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The global existence of solutions to a high-dimensional system of Korteweg
materials is established when the initial data are small. The complete model was
proposed by Dunn and Serrin and the local existence of the solution was obtained
in an earlier paper by the authors.  © 1996 Academic Press, Inc.

1. INITIAL VALUE PROBLEM

In [3], a high dimensional system for materials of Korteweg type was
studied. The system is a simplified isothermal version of Dunn and Serrin’s
model [2]. In [3], the local classical solution for the initial value problem of
the system is obtained. In this paper, we extend the results obtained in [3]
and establish the global existence of the solution for the system. To
simplify the notation, as in [3], we will write down explicitly the system with
two space variables. The discussion of the general high dimension case can
be performed in exactly the same manner. The only modification in the
general high dimensional case is the regularity requirement on the initial
data, which is demanded by the Sobolev imbedding theorem and Banach
algebra properties for H*. The necessary adjustments for the general high
dimensional case are pointed out in all the theorems of the paper.
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The system for isothermal motion of the Korteweg type studied in [3] is
the following:

pr+ (pu), + (pv)y =0,

(pu), + (pu?), + (puv), = —p, + vpAp, + pAu
+(w/3) (U +0y), (1.1)

(pv), + (puw), + (pv?), = —p, + vpAp, + pAv
+(m/3)(uyy +0,,)

with the initial data

(pu,0)(x,9,0) = (po, g, o) (%, y)- (1.2)

Here ( p, u, v) denote the density and the (x, y)-components of velocity.
In the system (1.1), we assume that p is a smooth function of p and
satisfies

p(p)>0. p'(p)>0. (1.3)
Let p, be a positive constant and define function H( p) by
, PP( )
H'(p)=h(p) = [ — (1.4)
Po
and
H( ) = 0. (15)

Then we have H'( p,) = 0, H"(p) > 0. Therefore in the neighborhood of
P, We have

H(p)=v(p—5)" (1.6)

where -y is a positive number.
Set ¢ =p — p, and w = (¢, u,v). Let H* be the usual Sobolev space
and |- |l the standard kth order Sobolev norm. We introduce the norm

iwlll§r= sup (||w(t)||o+||Vp(t)||)

O0<t<
+ (19w 15 + 1730 ) (L.7)
and

Nwligr=X Wl wilsr. (1.8)
lil<k
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In [3], the following local existence of solutions for (1.1), (1.2) was
proved:

THEOREM 1.1.  For the Cauchy problem (1.1), (1.2), assume that the initial
data (py, ug,vy) satisfy py=8,>0 and ¢y, = p, — py € H* 1(R?),
(uy,vy) € H*(R?) (k = 3). Then, there existsa T > 0 suchthatin0 <t < T,
problem (1.1), (1.2) has a unique solution (p,u,v) such that ¢ = p — p, €
L0, T]: H***(R?)), (u,v) € L*([0, T]: H*(R?)), and

wllZ 7 = Cp 7 (Iwollk + llollz+1). (1.9)

Here ¢y = py — py-

For the n-dimensional case R", one should have k > 2 + n/2.

Remark 1.1. The norm |[|w|l|Z in the energy estimate in [3] actually
does not include the integration in ¢ of Vp, V% and hence is different from
(1.7), (1.8) above. However, from the derivation of (1.9) in Section 3, it is
easy to see that the (1.9) form of energy estimate is also true in [3]. In
addition, the requirement k > 3 in Theorem 1.1 is a relaxation of the
requirement k > 4 in [3]. From the above improved estimate and the proof
in this paper, it is easy to see that this relaxation is justified.

In the next section, we state and prove the main theorem of this paper
on the global existence of classical solutions to the problem (1.1), (1.2).
The proof of the main theorem is based on the local result Theorem 1.1
obtained in [3] and a method employed in [7] which, in the context of this
paper, is formulated as Theorem 2.2. Section 3 is devoted to the proof of
Theorem 2.2.

