− or ` [E]+ is provable.

Interests and limitations of the simple fragment

Before moving to the more general case of games for MALL, let us restate the main characteristics of simple games,
emphasizing both what is interesting in these games and why a more elaborate framework is required:

• simple games provide a simple, though expressive framework. As already mentioned at the beginning of this section, we
emphasize that despite being very simple, the fragment of simple expressions is already fairly expressive. We show
in [28] that a large number of games are actually ‘‘simple’’. Moreover, this fragment is flexible enough to allow for an
easy extension with quantification and fixed points;
• simple games characterize a complete fragment of MALL. Simple games are determinate. As a consequence, Corollary 4.7
states that simple expressions characterize a complete fragment of MALL. Other complete fragments of logic might be
looked for by building corresponding determinate games;
• simple games are too restricted to capture MALL. For the very reason they are determinate, there is no hope that simple
games can capture MALL. Moreover, no determinate game can achieve this. Extending our game-theoretical framework
to capture MALL will thus require to modify significantly the structure of our games, in order to lose determinacy for
instance.

5. Games for MALL

In this section, we finally develop a game for full MALL by allowing both non-simple neutral expressions as well as
allowing atomic formulas (propositional variables).
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5.1. Two-player games with ties

The fragments of MALL considered in the previous sections were complete (the games were determinate). The full logic
of MALL is no longer complete so we must modify the description of games to account for the possibility of ties.
Name two-players 0 and 1. For σ ∈ {0, 1}, set σ = 1 − σ . We still base our game on an arena (P , ρ). A position

from which no move is possible is called final. All final positions are classified as 0-wins, 1-wins, and ties, and the non-final
positions as 0-positions and 1-positions. If P is a position, a play from P is a path in the arena starting with P . We usually
assume ρ to be noetherian, so that all plays are finite. A play is won by player σ iff its last position is a σ -win, and is a tie iff
its last position is a tie.
Informally, we choose a starting position P and put a token on it. A play from P is a finite sequence of moves of the token

starting in P . If the current position of the token is final, then the play ends and we conclude that either player 0 wins the
play, player 1 wins the play, or nobody wins the play. If it is a 0-position (resp. 1-position), then player 0 (resp. 1) chooses a
ρ-successor of P , moves the token there, and the play continues.
A σ -strategy for P is a prefixed closed set S of plays from P containing (P) and is such that for every (P0, . . . , Pn) ∈ S

• if Pn is a σ -position, there exists Pn+1 s.t. Pn ρ Pn+1, (P0, . . . , Pn+1) ∈ S,
• if Pn is a σ -position, for every Pn+1 s.t. Pn ρ Pn+1, (P0, . . . , Pn+1) ∈ S.

A winning σ -strategy for P is a σ -strategy for P such that every play in it that ends in a final position is won by player σ .

5.2. Proof system

In our neutral approach, a single (neutral) object accounts for two dual derivations being developed simultaneously,
each player ‘‘viewing’’ one of them. As we saw in Section 4, focalization plays an important role and brings some symmetry.
However, the proof system used in the previous games lacks some important features and this motivates a change.
Specifically, we need to address two main shortcomings.

1. In the previous games, a play would end as soon as the current player could not develop her derivation anymore, making
her opponent win immediately. We now have games based on neutral expressions E such that neither [E]+ nor [E]− are
provable. When a player σ fails to develop her derivation, we cannot conclude that σ wins as we did before. The play
must continue until σ completes her derivation (thus winning the play) or fails as well (thus ending the play in a tie).
The derivations must therefore be richer objects which leave some room for failure. For example, consider the following
dual derivations:

`⇑ A `⇑ >
`⇓ A ⊗ >

` A⊥ ⇓ 0
` A⊥, 0 ⇑

`⇑ A⊥ O 0

The second derivation may not be developed, but we still need a way to challenge the first derivation, which may or
may not be completed into a proof, depending on A. This is done by adding a special inference rule called ‘‘daimon’’ (by
analogy with Ludics [13]) to the proof system. A proof is now a closed derivation which does not use the daimon rule. A
player who uses daimon cannot win, but may try to make her opponent fail as well.

2. In Andreoli’sΣ3 [4], one formula is selected and decomposed in a synchronous phase, while all formulas are decomposed
in an asynchronous phase. This asymmetry does not fit well in our neutral setting, which forces formulas to be
decomposed simultaneously in two dual derivations. We recover some of the symmetry by allowing several foci to
be selected in a synchronous phase, and some, not necessarily all, asynchronous formulas to be decomposed in an
asynchronous phase.

Fig. 5 shows our proof system. Sequents are of the form ` L;P ;N ⇓ F or ` L;P ;N ⇑ F , where L is a multiset
of literals, P is a multiset of positive formulas, N is a multiset of negative formulas, and F is a multiset of formulas. The
sequents ` L;P ;N ⇓ · and ` L;P ;N ⇑ · are identified and also denoted to by ` L;P ;N .

5.3. Neutral expressions

Definition 5.1. We extend the syntax of neutral expressions and guarded neutral expressions as follows:

G ::= k | 00 | 1 | E + E | E × E E ::= G | lG

where k denotes a neutral atom. There is one neutral atom for each pair of dual literals in the logic.

In the rest of the paper, the set of the neutral expressions is denoted by E .

