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Based on the well-known Durbin method, an efficient numerical method was developed for the inversion of
the two-sided Laplace transform. The accuracy of the method was verified using examples. As an
application of the method, transient elastic waves propagating in a two-layered piezoelectric medium
subjected to anti-plane concentrated loading and in-plane electric displacement loading were investigated.
One-sided and two-sided Laplace transforms were applied to determine the shear stresses and electric
displacements in the double Laplace transform domain. Subsequently, the Durbin method for one-sided
Laplace transform inversion and the extended Durbin method for two-sided Laplace transform inversion
were used to implement the numerical inversions. Additionally, the numerical results of the transient
stresses and electric displacements were evaluated and discussed. It showed that the arrival time of
transient waves satisfies physical phenomena, and the transient solution oscillates near the static solution
and rapidly approximates the static solution.
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1. Introduction

With the recent development of materials and advances in
manufacturing technology, piezoelectric materials are becoming
increasingly common. They are finding new applications in non-
destructive evaluation, ultrasonic medical imaging, smart struc-
tures, and active control of sound and vibration. In this endeavor,
composite materials, consisting of combinations of two or more
different piezoelectric and non-piezoelectric material phases, have
been designed to meet specific technical needs (Ma et al., 2007).
However, most currently available piezoelectric materials are con-
structed from brittle substances and thus, are prone to brittle frac-
tures when employed in areas of vibration. Therefore, research
concerning piezoelectric structural damage is essential.

A systematic methodology for the solution of the multilayered
problem was presented by Thomson (1950) and Haskell (1953).
They developed the ‘‘transfer matrix method’’ to determine the dis-
persive characteristics of seismic waves within the Earth modeled
by an isotropic multilayered medium. Later, Gilbert and Backus
(1966) proposed the propagator matrix method and gave a more
formal mathematical interpretation to the technique. Kundu and
Mal (1985) applied a modified version of Thomson–Haskell matrix
method to the evaluation of the wave motion produced in a multi-
layered solid by dynamic sources. This modified approach does not
suffer from the precision problem and is thus applicable to
calculations for all frequency ranges and source-receiver
separations. With the development of the direct method of evalu-
ation of integral representations for transient waves in a layered
medium (Cagniard, 1962) and the introduction of the concept of
generalized ray paths (Spencer, 1960, 1965a,b), the generalized
ray theory was adopted (Müller, 1968a,b; Pao and Gajewski,
1977) for analyzing the transient response of a multilayered solid.
Recently, Ma and Huang (1996) derived the transfer relation as a
general representation of the responses between each layer, in-
stead of the displacement-traction vector, to determine the tran-
sient wave propagating in a multilayered medium. Theoretical,
numerical, and experimental results for transient responses of a
layered medium subject to in-plane loads were presented by Ma
and Lee (2000). The dynamic response of a layered medium subject
to anti-plane loads was investigated by Ma et al. (2001). Zhuang
et al. (2003) conducted an experiment on the influence of scatter-
ing effects induced by internal interfaces on shock wave propaga-
tion in heterogeneous media. An analytical solution to the problem
of plate impact in layered heterogeneous material systems has
been developed by Chen et al. (2004). Ma and Lee (2006) investi-
gated the general three-dimensional analysis of transient elastic
waves in a multilayered medium.

Many smart structures such as piezoelectric composites are
made up of two or more different constituents periodically
arranged. The investigation of acoustic waves in piezoelectric
phononic crystals has recently attracted much attention (Sesion
et al., 2007; Wang et al., 2008; Piliposian et al., 2012). In addition,
investigations of transient waves in layered piezoelectric media
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were made by Minagawa (1995), Mesquida et al. (1998), Tressler
et al. (1999), Qian et al. (2004), Zakharenko (2005), Ma et al.
(2007), and Liu and He (2010). The results on the transient waves
obtained in numerous studies have shown no significant peaks
when arriving at the major transient wave, indicating that the inte-
gral calculation or inversion results may possess partial errors.
Thus, identifying how to determine precise numerical results is a
crucial issue that must be resolved.

Numerous researchers have used the Laplace transform and the
inversion of Laplace transform as the primary tools for analyzing
dynamic fractures in piezoelectric materials. However, using the
analytical inversion of Laplace transform for analysis renders the
mathematical composition excessively complex and difficult;
therefore, it is only suitable for relatively simple geometric struc-
tures. The numerical inversion of Laplace transform is more practi-
cal for calculating complex problems. Over 20 numerical methods
for inverting the Laplace transform have been proposed in litera-
ture, and their application principles differ from each other. For
example, the Gaussian quadrature has been used as a foundation
for the numerical inversion of Laplace transform (Schmittroth,
1960), as have methods derived from orthogonal functions
(Bellman et al., 1966; Miller and Guy, 1966; Week, 1966). Numer-
ous studies have explored the numerical Laplace transform inver-
sion obtained using the Fourier series (Dubner and Abate, 1968;
Durbin, 1974; Crump, 1976; Albrecht and Honig, 1977; Honig
and Hirdes, 1984). Additionally, many crucial studies and reviews
regarding the numerical inversion of Laplace transform have been
conducted (Zakian and Coleman, 1971; Singhal et al., 1975;
Hosono, 1981; Therapos and Diamessis, 1982; Shih et al., 1987;
Kwok and Barthez 1989; Evans, 1993; Wu et al., 2001; Abate and
Valkó, 2004; Zhao, 2004; Milovanović and Cvetković, 2005).
Although many methods for achieving the numerical inversion of
Laplace transform exist, Narayanan and Beskos (1982) applied 8
numerical inversions of Laplace transform to linear dynamic prob-
lems, and systematically discussed and calculated their efficiency.
Their results showed that the Durbin method (1974) was the best.
The Durbin method can provide reliable long-term and short-term
results in most cases; however, a comparatively longer calculation
time is required.

