
J. LOGIC PROGRAMMING 1985:3:185-202 185 

NEGATION AS FAILURE. II 

JOHN C. SHEPHERDSON 

D The use of the negation as failure rule in logic programming is often 
considered to be tantamount to reasoning from Clark’s “completed data 
base” [2]. Continuing the investigations of Clark and Shepherdson [2,7], we 
show that this is not fully equivalent to negation as failure either using 
classical logic or the more appropriate intuitionistic logic.‘We doubt whether 
there is any simple and useful logical meaning of negation as failure in the 
general case, and study in detail some special kinds of data base where the 
relationship of the completed data base to negation as failure is closer, e.g. 
where the data base is definite Horn or hierarchic. a 

1. INTRODUCTION 

This paper is a sequel to [7] (which should be consulted for unexplained details), and 
is concerned with the use of a negation as failure rule in logic programming, in the 
way it is used in Clark’s query evaluation procedure [2] (roughly as in PROLOG). 
Clark showed there that the use of a negation as failure rule was compatible with the 
use of a completed data base (CDB) obtained by replacing “if’ in the clauses of the 
data base by “iff”. We showed in [7] that it was equally compatible with the closed 
world assumption (CWA) of Reiter [6], according to which a positive ground literal 
not implied by the data base is supposed to be false. We showed that in general the 
CDB and CWA were different; for example, one could be consistent and the other 
not, or they could both be separately consistent but incompatible. The fact that 
negation as failure is compatible with such different assumptions means that in 
general it cannot coincide with either of them and raises the question of exactly what 
its logical status is. Doubts as to whether it has a clear logical meaning were raised in 
[7, Examples 3,4,5] by examples of a query Q, & Q2 succeeding but Q, not, or a 
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query failing when some ground instance of it didn’t, or a query not succeeding 
although some ground instance of it did. In Section 2 of this paper we investigate the 
source of these illogicalities and discuss ways of removing them. The discussion 
suggests that intuitionistic logic is more appropriate than classical logic, but leaves it 
doubtful whether there is in general any simple and useful logical characterisation of 
negation as failure. 

This focuses attention on restrictions on the queries or the data base which make 
the query evaluation procedure more complete and closer to the completed data 
base. In Section 3 we study Clark’s notion of an allowed query which cannot 
flounder (i.e. lead to a query containing unground negative literals to which no 
evaluation rule applies), and give stronger conditions which are easier to test. In 
Section 4 we deal with definite Horn data bases, pointing out that if the original data 
base is really the intended one, then the appropriate rule for negation is not negation 
as failure but no rule at all. However, if the completed data base was intended, then 
all is well: an allowed query succeeds under the negation as failure rule iff it is an 
intuitionistic consequence of CDB. For classical logic the results are almost as good. 
But for failure they are not; the class of queries Q for which Q fails when - Q is a 
consequence (even an intuition&tic one) of CDB is much more restricted. In Section 
5 we consider conditions which are sufficient to ensure completeness in the sense that 
every allowed query either succeeds or fails. When in addition all evaluation trees 
are finite we have, for allowed queries, a perfect match with the CDB. In Section 6 
we develop Clark’s notion of a hierarchic data base which satisfies the conditions of 
Section 5. These conditions may be relaxed slightly to admit some relations not 
belonging to the hierarchy. It is possible these apply to most of the situations in 
which negation as failure is used in practice. Section 7 is an appendix containing 
some technical lemmas about changing the order in which literals are selected, which 
are needed because in the presence of negation the results of the query evaluation 
procedure are no longer independent of the rule used for selecting literals. 

2. LOGICAL STATUS OF NEGATION AS FAILURE 

Clark’s query evaluation procedure of [2] amounts to adding the negation as failure 
rule 

- A succeeds if A fails NF 

and the corresponding logically impeccable, failure of negation as success rule 

- A fails if A succeeds FN 

for the case where A is a positive ground literal, to SLD resolution (using the most 
general unifier). (SLD resolution is also called LUSH resolution. Lloyd [5] uses the 
term SLDNF resolution for SLD resolution plus NF.) The programs, which we shall 
usually caIl data bases (DB), considered are composed of clauses of the form 

A + L,&...&L,, m 2 0, 

where A is a positive literal and L,, . . . , L, are positive or negative literals. Queries 
are conjunctions of literals, written in the form 

+ L,&...&L,, m20. 
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The fact that we have not only Clark’s result [2]: for all queries Q and substitutions 

4 

if Q succeeds with answer I3 then CDB I- Qe, 

but also 

if Q succeeds with answer 8 then CWA I- QtJ 

and that, as pointed out in [7], in general neither of CDB, CWA implies the other, 
means that neither of these implications can be strengthened to the equivalence we 
would like to have: 

Q succeeds with answer including 6’ iff CDB t Qt9, 

where “with answer including 8 ” means “with answer 8, such that 8 = 8,+ for 
some $J”. Thus we cannot regard the use of the query evaluation procedure based on 
negation as failure as being equivalent to “completing the data base” (replacing DB 
by CDB) or to using the closed world assumption (replacing DB by CWA), but only 
as an incomplete attempt to do both of these, which obviously cannot get closer to 
either of them than their common part. It is natural to ask whether there is any other 
way of completing or extending the data base, to DB+ say, which is equivalent to the 
query evaluation procedure in the sense that, for all queries Q and substitutions 8, 

Q succeeds with answer including 8 iff DBf~ Qe. 

