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Abstract

We define the characteristic numbers of a holomorphic k-distribution of any dimension on P and obtain
relations between these numbers and the characteristic numbers of an invariant subvariety. As an application
we bound the degree of a smooth invariant hypersurface.
© 2012 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The aim of this work is to relate the characteristic numbers of projective k-webs, or more gen-
erally, k-distributions of arbitrary dimension to those of invariant subvarieties. Loosely speaking,
a k-distribution WV of dimension p on P” is locally given by k holomorphic fields of p-planes on
the complement of a Zariski closed set. The most basic invariants attached to it are its characteris-
tic numbers dy, . .., d, where d; is defined as the degree of the tancency locus of the distribution
with a generic P"~P*~! linearly embedded in P". Suppose now V < P”" is a subvariety invari-
ant by W. Our goal is to obtain inequalities involving the characteristic numbers of V and W.
As a corollary we give some bounds for the degree of a smooth invariant hypersurface.

The question of bounding the degree of an algebraic curve which is a solution of a foliation
on P? in terms of the degree of the foliation was treated by H. Poincaré in [12]. Versions of
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this problem have been considered in a number of recent works, see for example [4,3,2,14,15,5]
placed in chronological order.

In this paper we associate to any k-distribution W a subvariety Syy of P(T*P"). First we show
that when we write its cohomology class, the characteristic numbers dy, . .., d), appear naturally:

[Sw]=dph? + -+ dihh?~" 4 doh?,

where h and /i are the pullbacks of the hyperplane classes on P" and Pr respectively. We also
define, as in the case of foliations, the polar classes PvW of a k-distribution and get theirs degrees
in terms of the characteristic numbers:

deg(P)Y) = d, +d;_1.

Then we consider a subvariety which is invariant by a k-distribution and relate the polar classes
of them obtaining more relations than the known for distributions, see Theorem 3.1. As a con-
sequence we obtain as many bounds for the degree of a smooth invariant hypersurface as the
dimension of the k-distribution, see Corollary 3.1.

2. Characteristic numbers of projective webs

Let P" be the n-dimensional complex projective space and M = P(T*P") the projectiviza-
tion of its cotangent bundle. Since M can be identified with the incidence variety of points and
hyperplanes in P”, one has two natural projections

M = P(T*P") C P x P

/ \
P Epn

Let us denote by & = ¢ (Opx (1)) and h= ¢1(Op, (1)) the hyperplane classes on P and P

respectively. We still denote by 4 and h the respective pullbacks to M by 7 and 7. Note that the
cohomology ring H*(M) is, via the pullback map 7* : H*(P") — H*(M), an algebra over the
ring H*(P"), which is generated by & = ¢ (Op(—1)), the Chern class of the tautological bundle
Om(—1), with the relation Y "_, (';j,l)hn—f £/ =0 (see [7, p. 606]).

Observe that A" is the class of a fiber of 7 and the restriction of Oy (—1) to each fiber is the
universal bundle, so that [;, "~ 'h" = (=1)""! and [, £"h"~! = (—1)"(n + 1), where the last
equation follows from the previous relation. Then if we write h=ah+ b¢ it is easy to see that
b = —1 and therefore we get the following description of H*(M)

Zlh, h)
(thrl’ hn — hnfli,/l 4+ 4 (_1)nfln> ’

H*(M) =

Clearly we also have the relations "' =0, Iy R = Iy g =1,

Let V C P" be an irreducible projective subvariety, the conormal variety of V is defined as
Con(V) =P(N*V,), where Vi, denotes the smooth part of V and N*Vy,, its conormal bundle.
We note that via the identification M C P" x P, Con(V) is the closure of the set of pairs (x, H)
such that x is a smooth point of V and H is a hyperplane containing the tangent plane 7, V. For
example, the conormal variety of a point PO C P" is all the fiber 7 ! (IF’O), so its class is 2". More
generally one has the following lemma.
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Lemma 2.1. The conormal variety of a linearly embedded P/ CP" is a trivial P/~ bundle
over P/ which class is given by

[Con(P/)] = (=) 1" + - + "I F2RI =2 — =TT I =ty =iyl

Proof. Recall that Con(P/) = {(p, H) € M: p € P/, H 2 P/} is an irreducible subvariety of M
of codimension 7, so we can write

[Con(]P’j)] = aph" +an_ K" 'h+ - +a hi"!

