Characteristic numbers and invariant subvarieties for projective webs

M. Falla Luza*, T. Fassarella
Departamento de Análise - IM - UFF, Mário Santos Braga s/n - Niterói, 24.020-140 RJ, Brazil
Received 1 August 2011
Available online 29 March 2012

Abstract

We define the characteristic numbers of a holomorphic k-distribution of any dimension on \mathbb{P}^{n} and obtain relations between these numbers and the characteristic numbers of an invariant subvariety. As an application we bound the degree of a smooth invariant hypersurface.

© 2012 Elsevier Masson SAS. All rights reserved.
Keywords: Projective web; Invariant subvariety; Gauss map; Polar class

1. Introduction

The aim of this work is to relate the characteristic numbers of projective k-webs, or more generally, k-distributions of arbitrary dimension to those of invariant subvarieties. Loosely speaking, a k-distribution \mathcal{W} of dimension p on \mathbb{P}^{n} is locally given by k holomorphic fields of p-planes on the complement of a Zariski closed set. The most basic invariants attached to it are its characteristic numbers d_{0}, \ldots, d_{p} where d_{i} is defined as the degree of the tancency locus of the distribution with a generic $\mathbb{P}^{n-p+i-1}$ linearly embedded in \mathbb{P}^{n}. Suppose now $V \hookrightarrow \mathbb{P}^{n}$ is a subvariety invariant by \mathcal{W}. Our goal is to obtain inequalities involving the characteristic numbers of V and \mathcal{W}. As a corollary we give some bounds for the degree of a smooth invariant hypersurface.

The question of bounding the degree of an algebraic curve which is a solution of a foliation on \mathbb{P}^{2} in terms of the degree of the foliation was treated by H. Poincaré in [12]. Versions of

[^0]this problem have been considered in a number of recent works, see for example [4,3,2,14,15,5] placed in chronological order.

In this paper we associate to any k-distribution \mathcal{W} a subvariety $S_{\mathcal{W}}$ of $\mathbb{P}\left(T^{*} \mathbb{P}^{n}\right)$. First we show that when we write its cohomology class, the characteristic numbers d_{0}, \ldots, d_{p} appear naturally:

$$
\left[S_{\mathcal{W}}\right]=d_{p} h^{p}+\cdots+d_{1} h \check{h}^{p-1}+d_{0} \check{h}^{p}
$$

where h and \check{h} are the pullbacks of the hyperplane classes on \mathbb{P}^{n} and $\check{\mathbb{P}}^{n}$ respectively. We also define, as in the case of foliations, the polar classes $P_{s}^{\mathcal{W}}$ of a k-distribution and get theirs degrees in terms of the characteristic numbers:

$$
\operatorname{deg}\left(P_{s}^{\mathcal{W}}\right)=d_{s}+d_{s-1}
$$

Then we consider a subvariety which is invariant by a k-distribution and relate the polar classes of them obtaining more relations than the known for distributions, see Theorem 3.1. As a consequence we obtain as many bounds for the degree of a smooth invariant hypersurface as the dimension of the k-distribution, see Corollary 3.1.

2. Characteristic numbers of projective webs

Let \mathbb{P}^{n} be the n-dimensional complex projective space and $M=\mathbb{P}\left(T^{*} \mathbb{P}^{n}\right)$ the projectivization of its cotangent bundle. Since M can be identified with the incidence variety of points and hyperplanes in \mathbb{P}^{n}, one has two natural projections

Let us denote by $h=c_{1}\left(\mathcal{O}_{\mathbb{P}^{n}}(1)\right)$ and $\check{h}=c_{1}\left(\mathcal{O}_{\check{\mathbb{P}^{n}}}(1)\right)$ the hyperplane classes on \mathbb{P}^{n} and $\check{\mathbb{P}^{n}}$ respectively. We still denote by h and \check{h} the respective pullbacks to M by π and $\check{\pi}$. Note that the cohomology ring $H^{*}(M)$ is, via the pullback map $\pi^{*}: H^{*}\left(\mathbb{P}^{n}\right) \rightarrow H^{*}(M)$, an algebra over the ring $H^{*}\left(\mathbb{P}^{n}\right)$, which is generated by $\xi=c_{1}\left(\mathcal{O}_{M}(-1)\right)$, the Chern class of the tautological bundle $\mathcal{O}_{M}(-1)$, with the relation $\sum_{i=0}^{n}\binom{n+1}{i+1} h^{n-i} \xi^{i}=0$ (see [7, p. 606]).

