
J. LOGIC PROGRAMMING 1985:3:185-202 185

NEGATION AS FAILURE. II

JOHN C. SHEPHERDSON

D The use of the negation as failure rule in logic programming is often
considered to be tantamount to reasoning from Clark’s “completed data
base” [2]. Continuing the investigations of Clark and Shepherdson [2,7], we
show that this is not fully equivalent to negation as failure either using
classical logic or the more appropriate intuitionistic logic.‘We doubt whether
there is any simple and useful logical meaning of negation as failure in the
general case, and study in detail some special kinds of data base where the
relationship of the completed data base to negation as failure is closer, e.g.
where the data base is definite Horn or hierarchic. a

1. INTRODUCTION

This paper is a sequel to [7] (which should be consulted for unexplained details), and
is concerned with the use of a negation as failure rule in logic programming, in the
way it is used in Clark’s query evaluation procedure [2] (roughly as in PROLOG).
Clark showed there that the use of a negation as failure rule was compatible with the
use of a completed data base (CDB) obtained by replacing “if’ in the clauses of the
data base by “iff”. We showed in [7] that it was equally compatible with the closed
world assumption (CWA) of Reiter [6], according to which a positive ground literal
not implied by the data base is supposed to be false. We showed that in general the
CDB and CWA were different; for example, one could be consistent and the other
not, or they could both be separately consistent but incompatible. The fact that
negation as failure is compatible with such different assumptions means that in
general it cannot coincide with either of them and raises the question of exactly what
its logical status is. Doubts as to whether it has a clear logical meaning were raised in
[7, Examples 3,4,5] by examples of a query Q, & Q2 succeeding but Q, not, or a

Address correspondence IO J. C. Shepherdson, School of Mathematics, University Walk, Bristol BS8
lTW, England.

OElsevier Science Publishing Co., Inc., 1985
52 Vanderbilt Ave., New York, NY 10017 0743-1066/85/$03.30

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82453535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

186 JOHN C. SHEPHERDSON

query failing when some ground instance of it didn’t, or a query not succeeding
although some ground instance of it did. In Section 2 of this paper we investigate the
source of these illogicalities and discuss ways of removing them. The discussion
suggests that intuitionistic logic is more appropriate than classical logic, but leaves it
doubtful whether there is in general any simple and useful logical characterisation of
negation as failure.

This focuses attention on restrictions on the queries or the data base which make
the query evaluation procedure more complete and closer to the completed data
base. In Section 3 we study Clark’s notion of an allowed query which cannot
flounder (i.e. lead to a query containing unground negative literals to which no
evaluation rule applies), and give stronger conditions which are easier to test. In
Section 4 we deal with definite Horn data bases, pointing out that if the original data
base is really the intended one, then the appropriate rule for negation is not negation
as failure but no rule at all. However, if the completed data base was intended, then
all is well: an allowed query succeeds under the negation as failure rule iff it is an
intuitionistic consequence of CDB. For classical logic the results are almost as good.
But for failure they are not; the class of queries Q for which Q fails when - Q is a
consequence (even an intuition&tic one) of CDB is much more restricted. In Section
5 we consider conditions which are sufficient to ensure completeness in the sense that
every allowed query either succeeds or fails. When in addition all evaluation trees
are finite we have, for allowed queries, a perfect match with the CDB. In Section 6
we develop Clark’s notion of a hierarchic data base which satisfies the conditions of
Section 5. These conditions may be relaxed slightly to admit some relations not
belonging to the hierarchy. It is possible these apply to most of the situations in
which negation as failure is used in practice. Section 7 is an appendix containing
some technical lemmas about changing the order in which literals are selected, which
are needed because in the presence of negation the results of the query evaluation
procedure are no longer independent of the rule used for selecting literals.

2. LOGICAL STATUS OF NEGATION AS FAILURE

Clark’s query evaluation procedure of [2] amounts to adding the negation as failure
rule

- A succeeds if A fails NF

and the corresponding logically impeccable, failure of negation as success rule

- A fails if A succeeds FN

for the case where A is a positive ground literal, to SLD resolution (using the most
general unifier). (SLD resolution is also called LUSH resolution. Lloyd [5] uses the
term SLDNF resolution for SLD resolution plus NF.) The programs, which we shall
usually caIl data bases (DB), considered are composed of clauses of the form

A + L,&...&L,, m 2 0,

where A is a positive literal and L,, . . . , L, are positive or negative literals. Queries
are conjunctions of literals, written in the form

+ L,&...&L,, m20.

NEGATION AS FAILURE 187

The fact that we have not only Clark’s result [2]: for all queries Q and substitutions

4

if Q succeeds with answer I3 then CDB I- Qe,

but also

if Q succeeds with answer 8 then CWA I- QtJ

and that, as pointed out in [7], in general neither of CDB, CWA implies the other,
means that neither of these implications can be strengthened to the equivalence we
would like to have:

Q succeeds with answer including 6’ iff CDB t Qt9,

where “with answer including 8 ” means “with answer 8, such that 8 = 8,+ for
some $J”. Thus we cannot regard the use of the query evaluation procedure based on
negation as failure as being equivalent to “completing the data base” (replacing DB
by CDB) or to using the closed world assumption (replacing DB by CWA), but only
as an incomplete attempt to do both of these, which obviously cannot get closer to
either of them than their common part. It is natural to ask whether there is any other
way of completing or extending the data base, to DB+ say, which is equivalent to the
query evaluation procedure in the sense that, for all queries Q and substitutions 8,

Q succeeds with answer including 8 iff DBf~ Qe.