Definition 5.2. The updated positive and negative translations of neutral expressions into MALL formulas are defined in
Fig. 6.
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Additives
` L;P ;N ⇓ Fi,F

` L;P ;N ⇓ F1 ⊕ F2,F
[⊕i]

` L;P ;N ⇑ F1,F ` L;P ;N ⇑ F2,F
` L;P ;N ⇑ F1 N F2,F

[N]
` L;P ;N ⇑ >,F

[>]

Multiplicatives
` L1;P1;N1 ⇓ F1,F1 ` L2;P2;N2 ⇓ F2,F2
` L1,L2;P1,P2;N1,N2 ⇓ F1 ⊗ F2,F1,F2

[⊗]
` ·; ·; · ⇓ 1

[1]

` L;P ;N ⇑ F1, F2,F
` L;P ;N ⇑ F1 O F2,F

[O]
` L;P ;N ⇑ F

` L;P ;N ⇑ ⊥,F
[⊥]

Literals

` K⊥; ·; · ⇓ K
[init]

` K⊥,L;P ;N ⇑ F

` L;P ;N ⇑ K⊥,F
[R ⇑ atomic]

Daimon

Σ
[z]

Σ ′

Σ
[z]

Phase changes
` L;P ;N,N ⇓ F

` L;P ;N ⇓ N,F
[R ⇓]

` L; P,P ;N ⇑ F

` L;P ;N ⇑ P,F
[R ⇑]

` L;P1; · ⇓ P2

` L;P1,P2; ·
[D ⇓]

` L;P ;N1 ⇑ N2,F

` L;P ;N1,N2 ⇑ F
[D ⇑]

K denotes a positive literal, N a negative formula and P a positive formula. In [D ⇓] (resp. [D ⇑]),P2 (resp.N2) is not empty.
A proof is a closed derivation which does not use [z].

Fig. 5. The proof system used in the game for MALL.

[k]+ = K [k]− = K⊥

[00]+ = 0 [00]− = >
[1]
+
= 1 [1]

−
= ⊥

[E + F ]+ = [E]+ ⊕ [F ]+ [E + F ]− = [E]− N [F ]−

[E × F ]+ = [E]+ ⊗ [F ]+ [E × F ]− = [E]− O [F ]−

[l E]+ = [E]− [l E]− = [E]+

Fig. 6. Translations of neutral expressions.

5.4. Neutral graphs

In order to account for the complexity and intensional behavior of the multiplicative connectives and atoms of MALL, we
shall not enrich the structure of arenas and plays (for example, we do not attempt concurrent player games, etc). Instead,
we enrich the notion of position by moving from being just simple neutral expressions (as was used in previous games) to
labeled graph structures, which we describe next.
Fig. 7 shows an example of two dual derivations in Andreoli’sΣ3. It should be noted that at any point in the simultaneous

development of those derivations, there are strong relationships between their frontiers. Each formula present in a frontier
has its dual in the other frontier. Moreover this is a one-to-one correspondence. For example at the bottom of the derivations
the frontier of (1) consists of the sequent ` (A O B) ⊗ C⊥ ⇑ and the frontier of (2) consists of `⇑ (A⊥ ⊗ B⊥) O C . Clearly
there is exactly one formula in each frontier and they are dual. At the top of the two derivations, the frontiers are ` A, B ⇑
and `⇑ C⊥ for (1), and ` C ⇑ A⊥ and `⇑ B⊥ for (2). Here, the corresponding pairs are A/A⊥, B/B⊥, and C⊥/C .
This tight correspondence is best seen by cutting two dual derivations together and applying the cut elimination

procedure. At each step, the current state consists of an upper layer of subderivations of the original derivations, whose
conclusions are fed to a lower layer of cuts inferring the empty sequent. Each cut effectively pairs two dual formulas from
those conclusions. The order in which those cuts are applied is irrelevant. One way to abstract away from this order is to
pack the full layer of cuts in a synthetic ‘‘multicut’’ inference rule. Another way is to consider proof structures and cut links
between them [15,16] or cut-net as introduced in Ludics [13]. The state of our gamewill be a representation of those cut-nets
by means of a graph structure called a neutral graph.
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` A, B ⇑
`⇑ A, B

[R ⇑]

`⇑ A O B
[O]

`⇓ A O B
[R ⇓]

`⇑ C⊥

`⇓ C⊥
[R ⇓]

`⇓ (A O B) ⊗ C⊥
[⊗]

` (A O B) ⊗ C⊥ ⇑
[D]

(1)

` C ⇑ A⊥

` C ⇓ A⊥
[R ⇓]

`⇑ B⊥

`⇓ B⊥
[R ⇓]

` C ⇓ A⊥ ⊗ B⊥
[⊗]

` A⊥ ⊗ B⊥, C ⇑
[D]

`⇑ A⊥ ⊗ B⊥, C
[R ⇑]

`⇑ (A⊥ ⊗ B⊥) O C
[O]

(2)

A, B and C are synchronous formulas.

Fig. 7. Two dual derivations in Andreoli’sΣ3 .

This approach is inspired by [8], in which Danos and Regnier analyze the geometry of generalized multiplicative rules
and express the duality of two generalized multiplicatives through a graph structure. Following this idea, we define neutral
graphs to represent cut links between two (slices of) frontiers as presented above. The vertices represent the sequents of
the slices. There are two colors of vertices (one for each frontier). The arc

labeled with a guarded neutral expression E means that the formula [E]+ occurs in the sequent represented by u and that
the formula [E]− occurs in the sequent represented by v. A neutral graph is bipartite: recall that we have a color for each
frontier and that we do not pair two formulas in the same frontier. For example, two frontiers

` ·; [E]+, [F ]+; · ` ·; ·; [G]− | ` ·; [G]+; [E]− ` ·; ·; [F ]−

will be represented by the neutral graph

where the black (resp. white) vertices represent the sequents of the left (resp. right) frontier. In the examples given so far,
all the sequents are of the form ` ·;P ;N , but we also need to represent sequents of the forms ` L;P ;N ⇑ F and
` L;P ;N ⇓ F . We will use several types of arcs to this end.
It should be noted that the graphs themselves are not proof structures. They merely represent cut links between goals

for the players to prove, which are placeholders for proof structures.