Observe that h^{n} is the class of a fiber of π and the restriction of $\mathcal{O}_{M}(-1)$ to each fiber is the universal bundle, so that $\int_{M} \xi^{n-1} h^{n}=(-1)^{n-1}$ and $\int_{M} \xi^{n} h^{n-1}=(-1)^{n}(n+1)$, where the last equation follows from the previous relation. Then if we write $\check{h}=a h+b \xi$ it is easy to see that $b=-1$ and therefore we get the following description of $H^{*}(M)$

$$
H^{*}(M)=\frac{\mathbb{Z}[h, \check{h}]}{\left\langle h^{n+1}, h^{n}-h^{n-1} \check{h}+\cdots+(-1)^{n} \check{h}^{n}\right\rangle}
$$

Clearly we also have the relations $\check{h}^{n+1}=0, \int_{M} h^{n} \check{h}^{n-1}=\int_{M} h^{n-1} \breve{h}^{n}=1$.
Let $V \subseteq \mathbb{P}^{n}$ be an irreducible projective subvariety, the conormal variety of V is defined as $\operatorname{Con}(V)=\overline{\mathbb{P}\left(N^{*} V_{s m}\right)}$, where $V_{s m}$ denotes the smooth part of V and $N^{*} V_{s m}$ its conormal bundle. We note that via the identification $M \subset \mathbb{P}^{n} \times \mathscr{P}^{n}, \operatorname{Con}(V)$ is the closure of the set of pairs (x, H) such that x is a smooth point of V and H is a hyperplane containing the tangent plane $T_{x} V$. For example, the conormal variety of a point $\mathbb{P}^{0} \subseteq \mathbb{P}^{n}$ is all the fiber $\pi^{-1}\left(\mathbb{P}^{0}\right)$, so its class is h^{n}. More generally one has the following lemma.

Lemma 2.1. The conormal variety of a linearly embedded $\mathbb{P}^{j} \subseteq \mathbb{P}^{n}$ is a trivial \mathbb{P}^{n-j-1} bundle over \mathbb{P}^{j} which class is given by

$$
\left[\operatorname{Con}\left(\mathbb{P}^{j}\right)\right]=(-1)^{j} h^{n}+\cdots+h^{n-j+2} \check{h}^{j-2}-h^{n-j+1} \check{h}^{j-1}+h^{n-j} \check{h}^{j}
$$

Proof. Recall that $\operatorname{Con}\left(\mathbb{P}^{j}\right)=\left\{(p, H) \in M: p \in \mathbb{P}^{j}, H \supseteq \mathbb{P}^{j}\right\}$ is an irreducible subvariety of M of codimension n, so we can write

$$
\left[\operatorname{Con}\left(\mathbb{P}^{j}\right)\right]=a_{n} h^{n}+a_{n-1} h^{n-1} \check{h}+\cdots+a_{1} h \check{h}^{n-1}
$$

and use the above relations to get

$$
1=\int_{M}\left[\operatorname{Con}\left(\mathbb{P}^{j}\right)\right] \cdot h^{j} \cdot \check{h}^{n-j-1}=a_{n-j}+a_{n-j-1}
$$

and

$$
0=\int_{M}\left[\operatorname{Con}\left(\mathbb{P}^{j}\right)\right] \cdot h^{k} \cdot \check{h}^{n-k-1}=a_{n-k}+a_{n-k-1}
$$

for $k \in\{0,1, \ldots, j-1, j+1, \ldots, n-1\}$ (here $a_{0}=0$). The lemma follows from the previous equalities.

For any projective subvariety $V \subseteq \mathbb{P}^{n}$ of dimension q we define its characteristic numbers as the integers $a_{i} \mathrm{~s}$ such that

$$
[\operatorname{Con}(V)]=a_{n} h^{n}+a_{n-1} h^{n-1} \check{h}+\cdots+a_{1} h \check{h}^{n-1}
$$

For convenience we fix $a_{0}=0$ and in particular we have

$$
\operatorname{deg}(V)=\int_{M}[\operatorname{Con}(V)] \cdot h^{q} \cdot \check{h}^{n-q-1}=a_{n-q}+a_{n-q-1}
$$

