Leisure-Time Running Reduces All-Cause and Cardiovascular Mortality Risk

Duck-chul Lee, PhD,* Russell R. Pate, PhD, \dagger Carl J. Lavie, MD, $\ddagger \S$ Xuemei Sui, MD, PhD, \dagger Timothy S. Church, MD, PHD, \S Steven N. Blair, PED $\|$

ABSTRACT

BACKGROUND Although running is a popular leisure-time physical activity, little is known about the long-term effects of running on mortality. The dose-response relations between running, as well as the change in running behaviors over time, and mortality remain uncertain.

OBJECTIVES We examined the associations of running with all-cause and cardiovascular mortality risks in 55,137 adults, 18 to 100 years of age (mean age 44 years).

METHODS Running was assessed on a medical history questionnaire by leisure-time activity.
RESULTS During a mean follow-up of 15 years, 3,413 all-cause and 1,217 cardiovascular deaths occurred. Approximately 24% of adults participated in running in this population. Compared with nonrunners, runners had 30% and 45% lower adjusted risks of all-cause and cardiovascular mortality, respectively, with a 3 -year life expectancy benefit. In doseresponse analyses, the mortality benefits in runners were similar across quintiles of running time, distance, frequency, amount, and speed, compared with nonrunners. Weekly running even $<51 \mathrm{~min},<6$ miles, 1 to 2 times, <506 metabolic equivalent-minutes, or <6 miles/h was sufficient to reduce risk of mortality, compared with not running. In the analyses of change in running behaviors and mortality, persistent runners had the most significant benefits, with 29% and 50% lower risks of all-cause and cardiovascular mortality, respectively, compared with never-runners.

CONCLUSIONS Running, even 5 to $10 \mathrm{~min} /$ day and at slow speeds <6 miles $/ \mathrm{h}$, is associated with markedly reduced risks of death from all causes and cardiovascular disease. This study may motivate healthy but sedentary individuals to begin and continue running for substantial and attainable mortality benefits. (J Am Coll Cardiol 2014;64:472-81)
© 2014 by the American College of Cardiology Foundation.

Running is a popular and convenient leisure-time physical activity with a consistent growth, despite some public concerns about the possible harmful effects of running (1). It is well established that physical activity has substantial health benefits. The World Health Organization and the U.S. government
have recently released evidence-based Physical Activity Guidelines, recommending at least 150 min of moderateintensity or 75 min of vigorous-intensity aerobic activity per week, or an equivalent combination of both $(2,3)$.

SEE PAGE 482

[^0]However, compared with the compelling evidence on moderate-intensity activity and health (4), it is unclear whether there are health benefits to vigorousintensity activity, such as running, for $<75 \mathrm{~min}$ per week.

This study was conducted to investigate whether leisure-time running is associated with all-cause and cardiovascular disease (CVD) mortality risks, whether there is a dose-response relation between running and mortality, and whether different patterns of change in running behaviors are associated with mortality.

METHODS

study population. The Aerobics Center Longitudinal Study is a prospective, observational cohort study designed to examine the effects of physical activity and fitness on various health outcomes. Participants are self-referred or are referred by their employers or physicians for periodic preventive medical examinations at the Cooper Clinic in Dallas, Texas. This cohort is primarily college-educated, nonHispanic white adults from middle to upper socioeconomic strata (5). The current study participants were men and women 18 to 100 years of age (mean age 44 years) at baseline who received at least 1 extensive medical examination between 1974 and 2002. Among 60,603 participants, we excluded 3,294 individuals reporting myocardial infarction (MI), stroke, or cancer at baseline and 2,172 individuals with <1 year of mortality follow-up to minimize potential bias due to serious undetected underlying diseases on mortality. The final sample included 55,137 individuals (26% women) for analysis of all-cause mortality and 52,941 individuals for analysis of CVD mortality, after 2,196 individuals who died from causes other than CVD were excluded. The Cooper Institute Institutional Review Board reviewed and approved the study annually. All participants gave written informed consent for the examinations and follow-up study.

ASSESSMENT OF RUNNING. Running or jogging activity during the past 3 months was assessed at baseline by the physical activity questionnaire, including 4 questions about duration, distance, frequency, and speed as part of the medical examination. For calculation of the total weekly running time, the average duration of running was multiplied by the frequency. For calculation of the total amount of running, the metabolic equivalent (MET) value for a given speed was multiplied by the weekly running time (6). Participants were classified into 6 groups: nonrunners and 5 quintiles of weekly running time (minutes), distance (miles), frequency (times), amount (MET-minutes), and speed (miles/h) in runners. For complete analyses of running characteristics
and mortality, we defined runners as those who reported all 4 detailed running questions and nonrunners as those who did not report any running questions. We also examined the associations between change in running behaviors and mortality in a subgroup of 20,647 participants from the overall sample of 60,603 who received at least 2 medical ex-