Definition 5.3. A neutral graph G is a tuple (V , A, p, t, ε), where V is a finite set (possibly empty) of vertices, A ⊆ V × V is
a set of arcs, p : V 7→ {0, 1} associates a player to each vertex, t : A 7→ {atomic, normal, focused} associates a type to
each arc, and ε : A 7→ E associates a neutral expression to each arc. In addition, the following must hold:

• The undirected graph based on (V , A) is a set of trees none of which are the degenerate (one-vertex) tree.
• The graph is bipartite, i.e., for every (u, v) ∈ A, p(u) 6= p(v).
• For every normal arc a ∈ A, ε(a) is guarded.
• For every atomic arc a ∈ A, ε(a) is an atom.
• The origins of the focused arcs all belong to the same player (and similarly for the ends, since the graph is bipartite).

Notice that the definition requires that no vertex be isolated (i.e., without neighbors). A vertex with player σ is said to belong
to σ or to be a σ -vertex.
Let us now relate neutral graphs to frontiers. Each vertex has an associated sequent, whose formulas are the translations

of the neutral expressions labeling the arcs connected to it. The direction of an arc determines which translation (positive
or negative) to consider, while its type (atomic, normal or focused) determines in which part of the sequent the formula
occurs.

Definition 5.4 (Sequent Associated with a Vertex). Let G = (V , A, p, t, ε) be a neutral graph and v ∈ V . Let
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• L+ = {[ε(v,w)]+ : (v,w) ∈ A, t(v,w) = atomic},
• L− = {[ε(u, v)]− : (u, v) ∈ A, t(u, v) = atomic},
• U+ = {[ε(v,w)]+ : (v,w) ∈ A, t(v,w) = normal},
• U− = {[ε(u, v)]− : (u, v) ∈ A, t(u, v) = normal},
• F + = {[ε(v,w)]+ : (v,w) ∈ A, t(v,w) = focused},
• F − = {[ε(u, v)]− : (u, v) ∈ A, t(u, v) = focused}.

Since G is a neutral graph, at least one ofF + andF − is empty. The sequentΣG,v associated with v is` L+,L−;U+;U− ⇑
F − if F + is empty, and ` L+,L−;U+;U− ⇓ F + otherwise.

Definition 5.5 (Source). A source of a neutral graph is a vertex which is not the end of a normal or focused arc, but is the
origin of some normal arc.

Sources play a significant role, because they are precisely the vertices associated with sequents of the form ` L;P ; ·
with P 6= ∅, i.e., those which may appear as the conclusion of the [D ⇓] rule, which marks the beginning of a synchronous
phase.

5.5. Positions and moves

5.5.1. Positions
As in the previous games, we define positions andmoves on two levels. A first level is made ofmicro-positions andmicro-

moves between them. A second level is made ofmacro-positions andmacro-moves between them.
We first introduce a basic notion which will be used to define micro-positions and macro-positions.

Definition 5.6 (Position). A position is a triple (G, f0, f1)whereG is a neutral graph and f0 and f1 are Boolean values, satisfying
the two following properties:

• if G is empty, then at least one of f0 and f1 is true;
• if there is some atomic arc (u, v) in G, then fσ must be true, where σ is the player associated with u.

Informally, the flag f0 (resp. f1) indicates whether player 0 (resp. 1) has failed and cannot win the play. If G is empty, the
play ends, and at least one of the players must have failed. The origin of an atomic arc has an associated sequent which will
only be obtained through an application of the daimon [z]. Consequently, the corresponding player will have failed.

Definition 5.7 (Macro-position). A macro-position is a position (G, f0, f1) such that G has no focused arc and all its sources
(possibly zero) belong to the same player.

Informally, a macro-move is seen as a synchronous phase by the player and as an asynchronous phase by the opponent.
At a macro-position, there must be at most one player ready to start a synchronous phase, i.e., ready to move.

Definition 5.8 (Final Macro-position, σ -macro-position). Let P = (G, f0, f1) be a macro-position. If G has no source, then P is
final. Otherwise, the sources of G belong to some player σ and P is a σ -macro-position.

Definition 5.9 (Tie, σ -win). Let P = (G, f0, f1) be a final macro-position. Then at least one of f0 and f1 is true. If they are both
true, P is a tie. Otherwise P is a σ -win, where σ ∈ {0, 1} is such that fσ is false.

Proof. By Definition 5.7, G has no focused arc. Since G is acyclic and has no sources, G has no normal arc. All the arcs of G
are therefore atomic. Whether G is empty or not, one of f0 and f1 is true by Definition 5.6. �

The arena of the game consists of the macro-positions and the macro-moves, which will be defined later. Player σ plays
at a σ -macro-position and wins at a σ -win.

Definition 5.10 (σ -micro-position). A σ -micro-position is a position (G, f0, f1) such that all the origins of the focused arcs of
G belong to player σ .

Informally, a σ -micro-position is an intermediate step which may appear during player σ ’s macro-moves. The origins of
the focused arcs are the vertices associated to sequents in the middle of a synchronous phase.

Definition 5.11 (Playable σ -micro-position). A σ -micro-position (G, f0, f1) is playable if G has at least one focused arc or one
source belonging to player σ .