Since whether a query succeeds depends on the selection rule (called “computation 
rule” by Lloyd [5]) used for choosing literals from queries, and since the above 
soundness result holds for all selection rules, what we should aim for is 

Q succeeds with answer including 8 under some selection rule 13 

DB+t- Qe. 0) 

This leaves the possibility that a particular selection rule 9, e.g. the PROLOG rule 
“take the first literal”, could be incomplete. There are however, as we show in 
Section 7, maximal selection rules 93, such that if a query succeeds with answer B 
under any rule, then it succeeds with answer equivalent to 0 under %?,,,. Such rules 
would then be complete, but it is not clear whether there are any recursive maximal 
rules. But we are still aiming too high, for it is easy to check that the rules of SLD 
resolution are intuitionistically valid and that the soundness results of [2] hold 
intuitionistically, i.e. 

if Q succeeds with answer 0 then CDB I-, Q 

where I-~ denotes the intuitionistic consequence relation. It would therefore be 
unreasonable to expect classical completeness. That this is indeed unobtainable is 
shown by the following example similar to one given by Clark. Take DB to be 
P(a) t - P(a). Then P(a) is, according to classical logic, a consequence of DB, yet 
the query + Z’(a) does not succeed, but has an infinite evaluation tree. So for no 
extension DB+ of DB could we have (1) above. The most we can expect is 
intuitionistic completeness and equivalence, i.e. 

Q succeeds with answer including 0 under some selection rule ly 
DB+t-, Q. (2) 

However the restriction of the negation rules NF and FN to ground literals means 
that one cannot deal adequately with queries such as + - P(X) because no rule is 
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applicable to them. Following Clark [2], we make the 

Dejinition. A query all of whose literals are unground negative literals is called a 
Jlounder, and an evaluation path which ends in a flounder is said to flounder. 

Thus if the DB is P(b) + , R(a) + , then the query + - P(x) flounders. However, 
+ - P(a) succeeds, so if we had (2) then - P(a) should be a consequence of DB+, 
so + - P(x) should succeed with answer x = a. There is no obvious way of 
detecting and excluding such queries, for if we add to the above DB the clause 
Q(x)+ - P(x), the totally positive query + Q(x) flounders although + Q(u) 
succeeds. But one way of proceeding is to try and give simpler conditions sufficient 
to ensure that a query does not flounder. We explore this in the next section, starting 
with Clark’s notion of allowed query. So one possible sense in which we could find a 
meaning for negation as failure is to try to find DBf such that 

(2) is true for all allowed queries (3) 

Another way of dealing with flounders is to accept them as a fairly harmless kind 
of incompleteness. For a flounder is immediately evident; so the evaluation proce- 
dure is then telling you clearly and finitely that it cannot deal with the query. So it 
might be quite acceptable to have, instead of (2), intuitionistic soundness: for all Q, 8 

if Q succeeds with answer 8 under some selection rule then DB+t-I Qe (4a) 

and weak intuitionistic completeness: for all Q, 8 

if DB + k,QO then Q succeeds or flounders with answer including 8 

under some selection rule, (4b) 

i.e. ends in a flounder at a point where the answer substitution includes 6. Since 
allowed queries cannot flounder, (4a, b) imply (3). 

A third way of trying to obtain completeness, which was suggested by Clark [2, 
p. 3141, is to extend the query evaluation procedure to deal with nonground negative 
literals while preserving the intended meaning of queries and of reasoning from 
some extension of DB. The rule NF is valid, intuitionistically as well as classically, 
also for nonground negative literals - A in the form 

- A succeeds with answer 8 if A9 fails NFE 

because 

- (~x)A(xO)t-,(Vx) - A(xt3). 

The other rule FN, “failure of negation as success”, is valid in the form 

- A fails if A succeeds with answer the identity, 

because 

(Vx)A(x) +I - (3x) -A(x). 

FNE 

The extended query evaluation procedure using rules NFE, FNE instead of NF, FN 
differs from the old one in allowing the selection of a nonground negative literal 
- A(t,, . . . , tk). When this is done we recursively enter the extended query evaluation 
process with + A(t,, . . . , tk) as the query. If + A(t,, . . . , tk) succeeds with answer 
the identity, then the original query is failed by FNE. If not, then the queries 
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+ A(t,, . . .) t,)O for all substitutions 6 are tried. For each of these which fails, we 
enter an alternative evaluation path in which, using NFE, - A(?,, . . . , tk) is selected 
from the original query and the rest of the query (Q,) is replaced by Q,e. If we left it 
like this and failed -A(ti,..., tk) when there were no such paths, i.e. if none of 
+A(t1,..., r&9 failed, we should be more or less committing ourselves to Herbrand 
models (which would be a restriction even for a definite Horn data base; see Section 
4) and denying the possibility that if xi,. . . , x, are the variables in A(r,,. . ., rk) 
there might be new constants a,, . . . , a,, not obtainable by substitution, for which 

A0 i, . . . , rk) failed. So we add another “open” path to cover this possibility. This can 
never be used positively: it is just there to stop us failing - A(r,, . . . , r,J when there 
are no other paths. This extended procedure is not implementable, because in 
general there may be infinitely many substitutions, giving an evaluation tree of 
infinite width. But since it is more complete than the original procedure, it enables us 
to consider the possibility of a closer logical fit. For we may now ask for intuitionis- 
tic soundness and completeness of this extended query evaluation procedure, i.e. for 
all Q, 8, 

Q succeed, wirh answer including 8 under some selection rule 13 
DB+I-, Qe (5) 

where succee&, denotes success under the extended query evaluation procedure. 
This gives more precise information than (4a, b) and is easily seen to imply them. To 
prove that (5) + (4a) you prove by an easy induction on the total height of a success 
tree (including all auxiliary trees used for evaluation of ground negative 
literals-precise definitions are given after Theorem 4.2) or failure tree that if a 
query Q succeeds (fails) it succeeds, (fails,) according to some selection rule. To 
prove (5) + (4b) we have to show that succeeds, implies succeeds or flounders under 
some selection rule. Use the switching Lemma 7.2 to defer as long as possible the 
choice of any nonground negative literals; if the query has not succeeded by then, it 
must flounder. 