Since whether a query succeeds depends on the selection rule (called “computation
rule” by Lloyd [5]) used for choosing literals from queries, and since the above
soundness result holds for all selection rules, what we should aim for is

Q succeeds with answer including 8 under some selection rule 13

DB+t- Qe. 0)

This leaves the possibility that a particular selection rule 9, e.g. the PROLOG rule
“take the first literal”, could be incomplete. There are however, as we show in
Section 7, maximal selection rules 93, such that if a query succeeds with answer B
under any rule, then it succeeds with answer equivalent to 0 under %?,,,. Such rules
would then be complete, but it is not clear whether there are any recursive maximal
rules. But we are still aiming too high, for it is easy to check that the rules of SLD
resolution are intuitionistically valid and that the soundness results of [2] hold
intuitionistically, i.e.

if Q succeeds with answer 0 then CDB I-, Q

where I-~ denotes the intuitionistic consequence relation. It would therefore be
unreasonable to expect classical completeness. That this is indeed unobtainable is
shown by the following example similar to one given by Clark. Take DB to be
P(a) t - P(a). Then P(a) is, according to classical logic, a consequence of DB, yet
the query + Z’(a) does not succeed, but has an infinite evaluation tree. So for no
extension DB+ of DB could we have (1) above. The most we can expect is
intuitionistic completeness and equivalence, i.e.

Q succeeds with answer including 0 under some selection rule ly
DB+t-, Q. (2)

However the restriction of the negation rules NF and FN to ground literals means
that one cannot deal adequately with queries such as + - P(X) because no rule is

188 JOHN C. SHJSPHE?RDSON

applicable to them. Following Clark [2], we make the

Dejinition. A query all of whose literals are unground negative literals is called a
Jlounder, and an evaluation path which ends in a flounder is said to flounder.

Thus if the DB is P(b) + , R(a) + , then the query + - P(x) flounders. However,
+ - P(a) succeeds, so if we had (2) then - P(a) should be a consequence of DB+,
so + - P(x) should succeed with answer x = a. There is no obvious way of
detecting and excluding such queries, for if we add to the above DB the clause
Q(x)+ - P(x), the totally positive query + Q(x) flounders although + Q(u)
succeeds. But one way of proceeding is to try and give simpler conditions sufficient
to ensure that a query does not flounder. We explore this in the next section, starting
with Clark’s notion of allowed query. So one possible sense in which we could find a
meaning for negation as failure is to try to find DBf such that

(2) is true for all allowed queries (3)

Another way of dealing with flounders is to accept them as a fairly harmless kind
of incompleteness. For a flounder is immediately evident; so the evaluation proce-
dure is then telling you clearly and finitely that it cannot deal with the query. So it
might be quite acceptable to have, instead of (2), intuitionistic soundness: for all Q, 8

if Q succeeds with answer 8 under some selection rule then DB+t-I Qe (4a)

and weak intuitionistic completeness: for all Q, 8

if DB + k,QO then Q succeeds or flounders with answer including 8

under some selection rule, (4b)

i.e. ends in a flounder at a point where the answer substitution includes 6. Since
allowed queries cannot flounder, (4a, b) imply (3).

A third way of trying to obtain completeness, which was suggested by Clark [2,
p. 3141, is to extend the query evaluation procedure to deal with nonground negative
literals while preserving the intended meaning of queries and of reasoning from
some extension of DB. The rule NF is valid, intuitionistically as well as classically,
also for nonground negative literals - A in the form

- A succeeds with answer 8 if A9 fails NFE

because

- (~x)A(xO)t-,(Vx) - A(xt3).

The other rule FN, “failure of negation as success”, is valid in the form

- A fails if A succeeds with answer the identity,

because

(Vx)A(x) +I - (3x) -A(x).

FNE

The extended query evaluation procedure using rules NFE, FNE instead of NF, FN
differs from the old one in allowing the selection of a nonground negative literal
- A(t,, . . . , tk). When this is done we recursively enter the extended query evaluation
process with + A(t,, . . . , tk) as the query. If + A(t,, . . . , tk) succeeds with answer
the identity, then the original query is failed by FNE. If not, then the queries

NEGATION AS FAILURE 189

+ A(t,, . . .) t,)O for all substitutions 6 are tried. For each of these which fails, we
enter an alternative evaluation path in which, using NFE, - A(?,, . . . , tk) is selected
from the original query and the rest of the query (Q,) is replaced by Q,e. If we left it
like this and failed -A(ti,..., tk) when there were no such paths, i.e. if none of
+A(t1,..., r&9 failed, we should be more or less committing ourselves to Herbrand
models (which would be a restriction even for a definite Horn data base; see Section
4) and denying the possibility that if xi,. . . , x, are the variables in A(r,,. . ., rk)
there might be new constants a,, . . . , a,, not obtainable by substitution, for which

A0 i, . . . , rk) failed. So we add another “open” path to cover this possibility. This can
never be used positively: it is just there to stop us failing - A(r,, . . . , r,J when there
are no other paths. This extended procedure is not implementable, because in
general there may be infinitely many substitutions, giving an evaluation tree of
infinite width. But since it is more complete than the original procedure, it enables us
to consider the possibility of a closer logical fit. For we may now ask for intuitionis-
tic soundness and completeness of this extended query evaluation procedure, i.e. for
all Q, 8,

Q succeed, wirh answer including 8 under some selection rule 13
DB+I-, Qe (5)

where succee&, denotes success under the extended query evaluation procedure.
This gives more precise information than (4a, b) and is easily seen to imply them. To
prove that (5) + (4a) you prove by an easy induction on the total height of a success
tree (including all auxiliary trees used for evaluation of ground negative
literals-precise definitions are given after Theorem 4.2) or failure tree that if a
query Q succeeds (fails) it succeeds, (fails,) according to some selection rule. To
prove (5) + (4b) we have to show that succeeds, implies succeeds or flounders under
some selection rule. Use the switching Lemma 7.2 to defer as long as possible the
choice of any nonground negative literals; if the query has not succeeded by then, it
must flounder.

We shall see in Section 4 that in the case where DB is Horn and definite there
exists a DB+ satisfying (6), namely CDB, which, by Theorem 2 of [7] (or earlier by
Apt and van Emden [l]) in this case is equal to CDB n CWA. But even if we ask for
the apparently weaker (3) instead of (5) Example 1 of [7] shows that DB+ cannot
always be taken to be CDB or CWA or CWA, or CDB f~ CWA or CDB n CWA,
(where CWA, differs from CWA in having - A as an axiom for ground literal A
when DB V, A instead of DB of A).