2. MAIN THEOREM

The main theorem of this paper is the following

THEOREM 2.1. Consider the problem (1.1), (1.2). In addition to the
assumptions in Theorem 1.1, we assume that

Iwoll3 + llolli < & (2.1)

with & < 1. Then there exists a unique classical solution ( p, u,v) in [0, )
such that

b =p—Po € L([0.%); H(RY)),  (u,0) € L([0,); H(R?)).
(2.2)
Besides, we have the estimate
w13, < C(lIwoll3 + lll3) (2.3)
withw = (¢, u,v) = (p — pgy, u, ).
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The proof of Theorem 2.1 is based upon the existence of local solutions
in Theorem 1.1 and the following lemma:

THEOREM 2.2. Let w be a sufficiently smooth solution for the problem
(1.2), (1.2). Then there exists 6 < 1 such that if w satisfies

sup (Ilw(o)lls + li¢lla) < 8, (2.4)

0<t<T

then we have the estimate

lwlll 5 7 < Cs(Iwoll3 + llgholI3). (2.5)

Here Cy depends only on 6 and is independent of T.

Remark 2.1. For general R", Sobolev spaces H3 H* in Theorems 2.1
and 2.2 should be replaced by H* and H**! with k > 2 + n/2.

Assuming Theorem 2.2, we can choose ¢ in Theorem 2.1 so small that
Cse < 6. (2.6)

Therefore, for all the initial data ( py, u,, v,) satisfying (2.1), the existence
of the local solution is guaranteed by Theorem 1.1. Because of (2.6), we
will always have our local solution w satisfying (2.4), and therefore (2.5).
The standard continuation argument then yields the global existence of the
solution.

Remark 2.2. From the proof in the following, it is easy to see that if the
initial data are C” smooth, then under the same “smallness” requirement
(2.1) we can obtain the global existence of C* smooth solutions.

Remark 2.3. Another interesting observation is that in establishing the
existence of a global solution, the assumption on the convexity of p(p) in
(1.3) is used only in the derivation of the 0-order estimate of Theorem 2.2.
The higher order estimates can be derived simply by induction assumption.

3. PROOF OF THEOREM 2.2

Since p and v are two fixed constants in our discussion, we will in the
following let them be equal to 1 to simplify the notation.

We will use induction on k (0 < k < 4) to prove the following estimate
under the assumption (2.4):

llw %, r < Cs(Iwolle + llollz+1). (2.5)



88 HATTORI AND LI

3.1. Estimate for k = 0

First of all, taking the inner product of the second and third equations in
(1.1) with (u, v) in the space L?((0,¢) X R?), we have

(pu, + puu, + puu,, u) + (pv, + puv, + puL,, v)
+(pouw) +(py,0)
—(Au + 3(u,, + ny),u) - (Av + %(uxy + Uyy),l))
—(pAp,u) — (pAp,,v)
=5+, +1,+1,=0. (3.1)
The four terms I, (i = 1,2,3,4) are estimated separately as follows.

e Estimate of I;: Using the first equation in (1.1) and integrating by
parts, we obtain

I, = (pu, + puu, + pou,,u) + ( pv, + puv, + pvv,,v)

t

=5 [p(u? + v?)dxdy (3.2)

0

e Estimate of I,: From (1.4), we have p'( p) = W'( p)/p. Therefore we
derive

L = (pou) + (py0) = (hp), pu) + (h,(p), pv)

t t
= [H(p) dvdy| = v[lol dudy (3.3)
e Estimate of I;: Integration by parts gives
I, = —(Au + 3(u,, + ny),u) — (AU + %(uxy + Uyy),U)
> g[ot(uwné + IVoll3) ds. (3.4)

o Estimate of I,: Integrating by parts and using the first equation in
(1.1), we obtain

I, = =(php,u) = (PApy,v) = +(Ap, (pu). + (pv),)

(3.5)

t
0

=3 [19p1* drdy
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Combining (3.2)-(3.5), we obtain

HIVou) s +IVeu(n) ;) + [ (IVulls + IV0113) ds + 31| Ve () [l

2
+yl (1) o
< Y(IWpugll? + o ugll?) + HIVollZ + ylloll3. (3.6)
For 6 < 1in (2.4), the estimate (3.6) implies