ABBREVIATIONS

 AND ACRONYMSBMI = body mass index CVD = cardiovascular disease MET = metabolic equivalent PAF = population attributable fraction aminations between 1974 and 2002 and were free from MI, stroke, or cancer at both examinations. We defined 4 categories of change in running behaviors using the baseline and last follow-up examination: "remained nonrunners" were nonrunners at both examinations, "became nonrunners" were runners only at the baseline examination, "became runners" were runners only at the last examination, and "remained runners" were runners at both examinations. Total amount of other physical activities except running (cycling, swimming, walking, basketball, racquet sports, aerobic dance, and other sports-related activities) was classified into 3 groups: 0 , 1 to 499 , and ≥ 500 METminutes per week based on the Physical Activity Guidelines (3). To reduce confounding bias in the association between running and mortality, the total amount of other physical activities except running was adjusted in all multivariable regression models. Our physical activity assessment has been described elsewhere (7) and was formerly validated and shown to correlate to measured cardiorespiratory fitness and physiological variables $(5,8)$.

CLINICAL examination. Physicians conducted comprehensive examinations. Resting blood pressure was recorded using the standard auscultation method. Blood glucose and cholesterol were analyzed using automated bioassays after $\geq 12 \mathrm{~h}$ of overnight fast. Body mass index (BMI) was calculated from measured weight and height $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$. Cardiorespiratory fitness was assessed using a maximal treadmill exercise test (9). Standardized medical questionnaires were used to assess health behaviors (smoking, alcohol consumption, and leisure-time physical activity), physician-diagnosed medical conditions, and parental history of CVD.
mortality surveillance. Participants were followed for mortality from the baseline examination through the date of death for decedents or December 31, 2003, for survivors using the National Death Index. For the analysis of change in running behaviors and mortality, we followed for mortality from the last follow-up examination through the date of death or 2003. Death from CVD was defined by the International Classification of Diseases-9th edition (ICD-9) codes 390-449.9 and ICD-10 Revision codes Ioo-I78.
statistical analysis. Multivariable Cox proportional hazard models were used to estimate hazard ratios (HRs) and 95\% CI of mortality across running categories. Population attributable fractions (PAFs) and survival differences for running and other mortality predictors determined by the baseline assessment were estimated, as described by Bruzzi et al. (10) and using the risk advancement period approach (11). We tested effect modification by sex on the associations between running and mortality using interaction terms in the regressions and by comparing risk estimates in the sex-stratified analyses. Based on no significant interactions observed, pooled analyses were performed. The proportional hazard assumptions were satisfied by comparing the log-log survival plots. SAS software (SAS Institute, Inc., Cary, North Carolina) was used for all analyses, and 2 -sided p values <0.05 were deemed significant.

RESULTS

There were 3,413 all-cause deaths and 1,217 CVD deaths during the mean (interquartile range) followup of 14.7 (6.5 to 21.7) years and 14.6 (6.3 to 21.8) years, respectively. At baseline, runners were more likely to be men, younger, and leaner; were less likely to smoke and participate in other types of physical activities; had lower prevalence of chronic diseases and had higher cardiorespiratory fitness levels (Table 1)

Compared with nonrunners, runners had 30\% and 45% lower risks of all-cause and CVD mortality, respectively, after adjustment for potential confounders (Fig. 1). These associations were consistent regardless of sex, age, BMI, health conditions, smoking status, and alcohol consumption. We estimated PAFs for running and other mortality predictors, such as smoking, overweight/obesity, and