Whether there is always a DB+ satisfying (3) or, better still, (4a, b) or, best of all,
(5) and preferably an extension of DB, is not clear. If there is, it can be taken to be
the set of all queries Q which succeed with answer 1 [or succeed. in the case of (5)]
under some selection rule. But that would be a rather unhelpful, self-referential
explanation of the logical meaning of negation as failure. A slightly more illuminat-
ing candidate for DBf is the union of DB and the set of all negative literals which
succeed with answer 1. If one really wanted to use logic programming in a purely
declarative sense-i.e. being able to write a program or data base thinking only of
the meaning of the logical terms involved, and not at all of how the evaluation would
be carried out-then one would want a simple, clearly understandable definition of
DB+ like CDB or CWA.

190 JOHN C. SHEPHERDSON

One thing is clear:

The results of the query evaluation procedure using negation as failure depend not only
on the logical content of the data base clauses but also on the way they are written.

Similarly, if DB+ satisfying (3) or (4) or (5) exists, it depends not only on the logical
content of DB but on the way it is written. As far as classical logic is concerned, this
is shown by the difference in the query evaluation procedure caused by writing the
data base P(a) + - Q(a) in the form Q(a) + - Z’(a) [+ P(a) succeeds in the first
but fails in the second]. These are not intuitionistically equivalent, but one can show
that the query evaluation procedure and DB+ (if it exists) do not depend only on the
intuitionistic logical content of DB, by adding to DB for each relation R(x,, . . . , xk)
a clause

R(x,)...) x,)+R(x,)...) Xk).

This is a tautology intuitionistically (and, surely, according to any sort of logic which
might conceivably be of use), but it effectively neuters the negation as failure rule,
since every positive literal has an infinite evaluation tree and cannot fail. For
example, with the DB P(a) +- , Q(b) + , the query +- - P(b) succeeds, but when
P(x) + P(x) is added, it loops.

This fact, that the effect of negation as failure depends on the way the data base is
written, lends strength to Gabbay’s remark (personal communication) that instead of
trying to find a logical meaning for negation as failure in its present form, one
should investigate ways of loop cutting which would give a more complete query
evaluation procedure and, hopefully, one with a clearer logical meaning.

We have talked so far only about the success of queries. Clark’s soundness results
in [2] also apply to failure in the form

if Q jails then CDB l-, - Q,

so it is natural to ask whether the above completeness criteria could be extended to
cover failure, e.g. whether there exists DBf such that, for all allowed queries Q

Q jails under some selection rule ijj DB+ ~~ - Q.

Unfortunately this is not possible even for the case of Q a ground query, for if we
take DB to be P(a) + P(a) and Q to be + P(a)& - P(a), then t, - Q but Q
doesn’t fail. Perhaps the most useful approach here too is to devise ways of making
negation as failure more complete by cutting loops or by failing queries which
contain more or less evident contradictions.

3. ALLOWED QUERIES

In ordinary SLD resolution with a definite Horn data base, incompleteness arises
from infinite evaluation paths. A finite path can only end in success or failure. But in
the query evaluation procedure we are discussing, which allows negative literals and
uses the negation as failure rule, there are two other kinds of inconclusive result.
There is what, following Clark, we have called a flounder, where the path terminates
in a query containing only nonground negative literals, to which no evaluation rule is
applicable. There is also what we shall call a dead end, where the chosen literal is a

NEGATIONASFAILURE 191

negative ground literal L which neither succeeds nor fails (so it must have evaluation
paths which are infinite or flounder or themselves come to a dead end). In this case
the mainstream evaluation is held up because no answer is received about the

subsidiary evaluation of L.
We now consider conditions on the data base and the query which are sufficient

to prevent these inconclusive results.
For the prevention of dead ends all we can suggest is simply to say that they do

not occur, that we have completeness for ground literals:

Every ground literal succeeds or fails.

This is a very strong assumption; as shown in [7] it implies that the CDB is
consistent, and that if the CWA is consistent, then so is CDB u CWA, and if you
restrict to Herbrand domains, CDB and CWA are equivalent. It means you have
complete information about all relations on elements of the Herbrand universe.
However, it is something one would expect to be satisfied if DB really is a data base
in the usual sense.

For flounders we can give a necessary and sufficient condition. Let the positive
part of a query be the query obtained by deleting all its negative literals. Just as we
talk about a query succeeding with answer 8, we shall say a query flounders with

answer 8 if there is an evaluation branch which ends in a flounder where 8 is the
composition of the sequence of unifying substitutions used. Then:

Theorem 3.1. A query Q flounders iff there exists a substitution 8 such that the positive
part of Q succeeds or flounders with answer 8, every negative literal of Q which is

grounded by 9 succeeds, and, in the case of success, some negative literal of Q is not
grounded by 8.

PROOF. The “if’ part is proved by induction on the length of the flounder or success
branch of the positive part of Q, using the switching Lemma 7.1 to rearrange this so
that if the evaluation of Q starts by choosing a positive literal Li, then the
evaluation path of the positive part of Q also starts off choosing L;. Similarly for the
“only if’, using induction on the length of the flounder branch of Q. 0

We have the immediate:

Corollary 3.2. If the positive part of a query Q doesn ‘t flounder and each of its success
paths grounds all negative literals of Q, then Q doesn’t flounder.

A condition expressed in terms of the separate positive literals of a query would
be easier to check. Such a condition was given by Clark [2, p. 3171:

Firstly, the constraint that every variable in a negated literal should have its range specified
by an unnegated literal that will generate a candidate set of ground substitutions is perfectly
acceptable. Let us call this an allowed query. For an allowed query no evaluation can flounder
because it encounters a query with only unground positive literals.