and use the above relations to get

1= f[Con(Pf)] hl R =ayjtan o
M

and

M

forke{0,1,...,j—1,j+1,...,n — 1} (here ag = 0). The lemma follows from the previous
equalities. O

For any projective subvariety V € P"* of dimension ¢ we define its characteristic numbers
as the integers a;s such that

[Con(V)] = anh" + an 1" i+ -+ ayhi" ",

For convenience we fix ag = 0 and in particular we have

deg(V) = /[Con(V)] R =t ap g
M

Now we refer to [10, Section 1.3] for more details on the following definitions. Fix k, p € N
with 1 < p < n. Roughly speaking, to give a k-distribution of dimension p is the same to give,
over a generic point, a set of k various p-dimensional planes, varying holomorphically. More
precisely, a k-distribution ¥V of dimension p on P" is given by an open covering U = {U;}
of P" and k-symmetric (n — p)-forms w; € Sym* 25, 7 (U;) subject to the conditions:

1. For each non-empty intersection U; N U; there exists a non-vanishing function g;; € Ov,nu;
such that w; = g;jw;j.

2. The zero set of w; has codimension at least two for every i.

3. For every i and a generic x € U;, the germ of w; at x seen as homogeneous polynomial of
degree k in the ring Ox[...,dx; A--- A dxin_p, ...] is square-free.

4. For every i and a generic x € Uj;, the germ of w; at x is a product of k various (n — p)-forms
B1, ..., Bk, where each B; is a wedge product of (n — p) linear forms.

If in addition the forms B; are integrable we will say that the distribution is a k-web of dimen-
sion p on P".

The k-symmetric (n — p)-forms {w;} patch together to form a global section w = {w;} €
HO(P", Sym* £25, ¥ ® L) where £ is the line bundle over P" determined by the cocycle {g;;}.
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The singular set of )V, denoted by Sing()V), is the zero set of the twisted k-symmetric
(n — p)-form w. The degree of WV, denoted by deg(WV), is geometrically defined as the degree
of the tangency locus between YV and a generic P 7 linearly embedded in P*. If i : P" 7 — P”"
is the inclusion then the degree of WV is the degree of the zero divisor of the twisted k-symmetric
(n — p)-form i*w € HO(P"~7, Sym* 2,5, @ Lipn—p). Since 2, = Opnp(—n+ p — 1) it
follows that £ = Opn (deg(W) + k(n — p) + k).

We say that x € P" is a smooth point of W, for short x € W,,, if x ¢ Sing(W) and the germ
of w at x satisfies the conditions described in (3) and (4) above. For any smooth point x of WW we
have k distinct (not necessarily in general position) linearly embedded subspaces of dimension p
passing through x. Each one of these subspaces will be called p-plane tangent to W at x and
denoted by TXIW, cee, TfW.

To any k-distribution JV of dimension p we can associate the subvariety Syy of codimension p
of M defined as

Sw={(x,H) e M: x € Wy and 31 <i <k, H D TIW},

where the overline in the right side means the Zariski closure in M.
The characteristic numbers of )V are by definition the p + 1 integers

di = /[SW] -[Con(P—P~1*)] . pr P!
M

with / ranging from 0 to p. We note that d; is the degree of the tangency locus between V and
a generic P*~P+~1 In particular dy = k and d; is the degree of W, that is d; = deg(W). We
remark that in the case p =n — 1 we arrive in the same definition of [10, Section 1.4.1].

Lemma 2.2. The class of Syy C M is given by
[SW] = dphp +--- +d1h}vlp_l —‘rdo}vlp_

Proof. It follows from Lemma 2.1 and from the definition of the characteristic numbers. 0O
3. Relations on the characteristic numbers for k-distributions and invariant subvarieties

Let D:0=Lyy1 CL,C---C Ly CLo=1P" be a flag of linearly embedded subspaces,
where L; has codimension i. For each i € {0, ...,n 4 1} we fix the set H; of hyperplanes con-
taining L;; it corresponds to a (i — 1)-dimensional linear subspace of P, Therefore the class of
its associated variety Sy, = A 'HHCSMis

[Sp,1=h""""".

