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Abstract

Classical Liénard equations are two-dimensional vector fields, on the phase plane or on the Liénard plane,
related to scalar differential equations ẍ + f (x)ẋ + x = 0. In this paper, we consider f to be a polynomial
of degree 2l − 1, with l a fixed but arbitrary natural number. The related Liénard equation is of degree 2l.
We prove that the number of limit cycles of such an equation is uniformly bounded, if we restrict f to
some compact set of polynomials of degree exactly 2l − 1. The main problem consists in studying the large
amplitude limit cycles, of which we show that there are at most l.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Hilbert’s 16th problem [4] asks for the maximum number of limit cycles that a polynomial
vector field, for a given degree, in the plane can have. Although the problem is more than
100 years old it is not even known whether a uniform upper bound, only depending on the de-
gree of the vector field, might exist, even not when the degree is two. In the year 2000, S. Smale
added the question to his list of problems for the 21st century [8], but restricting it to the classical
(polynomial) Liénard equations.

* Corresponding author.
E-mail addresses: magdalena.caubergh@uhasselt.be (M. Caubergh), freddy.dumortier@uhasselt.be (F. Dumortier).
0022-0396/$ – see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2007.11.011

https://core.ac.uk/display/82453821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1360 M. Caubergh, F. Dumortier / J. Differential Equations 244 (2008) 1359–1394
Classical (polynomial) Liénard equations are planar differential equations associated to the
second order scalar differential equations

ẍ + f (x)ẋ + x = 0, (1)

with f a polynomial of degree n.
In the phase plane the representation of the Liénard equation is given by

y
∂

∂x
− (

x + f (x)y
) ∂

∂y
. (2)

In the so-called Liénard plane it is given by

(
y − F(x)

) ∂

∂x
− x

∂

∂y
, (3)

with F(x) = ∫ x

0 f (u)du. In both cases the Liénard equation is of degree n + 1 when f is of
degree n.

In this paper we will focus on the problem of how to prove the existence of a finite upper
bound on the number of limit cycles that a Liénard equation of degree n + 1 can have, only
depending on the degree n.

In [7] it has been proven that for even n, hence for Liénard equations of odd degree, a positive
answer to the question can be given, if the same result is true for the slow–fast Liénard systems
(y −F(x)) ∂

∂x
− εx ∂

∂y
, with ε > 0, ε sufficiently small. These systems, small perturbations of the

layer equations (y −F(x)) ∂
∂x

, are related to the scalar differential equations εẍ +f (x)ẋ +x = 0,
for similar ε > 0. We can even limit f (x) to

f (x) = x2l +
2l−1∑
i=0

λix
i with

2l−1∑
i=0

λ2
i = 1.

In this paper we want to prove a similar result for Liénard equations of even degree. For
Liénard equations of odd degree the result is not so hard to obtain, due to the fact that—except
near the layer equations—the circle at infinity in that case is a uniform repellor. The rest is merely
a consequence of the analyticity of the return map around the unique singularity.

In case n is odd, hence for Liénard equations of even degree, the situation is more complicated,
since now limit cycles with an amplitude near infinity can be created and this process does not
seem to be subject to an analytic description.

The best that one seems able to do, in case n = 2l − 1, with l � 1, is to compactify the plane
to the appropriate Poincaré–Lyapunov disc, which in this case is the disc D(1,2l) (see [2,3] and
also [1]).

By this compactification there is a possibility of encountering a heteroclinic connection Γ

between two semi-hyperbolic saddles at infinity. Together with part of the circle at infinity, this
gives rise to a (non-hyperbolic) two-saddle cycle. From it, large amplitude limit cycles can be
perturbed.

In this paper we make a complete study of these limit cycles, providing precise cyclicity
results for these two-saddle cycles.
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The precise results on these non-hyperbolic two-saddle cycles will be stated in Theorems 9
and 10, that can be found in Section 8. We prefer not to state these results now, to avoid having
to introduce extra notation for the moment. In any case we can formulate a precise result, that we
call our ‘main theorem,’ and that is an immediate consequence of Theorems 10 and 9.

We will state it in terms of the vector space P2l−1(R) of polynomials f (x) of degree at most
2l − 1, on which we consider, as usual, the coefficient topology. We also state the theorem for
Liénard systems on the phase plane, in terms of expression (2), knowing that it would make
no difference to work on the Liénard plane with systems written in expression (3). BR(0) will
denote the ball around the origin having radius R.

Theorem 1 (Main Theorem). Let K ⊂ P2l−1(R) be compact and consisting of polynomials of
degree exactly 2l − 1, then there exists R > 0 such that any system X having an expression (2)
with f ∈ K has at most l limit cycles having intersection with R

2 \ BR(0).

We call such limit cycles, having an intersection with R
2 \ BR(0), ‘large amplitude’ limit

cycles. In a less precise way of stating the main theorem, we might say that in a uniform way
(as long as we keep the polynomials f , of degree exactly 2l − 1, in a compact region of the
space of polynomials) the number of ‘large amplitude’ limit cycles is bounded by l. This bound
is presumably not a sharp one. It is however not so bad since from [5] it can be expected that it
will be at least l − 1. Of course [5] does not deal with large amplitude limit cycles, but rather
with small amplitude limit cycles.

An interesting consequence of Theorem 1, is the following result, which we again state in
terms of expression (2), but which is equally valid for expression (3).

Theorem 2. Let K ⊂ P2l−1(R) be compact and consisting of polynomials of degree exactly
2l − 1, then there exists N ∈ N such that any system X having an expression (2) with f ∈ K has
at most N limit cycles.

As shown in [7] a similar statement holds for systems (2) with f of even degree. Theorem 2
follows from Theorem 1 in exactly the same way as the similar result in [7] has been proven,
namely by observing that in the finite plane the return map around the origin, with respect to the
positive x-axis, is analytic both in x and f .

The paper is organized as follows. In Sections 2 and 3, we specify the Liénard system we work
with, and its compactification, respectively. In Section 4, if the non-hyperbolic 2-saddle cycle
Γ of the compactification exists, we introduce the difference map Δ. Small (isolated) positive
zeroes w of Δ correspond to large amplitude limit cycles of the Liénard system, in such a way
that w = 0 corresponds to Γ . The difference map is described by two corner transitions near
the semi-hyperbolic saddles and two regular transitions, that are studied separately in Sections 5
and 6, respectively. In Section 7, we study the asymptotics of the difference map Δ; using the
results of Sections 5 and 6, we find that Δ is exponentially flat at w = 0, and we introduce a
so-called reduced difference map Δ̄; Δ̄ is obtained from Δ after some algebraic manipulations
and a derivation with respect to w. In this way, zeroes of Δ̄ represent zeroes of ∂Δ

∂w
. Hence, an

upper bound of the cyclicity near Γ can be found by studying the asymptotics of Δ̄, as we do in
Section 8.
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2. Settings

As announced in the introduction, we suppose that the Liénard equation is of even degree.
Hence, the function f in Eq. (1) or the equivalent planar system (2), is of odd degree, say 2l − 1,
with l � 1. Without loss of generality, we can suppose that the function f is given by

f (x, a) = 2lx2l−1 + (2l − 1)a1x
2l−2 + · · · + ia2l−ix

i−1 + · · · + 2a2l−2x + a2l−1, (4)

with real parameters a1, a2, . . . , a2l−1 ∈ R. Indeed, if f (x,α) =∑2l
i=1 α2l−ix

i−1 with α0 �= 0,
then one can perform the linear transformation on R

2l+1:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t̄ = sgn(α0)t,

x̄ = 2l

√ |α0|
2l

x,

ᾱi = αi

2l − i

(
2l

√
2l

|α0|
)2l−i−1

, i = 1, . . . ,2l − 1,

in order that f (x̄, ᾱ) takes the form (4). Equivalently, the function F in (3) can be supposed to
be given by

F(x, a) = x2l + a1x
2l−1 + · · · + a2l−2x

2 + a2l−1x ≡ x2l + g(x, a), (5)

where a = (a1, . . . , a2l−1) ∈ R
2l−1. In this paper, system (3) will systematically be written as

X(2l)
a ↔

{
ẋ = y − (x2l + g(x, a)),

ẏ = −x,
(6)

with l � 1 and where g is the polynomial defined in (5). In this paper, we will refer to system (6)
as X

(2l)
a .

In case that a2i+1 = 0,∀0 � i � l − 1, system (6) represents a center. Indeed, in that case the
system is symmetric with respect to (x, y, t) 	→ (−x, y,−t); hence it is time-reversible. It is also
easy to see, and it will in fact also follow from our calculations that in all other cases system (6)
is not a center.

Let us finally remark that the study of the Liénard equation

ẍ + (β0x + β1) + (
α0x

2l−1 + α1x
2l + · · · + α2l−ix

i−1 + · · · + α2l−2x + α2l−1
)
ẋ = 0,

with αi,βj ∈ R, ∀0 � i � 2l − 1, j = 0,1, and α0β0 �= 0, can be reduced to the study of (1), by
performing a parameter-dependent translation in the Liénard plane.

3. Compactification

As we are interested in large amplitude limit cycles, we use a Poincaré–Lyapunov compactifi-
cation of type (1,2l). Since this construction plays an essential role in this paper, including some
interesting peculiarities, we will briefly recall the construction.
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The main idea consists in extending X
(2l)
a in an analytic way by defining an interesting ex-

tension on the circle at infinity. This is done by changing, near infinity, the coordinates (x, y)

as

{
x = x̄/S,

y = ȳ/S2l ,

with S > 0, x̄2 + ȳ2 = 1. The resulting vector field is multiplied by S2l−1, and is denoted by X̄
(2l)
a .

It is defined on a disc that we denote by D(1,2l), to specify the construction that we used. As usual
when working with an abstractly defined manifold, it is better to perform the calculations in well
chosen simple charts.

More precisely, for the problem under consideration, we could study system (6) near infinity
in the positive y-direction by introducing the variables (u, s) with

{
x = u/s,

y = 1/s2l ,
u ∈ R, s > 0. (7)

Multiplying the result with a factor s2l−1, this yields the family

X̂(2l)
a ↔

{
u̇ = 1 − u2l − s2lg(u

s
, a) + (2l)−1u2s4l−2,

ṡ = (2l)−1us4l−1.
(8)

We note that, in the equation for u̇,

s2lg

(
u

s
, a

)
= a1u

2l−1s + a2u
2l−2s2 + · · · + a2l−1us2l−1.

We remark that (8) does not exactly describe X̄
(2l)
a in the chart under consideration, given by (7),

but it expresses ζ · X̄a(2l), where ζ(u, s) > 0.
Recall that (u0,0) corresponds to a point at ∞; u0 gives the ‘direction’ at ∞, defined by the

curve x2l = u2l
0 y.