On reflection it seems to me now that what he intended was the following:

DeJnition. A query is allowed if none of its positive literals flounder and every
variable in a negative literal also occurs in a positive literal, all of whose success
branches ground it.

192 JOHNC.SHEPHERDSON

A superficial reading of Clark led me in [7] to state that I was following him when I
used the term to denote what I shall now call weakly allowed:

Dejinition. A query is weakly allowed if every variable in a negative literal also
occurs in a positive literal.

This condition is not sufficient to prevent a query floundering; e.g., in the data base
P(X) + - Q(x) the weakly allowed query * P(x) flounders, and in the data base
P(x) +, Q(a) + the weakly allowed query 6 P(x)& - Q(x) flounders. But it does
have the advantage of being instantly decidable and independent of the selection
rule, whereas whether a query is allowed or flounders can depend on the selection
rule and, I imagine, may be undecidable for some data bases. And although not a
necessary condition for not floundering [if I’(a) fails then I’(a)& - Q(x) doesn’t
flounder], it is obviously a necessary condition for success, so there is little point in
considering queries which don’t satisfy it. We now show that the new definition of
allowed does satisfy Clark’s statement:

Theorem 3.3. An allowed query cannot flounder.

PROOF. Suppose Q is allowed and has a flounder branch. Then some nonground
literal L is present at the end. Suppose L arises from one of the negative literals of
Q. Then each variable x of L is in some positive literal Li of Q, which does not
flounder, and all of whose success branches ground x. Rearranging according to
Lemma 7.4, we get an equivalent path which has x finally grounded. Hence the
original path has all variables of L grounded, contrary to hypothesis.

So L must have been introduced by a unification step applied to some literal
derived from some positive literal Li of Q. Rearranging by Lemma 7.4 so as to start
with an evaluation of + Li again gives a contradiction. 0

In view of the difficulty in deciding whether a query is allowed, it seems
worth,while to look for conditions which are sufficient to ensure that a weakly
allowed query cannot flounder. Obviously we have

Theorem 3.4. If no positive literal flounders and every success branch of a positive
literal grounds all its variables, then weakly allowed is equivalent to allowed.

But it would be more useful to have some simple conditions on the data base which
ensured this hypothesis. The two examples given above of weakly allowed queries
which flounder suggest the conditions in the following

Theorem 3.5. If the right hand side of each data base clause is a weakly allowed query,
and every variable on the left hand side also appears on the right hand side, then
weakly allowed is equivalent to allowed.

PROOF. By Theorem 3.4 it’s enough to show that for a positive literal no evaluation
path can end in a flounder or a success branch which doesn’t ground all its variables.
This is proved by taking a shortest evaluation path of this kind and obtaining a
contradiction by reasoning as in the proof of Theorem 3.3. 0

NEGATIONASFAILURE 193

These conditions are immediately testable but rather restrictive, since they pro-
hibit data base clauses of the form P(X) + . Clearly there is no harm in such a
clause unless P(x) is being used to ground a variable x in a negative literal:

Theorem 3.6. Let a subset of the relations called grounding relations be singled out. Let
the corresponding positive literals also be called grounding. Let a query be called

grounded if every variable in a negative literal also occurs in a grounding positive
literal. Suppose that the right hand side of each data base clause is a grounded query

2nd that if it is a clause about a grounding relation, then every variable occurring on

the left hand side also appears in a grounding positive literal on the right hand side.

Then

a grounded query is allowed.

PROOF. Similar to that of Theorem 3.5, showing that no positive literal flounders and
that every success branch of a grounding positive literal grounds all its variables. 0

4. DEFINITE HORN DATA BASES

Logic programming is particularly concerned with data bases consisting of de$nite

Horn clauses of the form

B+A,&...&A,

where B, A,, . . . , A,, are positive literals. Indeed, the term “logic program” is often
restricted to programs of this kind. This is the type occurring in pure PROLOG, and
it is important because the efficient SLD resolution (using the most general unifier) is
complete in this case for all selection rules [l]. So negation as failure might be
expected to have a clearer logical meaning for a data base of this kind than it does in
general. Results of Apt and van Emden [l] and Jaffar, Lassez, and Lloyd [3] confirm
that in this case it is a reasonably complete way of drawing consequences from the
completed data base. A convenient source of results is Lloyd [5, Theorems 14.5, 16.1,
8.6, 9.21:

Theorem 4.1. If DB is a definite Horn data base, then: If Q is a positive query, then
CDB I- Q ry DB t Q. If Q is a positive query and CDB k Qe, then Q succeeds
with answer including 8 under all selection rules. If Q is a positive query and
CDB k - Q, then Q fails under every fair selection rule.

The first result says that the positive information which can be deduced from
CDB is exactly the same as the positive information which can be deduced from DB.

A fair selection rule is one in which, on each infinite branch of an evaluation tree,
every literal is eventually chosen. The “leftmost literal” rule of PROLOG is not a
fair rule: you can make it fair by cycling the literals round after each step. The last
result does not hold if only Herbrand models are considered; on p. 84 of [5] Lloyd
gives an example of a positive query Q such that - Q is true in all Herbrand models
of CDB but Q does not fail under any rule. These results imply that the strongest
soundness and completeness property [5] of Section 2 holds, and the same for
classical logic, which gives the same results as intuitionistic logic here.

194 JOHNC.SHEPHERDSON

Theorem 4.2. Zf DB is a definite Horn data base, then for all queries Q and
substitutions 8, Q succeeds, with answer including 8 under any fair selection rule iJtr

CDB I- Qt? ifl CDB t-,Qe.

PROOF. For the soundness half we show by an easy induction on the height of the
successE or failure, tree that if Q succeeds, with answer 8 then CDB tlQ, and if Q
fails then CDB k - Q. •1

Since this sort of induction is used a lot, we give a precise definition of the notion
of “success or failure tree” used here. The idea is that, instead of just counting the
steps of the main line evaluation (as we did in the proof of Theorem 3.1 when we
talked about the length of a success or flounder branch), we also hang on a side tree
for every evaluation of a negative literal.