Now we refer to [10, Section 1.3] for more details on the following definitions. Fix $k, p \in \mathbb{N}$ with $1 \leqslant p<n$. Roughly speaking, to give a k-distribution of dimension p is the same to give, over a generic point, a set of k various p-dimensional planes, varying holomorphically. More precisely, a k-distribution \mathcal{W} of dimension p on \mathbb{P}^{n} is given by an open covering $\mathcal{U}=\left\{U_{i}\right\}$ of \mathbb{P}^{n} and k-symmetric $(n-p)$-forms $\omega_{i} \in \operatorname{Sym}^{k} \Omega_{\mathbb{P}^{n}}^{n-p}\left(U_{i}\right)$ subject to the conditions:

1. For each non-empty intersection $U_{i} \cap U_{j}$ there exists a non-vanishing function $g_{i j} \in \mathcal{O}_{U_{i} \cap U_{j}}$ such that $\omega_{i}=g_{i j} \omega_{j}$.
2. The zero set of ω_{i} has codimension at least two for every i.
3. For every i and a generic $x \in U_{i}$, the germ of ω_{i} at x seen as homogeneous polynomial of degree k in the ring $\mathcal{O}_{x}\left[\ldots, d x_{i_{1}} \wedge \cdots \wedge d x_{i_{n-p}}, \ldots\right]$ is square-free.
4. For every i and a generic $x \in U_{i}$, the germ of ω_{i} at x is a product of k various ($n-p$)-forms $\beta_{1}, \ldots, \beta_{k}$, where each β_{i} is a wedge product of $(n-p)$ linear forms.

If in addition the forms β_{i} are integrable we will say that the distribution is a k-web of dimension p on \mathbb{P}^{n}.

The k-symmetric ($n-p$)-forms $\left\{\omega_{i}\right\}$ patch together to form a global section $\omega=\left\{\omega_{i}\right\} \in$ $\mathrm{H}^{0}\left(\mathbb{P}^{n}, \operatorname{Sym}^{k} \Omega_{\mathbb{P}^{n}}^{n-p} \otimes \mathcal{L}\right)$ where \mathcal{L} is the line bundle over \mathbb{P}^{n} determined by the cocycle $\left\{g_{i j}\right\}$.

The singular set of \mathcal{W}, denoted by $\operatorname{Sing}(\mathcal{W})$, is the zero set of the twisted k-symmetric $(n-p)$-form ω. The degree of \mathcal{W}, denoted by $\operatorname{deg}(\mathcal{W})$, is geometrically defined as the degree of the tangency locus between \mathcal{W} and a generic \mathbb{P}^{n-p} linearly embedded in \mathbb{P}^{n}. If $i: \mathbb{P}^{n-p} \hookrightarrow \mathbb{P}^{n}$ is the inclusion then the degree of \mathcal{W} is the degree of the zero divisor of the twisted k-symmetric $(n-p)$-form $i^{*} \omega \in \mathrm{H}^{0}\left(\mathbb{P}^{n-p},\left.\operatorname{Sym}^{k} \Omega_{\mathbb{P}^{n-p}}^{n-p} \otimes \mathcal{L}\right|_{\mathbb{P}^{n-p}}\right)$. Since $\Omega_{\mathbb{P}^{n-p}}^{n-p}=\mathcal{O}_{\mathbb{P}^{n-p}}(-n+p-1)$ it follows that $\mathcal{L}=\mathcal{O}_{\mathbb{P}^{n}}(\operatorname{deg}(\mathcal{W})+k(n-p)+k)$.

We say that $x \in \mathbb{P}^{n}$ is a smooth point of \mathcal{W}, for short $x \in \mathcal{W}_{s m}$, if $x \notin \operatorname{Sing}(\mathcal{W})$ and the germ of ω at x satisfies the conditions described in (3) and (4) above. For any smooth point x of \mathcal{W} we have k distinct (not necessarily in general position) linearly embedded subspaces of dimension p passing through x. Each one of these subspaces will be called p-plane tangent to \mathcal{W} at x and denoted by $T_{x}^{1} \mathcal{W}, \ldots, T_{x}^{k} \mathcal{W}$.