System (8) has two singularities at ∞: (−1,0) and (1,0). Let us denote the corresponding
singularities at ∞ by s− and s+, respectively. Both singularities at ∞ are semi-hyperbolic, since
the corresponding linear parts at (u0,0) with u0 = ±1 are given by

[−2lu0 ∗
0 0

]
, where ∗ = ∂u̇

∂s

∣∣∣∣
(u0,0)

.

To understand the topological behaviour of the semi-hyperbolic singularities, we need to cal-
culate the behaviour on a center manifold. The topological behaviour of the singularities is not
influenced by use of another chart at infinity.

Therefore, to keep the calculations as clear as possible, we can use the chart in the positive
x-direction to understand the behaviour near s+ and analogously, the chart in the negative x-
direction to understand the behaviour near s−. Furthermore, in this way, all possible singularities
at ∞ will be detected, since in a chart in the negative y-direction, there are no singularities at ∞.
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To study the behaviour of X̄
(2l)
a , and hence of system (6) in the positive x-direction we use

the chart {
x = 1/r,

y = υ/r2l ,
υ ∈ R, r > 0. (9)

in which system (6) is expressed by

{
υ̇ = −r4l−2 − 2lυ

(
(υ − 1) − r2lg

(
r−1, a

))
,

ṙ = −r
(
(υ − 1) − r2lg

(
r−1, a

))
.

(10)

Again (10) does not exactly describe X̄
(2l)
a in the chart under consideration, given by (9), but

it expresses ξ · X̄(2l)
a , where ξ(υ, r) > 0.

System (10) has two singularities at ∞: (0,0) and (1,0). Their topological type is easily
studied: (0,0) is a repelling node and (1,0) is semi-hyperbolic. We are interested in the last
one, since it corresponds to s+. This singularity is brought into the origin by performing the
translation (V , r) = (υ − 1, r), resulting in the translated system

{
V̇ = −r4l−2 − 2l(V + 1)

(
V − r2lg

(
r−1, a

))
,

ṙ = −r
(
V − r2lg

(
r−1, a

))
,

with corresponding linear part

[−2l ∗
0 0

]
, where ∗ = ∂V̇

∂r

∣∣∣∣
(1,0)

.

To understand the behaviour of this semi-hyperbolic singularity s+, we reduce the study to the
one on the center manifold, that locally can be written as a graphic Wc = {(V (r), r): r small and
positive} with

V (r) = r2lg
(
r−1, a

)− 1

2l
r4l−2 + O

(
r4l
)
, r → 0.

Hence, the behaviour on the center manifold is given by

ṙ = 1

2l
r4l−1 + O

(
r4l
)
, r → 0. (11)

An analogous result will lead to the behaviour around s−. In fact it is interesting, and it will
even be essential in the further calculation, to observe that the study near s− can be done near s+.

We indeed observe that instead of looking in the negative x-direction by considering the chart{
x = −1/r,

y = v/r2l ,
v ∈ R, r > 0,

we can as well use (9), followed by r 	→ −r . It means that the behaviour of X̄
(2l)
a near s− on the

side r > 0 is hence exactly given by the behaviour of −X̄
(2l)
a (since we have multiplied by r2l−1)

near s+ on the side r < 0. The phase portrait of X̄
(2l)
a is shown in Fig. 1.
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Fig. 1. Behaviour near infinity.

In the coordinates (u, s), leading to the expression (8), we will denote the vector field by X̂
(2l)
a ;

recall that it is equal to ζ(u, s) · X̄(2l)
a with ζ(u, s) > 0.

The phase portrait of X̂
(2l)
a covers the semi-hyperbolic saddle points s+ and s−, and the con-

nection at infinity in between them. In the rest of the paper, we will often work with system X̂
(2l)
a ,

given by (8).
From the equations in (8), it is clear that the flow of X̂

(2l)
a is invariant under the transformation

(t, u, s) 	→ (−t,−u,−s).

So also in these coordinates it is clear that the behaviour of the flow of −X̂
(2l)
a near s− in the

region {(s, u): s > 0, −1 < u < −u0}, is found precisely in the behaviour of the flow of X̂
(2l)
a

near s+ in the region {(s, u): s < 0, u0 < u < 1}.

4. Difference map

From Section 3, we conclude that system X̄
(2l)
a has four singularities at ∞: an attracting node,

a repelling node and two semi-hyperbolic saddle points (see Fig. 1). Furthermore, s− is connected
to s+ by an invariant manifold at ∞, that we denote by Γ1. In coordinates (u, s), in which we
prefer to consider system X̄

(2l)
a , the connection Γ1 is given by the set

{
(u,0): −1 � u � 1

}
.

The only possibility to find large amplitude limit cycles is to investigate perturbations of
limit periodic sets Γ of system X̄

(2l)
a , that contain the semi-hyperbolic saddle points s± and the

connection Γ1 in between them. System (6) has only one singularity, viz. the Hopf singularity
situated at the origin. Therefore, the only possibility for Γ to be a limit periodic set containing
Γ1 ∪ {s+, s−}, is that Γ would be a 2-saddle cycle, surrounding the origin.

We denote by Γ +
2,a the local center manifold at s+ and Γ −

2,a the local center manifold at s−. In

order to permit the creation of limit cycles we suppose, that, for certain parameter values a = a0,
Γ −

2,a0 and Γ +
2,a0 belong to a heteroclinic connection between s− and s+; we call it Γ2,a0 .

Let us stress that the invariant manifold Γ1, connecting s− and s+ exists and remains fixed in
the phase portrait of X̄

(2l)
a , as well as X̂

(2l)
a , for all parameter values a; the connection Γ2,a , if it

exists, depends on the parameter a, also the invariant manifolds Γ +
2,a and Γ −

2,a change in general,
when the parameter a is varied.
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Fig. 2. Non-hyperbolic two-saddle cycle.

Remark 3. In the rest of the paper, we suppose that a0 is an arbitrary but fixed parameter with
the property that Γ2,a0 exists as a heteroclinic connection, and we write Γ2 ≡ Γ2,a0 ,Γ ≡ Γa0 .

We would like to investigate limit cycles that can perturb from Γa0 = {s+, s−} ∪ Γ1 ∪ Γ2,a0 .
Therefore, we introduce an analogous tool as the traditional Poincaré map near Γ and for a ∼ a0.
Since we would like to describe the transition along Γ , Γ being an elementary graphic containing
two (semi-hyperbolic) singularities, it is more convenient to split up this transition into four parts:
corner passages D± near s± and regular transitions R1 and R2 in between the corners.

To be more precise, suppose that sections Σi± are transverse to Γi near s±, i = 1,2, and that
these sections are parametrized by a given regular parameter. Furthermore, if the regular parame-
ter on Σ1− is denoted by w, w > 0, then we suppose that the intersection Γ1 ∩ Σ1− corresponds
to w = 0. Let the map D± describe the corner passage near s± from Σ1± to Σ2±, defined by the

flow of ±X̄
(2l)
a . Let the map R1 (respectively R2) describe the regular transition near Γi from

Σi− to Σi+, i = 1 (respectively i = 2), defined by the flow of X̄
(2l)
a (respectively −X̄

(2l)
a ); see

Fig. 2. Let us remark that the definition of the map R2 does only make sense near values a0 for
which the connection Γ2,a0 exists. Suppose that these transition maps are expressed in the regular
parameter, that is given for the corresponding sections Σi±, i = 1,2. Then, a so-called difference
map Δ, can be expressed, using the regular parameter chosen on Σ1−, as follows:

Δa :Σ1− → R :w 	→ Δ(w,a) = Δa(w) = (
Ra

2 ◦Da− −Da+ ◦Ra
1

)
(w). (12)

We stress the dependence on the parameter a, by adding it in the notation as super-index: e.g.,
Δa ≡ Δ(·, a),Da± and Ra

i (i = 1,2).
It is clear that small zeroes w of Δa , w ↓ 0, represent large amplitude limit cycles of system

X
(2l)
a , and their number near any value a = a0, for which a connection Γ2 exists, is given by

Cycl(X̄(2l)
a , (Γ, a0)), which is equal to the least upper bound for the number of isolated zeroes w

of Δa , for w ↓ 0, a → a0.
To compute or estimate this cyclicity, it is convenient to apply a division-derivation algorithm

to Δa , based on Rolle’s theorem, see e.g. [6]. Therefore, we start by investigating the differentia-
bility properties and asymptotics of the respective transition maps: the corner passage is studied
in Section 5 and the regular transition along the connection Γ1 in Section 6. There is no need to
pay special attention to the regular transition along the connection Γ2, as will become clear in
Section 7.
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5. Corner passage near the semi-hyperbolic saddle points

The corner passages near the semi-hyperbolic saddle points s± of (8) are rather difficult to
calculate in coordinates (u, s). To describe the corner passage along a semi-hyperbolic saddle
point, we introduce smooth normal form coordinates as well as a smooth time change, bringing
system (8) into the C∞ normal form of type

Xnorm
(α,2l) ↔

{
ż = −z,

ẇ = w4l−1(1 + αw4l−2)−1,
α ∈ R. (13)

A clear and detailed study of normal forms near semi-hyperbolic saddles can be found in [1].
Although the study in [1] is presented there for individual vector fields, the result can be applied
here for the family (8), since the semi-hyperbolic saddle points remain fixed and their codimen-
sion is unaltered by perturbation.

By the symmetry property of X̂
(2l)
a , described in Section 3, we only need to introduce local

coordinates near s+ bringing the family X̂
(2l)
a into the normal form Xnorm

(α(a),2l). Indeed, by the

invariance of the phase portrait of the vector field X̂
(2l)
a with respect to the map (t, u, s) 	→

(−t,−u,−s), the local unstable manifold of s+ inside the half plane {s < 0} is given by

Γ̃ +
2,a = {

(u, s): (−u,−s) ∈ Γ −
2,a

};
furthermore, for i = 1,2, the set Σ̃i+ = {(u, s): (−u,−s) ∈ Σi−} is transverse to Γ̃ +

i,a (where

Γ̃ +
1,a = Γ1). Suppose now that the transition map D̃ is expressed in the local coordinates (u, s),

and that it describes the corner passage near s+ defined by the flow of X̂
(2l)
a , inside the half

plane {s < 0}, intersecting subsequently the transverse sections Σ̃1+ and Σ̃2+. Then, again by this

symmetry property of X̂
(2l)
a , the corner passage D− near s− in the half plane {s > 0} is given by

D− :Σ1− → Σ2− : (u, s) 	→ −D̃(−u,−s). (14)

From (11), we see that the semi-hyperbolic singularity s+ is of codimension 4l−2. Therefore,
there exist a compact neighbourhood W of a0 ∈ R

2l−1, a neighbourhood U of s+ ∈ R
2, a smooth

family (ϕa :U → ϕa(U))a∈W of coordinate transformations, a smooth family (ha :U → R)a∈W
of strictly positive functions, and a polynomial α : R2l−1 → R such that

∀a ∈ W: ϕa(s+) = (0,0)

and such that the system ha · X̂(2l)
a |U is transformed by ϕa into the normal form Xnorm

(α(a),2l)|ϕa(U),
preserving the direction of the flow. The polynomial dependence of α on the parameter a can
be checked by repeating the proofs in [1] for the specific family of planar vector fields, given
by (8). We will often omit the dependence of ϕa on a in the notation, and simply write ϕ instead
of ϕa . Furthermore, without loss of generality we can suppose that [0,1] × [0,1] ⊂ ϕ(U) (by
performing a dilatation in the phase plane, if necessary).

