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Abstract

A model from combustion theory consisting of a nonlinear elliptic equation and boundary conditions of Dirichlet
type, is considered. Upper and lower solutions for the problem are obtained by solving linear elliptic equations.
These solutions are used to obtain analytical bounds for the extinction and ignition limits. Numerical results are
presented for the slab, cylindrical and spherical geometries. Results compare very well with existing ones in the
literature.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A well-known problem in combustion theory which describes the steady reactive diffusive problem
for a nonisothermal permeable catalyst pellet with first-order Arrhenius kinetics, is the nonlinear elliptic
equation

∇2� + �2(1 + � − �)e�(�−1)/� = 0 in �, (1)

� = 1 on ��. (2)
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Here � is a bounded domain, and �� is the boundary of �, � is the temperature of the reacting species, and �,
�, and � are nonnegative parameters which represent, respectively, the chemical heat release, the activation
energy of the reaction, and the Thiele modulus. All variables are considered nondimensionalized. The full
derivation of the system and extensive literature for early work can be found in [2], and discussions on the
system can be found in [4,5,8]. Recently, Al-Refai [1] has shown the existence of a nonnegative solution
for the problem, and derived upper and lower solutions using comparison theory. By asking that g(�)/� be
a decreasing function of �, a necessary and sufficient condition for the uniqueness of � has been derived
in [3], where g(�) = �2(1 + � − �)e�(�−1)/�. The condition is � < 4 + 4/�. An interesting phenomenon of
the system is the multiplicity of its steady-state solutions. The literature shows that for some domain of
� and � there exists �0 and �0 such that the system has multiple solutions for �0 ����0. The multiplicity
bounds �0 and �0 correspond to extinction and ignition limits, respectively. For � > �0 there exists a unique
solution called the upper branch solution or explosion branch, and for � < �0 the lower branch solution
is unique and it is known as the quenching branch.For �0 ����0 the multiple solutions are known as
the middle solutions. The number of middle solutions depends on the geometry of the domain �. For
the infinite slab and circular cylinder there are three middle solutions. This result was found in [6] by
drawing the graph of the response (maximum of � on �) versus �, and noticing that the graph has the S
shape. Similar discussions are made in [7] for the spherical geometry, and it is noted that the number of
middle solutions may be very large. Of interest are the values of �0 and �0. An attempt to evaluate these
values was made in [6,7] for the three geometries, by deriving asymptotic expansion of the solution for
large �.

In this paper, we consider the problem in the slab [0, 1], circular cylinder with radius 1, and unit
sphere. We focus on the values of � and � for which multiple solutions may occur. In Section 2, we
construct upper and lower solutions for the problem using comparison theory. And then derive a lower
bound �∗ for �0 and an upper bound �∗ for �0, where �∗��0 ��0 ��∗. In Section 3, we present some
numerical results for the problem in the three geometries. Finally, we write some concluding remarks
in Section 4.

2. Upper and lower solutions

We substitute u = � − 1 into (1) and (2) and obtain

Pu = ∇2u + �2g(u) = 0, x ∈ �, (3)

u = 0, x ∈ ��, (4)

where g(u) = (� − u)e�u/(1+u). We use the Maximum Principle for elliptic equations to construct upper
and lower solutions for the problem, see [9, p. 151]. Let v and w be such that

Pv�0�Pw, x ∈ �′ and w�0�v, x ∈ ��,

then v and w are upper and lower solutions for u, respectively. The following lemma from comparison
theory of elliptic equations [9, p. 64] will be used throughout this paper.

Lemma 1. Let y satisfy the differential inequality

(L + h)[y] = L[y] + h(x)y�0,
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where h(x)�0, is a bounded function and L is uniformly elliptic in a bounded domain � with bounded
coefficients. If y attains a nonnegative maximum M at an interior point of �, then y = M.

A well-known result for the solution u which can be proved using Lemma 1 is that 0�u��.

2.1. Lower solution and bound for the extinction limit

We use comparison theory to construct a lower solution for the problem. A similar discussion is given
in [10] for another problem in combustion theory.

Lemma 2. Let �1 and �1 be the first eigenvalue and the corresponding normalized eigenfunction of

∇2� = −��, x ∈ �,

�(x) = 0, x ∈ ��.