To any k-distribution \mathcal{W} of dimension p we can associate the subvariety $S_{\mathcal{W}}$ of codimension p of M defined as

$$
S_{\mathcal{W}}=\overline{\left\{(x, H) \in M: x \in \mathcal{W}_{s m} \text { and } \exists 1 \leqslant i \leqslant k, H \supset T_{x}^{i} \mathcal{W}\right\}}
$$

where the overline in the right side means the Zariski closure in M.
The characteristic numbers of \mathcal{W} are by definition the $p+1$ integers

$$
d_{i}=\int_{M}\left[S_{\mathcal{W}}\right] \cdot\left[\operatorname{Con}\left(\mathbb{P}^{n-p-1+i}\right)\right] \cdot h^{n-p-1}
$$

with i ranging from 0 to p. We note that d_{i} is the degree of the tangency locus between \mathcal{W} and a generic $\mathbb{P}^{n-p+i-1}$. In particular $d_{0}=k$ and d_{1} is the degree of \mathcal{W}, that is $d_{1}=\operatorname{deg}(\mathcal{W})$. We remark that in the case $p=n-1$ we arrive in the same definition of [10, Section 1.4.1].

Lemma 2.2. The class of $S_{\mathcal{W}} \subseteq M$ is given by

$$
\left[S_{\mathcal{W}}\right]=d_{p} h^{p}+\cdots+d_{1} h \check{h}^{p-1}+d_{0} \check{h}^{p}
$$

Proof. It follows from Lemma 2.1 and from the definition of the characteristic numbers.

3. Relations on the characteristic numbers for \boldsymbol{k}-distributions and invariant subvarieties

Let $\mathcal{D}: \emptyset=L_{n+1} \subseteq L_{n} \subseteq \cdots \subseteq L_{1} \subseteq L_{0}=\mathbb{P}^{n}$ be a flag of linearly embedded subspaces, where L_{i} has codimension i. For each $i \in\{0, \ldots, n+1\}$ we fix the set \mathcal{H}_{i} of hyperplanes containing L_{i}; it corresponds to a $(i-1)$-dimensional linear subspace of $\breve{\mathbb{P}}^{n}$. Therefore the class of its associated variety $S_{\mathcal{H}_{i}}=\check{\pi}^{-1}\left(\mathcal{H}_{i}\right) \subseteq M$ is

$$
\left[S_{\mathcal{H}_{i}}\right]=\check{h}^{n-i+1} .
$$

Now for a projective subvariety $V \subseteq \mathbb{P}^{n}$ of dimension q and $j \in\{0, \ldots, q\}$ we denote by $P_{j}^{V}=$ $\operatorname{tang}\left(V, \mathcal{H}_{q-j+2}\right)$, where $\operatorname{tang}\left(V, \mathcal{H}_{i}\right):=\pi\left(\operatorname{Con}(V) \cap S_{\mathcal{H}_{i}}\right)$. On the other hand P_{j}^{V} can be seen as pre-image of a Schubert cycle in the Grassmannian by the Gauss map of V. To be more precise let $\mathbb{G}(q, n)$ be the Grassmannian of q-dimensional linear spaces of \mathbb{P}^{n} and consider the Schubert cycle of codimension j

$$
\sigma_{j}^{q}=\sigma_{j}^{q}\left(L_{q-j+2}\right)=\left\{\Gamma \in \mathbb{G}(q, n): \operatorname{dim}\left(\Gamma \cap L_{q-j+2}\right) \geqslant j-1\right\} .
$$

If $\mathcal{G}_{V}: V \rightarrow \mathbb{G}(q, n)$ is the natural Gauss map associated to V which sends a smooth point $x \in V_{s m}$ to the tangent space $T_{x} V$ then $P_{j}^{V}=\overline{\mathcal{G}_{V}}{ }_{\left.\right|_{V_{s m}} ^{-1}\left(\sigma_{j}^{q}\right)}$. These are the polar classes of the
variety V defined in [11]. It follows from the transversality of a general translate (cf. [8]) that for a generic flag, P_{j}^{V} is equidimensional and its dimension is $q-j$. See [11] for details.

In the same spirit, for a k-distribution \mathcal{W} of dimension p and j a natural number with $1 \leqslant$ $j \leqslant p+1$, we set $P_{j}^{\mathcal{W}}:=\operatorname{tang}\left(\mathcal{W}, \mathcal{H}_{p-j+2}\right)$ where $\operatorname{tang}\left(\mathcal{W}, \mathcal{H}_{i}\right):=\pi\left(S_{\mathcal{W}} \cap S_{\mathcal{H}_{i}}\right)$. When $k=1$ we obtain the polar classes of the distribution \mathcal{W} given in [9] and also in [6].