Informally, a player continues her turn as long as someof her sequents are in themiddle of a synchronous phase (origins of
focused arcs) or are ready to start one (sources). Note that everyσ -macro-position is a playableσ -micro-position. Informally,
player σ can always play at a σ -macro-position.
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Table 1
Neutral moves and their two readings.
Transition Sync reading Async reading

p
D
7→ p′ [D ⇓] [D ⇑]

p
R
7→ p′ [R ⇓] [R ⇑]
p
+
7→ p′ [⊕] [N]

p
×
7→ p′ [⊗] [O]

p
00
7→ p′ [z] [>]

p
1
7→ p′ [1] or [z] [⊥] or [z]
p
at
7→ p′ [init] or [z] [R ⇑ atomic] or [z]

5.5.2. Micro-moves
This section describes the transitions on neutral graphs that are the basis of the game. We first introduce six of them, the

aforementioned ‘‘micro-moves’’, that should be interpreted as the simultaneous applications of two dual single rules of the
proof system. Table 1 lists them along with their interpretations. We subsequently build another transition, which packs
a maximal sequence of micro-moves together and should be read as the simultaneous development of two dual phases.
Essentially, micro-moves are cut reduction rules for proof structures, with focalization. A notable difference is that cut
reduction operates on readily available proof structures, while our micro-moves can be seen as an attempt to develop those
structures as cut reduction goes. It is not always possible to develop them. As a result, failures may arise in some of these
transitions; in that case the transition makes the relevant flags f0 and/or f1 true.
In the following description of the micro-moves we use figures to illustrate the formal definitions. Each micro-move

rewrites a playable σ -micro-position p = (G, f0, f1). σ - (resp. σ -) vertices are represented in black (resp. white). We also
refer to player σ (resp. σ ) as the black (resp. white) player. Arcs are represented using the following convention:

To describe the transitions, let G = (V , A, p, t, ε).

Decision:AssumeG has a σ -source v. Let F be a non empty subset of {(v,w) : (v,w) ∈ A}. If we then letG′ = (V , A, p, t ′, ε),
where t ′ is the same as t except that t ′(a) = focused if a ∈ F , we have the labeled transition (G, f0, f1)

D
7→ (G′, f0, f1).

Let us give an informal description of this transition. Recall the decision rules ([D ⇓] and [D ⇑] in Fig. 5). [D ⇓] is applied
to a sequent of the form ` L;P ; ·. In G, these sequents exactly correspond to the sources, and the transition corresponds
exactly to applying [D ⇓] to one of them, while applying [D ⇑] to some of its neighbors.
To describe the next five labeled transitions, assume G has a focused arc a = (v,w). Since p is a σ -micro-position, v

belongs to player σ andw belongs to player σ .

Reaction: If ε(a) is of the forml E, then one can remove the leadingl, reverse the arc, andunfocus it. Formally, let a = (w, v)
be the opposite arc to a and let

G′ = (V , (A \ {a}) ∪ {a}, p, t|A\{a} ∪ {(a, normal)}, ε|A\{a} ∪ {(a, E)}).

Then we have the transition (G, f0, f1)
R
7→ (G′, f0, f1).

In both interpretations, a formula of the wrong polarity is reclassified.

Additives: If ε(a) is of the form E1 + E2, then one can replace this expression with one of the operands. Formally, let
G′ = (V , A, p, t, ε′)where ε′ is the same as ε except that ε′(a) = Ei for some i ∈ {1, 2}. We then have the labeled transition
(G, f0, f1)

+
7→ (G′, f0, f1).
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This treatment of+ is essentially the same as in the additive game presented before. It corresponds exactly to the reduction
of a cut link between two MALL proof structures with boxes with conclusions [E1]+ ⊕ [E2]+ and [E1]− N [E2]−: the black
player’s choice between E1 and E2 corresponds to that between [E1]+ and [E2]+.
If ε(a) = 00 (the 0-ary additive), then one can remove w and all its adjacent arcs. Formally, let G′ = G|A∩(V\{w})2

and let f0′ and f1′ be the Boolean values defined as follows: fσ ′ = > and fσ ′ = fσ . Then we have the labeled transition
(G, f0, f1)

00
7→ (G′, f0′, f1′).

(In the second graph, any isolated vertex shall be removed.) This last transition is particular: on the white player’s side we
simply remove a sequent of the form` L;P ;N ⇑ >,F , in other words we apply [>]; on the black player’s sidewe face an
unprovable sequent of the form ` L;P ;N ⇓ 0,F and we must apply [z]. Consequently the black player fails (fσ ′ = >).
Multiplicatives: If ε(a) is of the form E1 × E2, then one can split v into two vertices and a into two arcs, labeling each one
with an operand. Formally, define two new vertices v1 and v2 and for every b = (t, u) ∈ A \ {a}, define an arc b′ as follows:
if t 6= v and u 6= v, then b′ = b; if t = v, then b′ = (vi, u) for some i ∈ {1, 2}; and if u = v, then b′ = (t, vi) for some
i ∈ {1, 2}. Now let G′ = (V ′, A′, p′, t ′, ε′)where

• V ′ = (V \ {v}) ] {v1, v2},
• A′ = {(v1, w), (v2, w)} ∪ {b′ : b ∈ A \ {a}},
• p′ = p|V\{v} ∪ {(v1, σ ), (v2, σ )},
• t ′(v1, w) = t ′(v2, w) = focused, and for every b ∈ A \ {a}, t ′(b′) = t(b),
• ε′(v1, w) = E1 and ε′(v2, w) = E2, and for every b ∈ A \ {a}, ε′(b′) = ε(b).

We then have the labeled transition (G, f0, f1)
×
7→ (G′, f0′, f1′).

On the black player’s side, the splitting corresponds to that of the [⊗] rule. On the white player’s side the invertible [O] rule
is applied. Here again, this transition is exactly the reduction of a cut link between two proof structures with conclusions
[E1]+ ⊗ [E2]+ and [E1]− O [E2]−.
If ε(a) = 1 (the 0-ary multiplicative), then one can remove a. Formally, let G′ = G|A\{a} and f0′ and f1′ be Boolean values

defined as follows:

fσ ′ =
{
> if v is a vertex of G′

fσ otherwise
fσ ′ =

{
fσ ifw is a vertex of G′

> otherwise

Then we have the labeled transition (G, f0, f1)
1
7→ (G′, f0′, f1′).