TABLE 1 Population Characteristics by Quintile of Weekly Running Time

Characteristic	Nonrunners (0)	Quintile of Running Time (min/week)					
		$\begin{gathered} 1 \\ (<51) \end{gathered}$	$\begin{gathered} 2 \\ (51-80) \end{gathered}$	$\begin{gathered} 3 \\ (81-119) \end{gathered}$	$\begin{gathered} 4 \\ (120-175) \end{gathered}$	$\begin{gathered} 5 \\ (\geq 176) \end{gathered}$	
Female	29.1	12.4	15.5	14.4	15.9	17.9	
Age, yrs	45 ± 11	40 ± 9	41 ± 9	42 ± 9	42 ± 9	43 ± 9	
Body mass index, $\mathrm{kg} / \mathrm{m}^{2 *}$	26.3 ± 4.7	25.2 ± 3.2	25.0 ± 3.2	24.8 ± 3.0	24.6 ± 3.1	23.9 ± 2.9	
<25.0	42.3	49.9	53.1	55.4	58.1	67.9	
25.0-29.9	40.6	42.6	40.3	39.2	36.4	28.8	
≥ 30.0	17.1	7.5	6.6	5.4	5.5	3.3	
Smoking status							
Never	53.9	58.1	54.8	54.1	55.5	54.5	
Former	27.3	29.0	32.8	35.4	36.1	38.5	
Current	18.8	12.9	12.4	10.5	8.4	7.0	
Heavy alcohol drinking \dagger	17.2	19.3	18.2	19.2	18.4	17.9	
Total amount of other physical activities except running (MET-min/week) \ddagger							
0	59.0	61.6	69.1	72.4	71.8	72.1	
1-499	16.6	11.2	9.9	8.6	8.3	6.6	
≥ 500	24.4	27.2	21.0	19.0	19.9	21.3	
Systolic blood pressure, mm Hg	120 ± 15	118 ± 13	119 ± 14	119 ± 14	120 ± 14	120 ± 14	
Diastolic blood pressure, mm Hg	81 ± 10	79 ± 9	79 ± 10	79 ± 9	79 ± 9	79 ± 9	
Hypertension§	31.6	22.1	22.9	24.0	24.2	23.9	
Fasting glucose, mg/dl	99.7 ± 19.1	97.1 ± 11.8	97.5 ± 13.0	97.3 ± 11.8	97.2 ± 11.6	97.0 ± 10.6	
Diabetes \|		6.2	3.4	3.3	2.8	3.0	2.9
Total cholesterol, mg/dl	208.5 ± 40.8	200.3 ± 38.4	201.3 ± 38.9	201.7 ± 38.1	200.3 ± 38.4	199.2 ± 37.8	
Hypercholesterolemiađ	29.3	20.8	21.1	21.5	21.5	19.6	
Abnormal electrocardiogram\#	8.7	4.9	4.8	5.1	4.5	5.8	
Parental cardiovascular disease	27.6	23.0	23.5	26.2	27.5	27.4	
Cardiorespiratory fitness (maximal METs)**	10.2 ± 2.2	12.5 ± 1.9	12.8 ± 2.0	13.2 ± 2.1	13.6 ± 2.2	14.6 ± 2.6	

[^1]chronic diseases. Not running was almost as important as hypertension, accounting for 16% of all-cause and 25% of CVD mortality (Table 2). Also, nonrunners had 3 years' lower life expectancy compared with runners after adjustment for other mortality predictors.

In the dose-response analyses (Table 3), runners across all 5 quintiles of weekly running time, even the lowest quintile of $<51 \mathrm{~min} /$ week had lower risks of all-cause and CVD mortality compared with nonrunners. However, these mortality benefits were similar between lower and higher doses of weekly running time. In fact, among runners (after nonrunners were excluded in the analyses), there were no significant differences in HRs of all-cause and CVD mortality across quintiles of weekly running time (all p values >0.10). In additional analyses using weekly running times of $<60,60$ to 119,120 to 179 , and $\geq 180 \mathrm{~min}$, we found similar trends with the corresponding HRs of 0.73 ($95 \% \mathrm{CI}$: 0.61 to 0.86), 0.65 (95% CI: 0.56 to 0.75), 0.71 (95% CI: 0.59 to 0.86), and 0.76 (95% CI: 0.63 to 0.92) for all-cause mortality and 0.46 (95% CI: 0.33 to 0.65), 0.56 (95% CI: 0.43 to 0.73), 0.54 (95\% CI: 0.38 to 0.77), and 0.65 (95\% CI: 0.46 to 0.92) for CVD mortality, respectively, compared with nonrunners after adjustment for confounders included in model 2. All analyses were adjusted for total physical activity levels achieved by other leisure-time activities besides running (model 2). When we excluded individuals who reported participating in other activities besides running (39\%), similar associations between weekly running time and mortality were found (all p values <0.05). Furthermore, we adjusted for possible intermediate variables, such as BMI and medical conditions, on the causal pathway between running and mortality (model 3). The associations were attenuated but remained significant at the lower levels of running time. However, to avoid overadjustment for intermediate variables, we did not adjust for those intermediate variables in the models for other analyses.

Runners across all quintiles of other running characteristics had lower risks of all-cause mortality compared with nonrunners (Fig. 2). Even the lowest quintiles of weekly running distance (<6 miles), frequency (1 to 2 times), amount (<506 MET-minutes), and speed (<6 miles $/ \mathrm{h}$) had significantly lower risks of all-cause mortality compared with not running. Similar trends were observed with the risk of CVD mortality.

Among 20,647 individuals who received 2 medical examinations over a mean (interquartile range) interval of 5.9 (1.5 to 8.5) years, 65% of participants remained nonrunners, 14% stopped running, 8%

started running, and 13% continued running, indicating that the more consistent group was the inactive nonrunners. Compared with never-runners (nonrunners at both examinations), runners at 1 or both examinations were more likely to have lower mortality risk (Fig. 3). Persistent runners over an

TABLE 2 HRs, PAFs, and Estimated Decreased Life Expectancy by Running and Other Mortality Predictors