Recall that in the normal form coordinates (z,w), defined by ϕ, the semi-hyperbolic saddle
point s+ is located at the origin. Near the origin, in the coordinates (z,w), the positive z-axis
corresponds to the connection Γ1, while the positive (respectively negative) w-axis corresponds
to the connection Γ + (respectively Γ̃ + ).
2,a 2,a



1368 M. Caubergh, F. Dumortier / J. Differential Equations 244 (2008) 1359–1394
Fig. 3. Corner passage in normal form.

In the (z,w)-plane, we choose transverse sections σ i± with respect to Γ ±
i , for i = 1,2, as

follows (see Fig. 3). By compactness of W , we can take a neighbourhood V of (0,0) in R
2 such

that ϕa(U) ⊂ V,∀a ∈W ; then we define

σ 1± = {
(1,±w): w � 0

}∩ V and σ 2± = {
(z,±1): z � 0

}∩ V . (15)

Fix an arbitrary a ∈ W . Then, in normal form coordinates (z,w), the corner passage near s+ in
the half plane {s > 0}, writes

D+ = D
α(a)
+ :σ 1+ → σ 2+ : (1,w) 	→ (

D(w),1
)
,

where D = Dα(a) is defined by the following integral equation:

1∫
w

(1 + αv4l−2)

v4l−1
dv = −

D(w)∫
1

1

z
dz,

where α = α(a). This elementary integral can easily be solved, and one finds

1

−4l + 2
− w−4l+2

−4l + 2
− α lnw = − lnD(w).

Hence, we have the following explicit expression for D(w),

D(w) = wα exp

(
1 − w−4l+2

4l − 2

)
. (16)

From the equations in (13), it follows that the flow of Xnorm
(α,2l) is invariant under the reflections

(t, z,w) 	→ (t, z,−w) and (t, z,w) 	→ (t,−z,w). As a consequence, in normal form coordi-
nates, the corner passage near s+ in the half plane {w < 0}, is given by

D− = Dα− :σ 1− → σ 2− : (1,w) 	→ (
D(−w),−1

)
.
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In the rest of the paper, we suppose that the transverse sections Σi± are chosen as follows:

Σi+ = ϕ−1(σ i+
)
, i = 1,2, (17)

and

Σi− = {
(u, s): ϕ(−u,−s) ∈ σ i−

}
, i = 1,2. (18)

Notice that by this definition the sections Σi± = Σi±a depend on a. Clearly, we can also choose
the absolute value of the w-coordinate as regular parameter on the sections Σ1±, and the z-
coordinate as regular parameter on the sections Σ2±. Now, the corner passage D+ :Σ1+ → Σ2+
(respectively D− :Σ1− → Σ2−) can be described by the (one-dimensional) Dulac map D, since

D+ :Σ1+ → Σ2+ : (u, s) 	→ ϕ−1(D+
(
ϕ(u, s)

))
and respectively, by the remark above in (14),

D− :Σ1− → Σ2− : (u, s) 	→ −ϕ−1(D−
(
ϕ(−u,−s)

))
.

Remark that the maps D± depend smoothly on a through the smooth dependence of ϕ = ϕa and
D± = D

α(a)
± .

6. Regular transition along the connection Γ1

In this section we will study the asymptotics of the regular transition R1 along Γ1 in terms of
the normalizing coordinates introduced in Section 5.

Therefore, let us recall some essential notations. There exist a compact neighbourhood W
of a0 in R

2l−1, and a smooth family of coordinate transformations (ϕa :U ⊂ R
2 → ϕa(U))a∈W

bringing the system ha · X̂(2l)
a |U into the normal form Xnorm

(α(a),2l)|ϕ(U), for a certain smooth family

of strictly positive functions (ha :U → R)a∈W . Let Σ1±,a be the transverse sections defined by
the normalizing coordinates in (15), (17) and (18). In this section, we work with an arbitrary but
fixed parameter a ∈ W ; therefore, we will often omit the dependence of the transition map on
the parameter and we write Σ1± = Σ1±,a .

Using the normalizing coordinates (z,w), the transition map R1 can also be described by a
1-dimensional map z = R1(w), as is shown by the following diagram:

(1,−w) ∈ σ 1−

−ϕ−1

(1,R1(w)) ∈ σ 1+
ϕ

Σ1− R1
Σ1+

Equivalently, the maps R1 and R1 are related by

ϕ
(
R1
(−ϕ−1(1,−w)

))= (
1,R1(w)

)
, (1,−w) ∈ σ 1−. (19)
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Since the map R1 = Ra
1 is C∞ in (w,a), we can consider the infinite jet of R1 with respect to

w at w = 0:

j∞
(
Ra

1

)
0(w) =

∞∑
j=1

1

j !
∂jRa

1

∂wj
(0)wj .

In Proposition 4 below, we state an expression for the derivative
∂j Ra

1
∂wj (0) in terms of the parame-

ter a. Since the calculations are rather lenghtly and technical, we leave it out of this section, and
place it in a separate section at the end of the paper (Section 9).

Proposition 4. Consider the map R1, as introduced in (19), that describes the transition of the
flow of X̄

(2l)
a from σ 1− to σ 1+ along the unbroken connection Γ1, and that is expressed in terms of

the normalizing parameter w > 0. Then,

Ra
1 (0) = 0,

∂Ra
1

∂w
(0) = 1,

∂2Ra
1

∂w2
(0) = −2 2l−1

√
2l

l(4l − 3)
a1,

and if 1 � k � l − 1 is such that

a2i+1 = 0, ∀0 � i � k − 1,

then ⎧⎪⎪⎨
⎪⎪⎩

∂nR1

∂wn
(0) = 0, ∀2 � n � 2k + 1,

1

(2k + 2)!
∂2k+2R1

∂w2k+2
(0) = Ck · a2k+1 and

∂2k+3R1

∂w2k+3
(0) = 0,

for

Ck = (2k − 1)

l(4l − 2k − 3)

2l−1
√

(2l)2k+1, ∀1 � k � l − 1. (20)

7. Reduced difference map Δ̄

Now we can study the asymptotics of the difference map Δ, defined in Section 4, in terms
of the normalizing coordinates introduced in Section 5. Therefore, let us again recall some es-
sential notations from Section 5. Recall that W ⊂R

2l−1 is a compact neighbourhood of a0 and
that (ϕa :U ⊂ R

2 → ϕa(U))a∈W is the smooth family of coordinate transformations bringing the
system ha · X̂

(2l)
a |U into the normal form Xnorm

(α(a),2l)
|ϕ(U), for a certain smooth family of strictly

positive functions (ha :U → R)a∈W . Let Σ1±,a be the transverse sections defined by the normal-
izing coordinates in (15), (17) and (18).

In a natural way, the normalizing coordinates can be used to parametrize these sections. Let
D = Dα(a) be the Dulac map, as introduced in Section 5; let R1 = Ra

1 be the map that describes
the regular transition from Σ1−,a to Σ1+,a , as considered in Section 6. Let R2 = Ra

2 be the map that
describes the regular transition from Σ2−,a to Σ2+,a , expressed using the normalizing coordinates.
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Then, the difference map Δ, that measures the difference between the first intersection points
with Σ2+,a , when one follows the flow of X

(2l)
a in both positive and negative directions starting

at a point on Σ1−,a , is in normalizing coordinates expressed by

Δ(w,a) = Δa(w) = (
Ra

2 ◦ Dα(a) − Dα(a) ◦ Ra
1

)
(w),

where (w,a) ∈ dom(Δ) ≡ {(w,a) ∈ R×W: w � 0,−ϕa(1,−w) ∈ Σ1−,a}; recall that
−ϕa(1,−w) ∈ Σ1−,a if and only if (1,−w) ∈ σ 1−. As follows from Sections 5 and 6, the dif-
ference map Δ is C∞ in dom(Δ).

As usual in establishing a bound for the cyclicity, we would like to apply Rolle’s division-
derivation algorithm on Δ. By Rolle’s theorem, system (8) has cyclicity at most N + 1 if ∂

∂w
Δ

has at most N zeroes in a small neighbourhood of w = 0, multiplicity taken into account; equiv-
alently,

Cycl
(
X̄(2l)

a ,
(
Γ,a0))� N + 1,

if the equation

R′
2

(
D(w)

) · D′(w) = D′(R1(w)
) · R′

1(w) (21)

has at most N solutions.
Remark that here, in the writing of the maps Δ,Δ̄,D,R1, R̄1,R2, we will omit the depen-

dence on the parameter a, and accordingly write α instead of α(a). From a direct calculation, it
follows that

D′(w) = wα−4l+1 exp

(
1

4l − 2

)
exp

(
w−4l+2

−4l + 2

)(
1 + αw4l−2). (22)

As one can notice from (22), both sides of (21) are exponentially flat at w = 0. Therefore, Rolle’s
division-derivation algorithm cannot be applied in a straightforward way. By removing the expo-
nentially flatness, we introduce here a so-called reduced difference map Δ̄, in such a way that its
zeroes represent the roots of (21), and hence the zeroes of ∂Δ

∂w
.

To get rid of the exponentially flatness, one takes the logarithm on both sides of Eq. (21), after
suppressing the factor exp(− 1

4l+2 ) on both sides of the equation. In this way, the left-hand side
of Eq. (21) is reduced to

log
(
R′

2

(
D(w)

))+ (α − 4l + 1) logw + w−4l+2

−4l + 2
+ log

(
1 + αw4l−2), (23)

and the right-hand side is reduced to

(α − 4l + 1) log
(
R1(w)

)+ (R1(w))−4l+2

−4l + 2
+ log

(
1 + α

(
R1(w)

)4l−2)+ log
(
R′

1(w)
)
. (24)

For simplicity of writing, we introduce a smooth function R̄1 by the relation

R1(w) = wR̄1(w). (25)
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Notice that R′
2(0) > 0, and from Proposition 4, we know that

R̄1(w) = 1 + O(w), w → 0, (26)

and hence,

1

−4l + 2

(
1 − (

R̄1(w)
)−4l+2)= O(w), w → 0. (27)

Now we define the C∞ map Δ̄a by

Δ̄a(w) = 1

−4l + 2
·
(

1 − (R̄1(w))−4l+2

w

)
+ w4l−3 log

(
R′

2

(
D(w)

))
− (α − 4l + 1)w4l−3 log

(
R̄1(w)

)− w4l−3 log
(
R′

1(w)
)

+ w4l−3 log

(
1 + αw4l−2

1 + α(R1(w))4l−2

)
.