Let �1m > 0 be the maximum of �1 on �, and k be the solution (the smallest solution if there is more than
one) of

�1k

�2 = g(k), (5)

then w = k�1/�1m is a lower solution of (3) and (4).

Proof. Let r(u) = (�1/�2)u. Since r(0) = 0 and g(0) = ��0, we have r(u) = (�1/�2)u�g(u), for u�k,

and hence (�1/�2)k�1/�1m �g(k�1/�1m), see Fig. 1. Now,

P

(
k

�1

�1m

)
= −�1k

�1

�1m
+ �2g

(
k

�1

�1m

)
�0,

k 
k 
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βu 
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Fig. 1. All possible cases for the value of k, obtained by plotting (�1/�2)u and g(u) versus u.
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Fig. 2. Values of u∗
1 and u∗

2, obtained by plotting g(u), (�1/(�∗)2)u and (1/�2∗�m)u versus u.

which together with w = 0 on ��, proves that w is a lower solution for any solution of (3) and
(4). We have assumed that �1m > 0, otherwise, �1(x)�0, and we choose −�1(x) to be the first eigen-
function. �

In the following, we use Lemma 2 to derive an upper bound for �0. Let u∗
1 ∈ [0, �] be the smallest

solution of �1u/�2 = g(u) and �1/�2 = g′(u), see Fig. 2. Solving the two equations simultaneously,
we have

u∗
1 = �(� − 2) − √

��(�� − 4� − 4)

2(� + �)
(6)

and the corresponding value of �,

(�∗)2 = �1u
∗
1

� − u∗
1

e−�u∗
1/(1+u∗

1). (7)

The values of k in Eq. (5) are between 0 and �. By saying k is large we mean k is close to �, and it is
small, when it is close to 0. Let ‖f ‖� = sup{f (x) : x ∈ �} denotes the supremum norm on �, and
�= inf{‖um

i ‖�}, where um
i : i =1, 2, . . . denote the middle solutions of the problem. Let uq and up denote

the quenching and upper branch solutions, respectively. Therefore, we have w = k�1/�1m �uq ���up.

The temperature of uq and � are too low, see [7]. Hence for large k, w = k�1/�1m is a lower solution
only for up, that is, the quenching branch and middle solutions do not exist. It is clear from Fig. 2 that if
� > �∗, then Eq. (5) has a unique solution, where the value of k is large. Hence the unique upper branch
solution is obtained, and this implies that �∗ is an upper bound for �0. Moreover, if � < 4 + 4/�, then the
real solutions u∗

1 and �∗ do not exist, and the solution u is unique.This is exactly the same result which
has been obtained in [3]. A remarkable note here is that u∗

1 does not depend on �.
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2.2. Upper solution and bound for the ignition limit

Let u∗
2 be the largest solution of u/(�m�2) = g(u) and 1/(�m�2) = g′(u), see Fig. 2. Then

u∗
2 = �(� − 2) + √

��(�� − 4� − 4)

2(� + �)
(8)

and the corresponding value of �,

�2∗ = u∗
2

�m(� − u∗
2)

e−�u∗
2/(1+u∗

2). (9)

It is rapidly seen that the values of �∗ and �∗ depend on �, � and the bounded domain �.

Lemma 3. The function g(u) = (� − u)e�u/(1+u) is an increasing function on [0, u∗
2], for � > 4 + 4/�.

Proof. The function

g′(u) = −e�u/(1+u)

[
u2 + (2 + �)u + 1 − ��

(1 + u)2

]

has only one positive root u+ = (−(2 + �) + √
�(� + 4 + 4�)

)
/2. Since g′(0) = −(1 − ��) > 0 and

g′(∞) < 0, we have g is increasing on [0, u+] and decreasing otherwise. Now, g′(u∗
2) = 1/(�m�2) > 0,

and hence u∗
2 ∈ [0, u+]. �

The following lemma helps us in deriving a lower bound for �0.

Lemma 4. Let � be the solution of

∇2� = −1, x ∈ �,

� = 0, x ∈ ��,

and �m be the maximum of � on �. For � < �∗/
√

�m�1, let k ∈ (0, u∗
2) be the solution (the smallest

solution if there is more than one) of

k

�2�m
= g(k), (10)

then ��0, and v = (k/�m)� is an upper solution of (3) and (4).

Proof. To show that ��0, let 	 = −�, then 	 satisfies ∇2	 = 1�0, and 	 = 0 on ��. Applying Lemma
1, we get 	�0 and hence ��0.