(In the second graph, any isolated vertex shall be removed.) In this transition both players may fail. On the black player’s
side the transition corresponds to applying [1]. The sequent associated to v should thus be` ·; ·; · ⇓ 1, therefore the player
fails (fσ ′ = >) if 1 is not the only formula of the sequent. On the white player’s side [⊥] is applied, and ifw is only connected
to v then its associated sequent becomes ` ·; ·; · ⇑ ⊥which is unprovable, and the player fails (fσ ′ = >).
If ε(a) is an atom k, then the sequent associated to v is of the form ` L;P ;N ⇓ K ,F . There are two cases, depending

on whether the rule [init]may be applied or not.
First case: if there is exactly one arc b connected to v beside a, and b is of the form (u, v), with t(b) = atomic and ε(b) =

k, then one may remove v, a and b. Formally, let G′ = G|A\{a,b}. Then we have the labeled transition (G, f0, f1)
at
7→ (G′, f0, f1).

(In the second graph, any isolated vertex shall be removed.) In this case the sequent associated to v is ` K⊥; ·; · ⇓ K and
[init]may be applied, which is reflected by the transition. On the white player’s side the transition corresponds to applying
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[z] to the sequents associated with u andw. This can be done safely as the white player has already failed (fσ = >) since u
is the origin of an atomic arc.
Second case: if the first case does not apply, then onemaymake a atomic andmake the player fail in the process. Formally,

let G′ = (V , A, p, t ′, ε), where t ′ is the same as t except that t ′(a) = atomic, and f0′ and f1′ be Boolean values defined as
follows: fσ ′ = > and fσ ′ = fσ . Then we have the labeled transition (G, f0, f1)

at
7→ (G′, f0, f1).

In this case the sequent associated to v is not ` K⊥; ·; · ⇓ K , [init]may not be applied, and the player applies [z] and fails.
On the white player’s side the transition corresponds to applying [R ⇑ atomic] to the sequent associated withw.

Definition 5.12 (σ -micro-move). Let p, p′ be σ -micro-positions. There is a σ -micro-move from p to p′ (notation p 7→σ p′)
iff one of the following holds: p

D
7→ p′, p

R
7→ p′, p

+
7→ p′, p

00
7→ p′, p

×
7→ p′, p

1
7→ p′, or p

at
7→ p′.

Proposition 5.13. There is a σ -micro-move from a σ -micro-position iff it is playable.

Proof. A σ -micro-position is playable iff its neutral graph has a source or a focused arc. A σ -micro-move D
7→ is possible iff

the neutral graph has a source. A σ -micro-move
R
7→,

+
7→,

00
7→,

×
7→,

1
7→, or

at
7→ is possible iff the neutral graph has a focused arc

(those moves cover all the cases for the neutral expression labeling the arc). �

5.5.3. Macro-moves
We proceed to define themacro-moves, which are the actual moves of the game, as maximal sequences of micro-moves.

Proposition 5.14. The length of the sequences of micro-moves starting in a fixed micro-position is bounded.

Proof. Associate a triple (s, n, f ) with each micro-position (G, f0, f1), where s is the total number of symbols of the neutral
expressions labeling the arcs of G, n is the number of normal arcs of G, and f is the number of focused arcs of G. Every
micro-move decreases this triple for the lexicographical ordering. Moreover, these triples verify n ≤ s and f ≤ s. �

Definition 5.15 (Macro-move). Let p be a σ -macro-position and p 7→∗σ p
′ a maximal sequence of σ -micro-moves from p.

Then p′ is either a σ -macro-position or a final macro-position. We say that there is a macro-move from p to p′ and denote it
by p ρ p′.

Proof. p′ is a σ -micro-position, but it is not playable by Proposition 5.13. p′ has no focused arcs and all its sources belong to
player σ , which makes it a σ -macro-position or a final macro-position. �

Note that there is a macro-move from every non-final macro-position.

Proposition 5.16. The length of the plays starting in a fixed macro-position is bounded.

Proof. Every macro-move expands to a sequence of micro-moves which is non-empty since every non-final σ -macro-
position is a playable σ -micro-position. The result thus follows from Proposition 5.14. �

5.6. Winning strategies as cut-free proofs

In this section we relate cut-free proofs (in the proof system) to winning strategies (in the game). Our theorems state
the equivalence between provability and the existence of a winning strategy. Our proofs effectively show how to construct
a winning strategy from a proof. They also show how to construct a proof from a winning strategy, but this construction is
not unique in general. To recover unicity, thus having a one-to-one correspondence between winning strategies and proofs,
we would need to impose a uniformity condition on strategies like innocence. We leave this as future work.
The operators [·]+ and [·]− are applied to multisets of neutral expressions in the obvious way. Two focused proofs of

the same sequent are equivalent iff they differ by the order in which asynchronous rules are applied within asynchronous
phases. This is indeed an equivalence relation.
We begin by formally defining a central notion relating concepts of the game to concepts of the proof system: that of

σ -provability (for σ ∈ {0, 1}).

Definition 5.17 (σ -provability). Let G be a neutral graph and σ ∈ {0, 1}. G is σ -provable iff the sequents associated with its
σ -vertices are all provable. A triple (G, f0, f1)where G is a neutral graph and f0, f1 are Boolean values is σ -provable iff fσ = ⊥
and G is σ -provable.

We relate game moves to derivations by proceeding gradually from small steps (micro-moves and inference rules) to
large objects (winning strategies and proofs).

Proposition 5.18. Let P be a playable σ -micro-position. Let S = {P ′ : P 7→σ P ′}. P is σ -provable iff there exists P ′ ∈ S which is
σ -provable.
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Proof. Let us write P = (G, f0, f1) and G = (V , A, p, t, ε). We prove this result in two parts: (1) the ‘‘if’’ part, (2) the ‘‘only
if’’ part.
(1) Suppose that there exists P ′ = (G′, f0′, f1′) ∈ S which is σ -provable. Let us show that P is σ -provable. We have

fσ ′ = ⊥ and G′ is σ -provable. Let us write G′ = (V ′, A′, p′, t ′, ε′). We examine the cases for P 7→σ P ′.