We shall see in Section 4 that in the case where DB is Horn and definite there 
exists a DB+ satisfying (6), namely CDB, which, by Theorem 2 of [7] (or earlier by 
Apt and van Emden [l]) in this case is equal to CDB n CWA. But even if we ask for 
the apparently weaker (3) instead of (5) Example 1 of [7] shows that DB+ cannot 
always be taken to be CDB or CWA or CWA, or CDB f~ CWA or CDB n CWA, 
(where CWA, differs from CWA in having - A as an axiom for ground literal A 
when DB V, A instead of DB of A). 

Whether there is always a DB+ satisfying (3) or, better still, (4a, b) or, best of all, 
(5) and preferably an extension of DB, is not clear. If there is, it can be taken to be 
the set of all queries Q which succeed with answer 1 [or succeed. in the case of (5)] 
under some selection rule. But that would be a rather unhelpful, self-referential 
explanation of the logical meaning of negation as failure. A slightly more illuminat- 
ing candidate for DBf is the union of DB and the set of all negative literals which 
succeed with answer 1. If one really wanted to use logic programming in a purely 
declarative sense-i.e. being able to write a program or data base thinking only of 
the meaning of the logical terms involved, and not at all of how the evaluation would 
be carried out-then one would want a simple, clearly understandable definition of 
DB+ like CDB or CWA. 
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One thing is clear: 

The results of the query evaluation procedure using negation as failure depend not only 
on the logical content of the data base clauses but also on the way they are written. 

Similarly, if DB+ satisfying (3) or (4) or (5) exists, it depends not only on the logical 
content of DB but on the way it is written. As far as classical logic is concerned, this 
is shown by the difference in the query evaluation procedure caused by writing the 
data base P(a) + - Q(a) in the form Q(a) + - Z’(a) [ + P(a) succeeds in the first 
but fails in the second]. These are not intuitionistically equivalent, but one can show 
that the query evaluation procedure and DB+ (if it exists) do not depend only on the 
intuitionistic logical content of DB, by adding to DB for each relation R(x,, . . . , xk) 
a clause 

R(x, )...) x,)+R(x, )...) Xk). 

This is a tautology intuitionistically (and, surely, according to any sort of logic which 
might conceivably be of use), but it effectively neuters the negation as failure rule, 
since every positive literal has an infinite evaluation tree and cannot fail. For 
example, with the DB P(a) +- , Q(b) + , the query +- - P(b) succeeds, but when 
P(x) + P(x) is added, it loops. 

This fact, that the effect of negation as failure depends on the way the data base is 
written, lends strength to Gabbay’s remark (personal communication) that instead of 
trying to find a logical meaning for negation as failure in its present form, one 
should investigate ways of loop cutting which would give a more complete query 
evaluation procedure and, hopefully, one with a clearer logical meaning. 

We have talked so far only about the success of queries. Clark’s soundness results 
in [2] also apply to failure in the form 

if Q jails then CDB l-, - Q, 

so it is natural to ask whether the above completeness criteria could be extended to 
cover failure, e.g. whether there exists DBf such that, for all allowed queries Q 

Q jails under some selection rule ijj DB+ ~~ - Q. 

Unfortunately this is not possible even for the case of Q a ground query, for if we 
take DB to be P(a) + P(a) and Q to be + P(a)& - P(a), then t, - Q but Q 
doesn’t fail. Perhaps the most useful approach here too is to devise ways of making 
negation as failure more complete by cutting loops or by failing queries which 
contain more or less evident contradictions. 

3. ALLOWED QUERIES 

In ordinary SLD resolution with a definite Horn data base, incompleteness arises 
from infinite evaluation paths. A finite path can only end in success or failure. But in 
the query evaluation procedure we are discussing, which allows negative literals and 
uses the negation as failure rule, there are two other kinds of inconclusive result. 
There is what, following Clark, we have called a flounder, where the path terminates 
in a query containing only nonground negative literals, to which no evaluation rule is 
applicable. There is also what we shall call a dead end, where the chosen literal is a 
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negative ground literal L which neither succeeds nor fails (so it must have evaluation 
paths which are infinite or flounder or themselves come to a dead end). In this case 
the mainstream evaluation is held up because no answer is received about the 

subsidiary evaluation of L. 
We now consider conditions on the data base and the query which are sufficient 

to prevent these inconclusive results. 
For the prevention of dead ends all we can suggest is simply to say that they do 

not occur, that we have completeness for ground literals: 

Every ground literal succeeds or fails. 

This is a very strong assumption; as shown in [7] it implies that the CDB is 
consistent, and that if the CWA is consistent, then so is CDB u CWA, and if you 
restrict to Herbrand domains, CDB and CWA are equivalent. It means you have 
complete information about all relations on elements of the Herbrand universe. 
However, it is something one would expect to be satisfied if DB really is a data base 
in the usual sense. 

For flounders we can give a necessary and sufficient condition. Let the positive 
part of a query be the query obtained by deleting all its negative literals. Just as we 
talk about a query succeeding with answer 8, we shall say a query flounders with 

answer 8 if there is an evaluation branch which ends in a flounder where 8 is the 
composition of the sequence of unifying substitutions used. Then: 

Theorem 3.1. A query Q flounders iff there exists a substitution 8 such that the positive 
part of Q succeeds or flounders with answer 8, every negative literal of Q which is 

grounded by 9 succeeds, and, in the case of success, some negative literal of Q is not 
grounded by 8. 

PROOF. The “if’ part is proved by induction on the length of the flounder or success 
branch of the positive part of Q, using the switching Lemma 7.1 to rearrange this so 
that if the evaluation of Q starts by choosing a positive literal Li, then the 
evaluation path of the positive part of Q also starts off choosing L;. Similarly for the 
“only if’, using induction on the length of the flounder branch of Q. 0 

We have the immediate: 

Corollary 3.2. If the positive part of a query Q doesn ‘t flounder and each of its success 
paths grounds all negative literals of Q, then Q doesn’t flounder. 

A condition expressed in terms of the separate positive literals of a query would 
be easier to check. Such a condition was given by Clark [2, p. 3171: 

Firstly, the constraint that every variable in a negated literal should have its range specified 
by an unnegated literal that will generate a candidate set of ground substitutions is perfectly 
acceptable. Let us call this an allowed query. For an allowed query no evaluation can flounder 
because it encounters a query with only unground positive literals. 