Since (k/�m)� ∈ [0, u∗
2] and g(u) is increasing on this interval, we have

P

(
k

�m
�

)
= − k

�m
+ �2g

(
k

�m
�

)
� − k

�m
+ �2g(k) = 0,

which proves v is an upper solution. �
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Note here that for �∗ < � < �∗/
√

�m�1, Eq. (10) has two solutions in [0, u∗
2], each of them leads to an

upper solution of (3) and (4), and we choose the smallest one to have a better bound. For � < �∗, Eq. (10)
has a unique solution, where the value of k is small. Therefore, v = (k/�m)� is an upper solution for the
unique lower branch solution, that is �∗ is a lower bound for �0.

2.3. The more general case

When � > �∗/
√

�m�1, Lemma 4 is not any more applicable to get an upper solution, since the value of
k does not exist. The following lemma treats the problem.

Lemma 5. Let � be a solution of

∇2� + �2(� − �)e��/(1+�) = 0, (11)

� = 0 on ��, (12)

then 0����, and it is an upper solution of (3) and (4).

Proof. Let w1 = −�, then w1 satisfies

∇2w1 − �2e��/(1+�)w1 = �2�e��/(1+�)�0,

w1 = 0 on ��.

Applying Lemma 1, we have w1 �0 and ��0.

Let w2 = � − �, then w2 satisfies

∇2w2 − �2e��/(1+�)w2 = 0,

w2 = −� on ��.

Again by Lemma 1, we have w2 �0, and ���.

Using 0����, we have

�2(� − �)e��/(1+�)��2(� − �)e��/(1+�)

and hence

∇2� + �2(� − �)e��/(1+�)�0

and the result is obtained. �

3. Numerical results

For various values of � and �, we compute �∗ and �∗, where �∗��0 ��0 ��∗.To facilitate the computation
we assume that the Laplacian operator depends only on the radial coordinate for the unit sphere and
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Table 1
The Laplacian operator, first eigenvalue, first eigenfunction, �1m, � and �m for the three geometries

Slab Sphere Cylinder

∇2 �

�x2
�

�r2 + 2

r

�

�r

�

�r2 + 1

r

�

�r

�1
√

2 sin(
x)
1√
2


sin(
r)

r
J0(�0r)

�1m
√

2
√


/2 1

�1 
2 
2 �2
0

� 1
2 x(1 − x) 1

6 (1 − r2) 1
4 (1 − r2)

�m
1
8

1
6

1
4

Table 2
The lower bound �∗ and the upper bound �∗ for � = 0.25 and different values of �

� �∗ �∗

Slab Sphere Cylinder Slab+Sphere Cylinder

20 0.930670 0.805983 0.658083 1.033712 0.791287
25 0.670551 0.580714 0.474151 0.870196 0.666117
30 0.458682 0.397231 0.324337 0.771595 0.590640
35 0.306023 0.265024 0.216391 0.701456 0.536950
40 0.200952 0.174029 0.142094 0.647911 0.495963
45 0.130487 0.113005 0.092269 0.605189 0.463260
50 0.084026 0.072769 0.059416 0.570029 0.436345
60 0.034214 0.029630 0.024193 0.515011 0.394230

Table 3
The lower bound �∗ and the upper bound �∗ for � = 0.5 and different values of �

� �∗ �∗

Slab Sphere Cylinder Slab+Sphere Cylinder

12 0.849581 0.735759 0.600745 0.943647 0.722343
15 0.612126 0.530117 0.432839 0.794377 0.608079
20 0.320372 0.277450 0.226537 0.659631 0.504934
25 0.159023 0.137718 0.112447 0.577540 0.442095
30 0.076705 0.066429 0.054239 0.520363 0.398327
35 0.036329 0.031461 0.025688 0.477498 0.365515
40 0.016988 0.014712 0.012012 0.443790 0.339712
50 0.003619 0.003134 0.002559 0.393489 0.301208

circular cylinder. The assumption of radially symmetric geometries has been used by many authors, see
[6,7]. Table 1 shows �1, �1m, �1, � and �m for the three geometries, where J0(�0r) is the Bessel function
of order zero, and �0 = 2.404825 . . . is the first zero of J0(r). Tables 2 and 3 show the values of �∗ and �∗
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Table 4
The analytical bounds �∗ and �∗, and the asymptotic bounds �0 and �0, for � = 0.5 and � is the circular cylinder

