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Abstract

We define the characteristic numbers of a holomorphic k-distribution of any dimension on Pn and obtain
relations between these numbers and the characteristic numbers of an invariant subvariety. As an application
we bound the degree of a smooth invariant hypersurface.
© 2012 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The aim of this work is to relate the characteristic numbers of projective k-webs, or more gen-
erally, k-distributions of arbitrary dimension to those of invariant subvarieties. Loosely speaking,
a k-distribution W of dimension p on Pn is locally given by k holomorphic fields of p-planes on
the complement of a Zariski closed set. The most basic invariants attached to it are its characteris-
tic numbers d0, . . . , dp where di is defined as the degree of the tancency locus of the distribution
with a generic Pn−p+i−1 linearly embedded in Pn. Suppose now V ↪→ Pn is a subvariety invari-
ant by W . Our goal is to obtain inequalities involving the characteristic numbers of V and W .
As a corollary we give some bounds for the degree of a smooth invariant hypersurface.

The question of bounding the degree of an algebraic curve which is a solution of a foliation
on P2 in terms of the degree of the foliation was treated by H. Poincaré in [12]. Versions of
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this problem have been considered in a number of recent works, see for example [4,3,2,14,15,5]
placed in chronological order.

In this paper we associate to any k-distribution W a subvariety SW of P(T ∗Pn). First we show
that when we write its cohomology class, the characteristic numbers d0, . . . , dp appear naturally:

[SW ] = dphp + · · · + d1hȟp−1 + d0ȟ
p,

where h and ȟ are the pullbacks of the hyperplane classes on Pn and P̌n respectively. We also
define, as in the case of foliations, the polar classes PW

s of a k-distribution and get theirs degrees
in terms of the characteristic numbers:

deg
(
PW

s

) = ds + ds−1.

Then we consider a subvariety which is invariant by a k-distribution and relate the polar classes
of them obtaining more relations than the known for distributions, see Theorem 3.1. As a con-
sequence we obtain as many bounds for the degree of a smooth invariant hypersurface as the
dimension of the k-distribution, see Corollary 3.1.

2. Characteristic numbers of projective webs

Let Pn be the n-dimensional complex projective space and M = P(T ∗Pn) the projectiviza-
tion of its cotangent bundle. Since M can be identified with the incidence variety of points and
hyperplanes in Pn, one has two natural projections

M = P(T ∗Pn)

π π̌

⊆ Pn × P̌n

Pn P̌n

Let us denote by h = c1(OPn(1)) and ȟ = c1(OP̌n(1)) the hyperplane classes on Pn and P̌n

respectively. We still denote by h and ȟ the respective pullbacks to M by π and π̌ . Note that the
cohomology ring H ∗(M) is, via the pullback map π∗ : H ∗(Pn) → H ∗(M), an algebra over the
ring H ∗(Pn), which is generated by ξ = c1(OM(−1)), the Chern class of the tautological bundle
OM(−1), with the relation

∑n
i=0

(
n+1
i+1

)
hn−iξ i = 0 (see [7, p. 606]).

Observe that hn is the class of a fiber of π and the restriction of OM(−1) to each fiber is the
universal bundle, so that

∫
M

ξn−1hn = (−1)n−1 and
∫
M

ξnhn−1 = (−1)n(n + 1), where the last

equation follows from the previous relation. Then if we write ȟ = ah + bξ it is easy to see that
b = −1 and therefore we get the following description of H ∗(M)

H ∗(M) = Z[h, ȟ]
〈hn+1, hn − hn−1ȟ + · · · + (−1)nȟn〉 .