Mortality Predictor	All-Cause Mortality*			Cardiovascular Mortality*		
	HR (95\% CI)	PAF, \% \dagger	Decreased Life Expectancy, yrs \ddagger	HR (95\% CI)	PAF, \% \dagger	Decreased Life Expectancy, yrs \ddagger
Nonrunner	1.24 (1.13-1.37)	16	3.0	1.40 (1.18-1.66)	25	4.1
Current smoker	1.67 (1.54-1.80)	11	7.0	1.69 (1.49-1.92)	12	6.3
Overweight or obesity	1.16 (1.08-1.25)	8	2.0	1.43 (1.26-1.63)	20	4.4
Parental CVD	1.20 (1.12-1.29)	7	2.5	1.38 (1.23-1.54)	13	3.9
Abnormal ECG	1.55 (1.42-1.70)	7	6.0	2.43 (2.14-2.77)	17	10.7
Hypertension	1.46 (1.36-1.57)	15	5.2	1.94 (1.72-2.18)	28	8.0
Diabetes	1.36 (1.23-1.51)	3	4.2	1.53 (1.31-1.79)	6	5.1
Hypercholesterolemia	1.06 (0.98-1.13)	2	0.7	1.32 (1.18-1.48)	10	3.4

*Hazard ratios (HRs), population attributable fractions (PAFs), and decreased life expectancy were adjusted for baseline age (years), sex, examination year, and all other mortality predictors in the table. The reference category for each HR and PAF analysis includes individuals who did not have the particular mortality predictor. †PAF was computed as $P_{c}\left(1-1 / H R_{\text {adj }}\right)$, for which P_{c} is the prevalence of the mortality predictor among mortality cases and $H R_{\text {adj }}$ is the multivariable $H R$ for mortality associated with the specified mortality predictor. P_{c} (ordered as listed in the table) was $83.7,28.4,59.6,40.9,19.0,47.4,12.6$, and 33.9 for all-cause mortality and $86.7,28.4,66.7,46.2,29.2$, $58.0,16.6$, and 41.6 for cardiovascular mortality. \ddagger Decreased life expectancy was compared by beta coefficients for mortality associated with each year of age, with the beta coefficient difference in mortality for each mortality predictor using the multivariable Cox proportional hazards model.
CVD = cardiovascular disease; ECG = electrocardiogram.
average of 5.9 years, however, had the most significant mortality benefit, with 29% and 50% lower risk of all-cause and CVD mortality, respectively.

DISCUSSION

There were 3 major findings from this study (Central Illustration). First, runners had consistently lower
risk of all-cause and CVD mortality compared with nonrunners. Second, running even at lower doses or slower speeds was associated with significant mortality benefits. Third, persistent running over time was more strongly associated with mortality reduction.

An earlier study found a 39% lower risk of all-cause mortality in 538 runners who were ≥ 50 years of age

TABLE 3 HRs of All-Cause and Cardiovascular Mortality by Quintile of Weekly Running Time

Group	Nonrunners (0)	Quintile of Running Time, min/week				
		$\begin{gathered} 1 \\ (<51) \end{gathered}$	$\begin{gathered} 2 \\ (51-80) \end{gathered}$	$\begin{gathered} 3 \\ (81-119) \end{gathered}$	$\begin{gathered} 4 \\ (120-175) \end{gathered}$	$\begin{gathered} 5 \\ (\geq 176) \end{gathered}$
All-cause mortality						
No. of participants	42,121	2,710	2,584	2,505	2,647	2,570
No. of deaths	2,857	110	116	103	112	115
Person-yrs of follow-up	602,752	41,653	42,197	41,082	40,473	40,426
Death rate*	45.9	31.7	29.7	29.8	31.5	33.8
Adjusted HR (95\% CI)						
Model $1+$	1.00	0.69 (0.57-0.83)	0.65 (0.54-0.78)	0.65 (0.53-0.79)	0.69 (0.57-0.83)	0.74 (0.61-0.89)
Model $2 \ddagger$	1.00	0.70 (0.58-0.85)	0.67 (0.55-0.80)	0.67 (0.55-0.82)	0.71 (0.58-0.86)	0.77 (0.63-0.92)
Model 3§	1.00	0.80 (0.66-0.97)	0.76 (0.63-0.91)	0.78 (0.64-0.95)	0.84 (0.69-1.02)	0.89 (0.74-1.07)
Cardiovascular mortality						
No. of participants	40,319	2,628	2,501	2,435	2,567	2,491
No. of deaths	1,055	28	33	33	32	36
Person-yrs of follow-up	575,352	40,497	40,766	39,983	39,275	39,233
Death rate*	17.8	8.0	9.0	10.3	9.1	11.6
Adjusted HR (95\% CI)						
Model $1+$	1.00	0.45 (0.31-0.66)	0.50 (0.36-0.71)	0.58 (0.41-0.82)	0.51 (0.36-0.72)	0.65 (0.46-0.91)
Model $2 \ddagger$	1.00	0.45 (0.31-0.66)	0.52 (0.37-0.73)	0.60 (0.42-0.84)	0.53 (0.37-0.75)	0.67 (0.48-0.93)
Model 3§	1.00	0.59 (0.40-0.86)	0.67 (0.47-0.95)	0.82 (0.58-1.16)	0.78 (0.54-1.11)	0.86 (0.62-1.21)