On reflection it seems to me now that what he intended was the following: 

DeJnition. A query is allowed if none of its positive literals flounder and every 
variable in a negative literal also occurs in a positive literal, all of whose success 
branches ground it. 
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A superficial reading of Clark led me in [7] to state that I was following him when I 
used the term to denote what I shall now call weakly allowed: 

Dejinition. A query is weakly allowed if every variable in a negative literal also 
occurs in a positive literal. 

This condition is not sufficient to prevent a query floundering; e.g., in the data base 
P(X) + - Q(x) the weakly allowed query * P(x) flounders, and in the data base 
P(x) +, Q(a) + the weakly allowed query 6 P(x)& - Q(x) flounders. But it does 
have the advantage of being instantly decidable and independent of the selection 
rule, whereas whether a query is allowed or flounders can depend on the selection 
rule and, I imagine, may be undecidable for some data bases. And although not a 
necessary condition for not floundering [if I’(a) fails then I’(a)& - Q(x) doesn’t 
flounder], it is obviously a necessary condition for success, so there is little point in 
considering queries which don’t satisfy it. We now show that the new definition of 
allowed does satisfy Clark’s statement: 

Theorem 3.3. An allowed query cannot flounder. 

PROOF. Suppose Q is allowed and has a flounder branch. Then some nonground 
literal L is present at the end. Suppose L arises from one of the negative literals of 
Q. Then each variable x of L is in some positive literal Li of Q, which does not 
flounder, and all of whose success branches ground x. Rearranging according to 
Lemma 7.4, we get an equivalent path which has x finally grounded. Hence the 
original path has all variables of L grounded, contrary to hypothesis. 

So L must have been introduced by a unification step applied to some literal 
derived from some positive literal Li of Q. Rearranging by Lemma 7.4 so as to start 
with an evaluation of + Li again gives a contradiction. 0 

In view of the difficulty in deciding whether a query is allowed, it seems 
worth,while to look for conditions which are sufficient to ensure that a weakly 
allowed query cannot flounder. Obviously we have 

Theorem 3.4. If no positive literal flounders and every success branch of a positive 
literal grounds all its variables, then weakly allowed is equivalent to allowed. 

But it would be more useful to have some simple conditions on the data base which 
ensured this hypothesis. The two examples given above of weakly allowed queries 
which flounder suggest the conditions in the following 

Theorem 3.5. If the right hand side of each data base clause is a weakly allowed query, 
and every variable on the left hand side also appears on the right hand side, then 
weakly allowed is equivalent to allowed. 

PROOF. By Theorem 3.4 it’s enough to show that for a positive literal no evaluation 
path can end in a flounder or a success branch which doesn’t ground all its variables. 
This is proved by taking a shortest evaluation path of this kind and obtaining a 
contradiction by reasoning as in the proof of Theorem 3.3. 0 
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These conditions are immediately testable but rather restrictive, since they pro- 
hibit data base clauses of the form P(X) + . Clearly there is no harm in such a 
clause unless P(x) is being used to ground a variable x in a negative literal: 

Theorem 3.6. Let a subset of the relations called grounding relations be singled out. Let 
the corresponding positive literals also be called grounding. Let a query be called 

grounded if every variable in a negative literal also occurs in a grounding positive 
literal. Suppose that the right hand side of each data base clause is a grounded query 

2nd that if it is a clause about a grounding relation, then every variable occurring on 

the left hand side also appears in a grounding positive literal on the right hand side. 

Then 

a grounded query is allowed. 

PROOF. Similar to that of Theorem 3.5, showing that no positive literal flounders and 
that every success branch of a grounding positive literal grounds all its variables. 0 

4. DEFINITE HORN DATA BASES 

Logic programming is particularly concerned with data bases consisting of de$nite 

Horn clauses of the form 

B+A,&...&A, 

where B, A,, . . . , A,, are positive literals. Indeed, the term “logic program” is often 
restricted to programs of this kind. This is the type occurring in pure PROLOG, and 
it is important because the efficient SLD resolution (using the most general unifier) is 
complete in this case for all selection rules [l]. So negation as failure might be 
expected to have a clearer logical meaning for a data base of this kind than it does in 
general. Results of Apt and van Emden [l] and Jaffar, Lassez, and Lloyd [3] confirm 
that in this case it is a reasonably complete way of drawing consequences from the 
completed data base. A convenient source of results is Lloyd [5, Theorems 14.5, 16.1, 
8.6, 9.21: 

Theorem 4.1. If DB is a definite Horn data base, then: If Q is a positive query, then 
CDB I- Q ry DB t Q. If Q is a positive query and CDB k Qe, then Q succeeds 
with answer including 8 under all selection rules. If Q is a positive query and 
CDB k - Q, then Q fails under every fair selection rule. 

The first result says that the positive information which can be deduced from 
CDB is exactly the same as the positive information which can be deduced from DB. 

A fair selection rule is one in which, on each infinite branch of an evaluation tree, 
every literal is eventually chosen. The “leftmost literal” rule of PROLOG is not a 
fair rule: you can make it fair by cycling the literals round after each step. The last 
result does not hold if only Herbrand models are considered; on p. 84 of [5] Lloyd 
gives an example of a positive query Q such that - Q is true in all Herbrand models 
of CDB but Q does not fail under any rule. These results imply that the strongest 
soundness and completeness property [5] of Section 2 holds, and the same for 
classical logic, which gives the same results as intuitionistic logic here. 
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Theorem 4.2. Zf DB is a definite Horn data base, then for all queries Q and 
substitutions 8, Q succeeds, with answer including 8 under any fair selection rule iJtr 

CDB I- Qt? ifl CDB t-,Qe. 