Clearly we also have the relations ȟn+1 = 0,
∫
M

hnȟn−1 = ∫
M

hn−1ȟn = 1.
Let V ⊆ Pn be an irreducible projective subvariety, the conormal variety of V is defined as

Con(V ) = P(N∗Vsm), where Vsm denotes the smooth part of V and N∗Vsm its conormal bundle.
We note that via the identification M ⊂ Pn × P̌n, Con(V ) is the closure of the set of pairs (x,H)

such that x is a smooth point of V and H is a hyperplane containing the tangent plane TxV . For
example, the conormal variety of a point P0 ⊆ Pn is all the fiber π−1(P0), so its class is hn. More
generally one has the following lemma.
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Lemma 2.1. The conormal variety of a linearly embedded Pj ⊆ Pn is a trivial Pn−j−1 bundle
over Pj which class is given by[

Con
(
Pj

)] = (−1)jhn + · · · + hn−j+2ȟj−2 − hn−j+1ȟj−1 + hn−j ȟj .

Proof. Recall that Con(Pj ) = {(p,H) ∈ M: p ∈ Pj , H ⊇ Pj } is an irreducible subvariety of M

of codimension n, so we can write[
Con

(
Pj

)] = anh
n + an−1h

n−1ȟ + · · · + a1hȟn−1

and use the above relations to get

1 =
∫

M

[
Con

(
Pj

)] · hj · ȟn−j−1 = an−j + an−j−1

and

0 =
∫

M

[
Con

(
Pj

)] · hk · ȟn−k−1 = an−k + an−k−1

for k ∈ {0,1, . . . , j − 1, j + 1, . . . , n − 1} (here a0 = 0). The lemma follows from the previous
equalities. �

For any projective subvariety V ⊆ Pn of dimension q we define its characteristic numbers
as the integers ais such that[

Con(V )
] = anh

n + an−1h
n−1ȟ + · · · + a1hȟn−1.

For convenience we fix a0 = 0 and in particular we have

deg(V ) =
∫

M

[
Con(V )

] · hq · ȟn−q−1 = an−q + an−q−1.

Now we refer to [10, Section 1.3] for more details on the following definitions. Fix k,p ∈ N
with 1 � p < n. Roughly speaking, to give a k-distribution of dimension p is the same to give,
over a generic point, a set of k various p-dimensional planes, varying holomorphically. More
precisely, a k-distribution W of dimension p on Pn is given by an open covering U = {Ui}
of Pn and k-symmetric (n − p)-forms ωi ∈ Symk Ω

n−p

Pn (Ui) subject to the conditions:

1. For each non-empty intersection Ui ∩Uj there exists a non-vanishing function gij ∈OUi∩Uj

such that ωi = gijωj .
2. The zero set of ωi has codimension at least two for every i.
3. For every i and a generic x ∈ Ui , the germ of ωi at x seen as homogeneous polynomial of

degree k in the ring Ox[. . . , dxi1 ∧ · · · ∧ dxin−p , . . .] is square-free.
4. For every i and a generic x ∈ Ui , the germ of ωi at x is a product of k various (n−p)-forms

β1, . . . , βk , where each βi is a wedge product of (n − p) linear forms.

If in addition the forms βi are integrable we will say that the distribution is a k-web of dimen-
sion p on Pn.

The k-symmetric (n − p)-forms {ωi} patch together to form a global section ω = {ωi} ∈
H0(Pn,Symk Ω

n−p
n ⊗ L) where L is the line bundle over Pn determined by the cocycle {gij }.
P
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The singular set of W , denoted by Sing(W), is the zero set of the twisted k-symmetric
(n − p)-form ω. The degree of W , denoted by deg(W), is geometrically defined as the degree
of the tangency locus between W and a generic Pn−p linearly embedded in Pn. If i : Pn−p ↪→ Pn

is the inclusion then the degree of W is the degree of the zero divisor of the twisted k-symmetric
(n − p)-form i∗ω ∈ H0(Pn−p,Symk Ω

n−p

Pn−p ⊗ L|Pn−p ). Since Ω
n−p

Pn−p = OPn−p (−n + p − 1) it
follows that L = OPn(deg(W) + k(n − p) + k).

We say that x ∈ Pn is a smooth point of W , for short x ∈ Wsm, if x /∈ Sing(W) and the germ
of ω at x satisfies the conditions described in (3) and (4) above. For any smooth point x of W we
have k distinct (not necessarily in general position) linearly embedded subspaces of dimension p

passing through x. Each one of these subspaces will be called p-plane tangent to W at x and
denoted by T 1

x W, . . . , T k
x W .