[^2]from the Runners Association database compared with 423 matched nonrunners from the Lipid Research Clinics database after adjustment for baseline age, sex, and functional ability (12). In our subsample of runners ≥ 50 years of age, we found 29% lower mortality risk, compared with nonrunners. The somewhat greater mortality benefits of running in the earlier study may be because runners from a running club were more likely to be health conscious, and physical activities other than running were not adjusted for in the analyses.
Recently, the Copenhagen City Heart Study found similar mortality benefits in 1,878 joggers, compared with nonjoggers after adjustment for a similar set of confounders used in our analyses (13). In their doseresponse analysis, they observed a U-shaped relation between jogging time and mortality. Compared with
no jogging, weekly jogging <150 min was associated with mortality reduction; however, ≥ 150 min of weekly jogging did not show significant mortality benefits, due to the small numbers of deaths and wide confidence intervals in that category. In our current study of more than 13,000 runners, we used quintiles of weekly running time to have an equal number of participants across different doses of running. We found a lower mortality risk in running $>150 \mathrm{~min} /$ week. However, mortality benefits were slightly less at the highest quintile of weekly running time of $\geq 176 \mathrm{~min} /$ week. Several studies have suggested slightly lower or no mortality benefit at higher doses of vigorousintensity activities. The Harvard Alumni Study reported a slightly higher death rate in individuals who participated in vigorous sports for ≥ 180 $\mathrm{min} /$ week compared with $<180 \mathrm{~min} /$ week (14).

FIGURE 2 HRs of All-Cause and Cardiovascular Mortality by Running Distance, Frequency, Total Amount, and Speed
Participants were classified into 6 groups: nonrunners and 5 quintiles of each running distance, frequency, total amount, and speed. All hazard ratios (HRs) were adjusted for baseline age (years), sex, examination year, smoking status (never, former, or current), alcohol consumption (heavy drinker or not), other physical activities except running (0,1 to 499 , or ≥ 500 MET-min/week), and parental cardiovascular disease (CVD) (yes or no). The bars indicate 95% CI, and HRs are shown next to the bars. MET = metabolic equivalent.

FIGURE 3 HRs of All-Cause and Cardiovascular Mortality by Change in Running Behaviors

Model 1 was adjusted for baseline age (years), sex, examination year, and interval between the baseline and last examinations (years). Model 2 was adjusted for model 1 plus baseline smoking status (never, former, or current), alcohol consumption (heavy drinker or not), other physical activities except running (0,1 to 499 , or ≥ 500 MET-min/week), and parental cardiovascular disease (CVD; yes or no). The number of participants (deaths) in remained nonrunners, became nonrunners, became runners, and remained runners were 13,522 (1,013), 2,847 (141), 1,578 (131), and 2,700 (113) for all-cause mortality and 12,885 (376), 2,753 (47), 1,485 (38), and 2,616 (29) for cardiovascular mortality, respectively. The bars indicate $95 \% \mathrm{Cl}$, and HRs are shown next to the bars.

A large study of 416,175 adults found no additional mortality benefits for $>50 \mathrm{~min} /$ day of vigorousintensity activities (15). Recent studies have proposed that excessive endurance sports may potentially induce adverse cardiovascular effects, such as arrhythmias and myocardial damage (16-19). In contrast, there are studies showing a linear doseresponse relation between running and CVD risk, with more benefits at higher doses of running $(20,21)$. Thus, future studies are needed on this dose-response issue about whether there is an optimum upper limit of vigorous-intensity activities, beyond which additional activity provides no further mortality benefits.

Another short report from the Copenhagen City Heart Study suggested a reduced mortality risk in 96 persistent male joggers (22). Our study now suggests
that even less persistent runners (runners at 1 of the 2 examinations over 5.9 years of interval) appeared to have some mortality benefits compared with neverrunners. However, persistent runners had the most mortality benefit.