Iw()lls + 1)l + [ (I1vu(s) 115 +1Vo(s) ) ds

< Cy(lwolls + liggglI7). (37)

Next, we take the inner product of the second and the third equations in
(1.1) with (p,, p,) in the space L2((0,1) X R?) to derive the estimate of

SIS ds:
(pu, + puu, + pouy, p,) + (pv, + puv, + povy, py)
+(po ) + (0 py)
—(Au + %(uxx + ny), px) — (AU + %(uxy + Uyy), py)
—(pAp, p) = (PAD,, py)
=J, +J,+J,+J,=0. (3.8)
The four terms in the (3.8) are estimated as follows.
e Estimate of J;: Using the first equation in (1.1), we have
(pu,,p) = (430, p%)
= (pu,p)o + (Pt p,)
= (pu, p)o — (pu,, (pu), + (pv),).
Therefore

2 24!
|Cpu, + puu, + pvuy, p,)| < C5 (I (s) 1 +u(s) o),

+ G (I9u(s) 5 +190(s) [5) s

+C8 /O V()5 ds, (3.9)
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where the constant C is independent of the small choice of 5. Obviously,
we have a similar estimate for ( pv, + puv, + pvv,, p,). Hence we obtain

1< Co(l () 1F + Noll? +Ilw(e) 3 + lwsll5)

t t
+ G [ (IVu() o +1V0(s) o) ds + €3 |V(s) [l ds. (3.10)
e Estimate of J,: From the assumption p'( p) > 0, we have

J, = Cofot” Vo (s) ”é ds, (3.11)

where the constant ¢, is independent of § for 6 < 1.

o Estimate of J,: From integrating by parts, we have
c t 2 2 t 2 2

FARES 5—[ (Ivu(s)llo +Vo(s)llo) ds + aof [V (s)|lo ds. (3.12)
070 0

« Estimate of J,: Again from integrating by parts, we have

Ty = (pVp.. Vp,) + (pVp,,Vp,) + (Vo.. [V, p]Vp.) + (Vp,.[V. p]Vp,)

2 co [ 1% () o ds = T3 Vo (5) [ s (3.13)

where C is independent of 5.

Now we combine (3.8), (3.10)—(3.13) and take 8§, and & in (3.12), (3.13)
so small that §,, 8 < 3c,. Using the estimate (3.7), we obtain (2.5) for
k=0:

llw g,z < Cs(lwollg + llgoll7). (3.14)

3.2. Estimate of Higher Order k > 1

First of all, we state a special case of the Nirenberg inequality and its
corollaries which will be used in our estimate. For the most general form
of the inequality, the reader is referred to [8].
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LEMMA 3.1. Let u € L”(R") N H™(R"). Then for all 0 <j < m, the
following inequality holds:

|D/ulpr < Cllully, lul7=*, (3.15)

where

S (3.16)

It is worth to pointing out that with the special choice of a in (3.16), all
the parameters in (3.15) are independent of the space dimension n except
the constant C.

Let g be the conjugate number of p: 1/p + 1/q = 1. By (3.15), using
the standard Holder inequality, we have for 1/p =j/m and 1/q = (m —
D/m:

[(D/u) (D" 7Iv) |2 < CIDul 2| D™ =T 20
< Cllully lul =0l ol =

= C(lullwlol )" (ul loll) .

Then, from the inequality

A
AYPBY1 < — 4
p

B
—, A,B >0,
q
we obtain the following corollaries:
LEMMA 3.2. Let u,v belong to L” N H™ and F be a smooth function.
Then we have
luvll,, < C(llullnlol= + llolllul=), (3.17)
IF ()l < €1+ llull,n), (3.18)

where the constant C in (3.18) depends on |ul;~.

Now we prove (2.5') by induction on k. Assume that (2.5') is true for all
j <k — 1. The proof consists of two steps.