In studies that analyzed the transient response of piezoelectric
materials under dynamic loading, the governing equations are par-
tial differential equations with multiple variables. Therefore, the
Laplace transform (referred to as the one-sided Laplace transform
in this study) was commonly applied to the time variable when
solving partial differential equations, and the Fourier transform
was commonly applied to space variables. However, to achieve
convenience for various wave propagation problems, the
two-sided Laplace transform is often used for space variables. Nev-
ertheless, simultaneously achieving an analytical inversion for
one-sided and two-sided Laplace transforms is extremely difficult.
Methods similar to the Cagniard method (1939) can only be ap-
plied to a few simple problems for analytical inversion; therefore,
most problems should be solved using numerical inversion. The
accurate and rapid calculation of two inversions is crucial for calcu-
lating two-dimensional transient wave propagation. Adopting the
Durbin method as the theoretical basis of this study, we inferred
the inversion formula for the two-sided Laplace transform (called
the extended Durbin method in this study) and employed a few
simple functions as examples for calculation to verify the accuracy
of this method.

In addition, we also employed the extended Durbin method to
examine the two-dimensional transient wave propagation prob-
lems of a two-layered piezoelectric medium under anti-plane con-
centrated and in-plane electric displacement loads. We conducted
a detailed calculation and discussed the transient response of the
stress and electric displacement fields. The extended Durbin
method can be applied to obtain precise numerical results not only
on piezoelectric problems, but also on purely-elastic material
problems. The present results can degenerate correctly into the
case of both layers made of homogeneous purely-elastic materials.
Furthermore, we calculated the various parameters of the one-
sided and two-sided Laplace inversions, providing superior recom-
mended values as an excellent reference for mutilayered media or
in-plane studies in the future.

2. The extended Durbin method

2.1. The Durbin method

Let f1(t) be a function of time t, with f1(t) = 0 for t < 0. The one-
sided Laplace transform pair is defined as

f 1ðsÞ ¼
Z 1

0
e�st f1ðtÞdt; ð1Þ

f1ðtÞ ¼
1

2pi

Z c1þi1

c1�i1
estf 1ðsÞds; ð2Þ

where s is the complex transform parameter, c1 is a positive con-
stant, and i is the imaginary unit. Durbin (1974) determined the
approximation formula shown below:

f1ðtÞ ¼
2eat

Tt
�1

2
Re½�f 1ðaÞ� þ

X1
k¼0

Re �f 1 aþ i
2kp
Tt

� �� �
cos

2pkt
Tt

� ��(

�Im �f 1 aþ i
2kp
Tt

� �� �
sin

2pkt
Tt

� ���
; ð3Þ

for 0 6 t 6 Tt . Generally, Tt is considered the inversion duration, and
aTt = 5 to 10.

2.2. The extended Durbin method

Let f2(x) be a function of the space variable x. The two-sided
Laplace transform pair is defined as

f �2 ðgÞ ¼
Z 1

�1
e�gxf2ðxÞdx; ð4Þ

f2ðxÞ ¼
1

2pi

Z c2þi1

c2�i1
egxf �2 ðgÞdg; ð5Þ

where g is the complex transform parameter, and c2 is a positive
constant.

Let

g ¼ bþ i-; ð6Þ

to obtain

egx ¼ ebxðcos -xþ i sin -xÞ: ð7Þ

The transformed function f �2 can be rewritten as

f �2 ðgÞ ¼ Re f �2 ðbþ i-Þ
� �

þ i Im f �2 ðbþ i-Þ
� �

: ð8Þ

Thus, (5) has the following form:

f2ðxÞ ¼
ebx

p

�
Z 1

0
Re f �2 ðbþ i-Þ
� �

cos -x� Im f �2 ðbþ i-Þ
� �

sin -x
	 


d-:

ð9Þ

The function f2(x) does not necessarily have to be a symmetrical
function, but it must be an exponential-order function as x ?1
and x ? �1.



Table 1
Test function 1: f2ðxÞ ¼ 2½Hðxþ 2Þ � Hðx� 2Þ� ¼ L�1 2ðe2g � e�2gÞ=g

	 

.

x Exact Extended Dubrin’s method Error %

�2.2 0.000000000 �0.001697408 –
�2.0 2.000000000 0.999987028 �50.0006
�1.8 2.000000000 2.001692662 0.0846
�1.6 2.000000000 2.000546850 0.0273
�1.4 2.000000000 1.999019177 �0.0490
�1.2 2.000000000 2.000579804 0.0290
�1.0 2.000000000 2.000052541 0.0026
�0.8 2.000000000 1.999546119 �0.0227
�0.6 2.000000000 2.000439091 0.0220
�0.4 2.000000000 1.999885568 �0.0057
�0.2 2.000000000 1.999746541 �0.0127
�0.0 2.000000000 2.000409395 0.0205