Recall that Δ̄a depends on the parameter a through the maps R̄1,R2,D; we also write

Δ̄(w,a) = Δ̄a(w). (28)

By (27), it follows that there exists W0 > 0 with [0,W0[×W ⊂ dom(Δ) such that the map Δ̄ is
well defined on [0,W0[×W . By construction, the zeroes of Δ̄ represent the roots of Eq. (21).
Therefore, the map Δ̄a is obtained from Δ by performing one derivation with respect to w, in
a way that zeroes of Δ̄a correspond to zeroes of ∂Δ

∂w
. By Rolle’s theorem, it follows that the

maximum number of zeroes of Δ is at most one more than this number for Δ̄. In order to obtain
a good upper bound on the number of limit cycles near Γ for a near a0, it suffices to count small
positive zeroes of Δ̄; we call Δ̄ the reduced difference map for the family (X̄

(2l)
a )a .

Proposition 5. Consider X
(2l)
a as in (6), and let a0 be a value for which X̄

(2l)

a0 has a (non-hyper-

bolic) 2-saddle cycle Γ as defined in Section 4. Let Δ̄ : [0,W0[×W →R be the reduced difference
map as defined in (28). If there exists 0 � k � l − 1 such that

a2i−1 = 0, ∀1 � i � k, (29)

then

Δ̄(w,a) = −Ck · a2k+1w
2k + O

(
w2k+1), w → 0,

where Ck is the non-zero constant, defined in (20).

Proof. By (25), Proposition 4 and (29), it follows that

R̄1(w) = 1 + Cka2k+1w
2k+1 + O

(
w2k+2), w → 0.
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As a consequence,

log
(
R̄1(w)

)= O
(
w2k+1), w → 0, and log

(
R′

1(w)
)= O

(
w2k+1), w → 0,

and

log

(
1 + αw4l−2

1 + α(R1(w))4l−2

)
= − log

(
1 + αw4l−2

(
(R̄1(w))4l−2 − 1

1 + αw4l−2

))

= O
(
w4l+2k−1), w → 0.

Furthermore, since the Dulac map D is exponentially flat at w = 0, it follows that, ∀N ∈ N,

logR′
2

(
D(w)

)= logR′
2(0) + O

(
wN

)
, w → 0.

As a consequence, for w → 0,

Δ̄(w,a) = 1

−4l + 2
·
(

1 − (R̄1(w))−4l+2

w

)
+ O

(
w4l−3)

= −Ck · a2k+1w
2k + O

(
w2k+1). �

Now, the center case is characterized by one of the conditions in the following proposition:

Proposition 6. Consider X
(2l)
a as in (6), and let a0 be a value for which X̄

(2l)

a0 has a (non-hyper-

bolic) 2-saddle cycle Γ as defined in Section 4. Let Δ̄ : [0,W0[×W →R be the reduced difference
map as defined in (28). Then the following conditions all are equivalent:

1. X
(2l)

a0 has a center in the origin.

2. Δ̄(w,a0) ≡ 0.
3. a0

1 = a0
3 = · · · = a0

2l−1 = 0.

Proof. Condition 1 implies condition 2. Indeed, if X
(2l)

a0 has a center at the origin, then

Δ(w,a0) ≡ 0, and also ∂
∂w

Δ(w,a0) ≡ 0. From this, it follows that

R′
2

(
D
(
w,a0)) · D′(w,a0)≡ D′(R1

(
w,a0), a0) · R′

1

(
w,a0),

and hence,

Δ̄
(
w,a0)≡ 0.

From Proposition 5 it is clear that condition 2 implies condition 3. In Section 2, we already no-
ticed that condition 3 implies that X

(2l)

a0 has a symmetric center at the origin. Hence, all conditions
are equivalent. �

For m ∈ N, we define the natural projections πi as follows:

πi : Rm → R
m−i+1 : (b1, . . . , bm) 	→ (bi, bi+1, . . . , bm). (30)
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Then, the following lemma is a useful specification of Taylor’s theorem:

Lemma 7. Let P :W × V ⊂ R
m × R

n → R be a C∞ map defined on an open set W × V

in R
m×R

n such that P(0, c) ≡ 0, ∀c ∈ V . Then there exist C∞ functions pi :Wi ⊂ R
m−i+1 ×

R
n → R, that are defined on an open set Wi in R

m−i+1 such that π−1
i (Wi) ⊂ W , 1 � i � m,

such that ∀(b, c) ∈⋂m
i=1 π−1

i (Wi) × V :

P(b, c) =
m∑

i=1

bipi(bi, . . . , bm, c).

Let κ : R2l−1 → R
2l−1 denote the permutation of the parameter variables, putting the variables

with odd sub-index in front; hence,

πi

(
κ(a1, a2, . . . , a2l−1)

)= πi(a1, a3, . . . , a2l−1, a2, a4, . . . , a2l−2)

= (a2i−1, a2i+1, . . . , a2l−1, a2, a4, . . . , a2l−2), (31)

where πi defines the natural projection defined above in (30) with m = l, n = l − 1.

Corollary 8. Let Δ̄ : [0,W0[×W → R be the reduced difference map as defined in (28).
Then, there exist 0 < W1 < W0 and C∞ functions Φi : [0,W1[×Wi → R,1 � i � l, with
∀1 � i � l, (πi ◦ κ)−1(Wi ) ⊂ Wi−1 ⊂ W such that ∀(w,a) ∈ [0,W0[×W :

Δ̄(w,a) =
l∑

i=1

a2i−1Φi

(
w,πi ◦ κ(a)

)
, (32)

with

Φi

(
w,πi ◦ κ(a)

)= −Ci−1w
2i−2 + o

(
w2i−2), w → 0, (33)

where Ci−1,1 � i � l, are the non-zero constants defined in (20), and πi ◦ κ is the permuted
projection defined in (31).

Proof. By Lemma 7 and Proposition 6, we find C∞ functions Φi such that the reduced difference
map can be written as proposed in (32). By Proposition 5, for a ∈ R

2l−1 with a2j−1 = 0,∀1 �
j � k, the right-hand side in (32) has the following asymptotics for w ↓ 0:

a2k+1
(
Φk+1

(
w,πk+1

(
κ(a)

))+ Ckw
2k
)+

l∑
i=k+2

a2i−1Φi

(
w,πi

(
κ(a)

))= O
(
w2k+1).

Since the terms behind the summation sign are independent of a2k+1, it follows that

Φk+1
(
w,πk+1

(
κ(a)

))= −Ckw
2k + o

(
w2k

)
, w → 0. �
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8. Cyclicity result

Now we can prove the following cyclicity result, only depending on the degree of the Liénard
system.

Theorem 9. Consider X
(2l)
a as in (6), and let a0 be a value for which X̄

(2l)

a0 has a (non-hyperbolic)
2-saddle cycle Γ as defined in Section 4, then

Cycl
(
X̄(2l)

a ,
(
Γ,a0))� l.

Before proving this theorem, we first formulate and prove a more precise cyclicity result,
depending on the limiting parameter a = a0 ∈ R

2l−1; here we distinguish between the ‘regular
case’ and the ‘center case.’ Recall that the center case is characterized by one of the conditions
in Proposition 6.

We now start with the so-called regular case, i.e. when the limiting vector field does not rep-
resent a center. The case that the limiting vector field X

(2l)

a0 represents a center will be treated

afterwards. If X
(2l)

a0 does not represent a center, then by Proposition 6, there is at least one

a0
2k+1 �= 0; take 0 � k � l − 1 with

a0
2j−1 = 0, ∀j � k, and a0

2k+1 �= 0.

Theorem 10. Consider X
(2l)
a as in (6), and let a0 be a value for which X̄

(2l)

a0 has a (non-
hyperbolic) 2-saddle cycle Γ as defined in Section 4. Furthermore, suppose that there exists
0 � k � l − 1 with

a0
2j−1 = 0, ∀j � k, and a0

2k+1 �= 0,

then

Cycl
(
X̄(2l)

a ,
(
Γ,a0))� k + 1.

Proof. By Corollary 8, there exist C∞ functions Φi : [0,W0[×W → R, 1 � i � l − 1, satisfy-
ing (33) such that ∀(w,a) ∈ [0,W0[×W ,

Δ̄(w,a) =
l∑

i=1

a2i−1Φi(w,a).

Now, we divide Δ̄ by the non-zero function Φ1,w > 0, and then we derive with respect to w to
obtain C∞ functions Δ̄1,Φ1

1 , . . . ,Φ1
l−1 such that, for (w,a) ∈ [0,W0[×W ,

Δ̄1(w,a) =
l−1∑
i=1

a2i+1Φ
1
i (w, a), w → 0,

with Δ̄1 = ∂
∂w

( Δ̄
Φ1

), Φ1
i = ∂

∂w
(
Φi+1
Φ1

). Then,

Φ1
i (w, a) = C1

i w2i−1 + o
(
w2i−1), w → 0,
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where C1
i = −2iCi/C0 �= 0. Continuing the division-derivation procedure, after k derivations

and divisions by a non-zero function for w > 0, we find C∞ functions Δ̄k,Φk
1 , . . . ,Φk

l−k and
non-zero constants Ck

1 , . . . ,Ck
l−k such that

Δ̄k(w,a) =
l−k∑
i=1

a2(k+i)−1Φ
k
i (w,a), w → 0,

with ∀1 � i � l − k,

Φk
i (w,a) = Ck

i w2i−1 + o
(
w2i−1), w → 0,

where Ck
i > 0 is a non-zero constant. As a consequence, since a0

2k+1 �= 0,

Δ̄k
(
w,a0)= a0

2k+1C
k
1

(
1 + o(1)

)
, w → 0.

Then by continuity, there exist a constant 0 < W1 < W0 and a neighbourhood W0 ⊂ W of a0 in
R

2l−1 such that, ∀a ∈W0, the map Δ̄(·, a) has at most k zeroes w on [0,W1[; or,

Cycl
(
X̄(2l)

a ,
(
Γ,a0))� k + 1. �

Corollary 11. Consider X
(2l)
a as in (6), and let a0 be a value for which X̄

(2l)

a0 has a (non-hyper-

bolic) 2-saddle cycle Γ as defined in Section 4. Furthermore, suppose that X
(2l)

a0 does not repre-
sent a center, then

Cycl
(
X̄(2l)

a ,
(
Γ,a0))� l.

Proof. By Proposition 6, there is at least one a0
2k+1 �= 0; take 0 � k � l − 1 with

a0
2j−1 = 0, ∀j � k, and a0

2k+1 �= 0.