Case P
D
7→ P ′. Thus fσ = fσ ′ = ⊥ and, moreover, the only σ -sequent affected by the move is the one associated with the

source v selected for the move. In G′, this sequent is of the form ` L;P1; · ⇓ P2, and in G it is ` L;P1,P2; ·. The result
follows from the derivation

` L;P1; · ⇓ P2

` L;P1,P2; ·
[D ⇓]

In each one of the other cases we consider the focused arc a = (v,w) from the definition of the corresponding transition.
First of all, the case P

00
7→ P ′ does not happen, since fσ ′ = ⊥. In the other cases v is the only σ -vertex of G affected by the

transition, hence all we need to show is that fσ = ⊥ and ΣG,v is provable. For the latter, showing that ΣG,v derives from
σ -sequents of G′ (which are provable) is enough.

Case P
R
7→ P ′. Thus fσ = fσ ′ = ⊥ and, moreover, ΣG,v is of the form ` L;P ;N ⇓ φ,F , where φ = [ε(a)]+. Remark

that [ε′(w, v)]− = φ and that φ is negative; it is then clear thatΣG′,v =` L;P ;φ,N ⇓ F and the result follows from the
derivation

` L;P ;φ,N ⇓ F

` L;P ;N ⇓ φ,F
[R ⇓]

Case P
+
7→ P ′. Thus fσ = fσ ′ = ⊥ and, moreover, [ε(a)]+ is of the form φ1 ⊕ φ2.ΣG,v is of the form ` L;P ;N ⇓ φ1 ⊕

φ2,F andΣG′,v =` L;P ;N ⇓ φi,F , for some i ∈ {1, 2}. The result follows from the derivation

` L;P ;N ⇓ φi,F

` L;P ;N ⇓ φ1 ⊕ φ2,F
[⊕i]

Case P
×
7→ P ′. Thus, fσ = fσ ′ = ⊥ and, moreover, [ε(a)]+ is of the form φ1 ⊗ φ2. The vertex v is replaced in G′ with two

σ -vertices v1 and v2. ΣG′,v1 and ΣG′,v2 are of the forms ` L1;P1;N1 ⇓ φ1,F1 and ` L2;P2;N2 ⇓ φ2,F2, and we have
ΣG,v =` L1,L2;P1,P2;N1,N2 ⇓ φ1 ⊗ φ2,F1,F2. The result follows from the derivation

` L1;P1;N1 ⇓ φ1,F1 ` L2;P2;N2 ⇓ φ2,F2

` L1,L2;P1,P2;N1,N2 ⇓ φ1 ⊗ φ2,F1,F2
[⊗]

Case P
1
7→ P ′. Thus, [ε(a)]+ = 1. Since fσ ′ = ⊥, fσ = ⊥ and v is not a vertex of G′. a is therefore the only arc connected

to it in G andΣG,v =` ·; ·; · ⇓ 1 is provable:

` ·; ·; · ⇓ 1
[1]

Case P
at
7→ P ′. Thus, [ε(a)]+ = K . Since fσ ′ = ⊥, the first case in the definition of

at
7→ applies, fσ = fσ ′ = ⊥ and ΣG,v =

` K⊥; ·; · ⇓ K is provable:

` K⊥; ·; · ⇓ K
[init]

(2) This is the converse to the previous part. Suppose that P = (G, f0, f1) is σ -provable. We have fσ = ⊥ and G is σ -
provable. We will consider several cases, and in each one we will show that there is a σ -provable P ′ = (G′, f0′, f1′) ∈ S.
There will be few σ -vertices affected by the transition P 7→σ P ′, hence it will be enough to show that fσ ′ = ⊥ and that
the sequents associated to those vertices are provable. Since P is a playable σ -micro-position, G has a source (belonging to
player σ ) or a focused arc (whose origin belongs to player σ ).
First case. Suppose that G has a σ -source v.ΣG,v is of the form ` L;P ; · with P 6= ∅ and it is provable by assumption,

and a proof must end with the [D ⇓] rule:

` L;P1; · ⇓ P2

` L;P1,P2; ·
[D ⇓]

where P1 and P2 partition P , P2 is not empty and ` L;P1; · ⇓ P2 is provable. This corresponds to a transition
P

D
7→ P ′ = (G′, f0′, f1′) in which the outgoing normal arcs of v corresponding to P2 become focused. The only affected

σ -vertex is v andΣG′,v is precisely ` L;P1; · ⇓ P2. Moreover fσ ′ = fσ = ⊥, therefore P ′ is σ -provable.
Second case. Suppose that G = (V , A, p, t, ε) has a focused arc, and let v be its origin.ΣG,v is provable. Consider the last

rule R of such a proof. ΣG,v is of the form ` L;P ;N ⇓ φ,F , where φ is the principal formula of R. There is a focused arc
a = (v,w) for some w such that [ε(a)]+ = φ. We are going to consider all the cases for ε(a). In each case we show that
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there is P ′ = (G′, f0′, f1′) ∈ S which is σ -provable. More specifically, we show that fσ ′ = ⊥ and that the sequents associated
to the σ -vertices of G′ affected by the transition are in fact the premises of R, and are therefore provable.
Case ε(a) = l E. Thus φ is negative and R is [R ⇓]. As we did in part (1), we match this rule with the transition

P
R
7→ (G′, f0, f1) in which a is reversed. The only affected σ -vertex is v. Since φ = [E]−, ΣG′,v is precisely the premise

of R.
Case ε(a) = E1 + E2. Thus φ = [E1]+ ⊕ [E2]+ and R is [⊕i] for some i ∈ {1, 2}. As we did in part (1), we match this rule

with the transition P
+
7→ (G′, f0, f1) in which ε(a) is replaced with Ei. The only affected σ -vertex is v, and ΣG′,v is precisely

the premise of R.
Case ε(a) = 00. Thus, φ = 0. This case does not happen, since there is no introduction rule for 0.
Case ε(a) = E1 × E2. Thus φ = [E1]+ ⊗ [E2]+ and R is [⊗]. As we did in part (1), we match this rule with a transition