Definition. The notion of success tree (failure tree) of a query Q is defined
recursively as follows:

Basis. If Q is SUCCESS (FAIL), then the tree consisting of the single node Q is a
success (failure) tree for Q.
Znductiue step. If Lj is the chosen literal of Q and Li is a positive literal which
doesn’t match any DB clause, then the tree with a single FAIL node hanging from
the root Q is a failure tree for (2. If Li is a positive literal which matches one or
more DB clauses and Q,, . . . , Q, are the resulting derived queries then a success

tree for Q is a tree consisting of a success tree for some Qj hanging from the root
Q; a failure tree for Q is a tree consisting of failure trees for each of Q,, . . . , Q,
hanging from the root Q. If L, is a negative ground literal - A a success tree for
Q is a tree consisting of a failure tree of A and a success tree of Q, hanging from
the root Q, where Q, is the query obtained from Q by deleting -A. A failure
tree for Q is a tree consisting of a failure tree of A and a failure tree of Q,
hanging from the root Q, or a success tree of A hanging from the root Q.

A success tree with answer 8 is defined similarly in the obvious way. So are a

Jlounder tree and flounder tree with answer 8.
For the extended query evaluation procedure the notions of successE tree,

successs tree with answer 8, failure, tree are defined similarly, attaching a failure,
tree for AB when rule NFE is used to make -A succeed with answer 0 and a
successE tree with answer 1 when rule FNE is used to fail - A.

For the completeness half we must show that if CDB k Qe, then Q succeeds,
with answer including 0 under every fair selection rule. Suppose

Q is +A,&...8ul,&- B,&...&- B,,

where the A’s and B’s are positive literals. Using the switching Lemma 7.2, we may
defer choice of the negative literals until the positive ones have been dealt with.
Since CDB t Qe, we have, for all i, j, CDB I- Ai8 and CDB k - Bid. So by
Theorem 4.1 each Ai succeeds with answer including 8 and each B/I fails. So all the
positive literals of Q succeed with answer including 8, and when we come to the
negative literals these all succeed using rule NFE. •I

As in Section 2, it follows that if CDB I- Qe, then under the original evaluation
procedure Q succeeds or flounders with answer including 8, and that if Q is allowed,

it must succeed.

NEGATION AS FAILURE 195

However for classical logic the completeness results are not quite perfect even for
allowed queries and definite Horn data bases. For we have been talking so far about
CDB I- Qt9, i.e. specific substitution instances of Q being consequences of CDB.
What we are really supposed to be asking with a query Q is whether CDB I- 3(Q),
where 3(Q) denotes the existential closure of Q, so we would like to have, at least for
allowed queries Q,

if CDB F 3 (Q) then Q succeeds under some selection rule.

The following is a counterexample: take DB to be A(a) + , A(f (a)) + A(f (a))
[for a slightly less pathological example replace the latter by A(f(u)) +

4&u)), 4g(u)) + A(f(u))l, and Q to be + A(x)& - A(f(x)). Here
- A(f(f(u))) is a consequence of CDB; hence so is 3(Q), i.e. (Yx)(A(x)&-

A(f (x))), because if - A(f (a)) holds, then x = a satisfies, and if A(f (a)) holds,

then x = f(u) satisfies. But there is no single term t such that CDB + A(t)& -
A(f (t)), so Q cannot succeed (or succeed.), nor does it flounder; it has an infinite
evaluation tree. So even for a definite Horn data base intuitionistic logic is the
appropriate one; the only reason there are also partial completeness results for
classical logic is that after the existential quantifier has been removed by choice of a
specific term, classical and intuitionistic logic give the same results.

Note that even for a definite Horn data base the CDB is not determined solely by
the logical content of DB; e.g. adding the tautologies R(x,, . . . , x,J + R(x,, _ . . , XJ
for all relations makes CDB equivalent to DB.

For failure the completeness result, even in the form

if CDB t - Q then Q fails or flounders,

does not go very far and can fail for a ground query, as shown by the example of
Section 2, the query P(u)& - P(u) with data base P(u) + P(u). But it is true for
positive queries as stated in Theorem 4.1, in the form

if CDB F - Q then Q fails under every fair selection.

This is also true for purely negative ground queries +- - B, & . _ . & - II,. For if, for
some i, DB I- Bi, then Bi succeeds, so - Bi fails and so does Q. And if, for all i,
DB w Bi, then, as shown in [7, proof of Theorem 21, the Herbrand model with a
positive ground literal L true iff DB I- L is a model for CDB, so in this model Q is

true and - Q is false, so CDB hc - Q. It can be shown to hold for all purely negative
queries if fails is replaced by fails,.

Note that in the case of a definite Horn data base the use of negation as failure is
very limited. The only negations are those in the original query 6 A,&. . . &A,& -
B, & . . . & - B,, and the negation as failure rule is only used at the end, to declare a
grounded - Bj8 a success or failure according as B,t? fails or succeeds using the
ordinary SLD resolution for positive clauses and queries.

Note also that the completeness results we have are for CDB, not DB. If the
intended data base is really DB; then in order to deal with queries involving negation
and to achieve full classical soundness and completeness for all queries, i.e.

Q succeeds under every selection rule iff DB I- 3 (Q) ,

it is not the negation as failure rule which should be used, but no additional rule at
all. For a query Q containing a negative literal cannot then succeed; nor can
DB+ 3(Q), for DB has a model in which all relations are true for all arguments.

196 JOHN C. SHEPHERDSON

And for positive queries this is just the usual soundness and completeness result for
SLD resolution.

5. WHEN QUERY EVALUATION IS COMPLETE

In view of the difficulties discussed in Section 2 in the way of finding a clear logical
meaning for the query evaluation procedure incorporating negation as failure when
it is incomplete, it is worth looking for cases where it is complete, i.e. where allowed
queries either succeed or fail. The results here are extensions of those of Clark [2]
and of [7].