0.2 2.000000000 1.999747059 �0.0126
0.4 2.000000000 1.999885029 �0.0057
0.6 2.000000000 2.000439131 0.0220
0.8 2.000000000 1.999546616 �0.0227
1.0 2.000000000 2.000051984 0.0026
1.2 2.000000000 2.000579885 0.0290
1.4 2.000000000 1.999019653 �0.0490
1.6 2.000000000 2.000546277 0.0273
1.8 2.000000000 2.001692783 0.0846
2.0 2.000000000 0.999987477 �50.0006
2.2 0.000000000 �0.001697997 –
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Assume a convergent function,

hðxÞ ¼ f2ðxÞe�bx: ð10Þ

For 0 6 x <1, consider sections of h(x) in intervals similar to
(nTx, (n + 1)Tx), and construct an infinite set of 2Tx-periodic func-
tions gn(x):

gnðxÞ¼
hðxÞ; nTx6 x6 ðnþ1ÞTx;

hð2nTx�xÞ; ðn�1ÞTx6 x6nTx;

�
n¼0;1;2; . . . ; 06 x<1:

ð11Þ

Based on the Fourier cosine series expansion (Dubner and Abate,
1968), we obtain

X1
n¼0

ebxgnðxÞ¼
2ebx

Tx

1
2

A1ð-0Þþ
X1
k¼1

A1ð-kÞcos
kpx
Tx

� �( )
; 06 x<1;

ð12Þ

where

A1ð-kÞ ¼
Z 1

0
e�bxf2ðxÞ cos

kpx
Tx

� �
dx: ð13Þ

For �1 < x < 0, introduce a new function:

gnðxÞ¼
hðxÞ; �ðnþ1ÞTx6 x6�nTx;

hð�2nTx�xÞ; �nTx6 x6�ðn�1ÞTx;

�
n¼0;1;2; . . . ; �1< x<0:

ð14Þ

Developing each gn(x) into a Fourier cosine series, we obtain a rela-
tionship similar to that of (12):

X1
n¼0

ebxgnðxÞ¼
2ebx

Tx

1
2

A2ð-0Þþ
X1
k¼1

A2ð-kÞcos
kpx
Tx

� �( )
; �1< x<0;

ð15Þ

where

A2ð-kÞ ¼
Z 0

�1
e�bxf2ðxÞ cos

kpx
Tx

� �
dx: ð16Þ

Based on (12) and (15), the formula for inverting the two-sided
Laplace transform using the approach employed by Dubner and
Abate (1968) can be expressed as follows:

f2ðxÞ ¼
2ebx

Tx

1
2

Re½f �2 ðbÞ� þ
X1
k¼1

Re f �2 bþ i
kp
Tx

� �� �
cos

kpx
Tx

� �( )
;

�1 < x <1: ð17Þ

Similarly, if we construct an infinite set of odd 2Tx-periodic func-
tions kn(x) (Durbin, 1974) and develop each kn(x) into a Fourier sine
series, another representation of f2(x) can be expressed as follows:

f2ðxÞ¼�
2ebx

Tx

X1
k¼0

Im f �2 bþ i
kp
Tx

� �� �
sin

kpx
Tx

� �
; �1< x<1: ð18Þ

By summing half of both sides of (17) and (18), and changing Tx into
Tx/2, the approximation formula of the extended Durbin method for
the two-sided Laplace transform inversion can be obtained, as
shown below:

f2ðxÞ ¼
2ebx

Tx
�1

2
Re½f �2 ðbÞ� þ

X1
k¼0

Re f �2 bþ i
2kp
Tx

� �� �
cos

2pkx
Tx

� ��(

�Im f �2 bþ i
2kp
Tx

� �� �
sin

2pkx
Tx

� ���
; �1 < x <1: ð19Þ

Notably, (19) is identical to the Durbin formula (3). This means
that the Durbin method for the one-sided Laplace transform inver-
sion can be directly employed for the two-sided Laplace transform
inversion. However, we subsequently found that the set values for
the related parameters differed significantly between these two
cases.

2.3. Examples

Two examples are tested below.
Function 1:

f �2 ðgÞ ¼
Z 1

�1
e�gx � 2½Hðxþ 2Þ � Hðx� 2Þ�dx ¼ 2ðe2g � e�2gÞ=g:

ð20Þ

Function 2:

f �2 ðgÞ ¼
Z 1

�1
e�gx � cosðxÞ½Hðxþ 5Þ � Hðx� 10Þ�dx

¼ ½e�10gðsin 10� g cos 10Þ þ e5gðsin 5þ g cos 5Þ�=ðg2 þ 1Þ;
ð21Þ

where H() is the Heaviside function.
The parameters were set as bTx = 0.01, Tx = 30, and N = 5000. The

results are shown in Tables 1 and 2. The results show that the val-
ues obtained using the extended Durbin method agree well with
the actual values. Significantly, for these two functions, which pos-
sess discontinuity at x = x0, the extended Durbin method provides a
numerical value that is extremely similar to the theoretical value,
[f2(x0+) + f2(x0�)]/2. Theoretically, the larger the total number of
summations N, the more accurate the inversion. However, consid-
erable computations are required, which is time-consuming when
solving transient wave problems.