Now for a projective subvariety V € P" of dimension ¢ and j € {0, ..., g} we denote by PJ.V =

tang(V, Hy— j12), where tang(V, H;) := w(Con(V) N S3;,). On the other hand P/.V can be seen
as pre-image of a Schubert cycle in the Grassmannian by the Gauss map of V. To be more precise
let G(g, n) be the Grassmannian of ¢-dimensional linear spaces of P and consider the Schubert
cycle of codimension j

0’;1 ZUJ(-I(Lq—j+2) ={Ir eG(g,n): dm(I'NLy_j2) > j—1}.
If Gy : V --s G(q, n) is the natural Gauss map associated to V which sends a smooth point

x € Vg, to the tangent space T,V then Pl.V =Gy fvl ((rjq). These are the polar classes of the
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variety V defined in [11]. It follows from the transversality of a general translate (cf. [8]) that for
a generic flag, PjV is equidimensional and its dimension is ¢ — j. See [11] for details.

In the same spirit, for a k-distribution WV of dimension p and j a natural number with 1 <
J<p+1,weset P]W :=tang(W, Hp_ j12) where tang(W, H;) :=m(Syy N Sy,). When k=1
we obtain the polar classes of the distribution WV given in [9] and also in [6].

In order to define the Gauss map associated to the distribution we consider X = G(p, n)*/S;
the quotient of G(p, n)k = G(p, n) x --- x G(p, n) by the equivalence relation which identifies
(A1, ..., Ag) and (A1), ..., Ark)), Where T € S (the symmetric group in k elements). Then
we define the Gauss map

Gw:P"--5 X
X = [TleV,...,T)fW].
Since W is given locally by k holomorphic distributions of dimension p on the complement of
a Zariski closed set, each coordinate of Gyy is locally the Gauss map associated to one of these

distributions. Therefore Gy is a rational map.
Let us consider the Schubert cycle

a;’ :o}’(Lp,Hz) ={AeG(p,n): dim(ANL,_j12) = j— 1}

and the respective closed set in the quotient
27 =20 (Lp-j+2) =0 x G(p, s c X.
If U is the maximal Zariski open set where Gyy is regular, it is not hard to see that P/W =
Gwi, (2.
Proposition 3.1. If ag, ..., a, and dy, . . ., d), are the characteristic numbers of the subvariety V
and the k-distribution VV respectively, then for any j € {0, ...,q}and any s € {1, ..., p} we have
deg(P]) = an—tg—j) + an-g-p-1.  deg(P)V) =ds +ds-1.

In particular deg(POV) =deg(V) and deg(PIW) =k + deg(W).

Proof. It follows from the facts

deg(P}) = f[Con(V)] S, ] k9
M
and

deg(P)) = / [Swl- (S, .1 k"7, O
M

Let us assume now that the flag D is sufficiently generic. We state now our main result
which relates the characteristic numbers of V and W when V is W-invariant. We say that V
is W-invariant if V ¢ Sing)V and i*w vanishes identically, where i : V < P" is the inclusion
and w is the twisted k-symmetric (n — p)-form defining WV .
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Theorem 3.1. Suppose that W is a k-distribution of dimension p on P" admitting an invariant

projective subvariety V of dimension q > p and fix m € {1, ..., p}. If j is a number between 0
. 1% w Vv w
and q — p such that qupfjer C P," then qupfj ¢_ P, and

An—(p—m+j) T Gn—(p—m+j)—1

< dm + dm—l .
An—(p+j) + an—(p+j)-1

In particular the inequality holds true for j = 0.

Proof. Let j be a number between 0 and ¢ — p. To simplify the notation letus fix A = p+ j+2

and A = p —m + 2. Hence P . = givjm (of_,_;(Ly)) and PV = gwﬁjl(zn’;(mz)).
We will first show that for a generic pair (L, L;,) € G(n — A1,n) x G(n — X2, n) satisfying
Ly, C Lj,, the dimension of Pq_p_j N P,” isat most p + j —m.

Let F C G(n — A1,n) x G(n — Ay, n) be the closed set of pairs satisfying Ly, C L;, and
consider

U={(Lsy, Liy, A, 1) €F x X x Glg,n): I'eo, | (Ly,), A€ Zn(Li,)}.