Now the corollary follows immediately from Theorem 10. �
Theorem 12. Consider X

(2l)
a as in (6), and let a0 be a value for which X̄

(2l)

a0 has a (non-

hyperbolic) 2-saddle cycle Γ as defined in Section 4. Suppose that X
(2l)

a0 represents a center,
then

Cycl
(
X̄(2l)

a ,
(
Γ,a0))� l. (34)

Proof. By Corollary 8, there exist C∞ functions Φi : [0,W0[×W → R and non-zero constants
Ci > 0,1 � i � l, such that ∀(w,a) ∈ [0,W0[×W ,

Δ̄(w,a) =
l∑

a2i−1Φi(w,a),
i=1
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with ∀1 � i � k,∀(w,a) ∈ [0,W0[×W ,

Φi(w,a) = −Ciw
2i−2 + o

(
w2i−2), w → 0.

By Proposition 6, we know that a0
2i−1 = 0,∀1 � i � l; parameter values a for which a2j−1 = 0,

∀1 � j � l, correspond to a vector field X̄
(2l)
a of center type, and hence, it has no limit cycles

near Γ ; let us denote the set of these parameter values by C:

C = {
a ∈ R

2l−1: a2j−1 = 0, ∀1 � j � l
}
.

The set W is a neighbourhood of a0 in R
2l−1; hence there exists ρ0 > 0 with

W0 =
{

a ∈ R
2l−1:

∣∣a2j − a0
2j

∣∣� ρ0, ∀1 � j � l − 1, and
l∑

j=1

a2
2j−1 � ρ2

0

}
,

such that W0⊂ W . For all parameter values a ∈W0 \ C, we can write

a2j−1 = ρā2j−1, ∀1 � j � l, and
l∑

j=1

ā2
2j−1 = 1, (35)

in a unique way, for 0 < ρ < ρ0. Furthermore, on [0,W1[×(W0 \ C), we can express the map Δ̄

in terms of (ρ, ā) as follows:

Δ̄
(
w,χ(ρ, ā)

)= ρ

l∑
j=1

ā2i−1Φ̄i

(
w,χ(ρ, ā)

)≡ ρ · Ψ (w, (ρ, ā)
)
,

where a = χ(ρ, ā) is defined by (35) and a2j = ā2j ,∀1 � j � l − 1. As a consequence, for
a ∈ W0 \ C, zeroes of Δ̄(·, a) correspond to isolated zeroes of the map Ψ (·, (ρ, ā)), where
a = χ(ρ, ā).

For all b0 = (ā0
1, . . . , ā0

2l−1) ∈ Sl−1, we can take k = k(b0) � l − 1 such that ā0
2j−1 = 0, 1 �

j � k, ā0
2k+1 �= 0; as a consequence, we find, with a straightforward derivation-division argument,

a neighbourhood Wb0 of b0 in S
l−1 and a constant 0 < Wb0 < W1 such that the map Ψ (·, (ρ, ā))

has at most k zeroes in [0,Wb0 [, for all (ρ, ā) with χ(ρ, ā) ∈W0 and (ā1, . . . , ā2l−1) ∈ Wb0 . By
compactness of the sphere S

l−1, we can now take a constant 0 < W < W1, independent of b0,
such that Δ̄(·, a) has at most l − 1 zeroes in [0,W [,∀a ∈ W0. As a consequence, we obtain the
proposed cyclicity result (34). �
9. Proof of Proposition 4

In this section, we present the technical calculations necessary to prove Proposition 4, express-
ing the first 4l − 1 higher order derivatives of the transition map R1. Recall that R1 is introduced
in (19); it describes the transition of the flow of X̄

(2l)
a from σ 1− to σ 1+ along the unbroken connec-

tion Γ1, and is expressed in terms of the normalizing parameter w > 0.
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The normal form Xnorm
(α(a),2l) is only valid in a neighbourhood of s+. By a symmetry argument

on X̂
(2l)
a , this normal form can also be used in a neighbourhood of s−. Not knowing ϕ, it is

not possible to calculate the transition R1, defined above. However, it reveals to be possible to
calculate the derivatives of R1 at 0. This relies on calculating the transition map along Γ1 in
terms of the coordinates (u, s), when the transverse sections with respect to Γ1 near s− and s+
are chosen parallel to and symmetric with respect to the s-axis.

Let 0 < u0, s0 < 1 be fixed and (u0, s0) sufficiently close to s+ such that Πu0 ≡ {(u, s): u0 <

u < 1, |s| < s0} is contained in U . Let

Π±
u ≡ {

(±u, s): 0 � s < s0
}

and consider the transition from Π−
u to Π+

u , defined by the flow of X̂
(2l)
a :

Π−
u → Π+

u : (−u, s) 	→ (
u,Ha

u (s)
)
. (36)

Put σ = σ 1+ ∪ σ 1−; we choose the w-coordinate to define a regular parameter on σ . Put πu,a =
ϕa(Π+

u ), and consider the map

Ψu = Ψ a
u :σ → R

2 (37)

defined by the flow of Xnorm
(α(a),2l) with a choice of time such that σ is mapped onto πu,a . Let the

inverse map of ϕa be denoted by ψa and Va≡ ϕa(U) ⊂ (R2, (0,0)):

ψ = ψa = (ψ1,ψ2) ≡ (
ϕa
)−1 :Va → R

2,

then we can write, for (1,w) ∈ σ ,

ψ
(
Ψ a

u (w)
)= (

u,ψ2
(
Ψ a

u (w)
)) ∈ Π+

u . (38)

By construction, the relation between Ra
1 and Ha

u is schematically shown in the following com-
mutative diagram:

σ 1−
Ra

1 ◦(−Id)

Ψ a
u

σ 1+
Ψ a

u
π+

u,a

ϕa

π−
u,a

ψa
2

Πu ∩ {s < 0}
Ha

u ◦(−Id)
Πu ∩ {s > 0} (39)

Equivalently, we can write, using the normalizing parameter w that corresponds to the point

(1,w) ∈ σ 1− (hence, w < 0):

Ψ a
u

(
Ra

1 (−w)
)= ϕa

(
u,Ha

u

(−ψ2
(
Ψ a

u (w)
)))

. (40)

In order to derive an expression for the derivatives of R1 with respect to w, at w = 0, in function
of the parameter a, we first derive such an expression for the derivatives of Ha

u with respect to s

at s = 0; next, we use the relation in (40) to obtain the required derivatives of R1 by taking the
limit for u ↑ 1.
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In a first step, to keep the calculations more transparent, we will use the fact that there exists a
C∞ family of transformations that brings X̂

(2l)
a , on a neighbourhood of s+, into an intermediate

normal form Xint.norm
(a,2l) :

Xint.norm
(a,2l) ↔

{
V̇ = −h̄(S)V,

Ṡ = ḡ(S)S4l−1,
(41)

where h̄, ḡ are C∞ functions. Again, by symmetry arguments, this normal form can also be
used in the neighbourhood of s−. We denote the transition map R1, when it is expressed in the
intermediate normalizing coordinate S > 0, by L1. Then, the map L1 satisfies a similar scheme
as R1. In fact, if we denote the conjugation that transforms X̂

(2l)
a into Xint.norm

(a,2l) , again by ϕ, and

if we introduce the transition Ψu, as defined in (37), in the coordinates (V ,S), then L1 satisfies
the scheme (39) where R1 is replaced by L1. We will rely on this scheme for L1, in order to
calculate the derivatives of L1 using the corresponding derivatives for Hu. In a second step, we
will calculate the derivatives of R1, using the derivatives of L1 (Section 9.4).

9.1. Derivatives of the transition map Hu

Lemma 13. Let u0 < u1 < 1 be arbitrary but fixed. Consider the map Hu1 , as introduced above

in (36), that describes the transition of the flow of X̄
(2l)
a from Π−

u1
to Π+

u1
along the unbroken

connection Γ1 ≡ {s = 0} in terms of the parameter s. Then, the map Hu1 is Cω in (u1, s, a).
Furthermore, we have

Ha
u1

(0) = 0,
∂Ha

u1

∂s
(0) = 1, and

∂kHa
u1

∂sk
(0) = 0, ∀2 � k � 4l − 1,

or equivalently,

Ha
u1

(s) = s + O
(
s4l
)
, s → 0.

Proof. System (8) can be reduced to the scalar differential equation

ds

du
= (2l)−1us4l−1

1 − u2l − s2lg(u
s
, a) + (2l)−1u2s4l−2

.

This differential equation can be written as

ds

du
= s4l−1 (2l)−1u

1 − u2l
·
(

1 − s2lg(u
s
, a) − (2l)−1u2s4l−2

1 − u2l

)−1

. (42)

Denote by s(−u1, s1, ·, a) the solution of (42) with s(−u1, s1,−u1, a) = s1; then the transition
map Ha

u1
is defined by

Ha
u (s1) = s(−u1, s1, u1, a).
1
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Remark that the map T , defined by T (s1, a,u1) = Ha
u1

(s1) is analytic at (s1, a,u1) ∈ ]−1,1[ ×
R

2l−1 × ]−1,1[, since s is the global solution of (42), being an analytic differential equation.
Furthermore, we can write an expansion of s up to any order k in terms of s1:

s(−u1, s1, u, a) = h1(u, a)s1 + h2(u, a)s2
1 + · · · + hk(u, a)sk

1 + o
(
sk

1

)
, (43)

for s1 → 0. Clearly, one has that

∂kHa
u1

∂sk
(s) = k!hk(u1, a), ∀k � 1. (44)

By substitution of expression (43) for the global solution s in (42), it follows that the functions
hj (·, a), 1 � j � 4l − 2, satisfy the following differential equations:

{
h′

j (u, a) = 0,

hj (−u1, a) = δ1j ,

where δ1j denotes the Kronecker delta (δ1j = 1 if j = 1 and δ1j = 0 if j �= 1). As a consequence,
hj (u, a) ≡ δ1j , for 1 � j � 4l − 2. Next,

⎧⎨
⎩h′

4l−1(u, a) = (2l)−1u

1 − u2l
,

h4l−1(−u1, a) = 0

and thus

h4l−1(u1, a) =
u1∫

−u1

(2l)−1u

1 − u2l
du = 0.

The required result now follows from (44). �
Remark 14. In case that a1 = a3 = · · · = a2l−1 = 0, system (8) is time-reversible with respect to
(u, s, t) 	→ (−u, s,−t), and hence Ha

u1
(s) ≡ s.

9.2. Derivatives of the transition map L1

Consider the map Hu1 , as introduced above in (36), that describes the transition of the flow of

X̄
(2l)
a from Π−

u1
to Π+

u1
along the unbroken connection Γ1 ≡ {s = 0} in terms of the parameter s.