3. Application in the transient response of a piezoelectric
laminate

3.1. Statement of the problem

The specific geometry considered in this study was a two-lay-
ered piezoelectric laminate with a perfectly bonded interface.
The thickness of the upper and lower layers were h1 and h2, respec-
tively. For t < 0, the composite was stress free and at rest. At time
t = 0, a pair of dynamic anti-plane concentrated forces P and



Table 2
Test function 2: f2ðxÞ ¼ cosðxÞ½Hðx þ 5Þ � Hðx � 10Þ� ¼ L�1 e�10gðsin 10 � gcos 10Þþ

�	
e5gðsin5þ gcos5Þ= g2 þ 1

� 
g�.

x Exact Extended Dubrin’s method Error %

�11 0.000000000 �0.000006800 –
�10 0.000000000 �0.000030999 –
�9 0.000000000 0.000026596 –
�8 0.000000000 0.000019097 –
�7 0.000000000 �0.000049256 –
�6 0.000000000 �0.000010795 –
�5 0.283662185 0.141539740 �50.1027
�4 �0.653643621 �0.653632778 �0.0017
�3 �0.989992497 �0.989943229 �0.0050
�2 �0.416146837 �0.416166040 0.0046
�1 0.540302306 0.540275604 �0.0049

0 1.000000000 1.000030902 0.0031
1 0.540302306 0.540309271 0.0013
2 �0.416146837 �0.416184082 0.0089
3 �0.989992497 �0.989972421 �0.0020
4 �0.653643621 �0.653613609 �0.0046
5 0.283662185 0.283610628 �0.0182
6 0.960170287 0.960173180 0.0003
7 0.753902254 0.753981689 0.0105
8 �0.145500034 �0.145592610 0.0636
9 �0.911130262 �0.911226479 0.0106

10 �0.839071529 �0.419700803 �49.9803
11 0.000000000 0.000095317 –
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electric charges D0 act at the upper and lower free surfaces, as
shown in Fig. 1. The piezoelectric layer is poled in the z-direction
exhibiting transversely isotropic behavior. Assuming that only
the out-of-plane displacement and the in-plane electric fields are
considered. The dynamic anti-plane governing equations can be
expressed as

cðjÞ44r2wj þ eðjÞ15r2/j ¼ qðjÞ €wj; ðj ¼ 1;2Þ; ð22Þ
eðjÞ15r2wj � eðjÞ11r2/j ¼ 0; ðj ¼ 1;2Þ; ð23Þ

where wj = wj(x, y) is the anti-plane displacement in the z-direction
(which is assumed to align with the symmetry axis), /j = /j(x, y) is
the electric potential, cðjÞ44 is the elastic modulus measured in a con-
stant electric field, eðjÞ11 is the dielectric permittivity measured at a
constant strain, eðjÞ15 is the piezoelectric constant, and q(j) is the mate-
rial density. The superscript or subscript j = 1 represents the quan-
tities related to the upper layer (piezoelectric material 1), and j = 2
represents those of the lower layer (piezoelectric material 2).
r2 = o2/ox2 + o2/oy2 is the in-plane Laplacian, and a dot denotes
the material time derivative.
Fig. 1. Configuration and coordinate systems of a two-layered piezoelectric
medium subjected to mechanical and electric impacts.
The constitutive equations for the piezoelectric composite can
be expressed as

sðjÞyz ¼ cðjÞ44
@wj

@y
þ eðjÞ15

@/j

@y
ðj ¼ 1;2Þ; ð24Þ

sðjÞxz ¼ cðjÞ44
@wj

@x
þ eðjÞ15

@/j

@x
ðj ¼ 1;2Þ; ð25Þ

DðjÞy ¼ eðjÞ15
@wj

@y
� eðjÞ11

@/j

@y
ðj ¼ 1;2Þ; ð26Þ

DðjÞx ¼ eðjÞ15
@wj

@x
� eðjÞ11

@/j

@x
ðj ¼ 1;2Þ; ð27Þ

where sðjÞyz and sðjÞxz are shear stresses, and DðjÞy and DðjÞx are electric
displacements.

The boundary conditions of this problem can be expressed as

sð1Þyz ðx; h1; tÞ ¼ PdðxÞHðtÞ; �1 < x <1; ð28Þ

Dð1Þy ðx;h1; tÞ ¼ D0dðxÞHðtÞ; �1 < x <1; ð29Þ

w1ðx;0; tÞ ¼ w2ðx;0; tÞ; �1 < x <1; ð30Þ

sð1Þyz ðx;0; tÞ ¼ sð2Þyz ðx;0; tÞ; �1 < x <1; ð31Þ

/1ðx;0; tÞ ¼ /2ðx;0; tÞ; �1 < x <1; ð32Þ

Dð1Þy ðx;0; tÞ ¼ Dð2Þy ðx;0; tÞ; �1 < x <1; ð33Þ

sð2Þyz ðx;�h2; tÞ ¼ PdðxÞHðtÞ; �1 < x <1; ð34Þ

Dð2Þy ðx;�h2; tÞ ¼ D0dðxÞHðtÞ; �1 < x <1; ð35Þ

where dðxÞ is the Dirac delta function.