Current physical activity guidelines recommend a minimum of $75 \mathrm{~min} /$ week of vigorous-intensity aerobic activity such as running for health benefits $(2,3)$. However, we found mortality benefits with even $<75 \mathrm{~min} /$ week of running. In additional analyses, we found that a minimum of 30 to $59 \mathrm{~min} / \mathrm{week}$ of running (5 to $10 \mathrm{~min} /$ day) was associated with lower risks of all-cause (HR: 0.72 ; $95 \% \mathrm{CI}: 0.59$ to 0.88) and CVD mortality (HR: 0.42; 95\% CI: 0.28 to 0.63), compared with no running. Several large studies have also suggested mortality benefits for $<75 \mathrm{~min} /$ week of vigorous-intensity aerobic activities ($15,21,23,24$). This finding has clinical and public health importance. Because time is one of the strongest barriers to participate in physical activity, this study may motivate more people to start running and continue to run as an attainable health goal for mortality benefits. Compared with moderateintensity activity, vigorous-intensity activity, such as running, may be a better option for time efficiency, producing similar, if not greater, mortality benefits in 5 to $10 \mathrm{~min} /$ day in many healthy but sedentary individuals who may find 15 to $20 \mathrm{~min} /$ day of moderate-intensity activity too time consuming. However, for the majority of the population who are inactive and may not want to participate in running as a daily routine, a progressive transitional phase (for example, starting with walking) may be useful to reduce injury risk. In the context of population mortality burden, we found that if all nonrunners became runners in this population, 16% of all-cause deaths and 25% of CVD deaths would be prevented, based on the estimation of PAFs. Because several studies reported acute MI or sudden cardiac death during running races, we examined the long-term effects of running on coronary heart disease mortality and sudden cardiac death. Compared with nonrunners, runners had 45% lower risk of coronary heart disease mortality (HR: 0.55; 95% CI: 0.44 to 0.69), after adjustment for potential confounders. In addition, the sudden cardiac death rate was approximately half in runners compared with nonrunners (1.5 vs. 0.7 per 10,000 personyears). Furthermore, runners had a 40% lower risk of stroke mortality (HR: $0.60 ; 95 \%$ CI: 0.39 to 0.92), compared with nonrunners after adjustment for confounders.

Several randomized controlled trials have reported that vigorous-intensity aerobic activities improved

Central illustration Leisure-Time Running Reduced All-Cause and Cardiovascular Mortality Risk
Hazard ratios (HRs) of all-cause and cardiovascular mortality by running characteristic (weekly running time, distance, frequency, total amount, and speed). Participants were classified into 6 groups: nonrunners (reference group) and 5 quintiles of each running characteristic. All HRs were adjusted for baseline age (years), sex, examination year, smoking status (never, former, or current), alcohol consumption (heavy drinker or not), other physical activities except running (0,1 to 499 , or ≥ 500 MET-minutes/week), and parental history of cardiovascular disease (yes or no). All p values for HRs across running characteristics were <0.05 for all-cause and cardiovascular mortality except for running frequency of ≥ 6 times/week ($p=0.11$) and speed of <6.0 miles/h ($p=0.10$) for cardiovascular mortality. Abbreviation as in Figure 2.
blood pressure, insulin sensitivity, and blood lipid profile (25-27). There is also convincing observational evidence of the benefits of running in preventing chronic diseases, including coronary heart disease, stroke, hypertension, diabetes, and hypercholesterolemia ($20,21,28$). Cardiorespiratory fitness is a strong morbidity and mortality predictor (9,29,30), as a possible link between running and mortality (12). We found that runners had approximately 30% higher cardiorespiratory fitness than nonrunners, and there was a linear increase of cardiorespiratory fitness with increasing running time ($\mathrm{p}<0.001$) at baseline (Fig. 4). Every 30 min of additional weekly running time was associated with 0.5 MET higher
cardiorespiratory fitness after accounting for age and sex ($p<0.001$). We found no mortality benefits of running after further adjustment for cardiorespiratory fitness, as we have previously observed in total leisure-time physical activity and mortality (7). Therefore, it is possible that the mortality benefits of running may be explained by improved cardiorespiratory fitness. However, running is a behavior and cardiorespiratory fitness is a physiological attribute, which also is affected by other factors such as genotype. Thus, the current findings of no additional mortality benefits at the higher doses of running compared with lower doses of running may be related to other factors besides cardiorespiratory fitness.

FIGURE 4 Baseline Cardiorespiratory Fitness by Weekly Running Time

Cardiorespiratory fitness was estimated from the final treadmill speed and grade during the maximal exercise test in a subsample of 50,995 participants. All p values for linear trend across weekly running time were <0.001 after adjustment for age and sex (not in sex-stratified analyses). Abbreviation as in Figure 2.

Strengths of this study include the very large sample size across a wide age range, extensive mortality follow-up, comprehensive analyses, and control of potential confounding factors including other nonrunning activities. In addition, we used various running characteristics to investigate the associations of both baseline and change in running with mortality.
study limitations. Our cohort consisted primarily of well-educated white adults from middle to upper socioeconomic strata, which may limit the generalizability of the findings. However, the potential for confounding by race/ethnicity, education, and income may be reduced in this population Physiological characteristics of our cohort are similar to those of other representative population samples (5). Another limitation is the use of self reported running during the past 3 months, which is longer than conventional physical activity questionnaires that include the previous 1 week or 1 month. Although running during the past 3 months could be more representative than running during the previous week or month, it may also increase the inaccuracy of self-report of running due to recall bias. People tend to overreport their leisuretime physical activities because it is a socially desirable behavior (31). However, this overreporting bias would likely induce an underestimation of the true mortality benefits of running toward the
null hypothesis. Runners are healthier than nonrunners in this population, with lower prevalence of chronic diseases at baseline (Table 1). It is possible that healthy people may run more, which could lead to reverse causality. However, we found consistent mortality benefits in runners in both healthy and unhealthy individuals (Fig. 1). Also, we observed mortality benefits after additional adjustment for medical conditions (Table 3). Another potential limitation is the lack of adequate dietary information.