In order to define the Gauss map associated to the distribution we consider $X=\mathbb{G}(p, n)^{k} / S_{k}$ the quotient of $\mathbb{G}(p, n)^{k}=\mathbb{G}(p, n) \times \cdots \times \mathbb{G}(p, n)$ by the equivalence relation which identifies $\left(\Lambda_{1}, \ldots, \Lambda_{k}\right)$ and $\left(\Lambda_{\tau(1)}, \ldots, \Lambda_{\tau(k)}\right)$, where $\tau \in S_{k}$ (the symmetric group in k elements). Then we define the Gauss map

$$
\begin{aligned}
\mathcal{G} \mathcal{W}: \mathbb{P}^{n} & \rightarrow X \\
x & \mapsto\left[T_{x}^{1} \mathcal{W}, \ldots, T_{x}^{k} \mathcal{W}\right] .
\end{aligned}
$$

Since \mathcal{W} is given locally by k holomorphic distributions of dimension p on the complement of a Zariski closed set, each coordinate of $\mathcal{G}_{\mathcal{W}}$ is locally the Gauss map associated to one of these distributions. Therefore $\mathcal{G}_{\mathcal{W}}$ is a rational map.

Let us consider the Schubert cycle

$$
\sigma_{j}^{p}=\sigma_{j}^{p}\left(L_{p-j+2}\right)=\left\{\Lambda \in \mathbb{G}(p, n): \operatorname{dim}\left(\Lambda \cap L_{p-j+2}\right) \geqslant j-1\right\}
$$

and the respective closed set in the quotient

$$
\Sigma_{j}^{p}=\Sigma_{j}^{p}\left(L_{p-j+2}\right)=\sigma_{j}^{p} \times \mathbb{G}(p, n)^{k-1} / S_{k} \subset X
$$

If U is the maximal Zariski open set where $\mathcal{G}_{\mathcal{W}}$ is regular, it is not hard to see that $P_{j}^{\mathcal{W}}=$ $\overline{\mathcal{G}_{\mathcal{W}_{\left.\right|_{U}}^{-1}\left(\Sigma_{j}^{p}\right)}}$.

Proposition 3.1. If a_{0}, \ldots, a_{n} and d_{0}, \ldots, d_{p} are the characteristic numbers of the subvariety V and the k-distribution \mathcal{W} respectively, then for any $j \in\{0, \ldots, q\}$ and any $s \in\{1, \ldots, p\}$ we have

$$
\operatorname{deg}\left(P_{j}^{V}\right)=a_{n-(q-j)}+a_{n-(q-j)-1}, \quad \operatorname{deg}\left(P_{s}^{\mathcal{W}}\right)=d_{s}+d_{s-1}
$$

In particular $\operatorname{deg}\left(P_{0}^{V}\right)=\operatorname{deg}(V)$ and $\operatorname{deg}\left(P_{1}^{\mathcal{W}}\right)=k+\operatorname{deg}(\mathcal{W})$.
Proof. It follows from the facts

$$
\operatorname{deg}\left(P_{j}^{V}\right)=\int_{M}[\operatorname{Con}(V)] \cdot\left[S_{\mathcal{H}_{q-j+2}}\right] \cdot h^{q-j}
$$

and

$$
\operatorname{deg}\left(P_{j}^{\mathcal{W}}\right)=\int_{M}\left[S_{\mathcal{W}}\right] \cdot\left[S_{\mathcal{H}_{p-j+2}}\right] \cdot h^{n-j}
$$

Let us assume now that the flag \mathcal{D} is sufficiently generic. We state now our main result which relates the characteristic numbers of V and \mathcal{W} when V is \mathcal{W}-invariant. We say that V is \mathcal{W}-invariant if $V \nsubseteq \operatorname{Sing} \mathcal{W}$ and $i^{*} \omega$ vanishes identically, where $i: V \hookrightarrow \mathbb{P}^{n}$ is the inclusion and ω is the twisted k-symmetric $(n-p)$-form defining \mathcal{W}.