To any k-distribution W of dimension p we can associate the subvariety SW of codimension p

of M defined as

SW = {
(x,H) ∈ M: x ∈Wsm and ∃1 � i � k, H ⊃ T i

xW
}
,

where the overline in the right side means the Zariski closure in M .
The characteristic numbers of W are by definition the p + 1 integers

di =
∫

M

[SW ] · [Con
(
Pn−p−1+i

)] · hn−p−1

with i ranging from 0 to p. We note that di is the degree of the tangency locus between W and
a generic Pn−p+i−1. In particular d0 = k and d1 is the degree of W , that is d1 = deg(W). We
remark that in the case p = n − 1 we arrive in the same definition of [10, Section 1.4.1].

Lemma 2.2. The class of SW ⊆ M is given by

[SW ] = dphp + · · · + d1hȟp−1 + d0ȟ
p.

Proof. It follows from Lemma 2.1 and from the definition of the characteristic numbers. �
3. Relations on the characteristic numbers for k-distributions and invariant subvarieties

Let D : ∅ = Ln+1 ⊆ Ln ⊆ · · · ⊆ L1 ⊆ L0 = Pn be a flag of linearly embedded subspaces,
where Li has codimension i. For each i ∈ {0, . . . , n + 1} we fix the set Hi of hyperplanes con-
taining Li ; it corresponds to a (i − 1)-dimensional linear subspace of P̌n. Therefore the class of
its associated variety SHi

= π̌−1(Hi ) ⊆ M is

[SHi
] = ȟn−i+1.

Now for a projective subvariety V ⊆ Pn of dimension q and j ∈ {0, . . . , q} we denote by P V
j =

tang(V ,Hq−j+2), where tang(V ,Hi ) := π(Con(V ) ∩ SHi
). On the other hand P V

j can be seen
as pre-image of a Schubert cycle in the Grassmannian by the Gauss map of V . To be more precise
let G(q,n) be the Grassmannian of q-dimensional linear spaces of Pn and consider the Schubert
cycle of codimension j

σ
q
j = σ

q
j (Lq−j+2) = {

Γ ∈G(q,n): dim(Γ ∩ Lq−j+2)� j − 1
}
.

If GV : V ��� G(q,n) is the natural Gauss map associated to V which sends a smooth point

x ∈ Vsm to the tangent space TxV then P V = GV
−1 (σ

q
). These are the polar classes of the
j |Vsm j
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variety V defined in [11]. It follows from the transversality of a general translate (cf. [8]) that for
a generic flag, P V

j is equidimensional and its dimension is q − j . See [11] for details.
In the same spirit, for a k-distribution W of dimension p and j a natural number with 1 �

j � p + 1, we set PW
j := tang(W,Hp−j+2) where tang(W,Hi ) := π(SW ∩ SHi

). When k = 1
we obtain the polar classes of the distribution W given in [9] and also in [6].

In order to define the Gauss map associated to the distribution we consider X = G(p,n)k/Sk

the quotient of G(p,n)k = G(p,n) × · · · ×G(p,n) by the equivalence relation which identifies
(Λ1, . . . ,Λk) and (Λτ(1), . . . ,Λτ(k)), where τ ∈ Sk (the symmetric group in k elements). Then
we define the Gauss map

GW : Pn ���X

x �→ [
T 1

x W, . . . , T k
x W

]
.

Since W is given locally by k holomorphic distributions of dimension p on the complement of
a Zariski closed set, each coordinate of GW is locally the Gauss map associated to one of these
distributions. Therefore GW is a rational map.

Let us consider the Schubert cycle

σ
p
j = σ

p
j (Lp−j+2) = {

Λ ∈ G(p,n): dim(Λ ∩ Lp−j+2) � j − 1
}

and the respective closed set in the quotient

Σ
p
j = Σ

p
j (Lp−j+2) = σ

p
j ×G(p,n)k−1/Sk ⊂ X.