By the chain rule and implicit differentiation with respect to S, we derive the following vectorial
equation from (40), for (1,−S) ∈ σ 1−:

D(Ψu1)L1(−S)

(−L′
1(−S)

)= Dϕ(u1,Hu1 (−s))

(
0,−H ′

u1
(−s) · D(ψ2)Ψu1 (S)

(
D(Ψu1)S(1)

))
,

where s = ψ2(Ψu1(S)). By linearity, the preceding equation can be rewritten as
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L′
1(−S) · D(Ψu1)L1(−S)(1) = H ′

u1
(−s) · Dϕ(u1,Hu1 (−s))

(
0,D(ψ2)Ψu1 (S)

(
D(Ψu1)S(1)

))
,

(45)

and we also have

ϕ(u1, s) = Ψu1(S). (46)

Proof. The vector D(Ψu1)S(1) (as well as D(Ψu1)L1(−S)(1)), appearing in (45), is a tangent
vector of the regular curve πu1 at the point Ψu1(S) (and Ψu1(L1(−S)) respectively). Indeed, the
vector (0,1) is tangent to the curve σ 1 at the point (1,−S); since the restriction Ψu1 |σ 1→πu1

is
a diffeomorphism, expressed by the S-coordinate, D(Ψu1)S sends 1 to a non-zero tangent vector
on πu1 .

On the other hand, (0,1) is a tangent vector of Πu1 at the point (u1, s) that, by construction,
is sent to the non-zero tangent vector Dϕ(u1,s)(0,1) of πu1 = ϕ(Πu1) at the point Ψu1(S).

Hence, for each S, both non-zero vectors D(Ψu1)S(1) and Dϕ(u1,s)(0,1) are parallel, and
hence, can be related by a non-zero factor Au1(S) = Aa

u1
(S), defined by

D
(
Ψ a

u1

)
S
(1) = Aa

u1
(S)Dϕa

(u1,s)
(0,1). (47)

By C∞ smoothness of the maps Ψ a
u1

and ϕa , this equation defines a C∞ function Au1 in (S, a)

for S on an interval around S = 0 and a ∈ W . From now on, we will not explicitly write the
dependence on a anymore, since we will only use the fact that Aa

u1
(0) is a non-zero constant, for

any a ∈ W .
Now the vectorial equation (45) can be rewritten as

L′
1(−S) · Au1

(
L1(−S)

)
Dϕ(u1,ψ2(Ψu1 (L1(−S))))(0,1)

= H ′
u1

(−s) · Au1(S) · Dϕ(u1,Hu1 (−s))

(
0,D(ψ2)Ψu1 (S)

(
Dϕ(u1,s)(0,1)

))
. (48)

By the chain rule, the following identities hold:

Id = D(ψ ◦ ϕ)(u1,s)

= Dψϕ(u1,s) ◦ Dϕ(u1,s).

As a consequence, by (46),

DψΨu1 (S) = (Dϕ(u1,s))
−1

and

D(ψ2)Ψu1 (S) ◦ Dϕ(u1,s)(0,1) = 1. (49)

Combining (49) and (47), we can also define the function Au1 explicitly as

Au1(S) = D(ψ2 ◦ Ψu1)S(1). (50)

Then, by using (49), the vectorial equation (48) can now be rewritten as
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L′
1(−S) · Au1

(
L1(−S)

) · Dϕ(u1,ψ2(Ψu1 (L1(−S))))(0,1)

= Au1(S) · H ′
u1

(−s) · Dϕ(u1,Hu1 (−s))(0,1),

and by (40),

L′
1(−S) · Au1

(
L1(−S)

) · Dϕ(u1,Hu1 (−s))(0,1) = Au1(S) · H ′
u1

(−s) · Dϕ(u1,Hu1 (−s))(0,1).

As we already noticed, the vector Dϕ(u1,Hu1 (−s))(0,1) is non-zero; therefore, the preceding vec-
torial equation can be reduced to a scalar equation, relating the first derivative of L1 with respect
to S and the first derivative of Hu1 with respect to s:

L′
1(−S) · Au1

(
L1(−S)

)= Au1(S) · H ′
u1

(−ψ2
(
Ψu1(S)

))
. � (51)

Lemma 15. Consider the map L1, that describes the transition of the flow of X̄
(2l)
a from σ 1− to

σ 1+ along the unbroken connection Γ1, using the normalizing parameter S. Then,

L′
1(0) = 1.

Proof. By substitution of S = 0 in (51) and division by the non-zero factor Au1(0), we find
L′

1(0) = H ′
u1

(0), since L1(0) = 0. The claim of the lemma now follows from Lemma 13, with

H ′
u1

(0) = ∂Ha
u1

∂s
(0) = 1. �

Lemma 16. Consider the map Hu1 , as introduced above in (36), that describes the transition of

the flow of X̄
(2l)
a from Π−

u1
to Π+

u1
along the unbroken connection Γ1 ≡ {s = 0} in terms of the

parameter s. Consider the map L1, that describes the transition of the flow of X̄
(2l)
a from σ 1− to

σ 1+ along the unbroken connection Γ1, using the normalizing parameter S. If k � 2 is such that

∂nL1

∂Sn
(0) = ∂nHu1

∂sn
(0), ∀1 � n � k − 1,

then

∂kL1

∂Sk
(0) = (

Au1(0)
)k−1 ∂kHu1

∂sk
(0) − (

(−1)k + 1
)A(k−1)

u1 (0)

Au1(0)
,

where Au1(0) :W ⊂ R
2l−1 → R \ {0} is the function of a as described in (47) and (50).

Proof. Using (50), the claim is clear for k = 2, by deriving (51) with respect to s. Furthermore,
by induction on k, using (50), one proves that, after k − 1 derivations with respect to S, Eq. (51)
reduces to

(−1)k−1L
(k)
1 (−S) · Au1

(
L1(−S)

)+ Gk(u1, S) + (−1)k−1(L′
1(−S)

)k · A(k−1)
u1

(
L1(−S)

)
= (−1)k−1(Au1(S)

)k · H(k)
u1

(−ψ2
(
Ψu1(S)

))+ Fk(u1, S)

+ H ′
u

(−ψ2
(
Ψu1(S)

)) · (Au1)
(k−1)(S),
1
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which can also be written as

(−1)k−1L
(k)
1 (−S) · Au1

(
L1(−S)

)+ (−1)k−1(L′
1(−S)

)k · A(k−1)
u1

(
L1(−S)

)
= (−1)k−1(Au1(S)

)k · H(k)
u1

(−ψ2
(
Ψu1(S)

))+ H ′
u1

(−ψ2
(
Ψu1(S)

)) · (Au1)
(k−1)(S)

+ Gk(u1, S) + Fk(u1, S),

where the functions Fk and Gk are C∞. Moreover, for k � 3, Fk is the sum of C∞ functions, of
which each function is divisible by

H(n)
u1

(−ψ2
(
Ψu1(S)

))
for a certain 2 � n � k − 1,

and Gk is the sum of C∞ functions of which each function is divisible by

L
(n)
1 (−S) for a certain 2 � n � k − 1.

As a consequence, the result now follows by substitution of S = 0 and other algebraic manipula-
tions. �

Combining Lemmas 13 and 16, we obtain the following corollary.

Corollary 17. Consider the map L1, as introduced in (19), that describes the transition of the
flow of X̄

(2l)
a from σ 1− to σ 1+ along the unbroken connection Γ1, and that is expressed in terms of

the normalizing parameter S. If 1 � k � 2l − 1 is such that

∂nL1

∂Sn
(0) = 0, ∀2 � n � 2k − 1,

then

∂2kL1

∂S2k
(0) = −2 lim

u1↑1

A
(2k−1)
u1 (0)

Au1(0)
and

∂2k+1L1

∂S2k+1
(0) = 0,

where Au1(0) :W ⊂ R
2l−1 → R \ {0} is the function of a as described in (47) and (50).

Proof. If 1 � k � 2l − 1 such that

∂nL1

∂Sn
(0) = 0, ∀2 � n � 2k − 1,

it follows from Lemma 16, that

∂2kL1

∂S2k
(0) = −2

A
(2k−1)
u1 (0)

Au1(0)
and

∂2k+1L1

∂S2k+1
(0) = 0.

Since ∂2kL1
∂S2k (0) is independent of u1, and the equation holds for all u1 ↑ 1, the assertion of the

corollary follows by taking the limit. �
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As we are interested in the relation between the first 2l − 1 even order derivatives of L1
with respect to S at S = 0 and the coefficients a2k−1,1 � k � l, we need to calculate the odd
derivatives A

(2k−1)
u1 (0),1 � k � 2l − 1. Using the identity (50), we can derive expressions for

A
(2k−1)
u1 (0) in terms of ∂2kϕ2(u1,0)

∂s2k ,0 � k � l − 1, where ϕ2 is defined by ϕ = (ϕ1, ϕ2). To start,
we take u0 < u1 < 1 arbitrary close to 1 but fixed. Finally, we take the limit for u1 ↑ 1, and
calculate the relevant derivatives of ϕ2 with respect to s in (1,0) in terms of the coefficients
a2k−1,0 � k � l.

Lemma 18. For the notations introduced above, we have

Au1(0) =
(

∂ϕ2

∂s
(u1,0)

)−1

. (52)

Furthermore, if 1 � k � 2l − 2 is such that

∂2iϕ2

∂s2i
(u1,0) = 0, ∀1 � i � k,

then ⎧⎪⎨
⎪⎩

A(2i+1)
u1

(0) = 0, ∀0 � i � k − 1,

A(2k+1)
u1

(0) = −
(

∂ϕ2

∂s
(u1,0)

)−2k−3

· ∂2k+2ϕ2

∂s2k+2
(u1,0).

(53)

Proof. By (50), it follows that the function Au1 is the derivative of ψ2 ◦Ψu1 , where ψ2 = (ϕ−1)2.
If

s = ψ2
(
Ψu1(S)

)
and ϕ2(u1, s) ≡ sϕ̄2(s), (54)

for a certain C∞ mapping ϕ̄2, then we have on the one hand,

Ψu1(S) = ϕ(u1, s) = (
ϕ1(u1, s), sϕ̄2(s)

)
.

On the other hand, Ψu1 describes the transition from (1, S) to Ψu1(S), and hence it satisfies the
integral equation

ϕ1(u1,s)∫
1

dV

V
= −

sϕ̄2(s)∫
S

h̄(S′)
ḡ(S′)

S′−4l+1 dS′. (55)

By Taylor’s theorem, there exist a C∞ function Ḡ and real constants ej ,0 � j � 4l − 2, such
that

−h̄(S)/ḡ(S) =
4l−2∑

ejS
j + S4l−1Ḡ(S),
j=0
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where e0 = −4l2; furthermore, there exists a C∞ function F̄ such that

sϕ̄2(s) = ψ2
(
Ψu1(S)

)
ϕ̄2
(
ψ2
(
Ψu1(S)

))= SF̄ (S). (56)

Then, Eq. (55) can be rewritten as

ϕ1
(
u1,ψ2

(
Ψu1(S)

))= exp

[
S−4l+2

4l−3∑
j=0

ej

j − 4l + 2
Sj
((

F̄ (S)
)j−4l+2 − 1

)]

· F̄ (S)e4l−2 · exp

[ SF̄ (S)∫
S

Ḡ(S′)dS′
]
.