Theorem 3.1. Suppose that \mathcal{W} is a k-distribution of dimension p on \mathbb{P}^{n} admitting an invariant projective subvariety V of dimension $q \geqslant p$ and fix $m \in\{1, \ldots, p\}$. If j is a number between 0 and $q-p$ such that $P_{q-p-j+m}^{V} \subseteq P_{m}^{\mathcal{W}}$ then $P_{q-p-j}^{V} \nsubseteq P_{m}^{\mathcal{W}}$ and

$$
\frac{a_{n-(p-m+j)}+a_{n-(p-m+j)-1}}{a_{n-(p+j)}+a_{n-(p+j)-1}} \leqslant d_{m}+d_{m-1} .
$$

In particular the inequality holds true for $j=0$.
Proof. Let j be a number between 0 and $q-p$. To simplify the notation let us fix $\lambda_{1}=p+j+2$ and $\lambda_{2}=p-m+2$. Hence $P_{q-p-j}^{V}=\overline{\mathcal{G}_{V_{\mid V_{s m}}^{-1}}\left(\sigma_{q-p-j}^{q}\left(L_{\lambda_{1}}\right)\right)}$ and $P_{m}^{\mathcal{W}}=\overline{\mathcal{G}_{\mathcal{W}_{U}}^{-1}\left(\Sigma_{m}^{p}\left(L_{\lambda_{2}}\right)\right)}$. We will first show that for a generic pair $\left(L_{\lambda_{1}}, L_{\lambda_{2}}\right) \in \mathbb{G}\left(n-\lambda_{1}, n\right) \times \mathbb{G}\left(n-\lambda_{2}, n\right)$ satisfying $L_{\lambda_{1}} \subset L_{\lambda_{2}}$, the dimension of $P_{q-p-j}^{V} \cap P_{m}^{\mathcal{W}}$ is at most $p+j-m$.

Let $\mathbb{F} \subset \mathbb{G}\left(n-\lambda_{1}, n\right) \times \mathbb{G}\left(n-\lambda_{2}, n\right)$ be the closed set of pairs satisfying $L_{\lambda_{1}} \subset L_{\lambda_{2}}$ and consider

$$
\mathcal{U}=\left\{\left(L_{\lambda_{1}}, L_{\lambda_{2}}, \Lambda, \Gamma\right) \in \mathbb{F} \times X \times \mathbb{G}(q, n): \Gamma \in \sigma_{q-p-j}^{q}\left(L_{\lambda_{1}}\right), \Lambda \in \Sigma_{m}^{p}\left(L_{\lambda_{2}}\right)\right\}
$$

If $\tilde{V}=V_{s m} \cap U$ then $P_{q-p-j}^{V} \cap P_{m}^{\mathcal{W}} \cap \tilde{V}=p_{1}\left(\psi^{-1}\left(L_{\lambda_{1}}, L_{\lambda_{2}}\right)\right)$ where p_{1} and ψ are the morphisms defined below

The unlabeled arrows are the corresponding natural projections. We note that $X \times \mathbb{G}(q, n)$ is an $\operatorname{aut}\left(\mathbb{P}^{n}\right)$-homogeneous space under the natural action. Since the vertical arrow $\mathcal{U} \rightarrow X \times \mathbb{G}(q, n)$ is an $\operatorname{aut}\left(\mathbb{P}^{n}\right)$-equivariant morphism the transversality of the general translate (cf. [8]) implies that

$$
\begin{aligned}
\operatorname{dim} \tilde{V} \times_{X \times \mathbb{G}(q, n)} \mathcal{U} & =\operatorname{dim} \tilde{V}+\operatorname{dim} \mathcal{U}-\operatorname{dim} X \times \mathbb{G}(q, n) \\
& =q+\operatorname{dim} \mathcal{U}-k \operatorname{dim} \mathbb{G}(p, n)-\operatorname{dim} \mathbb{G}(q, n)
\end{aligned}
$$

Since a fiber of the map $\mathcal{U} \longrightarrow \mathbb{F}$ is $\Sigma_{m}^{p} \times \sigma_{q-p-j}^{q}$ one obtains

$$
\operatorname{dim} \mathcal{U}=k \operatorname{dim} \mathbb{G}(p, n)-m+\operatorname{dim} \mathbb{G}(q, n)-(q-p-j)+\operatorname{dim} \mathbb{F} .
$$