PROOF. For the soundness half we show by an easy induction on the height of the 
successE or failure, tree that if Q succeeds, with answer 8 then CDB tlQ, and if Q 
fails then CDB k - Q. •1 

Since this sort of induction is used a lot, we give a precise definition of the notion 
of “success or failure tree” used here. The idea is that, instead of just counting the 
steps of the main line evaluation (as we did in the proof of Theorem 3.1 when we 
talked about the length of a success or flounder branch), we also hang on a side tree 
for every evaluation of a negative literal. 

Definition. The notion of success tree (failure tree) of a query Q is defined 
recursively as follows: 

Basis. If Q is SUCCESS (FAIL), then the tree consisting of the single node Q is a 
success (failure) tree for Q. 
Znductiue step. If Lj is the chosen literal of Q and Li is a positive literal which 
doesn’t match any DB clause, then the tree with a single FAIL node hanging from 
the root Q is a failure tree for (2. If Li is a positive literal which matches one or 
more DB clauses and Q,, . . . , Q, are the resulting derived queries then a success 

tree for Q is a tree consisting of a success tree for some Qj hanging from the root 
Q; a failure tree for Q is a tree consisting of failure trees for each of Q,, . . . , Q, 
hanging from the root Q. If L, is a negative ground literal - A a success tree for 
Q is a tree consisting of a failure tree of A and a success tree of Q, hanging from 
the root Q, where Q, is the query obtained from Q by deleting -A. A failure 
tree for Q is a tree consisting of a failure tree of A and a failure tree of Q, 
hanging from the root Q, or a success tree of A hanging from the root Q. 

A success tree with answer 8 is defined similarly in the obvious way. So are a 

Jlounder tree and flounder tree with answer 8. 
For the extended query evaluation procedure the notions of successE tree, 

successs tree with answer 8, failure, tree are defined similarly, attaching a failure, 
tree for AB when rule NFE is used to make -A succeed with answer 0 and a 
successE tree with answer 1 when rule FNE is used to fail - A. 

For the completeness half we must show that if CDB k Qe, then Q succeeds, 
with answer including 0 under every fair selection rule. Suppose 

Q is +A,&...8ul,&- B,&...&- B,, 

where the A’s and B’s are positive literals. Using the switching Lemma 7.2, we may 
defer choice of the negative literals until the positive ones have been dealt with. 
Since CDB t Qe, we have, for all i, j, CDB I- Ai8 and CDB k - Bid. So by 
Theorem 4.1 each Ai succeeds with answer including 8 and each B/I fails. So all the 
positive literals of Q succeed with answer including 8, and when we come to the 
negative literals these all succeed using rule NFE. •I 

As in Section 2, it follows that if CDB I- Qe, then under the original evaluation 
procedure Q succeeds or flounders with answer including 8, and that if Q is allowed, 

it must succeed. 
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However for classical logic the completeness results are not quite perfect even for 
allowed queries and definite Horn data bases. For we have been talking so far about 
CDB I- Qt9, i.e. specific substitution instances of Q being consequences of CDB. 
What we are really supposed to be asking with a query Q is whether CDB I- 3(Q), 
where 3(Q) denotes the existential closure of Q, so we would like to have, at least for 
allowed queries Q, 

if CDB F 3 (Q) then Q succeeds under some selection rule. 

The following is a counterexample: take DB to be A(a) + , A( f (a)) + A( f (a)) 
[for a slightly less pathological example replace the latter by A( f(u)) + 

4&u)), 4g(u)) + A(f(u))l, and Q to be + A(x)& - A(f(x)). Here 
- A(f(f(u))) is a consequence of CDB; hence so is 3(Q), i.e. (Yx)(A(x)&- 

A( f (x))), because if - A( f (a)) holds, then x = a satisfies, and if A( f (a)) holds, 

then x = f(u) satisfies. But there is no single term t such that CDB + A(t)& - 
A( f (t)), so Q cannot succeed (or succeed.), nor does it flounder; it has an infinite 
evaluation tree. So even for a definite Horn data base intuitionistic logic is the 
appropriate one; the only reason there are also partial completeness results for 
classical logic is that after the existential quantifier has been removed by choice of a 
specific term, classical and intuitionistic logic give the same results. 

Note that even for a definite Horn data base the CDB is not determined solely by 
the logical content of DB; e.g. adding the tautologies R(x,, . . . , x,J + R(x,, _ . . , XJ 
for all relations makes CDB equivalent to DB. 

For failure the completeness result, even in the form 

if CDB t - Q then Q fails or flounders, 

does not go very far and can fail for a ground query, as shown by the example of 
Section 2, the query P(u)& - P(u) with data base P(u) + P(u). But it is true for 
positive queries as stated in Theorem 4.1, in the form 

if CDB F - Q then Q fails under every fair selection. 

This is also true for purely negative ground queries +- - B, & . _ . & - II,. For if, for 
some i, DB I- Bi, then Bi succeeds, so - Bi fails and so does Q. And if, for all i, 
DB w Bi, then, as shown in [7, proof of Theorem 21, the Herbrand model with a 
positive ground literal L true iff DB I- L is a model for CDB, so in this model Q is 

true and - Q is false, so CDB hc - Q. It can be shown to hold for all purely negative 
queries if fails is replaced by fails,. 

Note that in the case of a definite Horn data base the use of negation as failure is 
very limited. The only negations are those in the original query 6 A,&. . . &A,& - 
B, & . . . & - B,, and the negation as failure rule is only used at the end, to declare a 
grounded - Bj8 a success or failure according as B,t? fails or succeeds using the 
ordinary SLD resolution for positive clauses and queries. 

Note also that the completeness results we have are for CDB, not DB. If the 
intended data base is really DB; then in order to deal with queries involving negation 
and to achieve full classical soundness and completeness for all queries, i.e. 

Q succeeds under every selection rule iff DB I- 3 ( Q ) , 

it is not the negation as failure rule which should be used, but no additional rule at 
all. For a query Q containing a negative literal cannot then succeed; nor can 
DB+ 3(Q), for DB has a model in which all relations are true for all arguments. 
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And for positive queries this is just the usual soundness and completeness result for 
SLD resolution. 