CONCLUSIONS

We found consistent long-term mortality benefits of leisure-time running. This study underlined that running even at relatively low doses (5 to $10 \mathrm{~min} /$ day), below the current minimum guidelines of vigorous-intensity aerobic activity, was sufficient for substantial mortality benefits.

ACKNOWLEDGMENTS The authors thank the Cooper Clinic physicians and technicians for collecting the baseline data and staff at the Cooper Institute for data entry and data management.

REPRINT REQUESTS AND CORRESPONDENCE: Dr. Duck-chul Lee, Department of Kinesiology, College of Human Sciences, Iowa State University, 251 Forker Building, Ames, Iowa 50011. E-mail: dclee@iastate.edu.

PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: Leisuretime running, even at low intensity or pace, reduces allcause and cardiovascular mortality independently of sex, age, body mass index, health behavior, and medical conditions. Reduction in mortality is related to continued running activity over time, and running is as important as such other prognostic variables like smoking, obesity, or hypertension.

COMPETENCY IN INTERPERSONAL AND COMMUNICATION SKILLS: Healthcare providers should explain to patients the significant mortality benefits of running even as little as 5 to 10 min daily. Try to motivate patients to start running and to continue running as an attainable health goal.

TRANSLATIONAL OUTLOOK: Further research is needed to determine whether there is an upper limit to the amount of vigorous physical activity, beyond which additional exercise provides no further mortality reduction.

REFERENCES

1. Statistics. Running USA. Available at: http://www. runningusa.org/statistics. Accessed December 1, 2013.
2. Global Recommendations on Physical Activity for Health. World Health Organization. Available at: http://www.who.int/dietphysicalactivity/factsheet_ recommendations/en/. Accessed December 1, 2013.
3. Physical Activity Guidelines for Americans. U.S. Department of Health and Human Services. Available at: http://health.gov/paguidelines. Accessed December 1, 2013.
4. Physical Activity Guidelines Advisory Committee Report. U.S. Department of Health and Human Services. Available at: http://health.gov/paguidelines/ Report. Accessed December 1, 2013.
5. Blair SN, Kannel WB, Kohl HW, et al. Surrogate measures of physical activity and physical fitness. Evidence for sedentary traits of resting tachycardia, obesity, and low vital capacity. Am J Epidemiol 1989;129:1145-56.
6. Ainsworth BE, Haskell WL, Herrmann SD, et al. 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc 2011;43:1575-81.
7. Lee DC, Sui X, Ortega FB, et al. Comparisons of leisure-time physical activity and cardiorespiratory fitness as predictors of all-cause mortality in men and women. Br J Sports Med 2011;45: 504-10.
8. Stofan JR, DiPietro L, Davis D, et al. Physical activity patterns associated with cardiorespiratory fitness and reduced mortality: the Aerobics Center Longitudinal Study. Am J Public Health 1998;88: 1807-13.
9. Lee DC, Sui X, Artero EG, et al. Long-term effects of changes in cardiorespiratory fitness and body mass index on all-cause and cardiovascular disease mortality in men: the Aerobics Center Longitudinal Study. Circulation 2011;124:2483-90.
10. Bruzzi P, Green SB, Byar DP, et al. Estimating the population attributable risk for multiple risk factors using case-control data. Am J Epidemiol 1985;122:904-14.
11. Brenner H, Gefeller O, Greenland S. Risk and rate advancement periods as measures of exposure impact on the occurrence of chronic diseases. Epidemiology 1993;4:229-36.
12. Chakravarty EF, Hubert HB, Lingala VB, et al. Reduced disability and mortality among aging runners: a 21-year longitudinal study. Arch Intern Med 2008;168:1638-46.
13. Schnohr P, Marott JL, Lange P, et al. Longevity in male and female joggers: the Copenhagen City Heart Study. Am J Epidemiol 2013;177:683-9.
14. Paffenbarger RS Jr., Hyde RT, Wing AL, et al. Physical activity, all-cause mortality, and longevity of college alumni. N Engl J Med 1986;314:605-13.
15. Wen CP, Wai JP, Tsai MK, et al. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet 2011;378:1244-53.
16. Andersen K, Farahmand B, Ahlbom A, et al. Risk of arrhythmias in 52755 long-distance crosscountry skiers: a cohort study. Eur Heart J 2013; 34:3624-31.
17. Claessen G, Colyn E, La GA, et al. Long-term endurance sport is a risk factor for development of lone atrial flutter. Heart 2011:97:918-22.
18. Neilan TG, Januzzi JL, Lee-Lewandrowski E, et al. Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston Marathon. Circulation 2006; 114:2325-33.
19. O'Keefe JH, Patil HR, Lavie CJ, et al. Potential adverse cardiovascular effects from excessive endurance exercise. Mayo Clin Proc 2012;87:587-95.
20. Williams PT. Reductions in incident coronary heart disease risk above guideline physical activity evels in men. Atherosclerosis 2010;209:524-7
21. Chomistek $A K$, Cook NR, Flint AJ, et al. Vigorous-intensity leisure-time physical activity and risk of major chronic disease in men. Med Sci Sports Exerc 2012;44:1898-905.
22. Schnohr P, Parner J, Lange P. Mortality in joggers: population based study of 4,658 men. BMJ 2000;321:602-3.
23. Leitzmann MF, Park Y, Blair A, et al. Physical activity recommendations and decreased risk of mortality. Arch Intern Med 2007;167:2453-60.
24. Yu S, Yarnell JW, Sweetnam PM, et al. What level of physical activity protects against premature cardiovascular death? The Caerphilly Study Heart 2003;89:502-6.
25. Houmard JA, Tanner CJ, Slentz CA, Duscha BD, McCartney JS, Kraus WE. Effect of the volume and intensity of exercise training on insulin sensitivity. J Appl Physiol 2004;96:101-6.
26. Kraus WE, Houmard JA, Duscha BD, et al. Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med 2002;347:1483-92.
27. Whelton SP, Chin A, Xin X, et al. Effect of aerobic exercise on blood pressure: a metaanalysis of randomized, controlled trials. Ann Intern Med 2002;136:493-503.
28. Williams PT. Vigorous exercise, fitness and incident hypertension, high cholesterol, and diabetes. Med Sci Sports Exerc 2008;40:998-1006.
29. Kodama S, Saito K, Tanaka S, et al. Cardiorespiratory fitness as a quantitative predictor of allcause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA 2009;301:2024-35.
30. Lee DC, Sui X, Church TS, et al. Changes in fitness and fatness on the development of cardiovascular disease risk factors hypertension, metabolic syndrome, and hypercholesterolemia. J Am Coll Cardiol 2012;59:665-72.
31. Adams SA, Matthews CE, Ebbeling CB, et al. The effect of social desirability and social approval on self-reports of physical activity. Am J Epidemiol 2005;161:389-98.