Theorem 5.1. If the query Q succeeds or fails and if DB is consistent, then

Q succeeds iff CDB I- 3(Q),
Q fails i#CDB!--Q.

Similarly with CWA in place of CDB and (at least for CDB) with kt instead of

E.

PROOF. It is an immediate consequence of Clark’s soundness results that if Q
succeeds with answer 0 then CDB I- QO, and if Q fails then CDB F - Q. Similarly
for CWA using the results of [7], and for I- I by the intuitionistic soundness of CDB
observed in Section 2. (I haven’t checked CWA using intuition&tic logic; you might
need to use CWA, as defined in Section 2 instead.) •I

So in this case, if CDB and CWA are both consistent, they agree as far as Q is
concerned. As shown in [7], the consistency of CDB is guaranteed if all ground
literals succeed or fail.

However, we may not have completeness with respect to CDB in the sense of
obtaining all answers, i.e.

Q succeeds with answer including 6 if CDB F Qfl,

for if you take the data base to be I’(a) + , P(x) + - P(x) and take Q to be
+ P(x), then CDB t Q, but Q does not succeed with answer the identity substitu-
tion 1 (although it does succeed with answer x = a, which is equivalent from the
point of view of the CDB, which implies x = a). In this case one branch of the
evaluation tree flounders.

DeJnition. A query has the jinite tree property if its evaluation tree is finite and each
branch ends in success or failure. If in addition all successful branches result in
full instantiation, it is said to have the jinite grounded tree property.

Definition. A query Q is said to be answer complete if

Q succeeds zfl CDB F @)Q,
Q jails z$-CDBF-Q,
Q succeeds with answer including 8 if CDB !- Qe.

Theorem 5.2. A query with the Jinite tree property is answer complete.

PROOF. Clark [2, pp. 317, 3181. Cl

NEGATIONASFAILURE 197

From the practical point of view it is just as desirable that a query should have a
finite evaluation tree as that it should succeed or fail, and we now look into
conditions which are sufficient to ensure this. Clark [2, p. 3181 stated that if all
queries of the form + R(x,, . . . , xk) have the finite grounded tree property for all
selection rules, then so do all allowed queries. It was pointed out in [7] that this was
not quite correct, but needed the property for ground literals as well. However,
Clark’s result can be rescued by replacing “all selection rules” with “some selection
rule”. We need a lemma:

Lemma 5.3. If a query Q has theJinite tree property under some selection rule W, then
so, under some selection rule .9?@, does Qe. Similarly for the jinite grounded tree

property.

PROOF. By induction on the height of the evaluation tree for Q under &?I”, where, as
in Section 4, we consider the evaluation tree to include side trees for the evaluation
of negative literals. If this height is zero, then Q is either SUCCESS or FAIL, and so is

Q@-
Inductive step. If the first step in the evaluation of Q under W is to choose the

literal Li, then define W, to choose the literal Lie of QO.
If Li is a negative ground literal, then L,B = Li and we define 91”e with root Li to

behave the same as 9’. If Lj fails, we then get a finite failure tree for QO. If Li
succeeds, we apply the induction hypothesis to the new queries Q’ and Q’s resulting
from the deletion of Li from Q, Qe.

If L, is a positive literal and L, doesn’t match any DB clause, then Qe fails at
once. If Lit3 unifies with some R from a DB clause, with most general unifier Si,
then by Lemma 1 of [7], Li unifies with R, and if the new queries are Q’,(Qe)‘, we
have (Qt3)’ = Q’M;. Now each Q’ has under 9 a finite evaluation tree of lower
height than Q; hence, by the induction hypothesis, each (Qr3)’ has a finite evaluation
tree under some selection rule. q

Theorem 5.4. If each. query of the form +- R(x,, . . . , xk) has the finite tree property
under some selection rule, then there is a selection rule 9%’ under which all positive
literals have this property. Similarly for the finite grounded tree property.

PROOF. By the last lemma each positive literal has the finite tree property under
some selection rule. Take for 5I’ a rule which, for a query with the finite tree property
under some rule, follows a rule which gives a shortest evaluation tree. q

This result is of no practical use, because it gives no way of finding the rule 9%‘. It
is not true that it can be .taken to be any fair rule, because the fairness does not
prevent an evaluation branch ending in the evaluation of - L where L has an
infinite evaluation tree. This suggests that we might add to fairness the condition
that negative ground literals are only to be chosen when there are no positive literals
left. But this is not enough, for if DB is taken to be P(x) + - P(x)& - Q(a),
Q(x) + , then under every rule + Q(x) succeeds and + P(x) fails, both with finite
trees. But + P(a) neither succeeds nor fails under the fair rule which takes negative
literals only when there are no positive, and takes the first permitted literal, cycling
the literals round after each mainstream evaluation step. To ensure that one always
reaches a failing literal [like - Q(a) here] it seems to be necessary to alter the form

198 JOHN C. SHEPHERDSON

of the evaluation. In the method which (following Clark, Lloyd, and others) we are
using, when a negative literal - L is chosen, the evaluation of L is done as a
subsidiary evaluation before proceeding with the main evaluation, and a success or
failure tree for L is tacked on to the side of the main tree. What is needed here
seems to be some sort of intercalation of the evaluation of L with further choices of
literal in the main evaluation.

This sample example shows that we cannot improve the result by replacing “some
selection rule” with “all selection rules” or with some arbitrarily given fixed selection
rule (even if it is assumed to be fair and to prefer positive literals). It is unfortunate
that this least useful “some selection rule” form should be the one which is needed,
but not surprising, because every answer given by any rule is a consequence of the
CDB, so success or failure under some selection rule is the most complete of the
three forms.

Theorem 5.5. If every query of the form + R(x,, . . . , xn) has the finite tree property,
every ground literal succeeds or fails, and the selection rule is fair, then every query
has a jinite evaluation tree.