If V=V, NU then Pvfpfj N P,}l/v nv = pl(I//_l(L)\l,L)Lz)) where p; and ¢ are the mor-
phisms defined below

v

u/u\w

‘7 XXXG(q,n)

P1

= Gw xGy
_— s

\% X x G(g,n)

The unlabeled arrows are the corresponding natural projections. We note that X x G(q, n) is an
aut(P")-homogeneous space under the natural action. Since the vertical arrow U — X x G(q, n)
is an aut(P")-equivariant morphism the transversality of the general translate (cf. [8]) implies
that

dim V X X xG(g,n) U = dim V +dimi — dim X x G(g,n)
=g +dimU — kdimG(p, n) — dimG(q, n).
Since a fiber of the map &/ — F is zhx qui p—j one obtains
dimU =kdimG(p,n) —m +dimG(q,n) — (g — p — j) + dimF.
The map  is dominant because by hypothesis given a generic pair (L,, Ly,) € IF we can take

V i W ‘/ i . . .« .
X € Pq_ p—jtm nNvceyn Pq_ p—j N V. From this fact together with the above equalities we

obtain dim y ! (Ly,, Ly,) = p+ j — m for generic pair in . Therefore

dmPY NPV <dimy~' (L. Ly,)=p+j—m.

q—p—]J
. \%4 w \%4 7

Tl‘1/15 shows that I;q_ p—j SZ P,”. Furthermore, from the fact that Pq_ p—jtm NV is dense

in Pq_ p—jtm and Pq_ p—jtm has pure dimension p + j — m one obtains that each irreducible

14 feoan : WA pV
component of Pq_ p—j+m 1S aN irreducible component of P," N Pq_ i To conclude the proof

of the theorem we have just to apply Bezout’s theorem and Proposition 3.1. O
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Corollary 3.1. Let W be a k-distribution of dimension p on P" and V a smooth invariant hyper-
surface of degree d. Then for eachm € {1, ..., p} we obtain

(d - l)m < dm +dm—l-
In particular,

d <k+degW) + 1.

Proof. When V is a smooth hypersurface, it is well known that deg(PjV) =d(d—1)7 (cf.[13,16]
or [14] for a modern approach). In addition, it follows from Theorem 3.1 that for each m €
{1,..., p} we have

deg(P) y_ i) <deg(P) | ,)(dn+dn-1). O

Remark 3.1. This corollary generalizes the bound obtained by M.G. Soares for one-dimensional
foliations in [15], where it has been considered one-dimensional projective foliations and their
tangency locus with a pencil of hyperplanes. This tangency locus is an analogous for foliations
of the polar classes for projective varieties. For a variety V of dimension ¢ invariant by a one-
dimensional foliation JF, he compared their polar classes to get the relation

deg(PqV_j) < deg(PqVijil) - (deg(F) +1).

Where PkV is the kth polar class of V and j is some number between 0 and g — 1, see
[15, Theorem 1]. As a consequence the bound

deg(V) < deg(F)+2

was obtained for a smooth invariant hypersurface. Polar classes were also considered by R. Mol
in [9] for holomorphic distributions of arbitrary dimension. He expressed these classes in terms
of the Chern—Mather classes of the tangent sheaf of the distribution, moreover, Theorem 1 of
[15] is generalized.

Also we remark that the bound

d<degV)+(n—p)+1

has been proved by M. Brunella and L.G. Mendes in [2] for normal crossing hypersurfaces
invariant by a p-dimensional foliation.

Remark 3.2. By the classical formulas for the polar classes of a smooth complete intersection V
(see [13,16]), it is possible to obtains more explicit relations (similar to [9, Corollary 6.3]) be-
tween the degree of the homogeneous polynomials defining V and the characteristic numbers
of W.

Remark 3.3.! Unlike the case of foliations, we cannot expect to bound the degree of non-smooth
invariant subvarieties in terms of the degree of the web, even in the case of nodal curves in di-
mension two. To see this let us take the elliptic curve £ = C/(1, t) and consider the foliation F
induced by the 1-form w = dy — o dx on the complex torus X = E x E, where o € Q. Since
X is smooth we have an embedding X — P3 and if we fix a leaf C, of F, one may take the

1 The authors are grateful to Jorge Vitério Pereira for having pointed out this remark.
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restriction of a generic linear projection to P2, 7, : X — P2, such that the image D, = m(Cy)
would be an algebraic curve which has only nodal singularities. Projecting the foliation F, we
obtain a d-web W, where d = deg(X) > 1. Observe that

deg(Wy) = tang(Wy, L) = tang(Fy, H) = T*Fy.H + H?

where the last equality follows from [1, Proposition 2, p. 23], L is a generic line in P? and H
is a hyperplane section in X; on the other hand the cotangent bundle 7*F, is the same for all
these foliations, therefore deg(JV,) does not depend of «. Since that varying o we can grow
the intersection number between C, and the curve C := {0} x E C X, and therefore also the
intersection between D, and the fixed curve m,(C), we deduce that D, is a VV-invariant nodal
curve in which deg(D,,) increases and cannot be bound by the fixed number deg(W,,).
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