Introducing function wj ¼ /j � ðe
ðjÞ
15wj=eðjÞ11Þ, the solutions of (22)

and (23) can be obtained from the following two uncoupled

equations:

r2wjðx; y; tÞ ¼
qðjÞ

~cðjÞ44

€wjðx; y; tÞ ðj ¼ 1;2Þ; ð36Þ

r2wjðx; y; tÞ ¼ 0 ðj ¼ 1;2Þ; ð37Þ

where ~cðjÞ44 ¼ cðjÞ44 þ eðjÞ215 =e
ðjÞ
11 is the piezoelectrically stiffened elastic

constant. Thus, the constitutive equations are reduced to the
following forms:

sðjÞyz ðx; y; tÞ ¼ ~cðjÞ44
@wjðx; y; tÞ

@y
þ eðjÞ15

@wjðx; y; tÞ
@y

ðj ¼ 1;2Þ; ð38Þ

sðjÞxz ðx; y; tÞ ¼ ~cðjÞ44
@wjðx; y; tÞ

@x
þ eðjÞ15

@wjðx; y; tÞ
@x

ðj ¼ 1;2Þ; ð39Þ

DðjÞy ðx; y; tÞ ¼ �eðjÞ11

@wjðx; y; tÞ
@y

ðj ¼ 1;2Þ; ð40Þ

DðjÞx ðx; y; tÞ ¼ �eðjÞ11

@wjðx; y; tÞ
@x

ðj ¼ 1;2Þ: ð41Þ
3.2. Solutions in the Laplace transform domain

When analyzing transient wave problems, the two-sided
Laplace transform pair in (4) and (5) can be conveniently expressed
as
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f �2 ðkÞ ¼
Z 1

�1
e�skxf2ðxÞdx; ð42Þ

f2ðxÞ ¼
s

2pi

Z c2=sþi1

c2=s�i1
eskxf �2 ðkÞdk: ð43Þ

Here, we let g ¼ sk in (4) and (5), and s is the parameter of the one-
sided Laplace transform.

Applying (1), (2), (42), and (43) to the uncoupled governing
equations, (36) and (37) can be represented as

d2 �w�j ðk; y; sÞ
dy2 � ðb2

j � k2Þs2 �w�j ðk; y; sÞ ¼ 0 ðj ¼ 1;2Þ; ð44Þ

d2 �w�j ðk; y; sÞ
dy2 � eðjÞ

2
� k2

� �
s2 �w�j ðk; y; sÞ ¼ 0 ðj ¼ 1;2Þ; ð45Þ

where bj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðjÞ=~cðjÞ44

q
is the slowness of the bulk shear horizontal

(SH) wave in the piezoelectric material. eðjÞ ! 0þ is an auxiliary po-

sitive real perturbation parameter.
The general solutions to (44) and (45) in the double trans-

formed domain have the following form:

�w�j ðk; y; sÞ ¼ AðjÞ1 ðk; sÞesaðjÞy þ AðjÞ2 ðk; sÞe�saðjÞy ðj ¼ 1;2Þ; ð46Þ

�w�j ðk; y; sÞ ¼ AðjÞ3 ðk; sÞe�sbðjÞy þ AðjÞ4 ðk; sÞesbðjÞy ðj ¼ 1;2Þ; ð47Þ

where AðjÞ1 , AðjÞ2 , AðjÞ3 , and AðjÞ4 are unknown functions. aðjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

j � k2
q

for ReðaÞ > 0, and bðjÞðkÞ ¼ lim
eðjÞ!0þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðjÞ2 � k2

p
.

The 8 undetermined functions can be resolved accurately using
the 8 boundary conditions. The process is complicated and tricky,
and therefore the detailed derivation is omitted. By applying the
one-sided Laplace transform over time t and the two-sided Laplace
transform to the spatial variable x for the boundary conditions
(28)–(35), with the assistance of (38)–(41), the unknown coeffi-
cients Að2Þ1 and Að1Þ3 can be obtained as follows:
Að2Þ1 ¼
D0eð1Þ15 j3 j2