PROOF. If a query Q has an infinite evaluation tree, then (since we assume there are
only finitely many clauses in DB about any relation) it must by Konig’s lemma have
an infinite branch. Since all ground literals succeed or fail, there are no dead ends, so
this must be a mainstream branch. By Lemma 7.3 there will be an infinite
mainstream branch under any other selection rule which succeeds all ground literals
which succeed under the given rule. A rule 9 given by Theorem 5.4 under which all
positive literals have the finite tree property can easily be arranged to satisfy this. If
we now use the rule which takes the positive literals of Q in turn and applies W to
them, we get a contradiction, for all evaluation branches are finite. 0

NOTE:. A similar argument shows that the condition that all queries of the form
+ R(x,, . . . , x,) have the finite tree property may be replaced by “all positive
literals in the query have the finite tree property”.

Corollary 5.6. Under the conditions of Theorem 5.5 every allowed query is answer
complete. If “Jinite tree” is strengthened to “jinite grounded tree”, then every
weakly allowed query is answer complete.

PROOF. The first part follows from Theorems 3.3 and 5.2. For the second use the
second part of Theorem 5.4 and the switching Lemma 7.3 to show that all positive
literals have the finite grounded tree property. Theorem 3.4 then shows that “weakly
allowed” is equivalent to allowed. 0

There is a similar “all selection rules” (including unfair ones) version. This is a bit
stronger than Theorem 7 of [7], but follows by the same proof:

Theorem 5.7. If under all selection rules every query of the form + R(x,, . . . , x,) has
the jinite tree property and every ground literal succeeds or fails, then every query
has a finite evaluation tree under all selection rules and every allowed query is answer
complete under all selection rules. If “jinite tree ” is strengthened to “Jinite grounded
tree “, then every weakly allowed query is answer complete.

NEGATIONASFAILURE 199

6. HIERARCHIC DATA BASES

Clark [2] gave conditions on the data base sufficient to imply the finite tree property
for all allowed queries under all selection rules. They are based on a hierarchical
condition:

DeJinition. The data base satisfies the hierarchical condition if the relations can be
assigned to levels so that in each clause

R(t,,...,t,) +- L,&...&L,

about an ith level relation R, the relations occurring in L,, . . . , L, are of level

less than i.

This prevents any evaluation tree having infinite branches, because a unification
step replaces a literal by lower level literals.

DeJinition. The relations involved in a query Q are all those occurring in Q together
with all those occurring on the right hand side of data base clauses about these
relations and so on.

There are only finitely many relations involved in a query, since we are assuming
there are only finitely many clauses about each relation. Let N be the maximum
number of literals on the right hand side of any clause about any of the relations
involved in Q. Then it is easily seen that the height of any evaluation tree for Q is
not more than h(Q) = Ejni(N + l)j, where nj is the number jth level literals in Q;
and the number of different evaluation trees (arising from different relation rules) is
not more than h(Q) ‘(Q) The branches of such trees may not all end in success or .
failure, but in a flounder or dead end. In principle it is possible to check out all
evaluation trees of a query, in particular for a single literal, for all selection rules and
hence to decide whether the conditions of any of the completeness theorems of the
last section are satisfied for all the relations involved in a query. But is is probably of
more practical use to give simple conditions sufficient to ensure these. The following
condition is due to Clark [2].

De$nition. A data base satisfies the allowability condition if the right hand side of
each data base clause is an allowed query.

Theorem 6.1. If the data base satisfies the hierarchical condition and the allowability
condition under all selection rules, then all allowed queries are answer complete
under all selection rules.

PROOF. This follows from Theorem 5.7, since an easy induction on the level (using
Theorem 5.7) shows that all positive literals have the finite tree property under all
selection rules. Or that all allowed queries have the tinite tree property can be proved
directly by induction on the quantity h(Q) defined above. 0

In [7] I wrongly stated that Theorem 6.1 was not quite correct because by an
oversight I had assumed that Clark was using the weak allowability condition. With

200 JOHN C. SHEPHERDSON

that one also needs a covering condition [7, Theorem 81:

Theorem 6.2. If the data base satisJies the hierarchical condition, if the right hand side

of each data base clause is a weakly allowed quety, and if every variable on the left

hand side appears on the right hand side, then all weakly allowed queries are answer
complete under all selection rules.

PROOF. By Theorem 3.5 weakly allowed is equivalent to allowed here. As in
Theorem 3.6, the covering condition may be weakened by singling out a class of
“grounding” relations used for covering. 0

The hierarchical condition is a very strong one which forbids any recursive or
mutually recursive definitions. However, it seems to me a very appropriate condition
when you are talking about drawing consequences from the completed data base.
For to get this from the original data base you have to’ convert “if” clauses into
“X”. Now the only time a mathematician writes “if’ when he really means “itf” is
when he is defining some new relation in terms of already defined relations, which is
precisely the hierarchic situation. And whenever you have a non-Horn clause, e.g.
P(x) V Q(x), you have to choose whether to write this as

P(x) + - Qb>
or

Q(x)+--P(x),
which give different CDB. The choice here establishes some sort of priority. Of
course, if there are recursive or mutually recursive definitions, then this priority may
not be an order relation. But in that case the effect of replacing DB by CDB is not
easy to predict.

However, there are some cases where recursive definitions are used when the CDB
is what is intended, e.g. for the relations “append” or “sorted”. And it may be a
fairly common situation for the data base to be hierarchical apart from some
relations of this kind. To be more precise, suppose the relations and corresponding
literals are divided into complementary classes of hierarchical and nonhierarchical

relations.

Dejinition. A data base satisfies the modi$ed hierarchical and allowability condition if
the hierarchical relations can be assigned to levels so that in a clause about an ith
level relation the only hierarchical relations on the right hand side are of level less
than i, the nonhierarchical literals on the right hand side have the finite tree
property, and the right hand side is an allowed query.

Theorem 6.4. If the data base satisfies the modiJed hierarchical and allowability
condition, if all nonhierarchical ground literals succeed or fail, and if the selection
rule is fair, then every allowed query all of whose nonhierarchical literals have the
jinite tree property is answer complete.