P
×
7→ (G′, f0, f1). The only affected σ -vertex is v which is split into v1 and v2, andΣG′,v1 andΣG′,v2 are precisely the premises
of R.
Case ε(a) = 1. Thus φ = 1 and R is [1]. It means thatΣG,v =` ·; ·; · ⇓ 1. As we did in part (1), we match this rule with

the transition P
1
7→ (G′, f0′, f1′) in which a is removed, and it is clear that v is not a vertex of G′, therefore fσ ′ = fσ = ⊥ as

needed. There are no new/affected σ -vertices in G′.
Case ε(a) = k. Thus φ = K and R is [init]. It means thatΣG,v =` K⊥; ·; · ⇓ K . As we did in part (1), we match this rule

with the transition P
at
7→ (G′, f0′, f1′) in which v is removed (first case of the definition of

at
7→). Then fσ ′ = fσ = ⊥ as needed.

There are no new/affected σ -vertices in G′. �

Proposition 5.19. Let P be a playable σ -micro-position. Let S = {P ′ : P 7→σ P ′}. P is σ -provable iff every P ′ ∈ S is σ -provable.

Proof. Let us write P = (G, f0, f1) and G = (V , A, p, t, ε). We are going to prove both directions simultaneously. Let us give
names to the two hypotheses: (A) P is σ -provable, and (B) every P ′ ∈ S is σ -provable. Since P is playable, S is not empty. Let
P ′ = (G′, f0′, f1′) ∈ S. We examine the cases for P 7→σ P ′. In each case we show that (A) implies that P ′ is σ -provable, and
that (B) implies (A). This will prove the proposition, since we chose P ′ ∈ S arbitrarily and we cover all the cases for P 7→σ P ′.
Moreover, it will be enough to consider only the σ -vertices affected by the transition.

Case P
D
7→ P ′. Let v be the source of G which is selected for the move. Every σ -vertex w affected by the move is such

that the arc (v,w) is normal in G and becomes focused in the transition. In other words, ΣG,w and ΣG′,w are of the form
` L;P ;φ,N ⇑ F and ` L;P ;N ⇑ φ,F . The derivation

` L;P ;N ⇑ φ,F

` L;P ;φ,N ⇑ F
[D ⇑]

shows that if (B), then eachΣG′,w has a proof, hence so does eachΣG,w;moreover fσ ′ = ⊥, hence fσ = ⊥ and (A). Conversely,
if (A), then each ΣG,w has a proof, which is equivalent to a proof ending with the above derivation, hence each ΣG′,w is
provable; moreover fσ = ⊥, hence fσ ′ = ⊥ and P ′ is σ -provable.
For each one of the other cases we consider the arc a = (v,w) from the definition of the corresponding transition.

Case P
at
7→ P ′. There are two cases in the definition of this transition. In the first case, we must have fσ = > since

the σ -vertex u is the origin of the atomic arc (u, v). Then fσ ′ = > and (A) and (B) are both false, which concludes this
case. In the second case, the only affected σ -vertex is w, and ΣG,w and ΣG′,w are of the form ` L;P ;N ⇑ K⊥,F and
` K⊥,L;P ;N ⇑ F . The derivation

` K⊥,L;P ;N ⇑ F

` L;P ;N ⇑ K⊥,F
[R ⇑ atomic]

shows that if (B), then ΣG′,w has a proof, hence so does ΣG,w; moreover fσ ′ = ⊥, hence fσ = ⊥ and (A). Conversely, if (A),
thenΣG,w has a proof, which is equivalent to a proof ending with the above derivation, henceΣG′,w is provable; moreover
fσ = ⊥, hence fσ ′ = ⊥ and P ′ is σ -provable.
In all the remaining cases, the only σ -vertex affected by the transition isw.

Case P
R
7→ P ′. ε(a) is of the form l E. ΣG,w and ΣG′,w are of the form ` L;P ;N ⇑ φ,F and ` L;φ,P ;N ⇑ F with

φ = [l E]− = [E]+. The derivation

` L;φ,P ;N ⇑ F

` L;P ;N ⇑ φ,F
[R ⇑]

allows us to conclude as in the previous cases.

Case P
+
7→ P ′. ε(a) is of the form E1+E2 and a choice is made between E1 and E2 in P ′. Consider both choices. They lead to

two elements of S, (G1, f0, f1) and (G2, f0, f1) (one of them is P ′). Let uswriteGi = (V ′, A′, p′, t ′, ε′i ) for each i ∈ {1, 2}. [ε(a)]
−

is of the form φ1 N φ2 and [ε′i (a)]
−
= φi. ΣG,w is of the form ` L;P ;N ⇑ φ1 N φ2,F and ΣGi,w =` L;P ;N ⇑ φi,F .