1 þ 1
� 

� 2j1 Peð1Þ11 þ D0eð1Þ15

� �
s2eð1Þ11 Z

þ
Peð2Þ11 þ D0eð2Þ15

� �
j2 j2

1 � 1
� 

~cð1Þ44 að1Þ þ ~cð2Þ44 að2Þ
� �

� D0eð2Þ15 j3 j2
1 þ 1

� 
~cð2Þ44 að2Þ

s2eð2Þ11
~cð2Þ44 að2ÞZ

þ D0j3Q

s2eð1Þ11 bð1ÞW

þ
D0 j3 j2

4 þ 1
� 

� 2j4
� �

Q

s2eð2Þ11 bð2Þ j2
4 � 1

� 
W

�
D0eð1Þ15 j3 j2

1 þ 1
� 

� 2j1 Peð1Þ11 þ D0eð1Þ15

� �h i
UQ

s2eð1Þ11 ZW

�
Peð2Þ11 þ D0eð2Þ15

� �
j2 j2

1 � 1
� 

~cð1Þ44 að1Þ þ ~cð2Þ44 að2Þ
� �

� D0eð2Þ15 j3 j2
1 þ 1

� 
~cð2Þ44 að2Þ

h i
UQ

s2eð2Þ11
~cð2Þ44 að2ÞZW

þ
Peð2Þ11 þ D0eð2Þ15

� �
j2 eð1Þ15 eð2Þ11 � eð2Þ15 eð1Þ11

� �
Q

s2eð1Þ11 eð2Þ211
~cð2Þ44 að2ÞW

; ð48Þ

Að1Þ3 ¼
D0j3

s2eð1Þ11 bð1ÞW
þ

D0 j3 j2
4 þ 1

� 
� 2j4

� �
s2eð2Þ11 bð2Þ j2

4 � 1
� 

W
�

D0eð1Þ15 j3 j2
1 þ 1

� 
� 2j1 Peð1Þ11 þ D0eð1Þ15

� �h i
U

s2eð1Þ11 ZW

�
Peð2Þ11 þ D0eð2Þ15

� �
j2

1 � 1
� 

j2 ~cð1Þ44 að1Þ þ ~cð2Þ44 að2Þ
� �

� D0eð2Þ15 j3 j2
1 þ 1

� 
~cð2Þ44 að2Þ

h i
U

s2eð2Þ11
~cð2Þ44 að2ÞZW

þ
Peð2Þ11 þ D0eð2Þ15

� �
j2 eð1Þ15 eð2Þ11 � eð2Þ15 eð1Þ11

� �
s2eð1Þ11 eð2Þ211

~cð2Þ44 að2ÞW
; ð49Þ
where

j1 ¼ e�sað1Þh1 ; j2 ¼ e�sað2Þh2 ; j3 ¼ e�sbð1Þh1 ; j4 ¼ e�sbð2Þh2 ; ð50Þ

Z ¼ 1þ j2
2

� 
j2

1 � 1
� 

~cð1Þ44 að1Þ � 1� j2
2

� 
j2

1 þ 1
� 

~cð2Þ44 að2Þ; ð51Þ
U ¼
1þ j2

2

� 
eð1Þ15 eð2Þ11 � eð2Þ15 eð1Þ11

� �
eð1Þ11 eð2Þ11

; ð52Þ

G ¼ 1þ j2
1

� 
j2

4 � 1
� 

eð2Þbð2Þ � 1� j2
3

� 
j2

4 þ 1
� 

eð1Þbð1Þ; ð53Þ

W ¼
GZ þ bð1Þbð2Þ eð1Þ15 eð2Þ11 � eð2Þ15 eð1Þ11

� �
1� j2

3

� 
j2

1 þ 1
� 

j2
4 � 1

� 
U

eð2Þ11 bð2Þ j2
4 � 1

� 
Z

;

ð54Þ

Q ¼
eð1Þ15 eð2Þ11 � eð2Þ15 eð1Þ11

� �
bð1Þ 1� j2

3

� 
j2

1 þ 1
� 

eð2Þ11 Z
: ð55Þ

From the boundary conditions Eqs. (28)–(30), (33)–(35), the
remaining 6 unknown functions can be determined using

Að1Þ2 ¼ �
Peð2Þ11 þ D0eð2Þ15

� �
j2

s2eð2Þ11
~cð2Þ44 að2Þ j2

1 þ 1
� � Peð1Þ11 þ D0eð1Þ15

� �
j1

s2eð1Þ11
~cð1Þ44 að1Þ j2

1 þ 1
� 

þ
1þ j2

2

� 
j2

1 þ 1
� Að2Þ1 ; ð56Þ

Að2Þ2 ¼
� Peð2Þ11 þ D0eð2Þ15

� �
j2

s2eð2Þ11
~cð2Þ44 að2Þ

þ j2
2Að2Þ1 ; ð57Þ

Að1Þ1 ¼
Peð1Þ11 þ D0eð1Þ15

� �
j1

s2eð1Þ11
~cð1Þ44 að1Þ

þ j2
1Að1Þ2 ; ð58Þ

Að1Þ4 ¼ �
D0j3

s2eð1Þ11 bð1Þ
þ j2

3Að1Þ3 ; ð59Þ

Að2Þ4 ¼
D0ðj3 � j4Þ

s2eð2Þ11 bð2Þ j2
4 � 1

� þ Að1Þ3

eð1Þ11 bð1Þ 1� j2
3

� 
eð2Þ11 bð2Þ j2

4 � 1
�  ; ð60Þ
Að2Þ3 ¼
D0j4

s2eð2Þ11 bð2Þ
þ j2

4Að2Þ4 : ð61Þ

Substituting (46) and (47) into the constitutive equations in the
double Laplace transform domain, the shear stress �s�ðjÞyz and electric
displacement �D�ðjÞy can be obtained as follows:
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�s�ðjÞyz ðk; y; sÞ ¼ ~cðjÞ44saðjÞAðjÞ1 esaðjÞy � ~cðjÞ44saðjÞAðjÞ2 e�saðjÞy

� eðjÞ15sbðjÞAðjÞ3 e�sbðjÞy þ eðjÞ15sbðjÞAðjÞ4 esbðjÞy; ð62Þ
�D�ðjÞy ðk; y; sÞ ¼ eðjÞ11sbðjÞAðjÞ3 e�sbðjÞy � eðjÞ11sbðjÞAðjÞ4 esbðjÞy: ð63Þ
3.3. Numerical results and discussion

In the previous subsection, the shear stresses and electric dis-
placements in the double Laplace transform domain were derived
analytically. To obtain transient solutions, numerical inversions of
the one-sided and two-sided Laplace transforms must be per-
formed. Our substantial computational results show that the se-
quence of the two inversions significantly influences the
convergence and accuracy of the transient response. Inversion of
the one-sided Laplace transform must be conducted after the
two-sided Laplace transform inversion. By substituting (3) into
(19), we can obtain the inversion formula as follows:
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Fig. 2. Normalized transient shear stresses versus normalized time at (0,0)
(N = 1000, N = 3000, N = 3000, h /h = 1, T = 20b h , aT = 5, T = 10, bT = 0.01).
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ð64Þ
The relevant parameter settings during the calculation process
were aTt ¼ 5, N1 ¼ 1000, N2 ¼ 3000, and N3 ¼ 3000. Following
the recommendation by Ing and Liao (2012), the period Tt was
twice the maximum value of the calculated time period. Further-
more, we recommend that the setting values of period Tx be
divided into two conditions: (I) when the observation point is at
the origin (0,0), period Tx is set as 10 and bTx is set as 0.01; and
(II) when the observation point is not at the origin (0,0), period
Tx is set between 30 and 50 and bTx is set as 0.01.