5. WHEN QUERY EVALUATION IS COMPLETE 

In view of the difficulties discussed in Section 2 in the way of finding a clear logical 
meaning for the query evaluation procedure incorporating negation as failure when 
it is incomplete, it is worth looking for cases where it is complete, i.e. where allowed 
queries either succeed or fail. The results here are extensions of those of Clark [2] 
and of [7]. 

Theorem 5.1. If the query Q succeeds or fails and if DB is consistent, then 

Q succeeds iff CDB I- 3(Q), 
Q fails i#CDB!--Q. 

Similarly with CWA in place of CDB and (at least for CDB) with kt instead of 

E. 

PROOF. It is an immediate consequence of Clark’s soundness results that if Q 
succeeds with answer 0 then CDB I- QO, and if Q fails then CDB F - Q. Similarly 
for CWA using the results of [7], and for I- I by the intuitionistic soundness of CDB 
observed in Section 2. (I haven’t checked CWA using intuition&tic logic; you might 
need to use CWA, as defined in Section 2 instead.) •I 

So in this case, if CDB and CWA are both consistent, they agree as far as Q is 
concerned. As shown in [7], the consistency of CDB is guaranteed if all ground 
literals succeed or fail. 

However, we may not have completeness with respect to CDB in the sense of 
obtaining all answers, i.e. 

Q succeeds with answer including 6 if CDB F Qfl, 

for if you take the data base to be I’(a) + , P(x) + - P(x) and take Q to be 
+ P(x), then CDB t Q, but Q does not succeed with answer the identity substitu- 
tion 1 (although it does succeed with answer x = a, which is equivalent from the 
point of view of the CDB, which implies x = a). In this case one branch of the 
evaluation tree flounders. 

DeJnition. A query has the jinite tree property if its evaluation tree is finite and each 
branch ends in success or failure. If in addition all successful branches result in 
full instantiation, it is said to have the jinite grounded tree property. 

Definition. A query Q is said to be answer complete if 

Q succeeds zfl CDB F @)Q, 
Q jails z$-CDBF-Q, 
Q succeeds with answer including 8 if CDB !- Qe. 

Theorem 5.2. A query with the Jinite tree property is answer complete. 

PROOF. Clark [2, pp. 317, 3181. Cl 



NEGATIONASFAILURE 197 

From the practical point of view it is just as desirable that a query should have a 
finite evaluation tree as that it should succeed or fail, and we now look into 
conditions which are sufficient to ensure this. Clark [2, p. 3181 stated that if all 
queries of the form + R(x,, . . . , xk) have the finite grounded tree property for all 
selection rules, then so do all allowed queries. It was pointed out in [7] that this was 
not quite correct, but needed the property for ground literals as well. However, 
Clark’s result can be rescued by replacing “all selection rules” with “some selection 
rule”. We need a lemma: 

Lemma 5.3. If a query Q has theJinite tree property under some selection rule W, then 
so, under some selection rule .9?@, does Qe. Similarly for the jinite grounded tree 

property. 

PROOF. By induction on the height of the evaluation tree for Q under &?I”, where, as 
in Section 4, we consider the evaluation tree to include side trees for the evaluation 
of negative literals. If this height is zero, then Q is either SUCCESS or FAIL, and so is 

Q@- 
Inductive step. If the first step in the evaluation of Q under W is to choose the 

literal Li, then define W, to choose the literal Lie of QO. 
If Li is a negative ground literal, then L,B = Li and we define 91”e with root Li to 

behave the same as 9’. If Lj fails, we then get a finite failure tree for QO. If Li 
succeeds, we apply the induction hypothesis to the new queries Q’ and Q’s resulting 
from the deletion of Li from Q, Qe. 

If L, is a positive literal and L, doesn’t match any DB clause, then Qe fails at 
once. If Lit3 unifies with some R from a DB clause, with most general unifier Si, 
then by Lemma 1 of [7], Li unifies with R, and if the new queries are Q’,(Qe)‘, we 
have (Qt3)’ = Q’M;. Now each Q’ has under 9 a finite evaluation tree of lower 
height than Q; hence, by the induction hypothesis, each (Qr3)’ has a finite evaluation 
tree under some selection rule. q 

Theorem 5.4. If each. query of the form +- R(x,, . . . , xk) has the finite tree property 
under some selection rule, then there is a selection rule 9%’ under which all positive 
literals have this property. Similarly for the finite grounded tree property. 

PROOF. By the last lemma each positive literal has the finite tree property under 
some selection rule. Take for 5I’ a rule which, for a query with the finite tree property 
under some rule, follows a rule which gives a shortest evaluation tree. q 

This result is of no practical use, because it gives no way of finding the rule 9%‘. It 
is not true that it can be .taken to be any fair rule, because the fairness does not 
prevent an evaluation branch ending in the evaluation of - L where L has an 
infinite evaluation tree. This suggests that we might add to fairness the condition 
that negative ground literals are only to be chosen when there are no positive literals 
left. But this is not enough, for if DB is taken to be P(x) + - P(x)& - Q(a), 
Q(x) + , then under every rule + Q(x) succeeds and + P(x) fails, both with finite 
trees. But + P(a) neither succeeds nor fails under the fair rule which takes negative 
literals only when there are no positive, and takes the first permitted literal, cycling 
the literals round after each mainstream evaluation step. To ensure that one always 
reaches a failing literal [like - Q(a) here] it seems to be necessary to alter the form 
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of the evaluation. In the method which (following Clark, Lloyd, and others) we are 
using, when a negative literal - L is chosen, the evaluation of L is done as a 
subsidiary evaluation before proceeding with the main evaluation, and a success or 
failure tree for L is tacked on to the side of the main tree. What is needed here 
seems to be some sort of intercalation of the evaluation of L with further choices of 
literal in the main evaluation. 