O. Delande et al. / Annals of Pure and Applied Logic 161 (2010) 654–672 671

The derivation
` L;P ;N ⇑ φ1,F ` L;P ;N ⇑ φ2,F

` L;P ;N ⇑ φ1 N φ2,F
[N]

shows that if (B), then ΣG1,w and ΣG2,w have proofs, hence so does ΣG,w; moreover fσ = ⊥, hence (A). Conversely, if (A),
thenΣG,w has a proof, which is equivalent to a proof ending with the above derivation, henceΣG1,w andΣG2,w are provable;
moreover fσ = ⊥, hence P ′ is σ -provable.
Case P

00
7→ P ′.ΣG,w is of the form ` L;P ;N ⇑ >,F and it is provable:

` L;P ;N ⇑ >,F
[>]

w is not a vertex of G′ and fσ ′ = fσ , hence P is σ -provable iff P ′ is. If (B), then (A). Conversely, if (A), then P ′ is σ -provable.
Case P

×
7→ P ′.ΣG,w andΣG′,w are of the form ` L;P ;N ⇑ φ1 O φ2,F and ` L;P ;N ⇑ φ1, φ2,F . The derivation

` L;P ;N ⇑ φ1, φ2,F

` L;P ;N ⇑ φ1 O φ2,F
[O]

allows us to conclude as in the previous cases.
Case P

1
7→ P ′.ΣG,w is of the form ` L;P ;N ⇑ ⊥,F . Consider the derivation

` L;P ;N ⇑ F

` L;P ;N ⇑ ⊥,F
[⊥]

If (B), then fσ ′ = ⊥ and w is a vertex of G′. Then ΣG′,w =` L;P ;N ⇑ F , it has a proof, hence so does ΣG,w by the above
derivation; moreover fσ = ⊥, hence (A). Conversely, if (A), then fσ = ⊥ andΣG,w has a proof, which is equivalent to a proof
ending with the above derivation, hence ` L;P ;N ⇑ F is provable;L, P ,N and F cannot all be empty, thereforew is a
vertex of G′, andΣG′,w =` L;P ;N ⇑ F is provable; moreover fσ ′ = ⊥, hence (A). �

Lemma 5.20. Let P be a σ -macro-position. Let S = {P ′ : P ρ P ′}. P is σ -provable iff there exists P ′ ∈ S which is σ -provable. P is
σ -provable iff every P ′ ∈ S is σ -provable.

Proof. We show amore general result. For every σ -micro-position P , let SP = {P ′ : P 7→∗σ P
′ and this sequence is maximal}.

Let us show that for every σ -micro-position P , P is σ -provable iff there exists P ′ ∈ SP which is σ -provable, and P is σ -
provable iff every P ′ ∈ SP is σ -provable. By Proposition 5.14, we may show it by induction on the maximal length lP of
the sequences P 7→∗σ P

′ for P ′ ∈ SP . If lP = 0, then S = {P} and the result is trivial. Now suppose that lP > 0 and let
S ′ = {P ′ : P 7→σ P ′}. By Propositions 5.18 and 5.19, P is σ -provable iff there exists P ′ ∈ S ′ which is σ -provable, and P is
σ -provable iff every P ′ ∈ S ′ is σ -provable. For every P ′ ∈ S ′, lP ′ < lP and the induction hypothesis applies. The result follows
from the fact that SP =

⋃
P ′∈S′ SP ′ . �

Theorem 5.21. Let P be a position and σ ∈ {0, 1}. There is a winning σ -strategy from P iff P is σ -provable.

Proof. We prove the result by induction on the maximal length lP of the plays starting in P (see Proposition 5.16). If lP = 0,
P is final and there is a winning σ -strategy from P iff P is a win, iff P is σ -provable. Suppose that lP > 0. Let S = {P ′ : P ρ P ′}.
There are two cases: P is either a σ -macro-position or a σ -macro-position.
If P is a σ -macro-position, then there is a winning σ -strategy from P iff there is a winning σ -strategy from some P ′ ∈ S,

iff, by induction hypothesis (lP ′ < lP ), there exists P ′ ∈ S which is σ -provable, iff, by Lemma 5.20, P is σ -provable.
If P is a σ -macro-position, then there is a winning σ -strategy from P iff there is a winning σ -strategy from every P ′ ∈ S,

iff, by induction hypothesis (lP ′ < lP ), every P ′ ∈ S is σ -provable, iff, by Lemma 5.20, P is σ -provable. �

6. Related and future work

There is a great deal of work that addresses various game-theoretical aspects of logic. Most of the work on using game
semanticswith linear logic is centered aroundmodeling cut-elimination: in particular, on viewing one player as a processing
element and the other player as the environment. Blass [5] introduced a game semantics for linear logic along these lines:
this approach was extended by Abramsky and Jagadeesan [1], Abramsky and Melliès [3], and Hyland and Ong [20].
The games described here, however, deal with the question about what is actually achieved when a particular inference

rule is used in a proof. In that sense, our work is more closely related to the ‘‘dialog games’’ inspired by the early work of
Lorenzen [26] (see also [18]).
It is natural to consider extending the games described here for more aspects of logic, such as the exponentials (! and ?)

of linear logic as well as first-order and second-order quantification. The earlier paper [28] considered adding first-order
quantification, the equality predicate on terms, and least and greatest fixed points to MALL. That paper also contained
numerous examples that exploited such extensions to neutral strategies and to (simple) games: it was shown that a natural
approach to fixed points immediately lead to viewing the usual logical specification of bisimulation as the usual game
theoretic description of bisimulation [33].
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Developing technical connections to Girard’s Ludics [13] and Faggian andHyland’s treatment of parts of Ludics [10]would
be of particular interest. Relating proofs and strategies more closely would be another worthy development: here we will
probably need to switch to a framework similar to asynchronous games and innocent strategies [27].

7. Conclusion

We have presented a two-person game in which one player is attempting to build a (cut-free) proof of a formula while
the other player, who is working with exactly the same set of rules, is attempting to build a refutation of that formula. In
order to capture the sameness of the two players, the gamemakes use of a neutral expression language that can be mapped
into logical expressions using two dual mappings. Restricting the interaction between multiplicatives of opposite polarities
yields a simple notion of game with considerable expressiveness. Removing that restriction requires a treatment of the
multiplicatives using a graph structure for game ‘‘positions’’ which essentially represents cut links between two dual proof
structures and can also be mapped to sequents using two dual mappings. The computational content of the game can be
seen as cut reduction and simultaneous dual proof search at the same time. The most natural proof system that results from
this game-theoretic consideration is a focusing proof system that allows for multifocusing.
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