Two transversely isotropic piezoelectric materials, PZT4 and
ZnO, were used as the upper and lower layer materials for calcula-
tion. The relevant material constants were as follows:

cð1Þ44 ¼ 2:56� 1010 N=m2; eð1Þ15 ¼ 12:7 C=m2;

eð1Þ11 ¼ 64:6� 10�10 F=m2; b1 ¼ 3:852� 10�4 s=m;

cð2Þ44 ¼ 4:25� 1010 N=m2; eð2Þ15 ¼ �0:48 C=m2;

eð2Þ11 ¼ 0:757� 10�10 F=m2; b2 ¼ 3:534� 10�4 s=m:

First, the transient response for shear stresses in a two-layered pie-
zoelectric strip of equal thickness (h1 = h2) was considered. The sta-
tic solution proposed by Wang (2003) were compared to verify the
accuracy of the results proposed in this study. Employing the solu-
tion proposed by Wang (2003) in this problem results in the follow-
ing static solution:

syzðx; yÞ ¼
P

4P31h
ðP31 � P33Þ½2H3ðh; x;�yþ hÞ� þ ðP31 þ P33Þf

�½H4ðh; x;�yþ hÞ� þ P35½2H4ð2h; x; yþ hÞ�g; ð65Þ
where

P31 ¼ eð1Þ15 þ eð2Þ15

� �2
þ ~cð1Þ44 þ ~cð2Þ44

� �
eð1Þ11 þ eð2Þ11

� �
;

P33 ¼ eð1Þ
2

15 � eð2Þ
2

15 þ ~cð1Þ44 þ ~cð2Þ44

� �
eð1Þ11 þ eð2Þ11

� �
;

P35 ¼ eð1Þ15 eð2Þ15 þ eð2Þ
2

15 þ ~cð2Þ44 eð1Þ11 þ eð2Þ11

� �
;

H3ðh; x; yÞ ¼
cosh p

2h ðxÞ
� �

sin p
2h ðyÞ
� �

cosh p
h ðxÞ
� �

� cos p
h ðyÞ
� � ;

H4ðh; x; yÞ ¼
sin p

h ðyÞ
� �

cosh p
h ðxÞ
� �

� cos p
h ðyÞ
� � :