The map ψ is dominant because by hypothesis given a generic pair $\left(L_{\lambda_{1}}, L_{\lambda_{2}}\right) \in \mathbb{F}$ we can take $x \in P_{q-p-j+m}^{V} \cap \tilde{V} \subseteq P_{m}^{\mathcal{W}} \cap P_{q-p-j}^{V} \cap \tilde{V}$. From this fact together with the above equalities we obtain $\operatorname{dim} \psi^{-1}\left(L_{\lambda_{1}}, L_{\lambda_{2}}\right)=p+j-m$ for generic pair in \mathbb{F}. Therefore

$$
\operatorname{dim} P_{q-p-j}^{V} \cap P_{m}^{\mathcal{W}} \cap \tilde{V} \leqslant \operatorname{dim} \psi^{-1}\left(L_{\lambda_{1}}, L_{\lambda_{2}}\right)=p+j-m
$$

This shows that $P_{q-p-j}^{V} \nsubseteq P_{m}^{\mathcal{W}}$. Furthermore, from the fact that $P_{q-p-j+m}^{V} \cap \tilde{V}$ is dense in $P_{q-p-j+m}^{V}$ and $P_{q-p-j+m}^{V}$ has pure dimension $p+j-m$ one obtains that each irreducible component of $P_{q-p-j+m}^{V}$ is an irreducible component of $P_{m}^{\mathcal{W}} \cap P_{q-p-j}^{V}$. To conclude the proof of the theorem we have just to apply Bezout's theorem and Proposition 3.1.

Corollary 3.1. Let \mathcal{W} be a k-distribution of dimension p on \mathbb{P}^{n} and V a smooth invariant hypersurface of degree d. Then for each $m \in\{1, \ldots, p\}$ we obtain

$$
(d-1)^{m} \leqslant d_{m}+d_{m-1}
$$

In particular,

$$
d \leqslant k+\operatorname{deg}(\mathcal{W})+1
$$

Proof. When V is a smooth hypersurface, it is well known that $\operatorname{deg}\left(P_{j}^{V}\right)=d(d-1)^{j}$ (cf. [13,16] or [14] for a modern approach). In addition, it follows from Theorem 3.1 that for each $m \in$ $\{1, \ldots, p\}$ we have

$$
\operatorname{deg}\left(P_{n-1-p+m}^{V}\right) \leqslant \operatorname{deg}\left(P_{n-1-p}^{V}\right)\left(d_{m}+d_{m-1}\right)
$$

Remark 3.1. This corollary generalizes the bound obtained by M.G. Soares for one-dimensional foliations in [15], where it has been considered one-dimensional projective foliations and their tangency locus with a pencil of hyperplanes. This tangency locus is an analogous for foliations of the polar classes for projective varieties. For a variety V of dimension q invariant by a onedimensional foliation \mathcal{F}, he compared their polar classes to get the relation

$$
\operatorname{deg}\left(P_{q-j}^{V}\right) \leqslant \operatorname{deg}\left(P_{q-j-1}^{V}\right) \cdot(\operatorname{deg}(\mathcal{F})+1)
$$

Where P_{k}^{V} is the k th polar class of V and j is some number between 0 and $q-1$, see [15, Theorem 1]. As a consequence the bound

$$
\operatorname{deg}(V) \leqslant \operatorname{deg}(\mathcal{F})+2
$$

was obtained for a smooth invariant hypersurface. Polar classes were also considered by R. Mol in [9] for holomorphic distributions of arbitrary dimension. He expressed these classes in terms of the Chern-Mather classes of the tangent sheaf of the distribution, moreover, Theorem 1 of [15] is generalized.

Also we remark that the bound

$$
d \leqslant \operatorname{deg}(\mathcal{W})+(n-p)+1
$$

has been proved by M. Brunella and L.G. Mendes in [2] for normal crossing hypersurfaces invariant by a p-dimensional foliation.

Remark 3.2. By the classical formulas for the polar classes of a smooth complete intersection V (see [13,16]), it is possible to obtains more explicit relations (similar to [9, Corollary 6.3]) between the degree of the homogeneous polynomials defining V and the characteristic numbers of \mathcal{W}.