KEY WORDS all-cause mortality, cardiovascular mortality, dose response, epidemiology, physical exercise, running pattern

[^0]: From the *Department of Kinesiology, College of Human Sciences, Iowa State University, Ames, Iowa; \dagger Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina; \ddagger Department of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Clinical School, University of Queensland School of Medicine, New Orleans, Louisiana; §Department of Preventive Medicine Research, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana; and the \|Department of Exercise Science and Department of Epidemiology/Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina. This study was supported by the National Institutes of Health (grants AG06945, HL62508, and DK088195) and an unrestricted research grant from the Coca-Cola Company. Dr. Blair has served on advisory boards for Technogym, Clarity, and Santech; and has received research grants from the Coca-Cola Company, Technogym, and BodyMedia. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose. Listen to this manuscript's audio summary by JACC Editor-in-Chief Dr. Valentin Fuster.
 You can also listen to this issue's audio summary by JACC Editor-in-Chief Dr. Valentin Fuster.
 Manuscript received March 28, 2014; revised manuscript received April 28, 2014, accepted April 30, 2014.

[^1]: Values are mean \pm SD or $\%$. *Calculated as the weight in kg divided by the square of the height in m . †Defined as >14 and >7 alcohol drinks per week for men and women, respectively. \ddagger Total physical activity levels from other leisure-time activities except running. §Defined as systolic or diastolic blood pressure $\geq 140 / 90 \mathrm{~mm} \mathrm{Hg}$ or history of physician diagnosis. ||Defined as fasting glucose $\geq 126 \mathrm{mg} / \mathrm{dl}$, current therapy with insulin, or history of physician diagnosis. q Defined as total cholesterol $\geq 240 \mathrm{mg} / \mathrm{dl}$ or history of physician diagnosis. \#Defined as abnormal resting or exercise electrocardiogram, including rhythm and conduction disturbances and ischemic ST-T wave abnormalities. **Estimated from the final treadmill speed and grade during the maximal exercise test in a subsample of 50,995 participants.

 MET = metabolic equivalent.

[^2]: *Death rate per 10,000 person-years adjusted for baseline age, sex, and examination year. †Model 1 was adjusted for baseline age (years), sex, and examination year. \ddagger Model 2 was adjusted for model 1 plus smoking status (never, former, or current), alcohol consumption (heavy drinker or not), other physical activities except running (0,1 to 499 , or ≥ 500 MET-minutes per week), and parental CVD (yes or no). §Model 3 was adjusted for model 2 plus body mass index ($\mathrm{kg} / \mathrm{m}^{2}$) and presence or absence of abnormal electrocardiogram, hypertension, diabetes, and hypercholesterolemia.