Then, since the left-hand side, F̄ (S)e4l−2 , and the second exponential term in the right-hand side
are bounded and bounded away from zero, it is necessary that

4l−3∑
j=0

ej

j − 4l + 2
Sj
((

F̄ (S)
)j−4l+2 − 1

)= O
(
S4l−2), S → 0.

From this equation, we find by recurrence that

F̄ (S) = 1 + O
(
S4l−2), S → 0.

Then, using (56), we find the following asymptotics:

(ψ2 ◦ Ψu1)(S) · ϕ̄2
(
(ψ2 ◦ Ψu1)(S)

)= S + O
(
S4l−1), S → 0. (57)

Recall that ψ2 ◦ Ψu1 is the antiderivative of Au1 ; therefore, (57) relates the derivatives of Au1 at
S = 0 to the ones of ϕ2. If we write

(ψ2 ◦ Ψu1)(S) = S
(
α0 + α1S + · · · + α4l−2S

4l−2 + O
(
S4l−1)), S → 0,

then for i � 1,

αi = A
(i)
u1 (0)

(i + 1)! .

Write

ϕ̄2(s) = β0 + β1s + · · · + β4l−2s
4l−2 + O

(
s4l−1), s → 0.

Then, it follows, by taking S = 0 in (57) that α0β0 = 1; from this equation the identity in (52)
follows. By comparing the coefficients corresponding to first order terms in S in (57), we find
α1 = −α3

0β1. We continue by induction on 1 � k � 2l − 2, assuming that β1 = β3 = · · · =
β2k−1 = 0; by the induction hypothesis, it then follows that α1 = α3 = · · · = α2k−1 = 0. Hence,
the relation in (57) is reduced to
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k∑
j=0

β2j S
2j
(
α0 + α2S

2 + · · · + α2kS
2k + α2k+1S

2k+1 + · · ·)2j+1

+ β2k+1S
2k+1(α0 + O(S)

)2k+2 = 1 + O
(
S4l−1), S → 0.

By comparing coefficients corresponding to S2k+1, we find the relation

β0α2k+1 + β2k+1α
2k+2
0 = 0.

Now the assertion in (53) follows since by (54), we have

(2k + 2)!β2k+1 = ∂2k+2

∂s2k+2
ϕ2(u1,0). �

Now, with the help of Lemma 18, Corollary 17 can be rewritten as

Corollary 19. Consider the map L1, that describes the transition of the flow of X̄
(2l)
a from σ 1−

to σ 1+ along the unbroken connection Γ1, using the normalizing parameter S. If 1 � k � 2l − 1
such that

∂2iϕ2

∂s2i
(1,0) = 0, ∀1 � i � k − 1, (58)

then ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂nL1

∂Sn
(0) = 0, ∀2 � n � 2k − 1,

∂2kL1

∂S2k
(0) = 2

(
∂ϕ2

∂s
(1,0)

)−2k
∂2kϕ2

∂s2k
(1,0),

∂2k+1L1

∂S2k+1
(0) = 0.

(59)

9.3. Derivatives of ϕ2 and conclusions concerning L1

By Corollary 19, the asymptotic expansion of L1 with respect to s = 0, can be expressed in
terms of the even order derivatives of ϕ2 with respect to s at (1,0). We now use calculations on
the center manifold at (1,0) to express these derivatives of ϕ2.

There exists a unique center manifold at the semi-hyperbolic saddle point s+ that can be
written as the graph

{(
U(s, a), s

)
: s � 0

}
,

for a C∞ function U , where the C∞ function U satisfies the equation

U ′(s, a)U(s, a)s4l−1 = s4l−2(U(s, a)
)2 + 2l − 2l

(
U(s, a)

)2l − 2ls2lg

(
U(s, a)

, a

)
, (60)
s
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with U ′(s, a) = ∂U
∂s

(s, a) and U(0, a) = 1. Let (v, s) denote the C∞ coordinates in which the
center manifold is straightened and positioned at the origin:

(v, s) = (−u + U(s, a), s
)
, (61)

and let φ be the transformation, that puts the vector field X̂
(2l)
a , written in (v, s)-coordinates, into

the intermediate normal form Xint.norm
(a,2l) :

φ(v, s) = (
φ1(v, s),φ2(v, s)

)= ϕ
(−v + U(s, a), s

)
. (62)

Since φ respects the local invariant manifolds at s+ ({v = 0} corresponds to the center manifold
and {s = 0} corresponds to the stable manifold), we have

φ1(0, ·) ≡ 0 and φ2(·,0) ≡ 0.

In particular, with the help of next lemma, we prove that the derivatives of φ2 with respect to s

at (0,0) coincide with the ones of ϕ2 at (1,0).

Lemma 20. In the notations introduced above, we have, ∀j ∈ N, ∀0 � i � 4l − 2,

∂i+j+1φ2

∂vj+1∂si
(0,0) = 0.

Proof. By (60), the vector field (8) in the coordinates (v, s), defined in (61) has the following
asymptotics for (v, s) → 0:

{
v′ = −2lv

(
1 + O

(∥∥(v, s)
∥∥)),

s′ = (2l)−1(U(s) − v
)
s4l−1.

(63)

By definition of φ2, the normal form coordinate S is given by S = φ2(v, s). Furthermore,
from (62), it follows that φ2(v,0) ≡ 0; hence,

∂kφ2(v,0)

∂vk
≡ 0, ∀k ∈ N. (64)

Hence, from (41) and (63), we have

d

dt
φ2(v, s) = (

φ2(v, s)
)4l−1 · ḡ(φ2(v, s)

)= O
(
s4l−1), s → 0. (65)

By Eqs. (63), it follows that the left-hand side of (65) expands asymptotically of order O(s4l−1),
for s → 0, as

d

dt
φ2(v, s) = ∂

∂v
φ2(v, s) · v′ + ∂

∂s
φ2(v, s) · s′

= −2l
∂

φ2(v, s)v
(
1 + O

(∥∥(v, s)
∥∥))+ O

(
s4l−1),
∂v
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since ∂
∂s

φ2(v, s) is bounded in a neighbourhood of (v, s) = (0,0). As a consequence, by compar-
ing the asymptotic expansions of right- and left-hand sides in (65), we find on a neighbourhood
of (v, s) = (0,0):

v
∂

∂v
φ2(v, s) = O

(
s4l−1), s → 0.

In particular, it follows that, ∀0 � i � 4l − 2,∀j � 1,

∂i+j+1φ2

∂vj+1∂si
(0,0) ≡ 0. �

Lemma 21. In the notations introduced above, we have:

1. ∂φ2
∂s

(0,0) = 1.

2. For 1 � k � 4l − 2: ∂kφ2
∂sk (0,0) = 0.

Proof. Restricting to the center manifold, i.e., for v = 0, the equation s′ in (8) is reduced to

s′ = (2l)−1U(s, a)s4l−1,

and the governing equation (13) for the coordinate S = φ2(0, s), is then reduced to

∂φ2

∂s
(0, s)(2l)−1U(s, a)s4l−1 = (

φ2(0, s)
)4l−1

ḡ
(
φ2(0, s)

)
, s → 0, (66)

where

ḡ
(
φ2(0, s)

)= (2l)−1U
(
φ2(0, s), a

)+ O
(
s4l−1), s → 0.

For certain real-valued C∞ functions βi and γi,1 � i � 4l − 2, depending on the parameter a,
we can write

φ2(0, s) = s
(
β1 + β2s + · · · + β4l−2s

4l−3 + O
(
s4l−2)), s → 0, (67)

and

U(s, a) = 1 + γ1s + γ2s
2 + γ3s

3 + · · · + γ4l−2s
4l−2 + O

(
s4l−1), s → 0. (68)

Then, by substitution of the asymptotics (67) and (68) in Eq. (66), this equation has, after division
by s4l−1, the following asymptotics for s → 0:

[
β1 + 2β2s + · · · + (4l − 2)β4l−2s

4l−3 + O
(
s4l−2)][1 + γ1s + γ2s

2 + · · · + O
(
s4l−1)]

= [
β1 + β2s + · · · + β4l−2s

4l−3 + O
(
s4l−2)]4l−1

· [1 + γ1φ2(0, s) + γ2
(
φ2(0, s)

)2 + · · · + O
(
s4l−1)], s → 0.
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Therefore, β4l−2
1 = 1; since β1 = ∂φ2

∂s
(0,0) = ∂ϕ2

∂s
(1,0) > 0, it follows that β1 = 1. Taking this

into account, we can identify coefficients in the left- and right-hand sides corresponding to equal
powers of s, to find inductively on 1 � k � 4l − 2:

kβk + γk−1 = (4l − 1)βk + γk−1.

As a consequence,

∂kφ2

∂sk
(0,0) = k!βk = 0. �

Lemma 22. In the notations introduced above, we have, ∀0 � j � 4l − 2,

∂jϕ2

∂sj
(1,0) = ∂jφ2

∂sj
(0,0). (69)

Furthermore, ∀k ∈ N, ∀0 � j � 4l − 2,

∂k+j ϕ2

∂uk∂sj
(1,0) = 0. (70)

Proof. Identity (69) follows from Lemma 20, and the following observation, that is based on the
chain rule:

∂ϕ2

∂s
(u, s) = ∂φ2

∂s

(−u + U(s, a), s
)+ ∂φ2

∂v

(−u + U(s, a), s
) · U ′(s, a),

and, by induction on k ∈ N, one finds C∞ functions fkri,1 � r � k,1 � i � r , such that

∂kϕ2

∂sk
(u, s) = ∂kφ2

∂sk

(−u + U(s, a), s
)+

k∑
r=1

r∑
i=1

∂rφ2

∂vi∂sr−i

(−u + U(s, a), s
) · fkri(s, a).

In an analogous way, one finds identity (70). �
By Lemmas 21 and 22, we can write down the following asymptotics of ϕ2.

Corollary 23. In the notations introduced above, we have

ϕ2(u, s) = s + O
(
s4l−1), s → 0. (71)

Combining Corollaries 19 and 23, we have proven the following asymptotic expansion for L1.