Step One. To simplify the notation, we will denote by V* the operator
vector with components consisting of all the differential operators D with
multi-index |a| = k. Applying the operator pV¥ ™! to the second and third
equations in (1.1) and then taking the inner product with (V¥u, V¥v) in the
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space L2((0,1) X R?), we have
(pV*(u, + u, + ouy), Viu) + (pV* (0, + uv, + 00,),V*0)
+(pV ', VEu) + (pV 7 'p,, Vi)
—(pVi M (Au + 3(u,, +v,,)), Viu)
—( PV H(Av + 3(u,, +vy,)). Vi0)
—(pV*Ap,, V¥u) — (pV*Ap,, V1)
=1, +1,+1s+1,=0. (3.19)

The four terms [,,(i = 1,2,3,4) are estimated separately as follows.

e Estimate of /,,: From
(pVhu,, V¥u) = ( p, 2a,(Viu)?),
(pVhurt, Vu) = (p[V*, ulu,, Viu) = 3((pu). (Viw)°),
(pVFou,, Viu) = (p[V5,0luy, Vi) = 2((po) . (Vhu)?),
and using the first equation in (1.1), we have

(pV*(u, + uu, + vu,), Vhu)

+ (p[ V¥, ulu, + p[ V5, 0]u,, Viu). (3.20)

t
2
=5 [p(VFu)" dxdy
0
A similar identity also holds for ( pV*(u, + uu, + vu,), V¥u):

(pV*(v, + uv, + v0)), Vo)

t
=%fp(Vku)2 dxdyo + (p[Vk,u]Ux + p[Vk,U]Uy,VkU). (3.21)

Combining (3.20), (3.21), we have
Ly = (I 9%u(0) g + [ V50 () o — lhws )
—|(p[V*, ulu, + p[VF, v]u,, Veu)

+(p[Vk,u]Ux+p[Vk,v]Uy,Vku)|. (3.22)
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Because [V*, ulu, is the summation of the terms
*ugtu, = o1 (du)o'u, (0<s<k-—1),
we have from (3.17) and (2.4):
IV, wluflo < ClIVulle—1IVul - < ClIVulle-allValls < CslIVully -1

Similar estimates hold for [V*, v]u,, [V*, ulv,, and [V, v]v,. Hence we
have

I 2 G (I o + 195 0(0) o = wollE) = € [ 1w (s) - ds.
(3.23)

e Estimate of I,,: From (1.4), we have
L, = (Vr(p), pV¥u) + (V¥ (p), pV*0). (3.24)
We rewrite the terms in (3.24) as follows:
(Vi (p), pVu) = =(V*h( p), 9, pV*u)
= —(H(p)Vp, V( pu),)

—([V*" 5 H(p)] Vo, V¥ (pu),)
—(V*h(p). o] p.V¥]u). (3.25)

Similarly, we have

(Vh,(p), pV*0)

—(H(p)Vp, V¥ (pv),)
—([V< 5 K ()] Vo, VE(pu),)
—(V*h(p). 4] p. V] 0). (3.26)
Combining (3.25), (3.26) and using the first equations in (1.1), we obtain
L, = (W (p)V, V%) + R, (3.27)
where
Ry = —([VS"L K (p)] Vo, VE((pu) . + (pv)y))
—(V*r(p). o[ p,V¥]u + 0,[ p,V¥]v). (3.27)
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By Lemma 3.2 and #'( p) > 0, it is easy to derive

t
(K (p)V, 9¥') = C ([ V(1) o — N olli) — Cfo [V () I -1 s,
(3.28)
t
IRzl = C [ (IVw(s) ey + 3o(I V() I + Ve (5)I)) ds. (3:29)
Combining (3.28) and (3.29), we obtain the estimate for 7, ,:
I, > Cgl(ll P(t)”k - “Wo“k)
t t
= G [I1Vw(s) s ds = 3 [ (IVu(s) I +Ve(s)lc) ds (3.30)
where 8, is a small number to be chosen later.
e Estimate of I;;: Since
(kapfl(Au + 3(u,, + ny)),Vku)
- (AV"u +5(Viu, + 5(u,, + ny)Vkay),Vku)
+(p[Vk, p_l](Au + 3(u,, + ny)),Vku),

and similarly for ( pVp~"(Au + 3(u,, + v,,)), V¥u) we have
I = [(IV () o 19420 (5) o) as
= LT+ 1T e + o IITw () 2 ds
2 8 [ (IVu() [ + V() IF) ds = €3 [ Vw(s) iy ds. (33D)

e Estimate of [,,: From
(pVF AP, VEu) = (V<5 VA2 (pu),) + (Vi D, oV [V, p 2] (pu))

and a similar identity for ( pV*Ap,, V*u), by using the first equation in
(1.1) we have