If U is the maximal Zariski open set where GW is regular, it is not hard to see that PW
j =

GW−1
|U (Σ

p
j ).

Proposition 3.1. If a0, . . . , an and d0, . . . , dp are the characteristic numbers of the subvariety V

and the k-distribution W respectively, then for any j ∈ {0, . . . , q} and any s ∈ {1, . . . , p} we have

deg
(
P V

j

) = an−(q−j) + an−(q−j)−1, deg
(
PW

s

) = ds + ds−1.

In particular deg(P V
0 ) = deg(V ) and deg(PW

1 ) = k + deg(W).

Proof. It follows from the facts

deg
(
P V

j

) =
∫

M

[
Con(V )

] · [SHq−j+2] · hq−j

and

deg
(
PW

j

) =
∫

M

[SW ] · [SHp−j+2] · hn−j . �

Let us assume now that the flag D is sufficiently generic. We state now our main result
which relates the characteristic numbers of V and W when V is W-invariant. We say that V

is W-invariant if V � SingW and i∗ω vanishes identically, where i : V ↪→ Pn is the inclusion
and ω is the twisted k-symmetric (n − p)-form defining W .
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Theorem 3.1. Suppose that W is a k-distribution of dimension p on Pn admitting an invariant
projective subvariety V of dimension q � p and fix m ∈ {1, . . . , p}. If j is a number between 0
and q − p such that P V

q−p−j+m ⊆ PW
m then P V

q−p−j � PW
m and

an−(p−m+j) + an−(p−m+j)−1

an−(p+j) + an−(p+j)−1
� dm + dm−1.

In particular the inequality holds true for j = 0.

Proof. Let j be a number between 0 and q −p. To simplify the notation let us fix λ1 = p+j +2

and λ2 = p − m + 2. Hence P V
q−p−j = GV

−1
|Vsm

(σ
q
q−p−j (Lλ1)) and PW

m = GW−1
|U (Σ

p
m(Lλ2)).

We will first show that for a generic pair (Lλ1 ,Lλ2) ∈ G(n − λ1, n) × G(n − λ2, n) satisfying
Lλ1 ⊂ Lλ2 , the dimension of P V

q−p−j ∩ PW
m is at most p + j − m.

Let F ⊂ G(n − λ1, n) × G(n − λ2, n) be the closed set of pairs satisfying Lλ1 ⊂ Lλ2 and
consider

U = {
(Lλ1 ,Lλ2,Λ,Γ ) ∈ F× X ×G(q,n): Γ ∈ σ

q
q−p−j (Lλ1), Λ ∈ Σ

p
m(Lλ2)

}
.

If Ṽ = Vsm ∩ U then P V
q−p−j ∩ PW

m ∩ Ṽ = p1(ψ
−1(Lλ1 ,Lλ2)) where p1 and ψ are the mor-

phisms defined below

Ṽ ×X×G(q,n) U

ψ

p1

U F

Ṽ
GW×GV

X ×G(q,n)

The unlabeled arrows are the corresponding natural projections. We note that X ×G(q,n) is an
aut(Pn)-homogeneous space under the natural action. Since the vertical arrow U → X ×G(q,n)

is an aut(Pn)-equivariant morphism the transversality of the general translate (cf. [8]) implies
that

dim Ṽ ×X×G(q,n) U = dim Ṽ + dimU − dimX ×G(q,n)

= q + dimU − k dimG(p,n) − dimG(q,n).

Since a fiber of the map U −→ F is Σ
p
m × σ

q
q−p−j one obtains

dimU = k dimG(p,n) − m + dimG(q,n) − (q − p − j) + dimF.

The map ψ is dominant because by hypothesis given a generic pair (Lλ1,Lλ2) ∈ F we can take
x ∈ P V

q−p−j+m ∩ Ṽ ⊆ PW
m ∩ P V

q−p−j ∩ Ṽ . From this fact together with the above equalities we

obtain dimψ−1(Lλ1,Lλ2) = p + j − m for generic pair in F. Therefore

dimP V
q−p−j ∩ PW

m ∩ Ṽ � dimψ−1(Lλ1 ,Lλ2) = p + j − m.