This sample example shows that we cannot improve the result by replacing “some 
selection rule” with “all selection rules” or with some arbitrarily given fixed selection 
rule (even if it is assumed to be fair and to prefer positive literals). It is unfortunate 
that this least useful “some selection rule” form should be the one which is needed, 
but not surprising, because every answer given by any rule is a consequence of the 
CDB, so success or failure under some selection rule is the most complete of the 
three forms. 

Theorem 5.5. If every query of the form + R(x,, . . . , xn) has the finite tree property, 
every ground literal succeeds or fails, and the selection rule is fair, then every query 
has a jinite evaluation tree. 

PROOF. If a query Q has an infinite evaluation tree, then (since we assume there are 
only finitely many clauses in DB about any relation) it must by Konig’s lemma have 
an infinite branch. Since all ground literals succeed or fail, there are no dead ends, so 
this must be a mainstream branch. By Lemma 7.3 there will be an infinite 
mainstream branch under any other selection rule which succeeds all ground literals 
which succeed under the given rule. A rule 9 given by Theorem 5.4 under which all 
positive literals have the finite tree property can easily be arranged to satisfy this. If 
we now use the rule which takes the positive literals of Q in turn and applies W to 
them, we get a contradiction, for all evaluation branches are finite. 0 

NOTE:. A similar argument shows that the condition that all queries of the form 
+ R(x,, . . . , x,) have the finite tree property may be replaced by “all positive 
literals in the query have the finite tree property”. 

Corollary 5.6. Under the conditions of Theorem 5.5 every allowed query is answer 
complete. If “Jinite tree” is strengthened to “jinite grounded tree”, then every 
weakly allowed query is answer complete. 

PROOF. The first part follows from Theorems 3.3 and 5.2. For the second use the 
second part of Theorem 5.4 and the switching Lemma 7.3 to show that all positive 
literals have the finite grounded tree property. Theorem 3.4 then shows that “weakly 
allowed” is equivalent to allowed. 0 

There is a similar “all selection rules” (including unfair ones) version. This is a bit 
stronger than Theorem 7 of [7], but follows by the same proof: 

Theorem 5.7. If under all selection rules every query of the form + R(x,, . . . , x,) has 
the jinite tree property and every ground literal succeeds or fails, then every query 
has a finite evaluation tree under all selection rules and every allowed query is answer 
complete under all selection rules. If “jinite tree ” is strengthened to “Jinite grounded 
tree “, then every weakly allowed query is answer complete. 



NEGATIONASFAILURE 199 

6. HIERARCHIC DATA BASES 

Clark [2] gave conditions on the data base sufficient to imply the finite tree property 
for all allowed queries under all selection rules. They are based on a hierarchical 
condition: 

DeJinition. The data base satisfies the hierarchical condition if the relations can be 
assigned to levels so that in each clause 

R(t,,...,t,) +- L,&...&L, 

about an ith level relation R, the relations occurring in L,, . . . , L, are of level 

less than i. 

This prevents any evaluation tree having infinite branches, because a unification 
step replaces a literal by lower level literals. 

DeJinition. The relations involved in a query Q are all those occurring in Q together 
with all those occurring on the right hand side of data base clauses about these 
relations and so on. 

There are only finitely many relations involved in a query, since we are assuming 
there are only finitely many clauses about each relation. Let N be the maximum 
number of literals on the right hand side of any clause about any of the relations 
involved in Q. Then it is easily seen that the height of any evaluation tree for Q is 
not more than h(Q) = Ejni(N + l)j, where nj is the number jth level literals in Q; 
and the number of different evaluation trees (arising from different relation rules) is 
not more than h(Q) ‘(Q) The branches of such trees may not all end in success or . 
failure, but in a flounder or dead end. In principle it is possible to check out all 
evaluation trees of a query, in particular for a single literal, for all selection rules and 
hence to decide whether the conditions of any of the completeness theorems of the 
last section are satisfied for all the relations involved in a query. But is is probably of 
more practical use to give simple conditions sufficient to ensure these. The following 
condition is due to Clark [2]. 

De$nition. A data base satisfies the allowability condition if the right hand side of 
each data base clause is an allowed query. 

Theorem 6.1. If the data base satisfies the hierarchical condition and the allowability 
condition under all selection rules, then all allowed queries are answer complete 
under all selection rules. 

PROOF. This follows from Theorem 5.7, since an easy induction on the level (using 
Theorem 5.7) shows that all positive literals have the finite tree property under all 
selection rules. Or that all allowed queries have the tinite tree property can be proved 
directly by induction on the quantity h(Q) defined above. 0 

In [7] I wrongly stated that Theorem 6.1 was not quite correct because by an 
oversight I had assumed that Clark was using the weak allowability condition. With 
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that one also needs a covering condition [7, Theorem 81: 

Theorem 6.2. If the data base satisJies the hierarchical condition, if the right hand side 

of each data base clause is a weakly allowed quety, and if every variable on the left 

hand side appears on the right hand side, then all weakly allowed queries are answer 
complete under all selection rules. 

PROOF. By Theorem 3.5 weakly allowed is equivalent to allowed here. As in 
Theorem 3.6, the covering condition may be weakened by singling out a class of 
“grounding” relations used for covering. 0 

The hierarchical condition is a very strong one which forbids any recursive or 
mutually recursive definitions. However, it seems to me a very appropriate condition 
when you are talking about drawing consequences from the completed data base. 
For to get this from the original data base you have to’ convert “if” clauses into 
“X”. Now the only time a mathematician writes “if’ when he really means “itf” is 
when he is defining some new relation in terms of already defined relations, which is 
precisely the hierarchic situation. And whenever you have a non-Horn clause, e.g. 
P(x) V Q(x), you have to choose whether to write this as 

P(x) + - Qb> 
or 

Q(x)+--P(x), 
which give different CDB. The choice here establishes some sort of priority. Of 
course, if there are recursive or mutually recursive definitions, then this priority may 
not be an order relation. But in that case the effect of replacing DB by CDB is not 
easy to predict. 