Ly = (V¥ V¥ p,) — (V4. a¥[ V5, pt] pu + 4V [ V5, p7] pv).
(3.32)
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Since [V*, p~!] is an operator or order k — 1, the total derivatives in
aVIV*, p~*1pu and V[V, p~'1pu are no higher than k + 1. In particu-
lar, at least one derivative is on p. Consequently, we have by Lemma 3.2

(V3. 0¥ [ V¥, p72] pu + 9V [ V¥, p~2] pv)| < CIIVpIIE + IIVwlE 1.

Therefore, we obtain

2 t
Iy = 39 b(0) o = Cllollien = G f (IVw(s) i +11¥9(5) i) ds
(3.33)
Combining (3.23), (3.30), (3.31), (3.33), and the induction assumption, we
obtain by choosing 6, < 1

Iw( I+ ()l + fot(IIVu(S)IIk2 +[Vo(s)llc) ds

< Cy(IIwoll + llolli+1).- (3.34)
This concludes the first step of the proof.

Step Two. Applying the operator pV%~! to the second and third
equations in (1.1) and then taking the inner product with (V%,, Vkpy) in the
space L%((0,1) X R?), we have

(pV*(u, + uu, +ouy), Vi, ) + ((pV*(v, + uv, + vv,), V'p,)
+( PV 'p Vi) + (pV ', Vi)
—(pVi Y (Au + 3(u,, +v,,)). V0, )
—(pVi Y (A0 + 3(uy, +0,,)). V0, )
—(pV*Ap,, Vi) — (pV*Ap,, Vi, )
=T+ Ty + s + Ty = 0. (3.35)

The four terms in (3.35) are estimated as follows.
« Estimate of J,,: First of all we note that integration by parts gives:

(pVu,,V%,) = (Vu, pV%,)g — (pV*u, Vp,) + (4, pV*u, V%p,).
Using the first equation in (1.1) and Lemma 3.2, we have

|( pVi(u, + uu, + Uuy),Vkpx)

< G (I Vw(0) -1 +156(2) ¢ + lIwollf + lidollF-2)

+ G (ITw() I +199(5) ) ds



96 HATTORI AND LI

The same estimate also holds for ( pV*(v, + uv, + vv,), V'p,). Therefore,
we have

ol < C(19w(e) e +1VS()E + Iwollf + 1 bollf 1)

t 2 2
+ G (IVw(s) i + V0 (s) i) ds. (3.36)
e Estimate of J;,: Obviously we have
t
el < G [199(s) - ds (3.37)

e Estimate of J ;. Integrating by parts and using Lemma 3.2, we
readily obtain

C
sl < 6_ft” VW(S)”; ds + Softnvzqﬁ(s)”/f ds. (3.38)
0°0 0

« Estimate of J,,: Integrating by parts and using Lemma 3.2, we have

Jk4 — (pvk+1x,vk+jlpx) + (pvk+].p ,Vk+1py)

+(V¥ 0 [V, pIV,) + (V7 D, [V, 0]V,

= o 12 (s) i ds — Co [ IV (s) 7 ds, (3.39)

where ¢, and C, are independent of § for 6 < 1.
Combining (3.36)—(3.39) and taking 8, §, < 1, we have

LIv3() i ds < € [ (I9w(s) i +119(s) 1) ds

< G(IVw(O) llc—1 +1V(2) e + Iwollf + ol +)-
(3.40)

Now combining (3.34), (3.40), and the induction assumption, we obtain
(2.5). This finishes our proof of Theorem 2.2.
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Remark. In our proof it is easy to see that we only need to use the

norms

[Vul-, Vol |V2¢>|U‘-

Consequently, by Sobolev imbedding theorem, we need to have the index

k

10.

11.

12.

13.

> 3 in Theorem 2.2.
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