Proposition 24. Consider the map L1, as introduced in (19), that describes the transition of the
flow of X̄

(2l)
a from σ 1− to σ 1+ along the unbroken connection Γ1, and that is expressed in terms of

the normalizing parameter S. Then,

L1(S) = S + O
(
S4l
)
, S → 0.
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9.4. Derivatives of R1

There exists a C∞ family of coordinate transformations (Id, T a) : (V ,S) 	→ (z,w) =
(V ,T a(S)), that puts the family (h̄(S))−1 · Xint.norm

(a,2l) into the normal form Xnorm
(α(a),2l), that was

introduced in Section 5 (cf. [1]). Here, we will denote the C∞ family of transformations that
brings (h · X̂

(2l)
a )a into (Xnorm

(α(a),2l))a by ϕ̃a instead of ϕa , to avoid confusion with the notations

used throughout this section (i.e. Section 9). The relation between the C∞ coordinate transfor-
mations ϕ̃a and ϕa and the non-zero factors h and h̄ is as follows:

ϕ̃a(u, s) = (
ϕa

1 (u, s), T a
(
ϕa

2 (u, s)
))

,

h(u, s) = (
h̄
(
ϕ2(u, s)

))−1
.

Let Σ1± and Σ2± be the sections near s±, introduced in Section 5, that are transverse to Γ1 and Γ2,
respectively. Then, we have in the intermediate normalizing coordinates (V ,S) = ϕ(u, s):

Σ1+ = ϕ−1({V = 1}) and Σ1− = {
(u, s): ϕ1(−u,−s) = 1, s � 0

}
.

Recall that L1 is the transition map of X̂
(2l)
a along Γ1 from sections Σ1− to Σ1+, expressed in

terms of S. In a natural way, we define the transverse sections

σ̄ 2+ = ϕ
(
Σ2+

)
and σ̄ 2− = {

(V ,S): −ϕ−1(V ,S) ∈ Σ2−
}
.

Now we denote the Dulac maps by D1 and D2, that describe the corner passages for the flow of
Xint.norm

(a,2l) near s+ and s−, respectively:

D1 : {V = 1, S > 0} → σ̄ 2+ and D2 ◦ (−Id) : {V = 1, S < 0} → σ̄ 2−,

and the regular transition along Γ2 by L2 : σ̄ 2− → σ̄ 2+, choosing regular coordinates on σ̄ 2± such
that

D1|{S>0} = D ◦ T |{S>0} and T ◦ (D2 ◦ −Id)|{S<0} = (D ◦ −Id) ◦ T |{S<0},

where T = T a denotes the transformation w = T a(S). Notice that D1 and D2 are likewise the
corner passages for the flow of (h̄(S))−1 · Xint.norm

(a,2l) near s+ and s−. Furthermore,

{
D1 ◦ (L1 ◦ −Id)|{S<0} = D ◦ (R1 ◦ −Id) ◦ T |{S<0},
T ◦ L2 ◦ (D2 ◦ −Id)|{S<0} = R2 ◦ (D ◦ −Id) ◦ T |{S<0}. (72)

From the first equation in (72), we can write the following relation between L1 and R1:

T ◦ (L1 ◦ −Id) = (R1 ◦ −Id) ◦ T . (73)

Using relation (73) and Proposition 24, we can relate the first 4l − 1 higher order derivatives
of R1 with respect to w at w = 0 to the corresponding ones of T with respect to S at S = 0.
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Proposition 25. Consider the map R1, as introduced in (19), that describes the transition of the
flow of X̄

(2l)
a from σ 1− to σ 1+ along the unbroken connection Γ1, and that is expressed in terms of

the normalizing parameter w. Let (Id, T a) be the C∞ family of transformations that transforms
the vector fields ((h̄(S))−1 ·Xint.norm

(a,2l) ) into the vector fields (Xnorm
(α(a),2l)). If we write T = T a , then:

1. R1(0) = 0 and R′
1(0) = 1.

2. R′′
1 (0) = 2T ′′(0)

(T ′(0))2 and R
(3)
1 (0) = −3T ′′(0)T ′(0)R′′

1 (0).

3. If 2 � k � 2l − 1 such that

R
(j)

1 (0) = 0, ∀2 � j � 2k − 1,

then

R
(2k)
1 (0) = 2

T (2k)(0)

(T ′(0))2k
and R

(2k+1)
1 (0) = 0.

Proposition 26. Let (Id, T a) be the C∞ family of transformations that transforms the vector
fields ((h̄(S))−1 · Xint.norm

(a,2l) ) into the vector fields (Xnorm
(α(a),2l)), and write T a = T . Let ḡ, h̄ be the

functions that occur in the intermediate normal form Xint.norm
(a,2l) in (41), and write

4l2ḡ(S)/h̄(S) = 1 +
4l−1∑
i=1

giS
i + O

(
S4l
)
, S → 0. (74)

Then,

T (S) = 2l−1

√
1

2l
S

(
1 + g1

4l − 3
S + O

(
S2)), S → 0.

Furthermore, if g2j−1 = 0, ∀1 � j � k, for a certain 1 � k � l − 1, then

⎧⎨
⎩

T (2j)(0) = 0, ∀1 � j � k,
2l−1

√
2l

(2k + 2)!T
(2k+2)(0) = g2k+1

4l − 2k − 3
.

(75)

Proof. The transformation w = T (S) transforms the equation Ṡ = S4l−1G(S) into ẇ =
w4l−1(1 + αw4l−2)−1, where G(S) = ḡ(S)

h̄(S)
. Then, we have for S → 0,

T ′(S)G(S)S4l−1 = (
T (S)

)4l−1(1 + α · (T (S)
)4l−2)−1

, S → 0. (76)

For certain C∞ functions t̃i ,1 � i � 4l − 2, depending on a, we can write

T (S) = t1S

(
1 +

4l−2∑
t̃iS

i

)
+ O

(
S4l
)
, S → 0; (77)
i=1
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notice that ∀2 � i � 4l − 1,

t̃i−1 = T (i)(0)

i!T ′(0)
.

Then, for S = 0, the identity in (76) displays the following relation:

t1 = (2l)−
1

2l−1 . (78)

Using (74) and (77), we can rewrite (76) as follows:

(
1 +

4l−2∑
i=1

(i + 1)t̃iS
i

)(
1 +

4l−3∑
i=1

giS
i

)
+ O

(
S4l−1)

=
(

1 +
4l−2∑
i=1

t̃iS
i

)4l−1(
1 + O

(
S4l−2)), S → 0.

By identifying coefficients according to linear terms in (76), we find

t̃1 = 1

4l − 3
g1. (79)

Proceeding by induction, one finds (75). �
From Proposition 26, the formulas that express the derivatives of R1 in terms of a2k+1,

0 � k � l −1, are obtained, once we have found such formulas for the coefficients g2k+1, defined
in (74). Next lemma, that gives similar expressions for the center manifold representation, will
be useful as will be seen in Proposition 28.

Lemma 27. Let U(s, a) be the center manifold at (1,0), that is defined by (60) with asymptotic
expansion (68) for s → 0. Then:

1. U(0, a) = 1 and ∂U
∂s

(0, a) = − 1
2l

a1.
2. If 1 � k � l − 1 such that a1 = a3 = · · · = a2k−1 = 0, then

⎧⎪⎪⎨
⎪⎪⎩

∂2i+1U

∂s2i+1
(0, a) = 0, ∀0 � i � k − 1,

1

(2k + 1)!
∂2k+1U

∂s2k+1
(0, a) = − 1

2l
· a2k+1.

3. If a1 = a3 = · · · = a2l−1 = 0, then ∂2i+1U

∂s2i+1 (0, a) = 0, ∀i ∈ N.

Proof. Up to terms of order O(s4l−2), the identity in (60) reduces to

1 − (
U(s, a)

)2l − s2lg

(
U(s, a)

, a

)
= O

(
s4l−2), s → 0. (80)
s
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With the notation introduced in (68), we have

⎧⎪⎨
⎪⎩
(
U(s, a)

)2l = 1 + 2lγ1s + O
(
s2), s → 0,

s2lg

(
U(s, a)

s
, a

)
= a1s + O

(
s2), s → 0.

Substituting these asymptotics in (80), we find

∂U

∂s
(0, a) = − 1

2l
a1.

We continue by induction on 1 � k � l − 1, assuming that a2i−1 = γ2i−1 = 0,∀1 � i � k. Then,

s2lg

(
U(s, a)

s
, a

)
=

k∑
i=1

a2i

[
U(s, a)

]2l−2i
s2i

+ a2k+1
[
U(s, a)

]2l−2k−1
s2k+1 + O

(
s2k+2), s → 0, (81)

and, for J ∈ {0,2, . . . ,2k,2k + 1},

(
U(s, a)

)2l−J = 1 +
k∑

i=1

ξ2i,j s
2i + (2l − J )γ2k+1s

2k+1 + O
(
s2k+2), s → 0, (82)

for certain polynomials ξ2i,J in γ2n,1 � n � i, 1 � i � k, J ∈ {0,2, . . . ,2k,2k + 1}. According
to the asymptotics in (80), (81) and (82), the only relevant coefficient corresponds to the one of
s2k+1 in (U(s, a))2l . For k � 2l − 1, the coefficient that corresponds to s2k+1 in (80), vanishes,
and hence

−2lγ2k+1 − a2k+1 = 0.

This proves the induction. �
Proposition 28. Let ḡ, h̄ be the functions that occur in the intermediate normal form (Xint.norm

(a,2l) )

in (41). Write G(S) = ḡ(S)(h̄(S))−1, and let gi , 1 � i � 2l−1, be the coefficients defined in (74).
Then

G(S) = 1

4l2

(
1 − 1

2l
a1S +

2l−1∑
i=2

giS
i + O

(
S2l
))

, S → 0.

Furthermore, if 1 � k � l − 1 with a2j−1 = 0, ∀1 � j � k, then

{
g2j−1 = 0, ∀1 � j � k,

g2k+1 = 2k − 1

2l
a2k+1.
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Proof. The functions ḡ and h̄ satisfy the following asymptotics:

⎧⎪⎨
⎪⎩

ḡ(S) = (2l)−1U(S) + O
(
S4l−1), S → 0,

h̄(S) = 2l
(
U(S)

)2l−1 +
2l−1∑
k=1

(2l − k)ak

(
U(S)

)2l−k−1
Sk + O

(
S4l−1), S → 0.

From the first line, it follows that the asymptotics of ḡ follow immediately from Lemma 27.
From the second line, it follows that h̄(0) = 2l and h̄′(0) = 2l(2l − 1)γ1 + (2l − 1)a1 = 0. This
implies the following lower order asymptotics of h̄ at S = 0:

h̄(S) = 2l + O
(
S2), S → 0.

Furthermore, by induction on 1 � k � l − 1, it follows by use of Lemma 27, that, if a2j−1 = 0,
∀1 � j � k, then

h̄(2k+1)(0)

(2k + 1)! = 2l(2l − 1)γ2k+1 + (2l − 2k − 1)a2k+1

= −(2k)a2k+1.

The statement in the proposition now follows by a straightforward induction on 1 � k �
l − 1. �

Combining Propositions 25, 26 and 28, we find the formulas for the derivatives of R1, as
stated in Proposition 4.
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