Remark 3.3. ${ }^{1}$ Unlike the case of foliations, we cannot expect to bound the degree of non-smooth invariant subvarieties in terms of the degree of the web, even in the case of nodal curves in dimension two. To see this let us take the elliptic curve $E=\mathbb{C} /\langle 1, \tau\rangle$ and consider the foliation \mathcal{F}_{α} induced by the 1 -form $\omega=d y-\alpha d x$ on the complex torus $X=E \times E$, where $\alpha \in \mathbb{Q}$. Since X is smooth we have an embedding $X \hookrightarrow \mathbb{P}^{5}$ and if we fix a leaf C_{α} of \mathcal{F}_{α} one may take the

[^1]restriction of a generic linear projection to $\mathbb{P}^{2}, \pi_{\alpha}: X \rightarrow \mathbb{P}^{2}$, such that the image $D_{\alpha}=\pi\left(C_{\alpha}\right)$ would be an algebraic curve which has only nodal singularities. Projecting the foliation \mathcal{F}_{α} we obtain a d-web \mathcal{W}_{α}, where $d=\operatorname{deg}(X)>1$. Observe that
$$
\operatorname{deg}\left(\mathcal{W}_{\alpha}\right)=\operatorname{tang}\left(\mathcal{W}_{\alpha}, L\right)=\operatorname{tang}\left(\mathcal{F}_{\alpha}, H\right)=T^{*} \mathcal{F}_{\alpha} \cdot H+H^{2}
$$
where the last equality follows from [1, Proposition 2, p. 23], L is a generic line in \mathbb{P}^{2} and H is a hyperplane section in X; on the other hand the cotangent bundle $T^{*} \mathcal{F}_{\alpha}$ is the same for all these foliations, therefore $\operatorname{deg}\left(\mathcal{W}_{\alpha}\right)$ does not depend of α. Since that varying α we can grow the intersection number between C_{α} and the curve $C:=\{0\} \times E \subseteq X$, and therefore also the intersection between D_{α} and the fixed curve $\pi_{\alpha}(C)$, we deduce that D_{α} is a \mathcal{W}-invariant nodal curve in which $\operatorname{deg}\left(D_{\alpha}\right)$ increases and cannot be bound by the fixed number $\operatorname{deg}\left(\mathcal{W}_{\alpha}\right)$.

References

[1] M. Brunella, Birational Geometry of Foliations, Publ. Mat. IMPA, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2004.
[2] M. Brunella, L.G. Mendes, Bounding the degree of solutions to Pfaff equations, Publ. Mat. 44 (2000) 593-604.
[3] M.M. Carnicer, The Poincaré problem in the nondicritical case, Ann. of Math. (1994) 289-294.
[4] D. Cerveau, A. Lins Neto, Holomorphic foliations in \mathbb{P}^{2} having an invariant algebraic curve, Ann. Inst. Fourier 41 (4) (1991) 883-903.
[5] E. Esteves, S. Kleiman, Bounds on leaves of one-dimensional foliations, Bull. Braz. Math. Soc. 34 (1) (2003) 145169.
[6] T. Fassarella, J.V. Pereira, On the degree of polar transformations. An approach through logarithmic foliations, Selecta Math. (N.S.) 13 (2007) 239-252.
[7] P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley Classics Lib., 1994.
[8] S. Kleiman, The transversality of a general translate, Compos. Math. 28 (1974) 287-297.
[9] R.S. Mol, Classes polaires associées aux distributions holomorphes de sous-espaces tangents, Bull. Braz. Math. Soc. 37 (1) (2006) 29-48.
[10] J.V. Pereira, L. Pirio, An Invitation to Web Geometry, Publ. Mat. IMPA, 2009.
[11] R. Piene, Polar classes of singular varieties, Ann. Sci. Ecole Norm. Sup. 11 (1978) 247-276.
[12] H. Poincaré, Sur l'intégration algébrique des équations différentielles du primier ordre et du primier degré, Rend. Circ. Mat. Palermo 5 (1891) 161-191.
[13] F. Severi, Sulle l'intersezione delle varietà algebriche e sopra i loro caratteri e singolarità projettive, Mem. di Torino (1903) 61-118.
[14] M.G. Soares, Projective varieties invariant by one-dimensional foliations, Ann. of Math. 152 (2000) 369-382.
[15] M.G. Soares, On the geometry of Poincaré's problem for one-dimensional projective foliations, An. Acad. Brasil. Cienc. 73 (4) (2001) 475-482.
[16] J.A. Todd, The arithmetical invariants of algebraic loci, Proc. London Math. Soc. 43 (1937) 190-225.

[^0]: * Corresponding author.

 E-mail addresses: maycolfl@impa.br (M. Falla Luza), tfassarella@id.uff.br (T. Fassarella).

[^1]: ${ }^{1}$ The authors are grateful to Jorge Vitório Pereira for having pointed out this remark.