This shows that P V
q−p−j � PW

m . Furthermore, from the fact that P V
q−p−j+m ∩ Ṽ is dense

in P V
q−p−j+m and P V

q−p−j+m has pure dimension p + j − m one obtains that each irreducible

component of P V
q−p−j+m is an irreducible component of PW

m ∩ P V
q−p−j . To conclude the proof

of the theorem we have just to apply Bezout’s theorem and Proposition 3.1. �
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Corollary 3.1. Let W be a k-distribution of dimension p on Pn and V a smooth invariant hyper-
surface of degree d . Then for each m ∈ {1, . . . , p} we obtain

(d − 1)m � dm + dm−1.

In particular,

d � k + deg(W) + 1.

Proof. When V is a smooth hypersurface, it is well known that deg(P V
j ) = d(d −1)j (cf. [13,16]

or [14] for a modern approach). In addition, it follows from Theorem 3.1 that for each m ∈
{1, . . . , p} we have

deg
(
P V

n−1−p+m

)
� deg

(
P V

n−1−p

)
(dm + dm−1). �

Remark 3.1. This corollary generalizes the bound obtained by M.G. Soares for one-dimensional
foliations in [15], where it has been considered one-dimensional projective foliations and their
tangency locus with a pencil of hyperplanes. This tangency locus is an analogous for foliations
of the polar classes for projective varieties. For a variety V of dimension q invariant by a one-
dimensional foliation F , he compared their polar classes to get the relation

deg
(
P V

q−j

)
� deg

(
P V

q−j−1

) · (deg(F) + 1
)
.

Where P V
k is the kth polar class of V and j is some number between 0 and q − 1, see

[15, Theorem 1]. As a consequence the bound

deg(V )� deg(F) + 2

was obtained for a smooth invariant hypersurface. Polar classes were also considered by R. Mol
in [9] for holomorphic distributions of arbitrary dimension. He expressed these classes in terms
of the Chern–Mather classes of the tangent sheaf of the distribution, moreover, Theorem 1 of
[15] is generalized.

Also we remark that the bound

d � deg(W) + (n − p) + 1

has been proved by M. Brunella and L.G. Mendes in [2] for normal crossing hypersurfaces
invariant by a p-dimensional foliation.

Remark 3.2. By the classical formulas for the polar classes of a smooth complete intersection V

(see [13,16]), it is possible to obtains more explicit relations (similar to [9, Corollary 6.3]) be-
tween the degree of the homogeneous polynomials defining V and the characteristic numbers
of W .

Remark 3.3.1 Unlike the case of foliations, we cannot expect to bound the degree of non-smooth
invariant subvarieties in terms of the degree of the web, even in the case of nodal curves in di-
mension two. To see this let us take the elliptic curve E = C/〈1, τ 〉 and consider the foliation Fα

induced by the 1-form ω = dy − α dx on the complex torus X = E × E, where α ∈ Q. Since
X is smooth we have an embedding X ↪→ P5 and if we fix a leaf Cα of Fα one may take the

1 The authors are grateful to Jorge Vitório Pereira for having pointed out this remark.
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restriction of a generic linear projection to P2, πα : X → P2, such that the image Dα = π(Cα)

would be an algebraic curve which has only nodal singularities. Projecting the foliation Fα we
obtain a d-web Wα , where d = deg(X) > 1. Observe that

deg(Wα) = tang(Wα,L) = tang(Fα,H) = T ∗Fα.H + H 2

where the last equality follows from [1, Proposition 2, p. 23], L is a generic line in P2 and H

is a hyperplane section in X; on the other hand the cotangent bundle T ∗Fα is the same for all
these foliations, therefore deg(Wα) does not depend of α. Since that varying α we can grow
the intersection number between Cα and the curve C := {0} × E ⊆ X, and therefore also the
intersection between Dα and the fixed curve πα(C), we deduce that Dα is a W-invariant nodal
curve in which deg(Dα) increases and cannot be bound by the fixed number deg(Wα).
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