However, there are some cases where recursive definitions are used when the CDB 
is what is intended, e.g. for the relations “append” or “sorted”. And it may be a 
fairly common situation for the data base to be hierarchical apart from some 
relations of this kind. To be more precise, suppose the relations and corresponding 
literals are divided into complementary classes of hierarchical and nonhierarchical 

relations. 

Dejinition. A data base satisfies the modi$ed hierarchical and allowability condition if 
the hierarchical relations can be assigned to levels so that in a clause about an ith 
level relation the only hierarchical relations on the right hand side are of level less 
than i, the nonhierarchical literals on the right hand side have the finite tree 
property, and the right hand side is an allowed query. 

Theorem 6.4. If the data base satisfies the modiJed hierarchical and allowability 
condition, if all nonhierarchical ground literals succeed or fail, and if the selection 
rule is fair, then every allowed query all of whose nonhierarchical literals have the 
jinite tree property is answer complete. 

PROOF. By induction on the level the note after theorem 5.5 shows that all positive 
literals involving hierarchical relations also have the finite tree property and that all 
hierarchical ground literals succeed or fail. By the same note it follows that an 
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allowed query all of whose nonhierarchical literals have the finite tree property has 
the finite tree property and hence, by Theorem 5.2, is answer complete. 

7. SWITCHING LEMMA, MAXIMAL SELECTION RULES 

Since the result of query evaluation may depend on the selection rule- used, it is 
useful to note that the switching lemma which Lloyd gave for SLD resolution 
[5, Lemma 9.11 also applies when negative literals and the negation as failure rule are 
used. 

Dejinition. Two queries Q,, Q, are variants of each other when there exist substitu- 
tions 8,, 0, such that Q,@, = Q2 and Q,8, = Q,. 

As Lloyd shows, 8,, f3, may be taken to be renaming substitutions, i.e. such that 
8, maps certain variables of Q, onto variables distinct from each other and from the 
other variables of Q, (and similarly for e,, Q2). 

Definition. Two finite evaluation paths for a query Q, with answers 8,, 8,, are 
equivalent if Qe,, Qe, are variants of each other. Two paths which both fail or 
both dead-end are also said to be equivalent. 

So equivalent paths give the same answers apart from the names of the variables. 

Lemma 7.1 (Switching lemma). If Li, L, are positive or negative ground literals of a 
query, and an evaluation path chooses first Li and then Lj, and Lj does not 
immediately fail, there is an equivalent evaluation path which diflers only in choosing 
jirst Lj, then Li. 

PROOF. Strictly speaking we should say “first L, and then the literal L,tJ into which 
Lj is sent by the first step.” By saying that Lj does not ir..mediately fail we mean 
that LjB is not a failing negative ground literal or nonmatching positive literal. Of 
course the equivalent evaluation path uses a different selection rule. If Li, Lj are 
positive literals, this is Lemma 9.1 of [5], for the fact that some other literals may be 
negative does not affect the proof. If one or both of Li, L, is a negative ground 
literal, the result is obvious, since a negative ground literal is unaffected by 
unification. Cl 

Lemma 7.2 (Switching lemma). If Li, Lj are literals of a query and an extended 
evaluation choosesjrst Li and then Lj, and Lj does not immediately fail, there is an 
equivalent evaluation path which chooses jirst L,, then Li. 

PROOF. Lemma 2 of [7], that if Q fails then Q8 fails under some selection rule, is 
easily extended to the extended query evaluation procedure. Now the application of 
the new rule NFSE, that if AB fails then -A succeeds with answer 8, can be 
regarded as being obtained by unifying - A with the clause - At9 +- obtained by 
extending the data base with clauses - L t for each L which fails. So whether 
Li, Lj are positive or negative, the argument of Lemma 9.1 of [5] now applies. 0 
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Theorem 7.3. Suppose every negative ground literal which succeeds under selection rule 
9YI also succeeds under selection rule 5?,. Then if a quety succeeds ($ounders) with 

answer 6 under gI, it succeeds Cflounders) with answer equivalent to 8 under 9,. 
If, in addition, 9, is a fair rule and there is an infinite branch under %?I, then there 
is an injinite branch under B2. 

PROOF. Suppose a query has a success (flounder) branch of length 1 under .%?i. We 
show by induction on 1 that there is an equivalent success (flounder) branch under 
9,. If I= 0 the result is obvious. For the inductive step suppose 9?* starts by 
choosing the literal Li. Whether Li is a positive or ground negative literal it must be 
removed, i.e. chosen at some stage, by 9i. Now use the switching lemma to make it 
the first choice and use the induction hypothesis. If Li is a ground negative literal, it 
must succeed under W, and hence, by hypothesis, also under Bz. 

Similarly, if we have an infinite branch under a fair selection rule .%‘i and some 
other rule 9, starts by choosing Li, we can use the switching lemma to make this 
the first choice, and by continuing the process construct an infinite branch under .%?z. 
All ground literals must succeed under 5%‘i and, by hypothesis, also under .9$. 0 

Lemma 7.4. For each success or flounder branch of a query Q under a selection rule 9, 
and each positive literal L of Q, there is an equivalent evaluation path which starts 
by following a success or flounder branch of + L under the rule 9. 

PROOF. Apply the last theorem with 9 as one of the rules, and as the other the rule 
which, on the query Q, starts by following 9%’ on the query +- L. 0 

Definition. A selection rule 9,,, is maximal if each query which succeeds (fails) 
under some other rule succeeds (fails) under 9,. 

In [7, Theorem 51 maximal rules were shown to exist, but the question whether 
they obtained all possible answers to queries was left open. In fact it is an immediate 
consequence of Theorem 7.3: 

Theorem 7.5. Zf a query succeeds with answer 8 under some selection rule, then it 
succeeds with answer equivalent to 8 under each maximal selection rule. 
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