When only a mechanical load was applied to a two-layered pie-
zoelectric strip of equal thickness, Figs. 2 and 3 show a comparison
between the transient numerical and static solutions of the shear
stress from various observation points. Fig. 2 shows the results of
the observation point (0,0) on the interface of the two materials,
1 2 3 1 2 t 2 2 t x x
and indicates that when the non-dimensional time t=b2h2 ¼ 1 and
t=b2h2 ffi 1:09, the incident bulk SH waves of the upper and lower
layer material reach the observation point in succession. Addition-
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ally, when the incident bulk SH wave reaches the observation point,
the shear stress approximates infinity because the load applied is a
point load. Furthermore, a series of reflected waves successively ar-
rive in a short period following t=b2h2 ¼ 3 because of the near iden-
tical bulk SH wave velocity of PZT4 and ZnO. Finally, the transient
solution oscillates near the static solution and rapidly approximates
the static solution. Fig. 3 shows a comparison of transient shear
stresses and static solutions when observation points are located
at ðh2=2;�h2=2Þ within the lower layer material. This figure shows
that the arrival time of transient shear stress waves satisfies phys-
ical phenomena, and the transient solution oscillates near the static
solution and rapidly approximates the static solution. From the re-
sults of a comparison with the static solution and wave propagation
phenomena shown in Figs. 2 and 3, we inferred that the numerical
results of the double Laplace inversion calculation were cor-
rect.Below we discuss the conditions of various material thickness
ratios. Fig. 4 shows the transient response of shear stresses with
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Fig. 4. Normalized transient shear stresses versus normalized time at (0,0)
(N1 = 1000, N2 = 3000, N3 = 3000, h1/h2 = 3/2, Tt = 20b2h2, aTt = 5, Tx = 10, bTx = 0.01.).
h1=h2 ¼ 3=2 at an observation point of (0,0). We inferred from
Fig. 4 that when t=b2h2 ¼ 1, the incident bulk SH wave of the lower
layer material reaches the observation point, when t=b2h2 ffi
1:6335, the incident bulk SH wave of the upper layer material ar-
rives, and when t=b2h2 ¼ 3, the first reflected wave from the free
boundary (y ¼ �h2) of the lower layer material reaches the obser-
vation point. After the preliminary waves arrive and pass, the tran-
sient shear stress exhibits the phenomenon of approximating a
definite value (static solution). Fig. 5 shows the transient numerical
results of shear stresses with observation points at various loca-
tions. It also demonstrates that when the observation point is closer
to the load, the relative transient shear stress values are all larger
than when the observation point is further from the load. This indi-
cates that when the loading distance is closer to the observation
point, the induced stress value is greater. Furthermore, the arrival
times of various incident, reflected, and refracted bulk SH waves
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Fig. 6. Normalized transient shear stresses versus normalized time with various
ratios of thickness (N1 = 1000, N2 = 3000, N3 = 3000, Tt = 20b2h2, aTt = 5, Tx = 10,
bTx = 0.01).
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vary with different observation points. However, they all fulfill the
physical phenomena. Fig. 6 shows the transient response of shear
stresses for which only a mechanical load is applied and a thickness
ratio of h1=h2 ¼ 5 and h1=h2 ¼ 8 used. Fig. 6 shows that, because the
upper layer material is significantly thicker than the lower layer
material, when t=b2h2 6 5, the waves produced are the incident
bulk SH wave of the lower layer material and the related reflected
waves. Therefore, the figures of h1=h2 ¼ 5 and h1=h2 ¼ 8 at
t=b2h2 6 5 completely overlap. However, the two figures do not
separate until t=b2h2 > 5 and the incident bulk SH wave of the
h1=h2 ¼ 5 upper layer material arrives. The accuracy of the wave-
front arrival times verified that the numerical inversions in this
study were correct.Fig. 7 shows the transient numerical results of
shear stresses when only an electric displacement load is applied,
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Fig. 8. Normalized transient shear stresses versus normalized time at (0,0) under
various electric impacts (N1 = 1000, N2 = 3000, N3 = 3000, h1/h2 = 3/2, Tt = 20b2h2,
aTt = 5, Tx = 10, bTx = 0.01).
with the observation point located at y ¼ h1=3 on the upper layer
material. We can infer from Fig. 7 that based on the hypothesis that
the speed of electromagnetic waves is infinite, during the beginning
instant of t ¼ 0, significant stress values are induced. Similarly,
when the observation point is closer to the load, the values of the
shear stress syz are greater compared to the situation when the
observation points are further from the load. Fig. 8 shows the tran-
sient shear stresses when various electric displacement loads are
applied to the observation point (0,0). Similarly, Fig. 8 shows that,
electric effects induce significant stress values during the instant
of t ¼ 0. Furthermore, the greater the applied electric displacement
load, the greater the produced shear stress.Subsequently, the tran-
sient numerical results of the electric displacement were calcu-
lated. Fig. 9 shows the transient electric displacement results
when only a mechanical load is applied, with observation points
in various locations. When the observation point is at ð0;0Þ and
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Fig. 10. Normalized transient electric displacements versus normalized time at
(0,0) under various mechanical impacts (N1 = 1000, N2 = 3000, N3 = 3000, h1/h2 = 3/
2, Tt = 20b2h2, aTt = 5, Tx = 10, bTx = 0.01).
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t=b1h1 ¼ 1, the incident bulk SH wave from the lower layer material
arrives, and when t=b1h1 ffi 1:6335, the incident bulk SH wave of the
upper layer material reaches the observation point. Fig. 9 shows
that the electric displacement generated by the piezoelectric mate-
rial when mechanical load is applied is minor. Fig. 10 shows the
transient numerical values of the electric displacement at observa-
tion point (0,0) under various mechanical and electric
displacement loads. The results indicate that significant stress val-
ues are produced at t ¼ 0 because of the electric effect when electric
displacement is applied. When t=b2h2 ¼ 1, the incident bulk SH
wave of the lower layer material reaches the observation point,
and when t=b2h2 ffi 1:6335, the incident bulk SH wave of the upper
layer material reaches the observation point. In addition, the inci-
dent electromagnetic wave produced by the lower layer material
instantaneously reaches the interface of the two materials, subse-
quently producing a reflected bulk SH wave. When t=b2h2 ¼ 2, this
reflected bulk SH wave reflects from the free surface of the lower
layer material and passes through the observation point. Similarly,
when t=b2h2 ffi 3:267, reflected waves reflected from the upper
layer material border pass through the observation point. Greater
electric displacement changes caused by the arrival of these waves
are only significant and observable when mechanical and electrical
displacement loads are applied simultaneously. The previous re-
sults from the application of mechanical loads alone had a minor
influence on electric displacement; therefore, the changes and
phenomena could not be observed.
4. Conclusions

In numerous studies, Laplace transforms have been used to
solve the transient wave problems of piezoelectric materials,
where accurately calculating the numerical inversion of Laplace
transforms is crucial. This study successfully derived the extended
Durbin method for the two-sided Laplace transform and applied
the new method to the transient problem of a two-layered piezo-
electric composite subjected to anti-plane mechanical and in-plane
electric impacts. The results showed that the arrival time of tran-
sient shear stress waves satisfies physical phenomena, and the
transient solution oscillates near the static solution and rapidly
approximates the static solution. Thus, the Durbin method and
the proposed extended Durbin method for Laplace transform
inversions can achieve good accuracy for transient solutions. In
previous studies, the Durbin method was considered to be unable
to provide accurate long-term results; however, we found that
simply increasing the setting for period T resolved this inefficiency.
Although this change can vary the short-term results, the accuracy
of the results and the calculation efficiency remain comparatively
high. This study also recommended values for the time period set-
tings of the extended Durbin method.
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