� �0 �∗ �0 �∗

100 0.200000 0.209494 2.467889 × 10−6 8.843198 × 10−7

150 0.163299 0.170153 8.898077 × 10−10 2.617109 × 10−10

200 0.141421 0.146975 2.851768 × 10−13 7.282759 × 10−14

250 0.126491 0.131256 8.568476 × 10−17 1.960198 × 10−17

300 0.115470 0.119697 2.471520 × 10−20 5.166708 × 10−21

400 0.100000 0.103529 1.903976 × 10−27 3.451394 × 10−28

500 0.089443 0.092529 1.375087 × 10−34 2.231199 × 10−35

Table 5
The analytical bounds �∗ and �∗, and the asymptotic bounds �0 and �0, for � = 0.5 and � is the unit sphere

� �0 �∗ �0 �∗

100 0.253850 0.273677 3.631542 × 10−6 1.250617 × 10−6

150 0.207268 0.222282 1.309368 × 10−9 3.701150 × 10−10

200 0.179499 0.192004 4.196428 × 10−13 1.029938 × 10−13

250 0.160549 0.171469 1.260866 × 10−16 2.772138 × 10−17

300 0.146561 0.156369 3.636886 × 10−20 7.306829 × 10−21

400 0.126925 0.135247 2.801735 × 10−27 4.881008 × 10−28

500 0.113525 0.120877 2.023465 × 10−34 3.155392 × 10−35

for � = 0.25, 0.5 and different values of � for the three geometries. From the tables one can see that, as �
increases, the difference (�∗ − �∗) increases as well. That is, the domain of � for which the system may
have multiple solutions increases with �. Moreover, as � becomes large, �∗ goes to zero, and the possibility
of getting the quenching branch is reduced. Also, as � increases we need less values of � to obtain multiple
solutions. The values of �∗ and �∗ for large � are presented in Tables 4 and 5, and compared with the values
of �0 and �0 obtained in [6,7] using asymptotic expansion techniques.One can see that for all values of � we
have �∗ < �0 < �0 < �∗, and the analytical bounds �∗ and �∗ are close to the asymptotic bounds �0 and �0,
respectively.

Figs. 1–3 show the upper and lower solutions for the problem obtained by using Lemmas 2 and 4, for the
three geometries. When � = 0.25 and � = 25, the values of �∗/

√
�m�1 are 0.7833, 0.6783 and 0.5489, for

the slab, sphere and cylinder, respectively, and �=0.4 < �∗/
√

�m�1. For the sphere and cylinder, the upper
and lower solutions are monotonically decreasing functions, with maximum values occurring at r=0, and
we expect the exact solution to have the same behavior (Figs. 4 and 5). This agrees with the results obtained
in [6,7]. For the slab, the maximum values of the upper and lower solutions occurring at x = 1

2 . In general
the temperature is maximal at the center and decreases as we move towards the boundary in the three
geometries.
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Fig. 3. Upper and lower solutions for � = 0.25, � = 25 and � = 0.4, when � is the slab.
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Fig. 4. Upper and lower solutions for � = 0.25, � = 25 and � = 0.4, when � is the unit sphere.
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Fig. 5. Upper and lower solutions for � = 0.25, � = 25 and � = 0.4, when � is the circular cylinder.

4. Concluding remarks

We have used comparison theory to study a nonlinear elliptic equation arising from the theory of catalyst
pellets reaction, for the case where multiple solutions may occur. We constructed a lower solution for the
problem using the first eigenfunction of the associated Laplacian operator with homogeneous Dirichlet
boundary conditions. This solution is used to obtain an analytical upper bound �∗ for the ignition limit
�0. We also, constructed an upper solution for � < �∗/

√
�m�1, and used it to obtain a lower bound �∗ for

the extinction limit �0. A general upper solution which does not depend on the value of � is given by
approximating the nonlinear term f (u), and solving a linear elliptic equation. The bounds �∗ and �∗ are
easily constructed as shown in (7) and (9), and depend on �, � and the domain �. They give us sufficient
conditions to obtain the quenching and explosion branches. They also estimate very well the values of �0
and �0 as shown in Tables 4 and 5. Many properties of the system are illustrated through the text, and in
all cases there is good agreement with previous results.
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