PROOF. By induction on the level the note after theorem 5.5 shows that all positive
literals involving hierarchical relations also have the finite tree property and that all
hierarchical ground literals succeed or fail. By the same note it follows that an

NEGATIONASFAILURE 201

allowed query all of whose nonhierarchical literals have the finite tree property has
the finite tree property and hence, by Theorem 5.2, is answer complete.

7. SWITCHING LEMMA, MAXIMAL SELECTION RULES

Since the result of query evaluation may depend on the selection rule- used, it is
useful to note that the switching lemma which Lloyd gave for SLD resolution
[5, Lemma 9.11 also applies when negative literals and the negation as failure rule are
used.

Dejinition. Two queries Q,, Q, are variants of each other when there exist substitu-
tions 8,, 0, such that Q,@, = Q2 and Q,8, = Q,.

As Lloyd shows, 8,, f3, may be taken to be renaming substitutions, i.e. such that
8, maps certain variables of Q, onto variables distinct from each other and from the
other variables of Q, (and similarly for e,, Q2).

Definition. Two finite evaluation paths for a query Q, with answers 8,, 8,, are
equivalent if Qe,, Qe, are variants of each other. Two paths which both fail or
both dead-end are also said to be equivalent.

So equivalent paths give the same answers apart from the names of the variables.

Lemma 7.1 (Switching lemma). If Li, L, are positive or negative ground literals of a
query, and an evaluation path chooses first Li and then Lj, and Lj does not
immediately fail, there is an equivalent evaluation path which diflers only in choosing
jirst Lj, then Li.

PROOF. Strictly speaking we should say “first L, and then the literal L,tJ into which
Lj is sent by the first step.” By saying that Lj does not ir..mediately fail we mean
that LjB is not a failing negative ground literal or nonmatching positive literal. Of
course the equivalent evaluation path uses a different selection rule. If Li, Lj are
positive literals, this is Lemma 9.1 of [5], for the fact that some other literals may be
negative does not affect the proof. If one or both of Li, L, is a negative ground
literal, the result is obvious, since a negative ground literal is unaffected by
unification. Cl

Lemma 7.2 (Switching lemma). If Li, Lj are literals of a query and an extended
evaluation choosesjrst Li and then Lj, and Lj does not immediately fail, there is an
equivalent evaluation path which chooses jirst L,, then Li.

PROOF. Lemma 2 of [7], that if Q fails then Q8 fails under some selection rule, is
easily extended to the extended query evaluation procedure. Now the application of
the new rule NFSE, that if AB fails then -A succeeds with answer 8, can be
regarded as being obtained by unifying - A with the clause - At9 +- obtained by
extending the data base with clauses - L t for each L which fails. So whether
Li, Lj are positive or negative, the argument of Lemma 9.1 of [5] now applies. 0

202 JOHNCSHEPHERDSON

Theorem 7.3. Suppose every negative ground literal which succeeds under selection rule
9YI also succeeds under selection rule 5?,. Then if a quety succeeds ($ounders) with

answer 6 under gI, it succeeds Cflounders) with answer equivalent to 8 under 9,.
If, in addition, 9, is a fair rule and there is an infinite branch under %?I, then there
is an injinite branch under B2.

PROOF. Suppose a query has a success (flounder) branch of length 1 under .%?i. We
show by induction on 1 that there is an equivalent success (flounder) branch under
9,. If I= 0 the result is obvious. For the inductive step suppose 9?* starts by
choosing the literal Li. Whether Li is a positive or ground negative literal it must be
removed, i.e. chosen at some stage, by 9i. Now use the switching lemma to make it
the first choice and use the induction hypothesis. If Li is a ground negative literal, it
must succeed under W, and hence, by hypothesis, also under Bz.

Similarly, if we have an infinite branch under a fair selection rule .%‘i and some
other rule 9, starts by choosing Li, we can use the switching lemma to make this
the first choice, and by continuing the process construct an infinite branch under .%?z.
All ground literals must succeed under 5%‘i and, by hypothesis, also under .9$. 0

Lemma 7.4. For each success or flounder branch of a query Q under a selection rule 9,
and each positive literal L of Q, there is an equivalent evaluation path which starts
by following a success or flounder branch of + L under the rule 9.

PROOF. Apply the last theorem with 9 as one of the rules, and as the other the rule
which, on the query Q, starts by following 9%’ on the query +- L. 0

Definition. A selection rule 9,,, is maximal if each query which succeeds (fails)
under some other rule succeeds (fails) under 9,.

In [7, Theorem 51 maximal rules were shown to exist, but the question whether
they obtained all possible answers to queries was left open. In fact it is an immediate
consequence of Theorem 7.3:

Theorem 7.5. Zf a query succeeds with answer 8 under some selection rule, then it
succeeds with answer equivalent to 8 under each maximal selection rule.

REFERENCES
1.

2.

3.

4.

5.
6.

7.

Apt, K. R. and van Emden, M. H., Contributions to the Theory of Logic Programming, J.
Assoc. Comput. Much. 29:841-863 (1982).

Clark, K. L., Negation as Failure, in: H. Gallaire and J. Minker (eds.), Logic and Data
Bases, Plenum, New York, 1978.

JaEar, J., Lassez, J.-L., and Lloyd, J. W., Completeness of the Negation as Failure Rule,
in: ZJCAZ-83, Karlsruhe, 1983, pp. 500-506.

Lassez, J.-L. and Maher, M. J., Closures and Fairness in the Semantics of Programming
Logic, Theoret. Comput. Sci., to appear.

Lloyd, J. W., Foundations of Logic Programming, Springer, New York, 1984.

Reiter, R., On Closed World Data Bases, in: H. Gallaire and J. Minker (eds.), Logic and
Data Bases, Plenum, New York, 1978.

Shepherdson, J. C., Negation as Failure: A Comparison of Clark’s Completed Data Base
and Reiter’s Closed World Assumption, J. Logic Programming l:l-48 (1984).

